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• Situation	Frame	(SF)	detection	
• Homework	4:	emotion	recognition



Emotion	Recognition	in	Speech



What	is	Emotion?

�4

• Two	families	of	theories	of	emotion	
– Categorical	approach	

• Emotions	are	categories	
• Limited	number	of	basic	emotions	

– Dimensional	approach	
• Emotions	are	dimensions	
• Limited	number	of	labels	but	unlimited	number	of	emotions



Emotion	-	Categorical	Approach	
	[Ekman	et	al.,	1987]	
• Discrete	‘basic	emotions’	
• Originate	from	facial	expressions

?
Anger					Sadness					Disgust					Happiness
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Emotion	-	Categorical	Approach	
	[Ekman	et	al.,	1987]	
• Discrete	‘basic	emotions’	
• Originate	from	facial	expressions
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Emotion	-	Dimensional	Approach	
	[Russell	and	Barrett,	1999]	
• Continuous	multi-dimensional	space	
• Common	physiological	system
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Why	Study	Emotional	Speech?
• Recognition	

– Anger/frustration	in	call	centers		
– Confidence/uncertainty	in	online	tutoring	systems	
– “Hot	spots”	in	meetings	

• Generation	
– TTS	for	virtual	assistants,	computer	games,	etc.	

• Other	applications:		Speaker	State	
– Deception,	Charisma,	Sleepiness,	Interest…	

• Some	emotional	clues	are	only	in	speech



Emotion	in	Speech
Acted	speech	
			Easier	to	collect	&	control	
			Extreme	emotions	
• Mostly	categorical	approach	
• Examples:	(Emotional	Prosody	Speech)	
• Happy,	Sad,	Angry,	Bored

Spontaneous	speech	
			Harder	to	collect	&	annotate	
			Subtle	changes	in	emotion	

• Both	categorical	&	dimensional	approach	
• Example:	(AT&T	“How	May	I	Help	You?”	System)	

– Neutral	->	frustrated	->	angry	
– Arousal	↑,	Valence	↓
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Emotional	Speech	Corpora	-	Acted	&	Categorical	
(EmoDB)

FrightenedSadHappy

AngryBoredNeutral
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Acted	&	Categorical	Speech:	Actors	vs	Students 
	(Emotional	Prosody	Speech)		(Mandarin	Affective	Speech)

Sad	
Happy	
Angry	
Bored	
Interested	
…….
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Neutral 
Panic 
Sadness



Spontaneous	Speech	with	Dimensional	Annotations	
(SEMAINE	database)

• The	goal	of	the	operator	is	to	engage	the	user	in	emotional	conversations	
• 6-8	annotators.	Annotations	range	from	-1	to	1	with	20ms	intervals.	

• Valence	score	:	-0.88	
• Valence	score	:	0.58	
• Valence	score	:	0.83
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Spontaneous	Speech	with	Dimensional	Annotations	
(RECOLA	database)

• 3	hours	of	audio,	visual,	and	physiological	recordings	of	between	46	French	
speaking	participants	

• Participants	were	asked	to	reach	consensus	on	how	to	survive	in	a	disaster	
scenario	

• 6	annotators.	Annotations	range	from	-1	to	1	with	40ms	intervals.
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Partial	List	of	the	Existing	Emotion	Corpora
• Lack	of	naturalness	
• Unbalanced	emotional	content	
• Limited	size	of	corpora,	limited	number	of	speakers



MSP-Podcast	corpus
• Retrieve	potential	segments	from	podcast	recordings	
• Annotations	

– Dimensional	descriptors	
• Activation,	dominance	and	valence	

– Categorical	labels	
• Anger,	happiness,	sadness,	disgust,	surprised,	fear,	contempt,	neutral	and	
other	

• Version	1.1	has	22,630	speaking	turns	(data	collection	is	still	ongoing)	
• The	largest	speech	emotional	corpus	in	the	community



Features	for	Emotional	Speech	-	Pitch
Different	Valence	/	Different	Arousal
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Features	for	Emotional	Speech	-	Pitch
Different	Valence	/	Same	Arousal

�17



Pitch	Contour	Differences

Very Frustrated

Somewhat Frustrated
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Features	for	Emotional	Speech
Z	
sc
or
e

-2.0000

-1.5000

-1.0000

-0.5000

0.0000

0.5000

1.0000

1.5000

2.0000

Uqerance
Neutral Frustrated Angry

Median	Pitch Mean	Energy
Speaking	Rate



Emotion	Recognition	in	Speech
	Categorical	Approach		
• Discrete	‘basic	emotions’	

• Classification	problem

	Dimensional	Approach	

• Continuous	Arousal	-	Valence	space	

• Regression	problem
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	 (Liscombe	et	al.	2003)	
• Acoustic-prosodic	features:	

– Pitch,	energy,	speaking	rate	
– Nuclear	accent,	pitch	contour

Emotion Baseline Accuracy

angry 69.32% 77.27%

confident 75.00% 75.00%

happy 57.39% 80.11%

interested 69.89% 74.43%

encouraging 52.27% 72.73%

sad 61.93% 80.11%

anxious 55.68% 71.59%

bored 66.48% 78.98%

friendly 59.09% 73.86%

frustrated 59.09% 73.86%

Emotion	Recognition	-	Categorical	



	 (Mao	et	al.	2014)	
• Learning	emotion	from	spectrograms	
• Evaluation	on	4	datasets:	

– anger,	disgust,	fear,	happiness,	sadness,	
surprise,	and	neutral	

– anger,	disgust,	fear,	joy,	sadness,	
boredom,	and	neutral	

– anger,	joy,	surprise,	sadness,	and	neutral	
– anger,	joy,	surprise,	sadness,	and	disgust	

Emotion	Recognition	-	Categorical	



Emotion	Recognition	in	Speech
	Categorical	Approach		
• Discrete	‘basic	emotions’	

• Classification	problem

	Dimensional	Approach	

• Continuous	Arousal	-	Valence	space	

• Regression	problem	
• High	granularity	in	time	and	value	
• Suitable	for	deep	learning	models
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	 (Trigeorgis	et	al.	2014)	
• Learning	emotion	(valence-arousal)	from	waveforms	directly	
• Convolutional	layers:		

1. Extracting	spectral	information	
2. Extracting	long-term	characteristics	

• Recurrent	layers:	modeling	the	context

Emotion	Recognition	-	Dimensional	



	 (Trigeorgis	et	al.	2014)	
• Evaluation	metric:	Concordance	correlation	coefficient	

– Valence:	0.686,	arousal:	0.261	
• Some	cells	learn	acoustic	features	automatically	

– Range	of	RMS	energy	(ρ	=	0.81)	
– Loudness	(ρ	=	0.73)	
– Mean	of	fundamental	frequency	

								(ρ	=	0.72)

Emotion	Recognition	-	Dimensional	



Emotion	Recognition	-	Dimensional	
	Spectrogram 	Waveform

	Do	spectrograms	and	waveforms	contain	complementary	
information	for	emotion	recognition	in	speech?



Emotion	Recognition	-	Dimensional
• Input:	raw	waveform	and	spectrogram	
• Model:	convolutional	recurrent	neural	networks	
• Task:	Predict	arousal	and	valence	
• Continuous	in	both	time	and	value	
• Results:
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Example	Analysis	-	Dimensional

Local		
Interpretable		
Modelagnostic	
Explanations	
	(LIME)	

“…cos	she’s	so	frigging	superior"

	 Valence	 Arousal
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Sentiment	and	Emotion	in	Text



English	Sentiment	Lexicon
• The	General	Inquirer	(Stone	et	al.	1966)	

– Positive	(1915),	Negative	(2291),	Strong	vs	Weak,	Pleasure,	Pain,	etc.	
• LIWC	(Linguistic	Inquiry	and	Word	Count)		

– Negative	emotion	(anxiety,	anger,	sadness);	Positive	emotion	
• MPQA	Subjectivity	Cues	Lexicon	

– 2718	positive,	4912	negative		
• Bing	Liu	Opinion	Lexicon	

– 2006	positive,	4783	negative	
• SentiWordNet	

– WordNet	synsets	automatically	labeled	with	positivity,	negativity,	and	objectiveness



Polyglot	(Multilingual	text	processing	toolkit	)
• Sentiment	polarity	lexicons	for	136	languages	

– 7,741,544	high-frequency	words	from	136	languages	in	Wikipedia	
– Use	Bing	Liu	Opinion	Lexicon	(English)	as	seed	
– Wiktionary	+	Google	Translation	+	Transliteration	+	WordNet	to	generate	edges	
between	words	

– Propagate	sentiment	labels	through	the	edges



Plutchick’s	wheel	of	emotion	
• 8	basic	emotions	in	four	opposing	pairs

– joy–sadness	
– anger–fear	
– trust–disgust	
– anticipation–surprise	

	



NRC	Word-Emotion	Association	Lexicon
(Mohammad	and	Turney	2011)	
• Categorical	approach	of	emotion	
• 10k	words	chosen	mainly	from	earlier	lexicons		
• Labeled	by	Amazon	Mechanical	Turk		

– Joy,	sadness,	anger,	fear,	trust,	disgust,	anticipation,	
surprise;	positive,	negative

–



Lexicon	of	Valence,	Arousal,	and	Dominance	
(Warriner	at	al.	2013)	
• Dimensional	approach	of	emotion	
• AMT	Ratings	for	14,000	words	for	emotional	dimensions	

– Valence	(the	pleasantness	of	the	stimulus)		
– Arousal	(the	intensity	of	emotion	provoked	by	the	stimulus)		
– Dominance	(the	degree	of	control	exerted	by	the	stimulus)	

• Examples:	(range	1-9)



Detecting	Sentiment/Emotion	in	Text
• Simplest	unsupervised	method	

– Sum	the	weights	of	each	positive	word	in	the	document	
– Sum	the	weights	of	each	negative	word	in	the	document	
– Choose	whichever	value	(positive	or	negative)	has	higher	sum	

• Simplest	supervised	method	
– Use	“counts	of	lexicon	categories”	as	features	(e.g.	LIWC)	
– Baseline:	use	all	unigram/bigram	counts	+	POS	tags	
– Hard	to	beat,	but	only	works	if	the	training	and	test	sets	are	very	similar	



Sentiment	in	Twitter	:)	(Go	et	al.	2009)
• Use	emoticons	to	find	tweets	with	sentiment	

• Training	set:	
– 800k	tweets	with	positive	emoticons,	and	800k	tweets	with	negative	emoticons	
– Seed	emoticons	are	stripped	off	before	training	

• Test	set:	359	tweets	manually	annotated	
• Accuracy:	~80%



Sentiment	in	Twitter	#thingsilike	(Kouloumpis	et	al.	2011)



Emoji	in	Twitter	😊	(Felbo	et	al.	2017)
• Number	of	training	data	(in	millions)	

• Output:	probability	of	emoji	labels



Emoji	in	Twitter	😊	(Felbo	et	al.	2017)
• DeepMoji	model	architecture



Attention	Modeling	for	Targeted	Sentiment	
(Liu	and	Zhang	2017)

• Targeted	Sentiment	
– “She	began	to	love	miley	ray	cyrus	since	2013	:)”	
– “#nowplaying	lady	gaga	-	let	love	down”	



BERT	in	Sentiment	Analysis	(Google	AI	Language)
• BERT:	Bidirectional	Encoder	Representations	from	Transformers	

– Transformer:	stacked	self-attention	blocks	

• Training:	mask	part	of	the	input	tokens	at	random,	then	predict	those	masked	
tokens



BERT	in	Sentiment	Analysis
• Fine-tuning	for	single	sentence	classification	task	

– Add	a	classification	layer	on	the	output	of	[CLS]	token	

• Accuracy	on	the	Stanford	Sentiment	Treebank	dataset:	94.9%



Text	Sentiment	Analysis	Dataset
• Product	reviews	on	Amazon	

– Multidomain	sentiment	analysis	dataset	
– Amazon	product	data,	143	million	reviews	

• Movie	reviews	on	IMDB	
– Cornell	movie	review	data,	labeled	with	sentiment	polarity,	scale,	and	subjectivity	
– Large	Movie	Review	Dataset	v1.0,	25k	movie	reviews	
– IMDB	Movie	Reviews	Dataset,	50k	movie	reviews	
– Bag	of	Words	Meets	Bags	of	Popcorn,	50k	movie	reviews	

• Reviews	from	Rotten	Tomatoes	
– Stanford	Sentiment	Treebank,	11k	reviews

http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
http://jmcauley.ucsd.edu/data/amazon/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz
https://www.kaggle.com/iarunava/imdb-movie-reviews-dataset
https://www.kaggle.com/c/word2vec-nlp-tutorial/data
http://nlp.stanford.edu/sentiment/code.html


Text	Sentiment	Analysis	Dataset
• Tweets	with	emoticon	

– Sentiment140,	160k	tweets	
• Twitter	data	on	US	airlines	

– Twitter	US	Airline	Sentiment,	with	negative	reasons	(e.g.	“rude	service”)	
• Paper	reviews	

– Paper	Reviews

http://help.sentiment140.com/for-students/
https://www.kaggle.com/crowdflower/twitter-airline-sentiment
https://archive.ics.uci.edu/ml/datasets/Paper+Reviews


Situation	Frame	(SF)	Detection



LORELEI	Project
• Low	Resource	Languages	for	Emergent	Incidents	(LORELEI)	
• Develop	language	technologies	quickly	to	help	first	responders	understand	text	
and	speech	information	
– Using	speech	features	to	detect	whether	the	speaker	is	talking	about	an	
incident	

– Keyword	search	in	low-resource	languages



SF	Speech	-	Overview
• Document-level	situation	frame	(SF):	

– Type	,	Place	,	Status	,	and	Confidence		
• 11	SF	Types:	

– Evacuation,	food,	water,	medicine,	infrastructure,	shelter,	rescue,	utilities,	
crime,	terrorism,	regime	change	

• Two	sub-tasks	
– Relevance	layer:	Does	the	segment	contain	at	least	1	frame	of	any	type?		
– Type	layer:	Which	SF	types	(if	any)	are	contained	in	the	segment?



SF	Speech	-	Overview
• Available	speech	packs	in	27	languages	

– Afro-Asiatic:	AMH,	SOM,	ARA,	HAU,	IL5(Tigrinya),	IL6	(Oromo)	
– Turkic:	TUR,	UZB,	IL3(Uyghur)	
– Austronesian:	TGL,	IND	
– Niger–Congo:	AKA,	SWA,	WOL,	YOR,	ZUL	
– Indo-European:	BEN,	FAS,	HIN,	RUS,	SPA,	USE	
– Sino-Tibetan:	CHN	
– Uralic:	HUN	
– Austroasiatic:	VIE	
– Dravidian:	TAM	

– Tai–Kadai:	THA	
• Incident	languages	(IL)	for	SF	evaluation	in	2018	

– IL9(Kinyarwanda),	IL10(Sinhala)



SF	Speech	–	Relevance	layer
• Binary	classification	
• Baseline	model	

– openSMILE	feature	set	
• 384	hand-engineered	features	

– Random	forest	model	
• limit	the	maximum	depth	to	prevent	overfitting	

• End-to-end	deep	neural	networks	
– CNN	+	LSTM	

• Adapt	the	model	from	speech	emotion	recognition	task



Cross-Language	Experiments
• Higher	accuracy	for	language	pairs	within	the	same	language	family



SF	Speech	–	Relevance	layer
• Challenges	

– Coarse-grained	annotation	
• 1	label	for	each	utterance(up	to	2	minutes)	

– Data	from	different	sources	in	different	languages	
• Tigrinya	–	VOA	;	Oromo	–	local	news	
• Hard	to	learn	useful	pattern	across	languages	

• End-to-end	deep	neural	networks	
– Tend	to	overfit	training	data	
– No	significant	improvement	over	baseline	model



SF	Speech	–	Type	layer
• Traditional	method	

– Generate	ASR	transcript	in	the	incident	language	
– Translate	into	English	
– SF	type	detection	in	English	

• Error	propagation	through	the	stages	
– English	translation	might	be	unintelligible	

• Our	method	
– Skip	the	ASR	part		
– Query-by-example	spoken	term	detection



SF	Speech	–	Type	layer
• Step	1	

– Generate	English	keywords	for	each	SF	type	
• Step	2	

– Ask	the	NI	to	translate	and	read	the	keywords	in	IL	
– Or	use	CMU	TTS	in	IL	to	synthesize	pronunciation	

• Step	3	
– Find	the	IL	keywords	from	speech	segments	
– Calculate	confidence	scores	for	each	SF	type	by	the	keyword	search	result



SF	Speech	–	Type	layer
• Step	1	:	Generate	keywords	for	each	SF	type	
• Method	

– Collect	high	frequency	words	for	each	type	from	SF	annotated	text	data	
– Select	related	words	manually	

• Remove	incident-specific	words	in	the	training	data	
– e.g.	September	(time),	Turkey	(place)	

• Delete	overlapping	words	between	types	(e.g.	injury	appears	in	medicine,	
crime,	rescue,	etc.)	

– NI	has	to	translate	and	read	the	words	in	2	hours	
• 75	words	in	English



SF	Speech	–	Type	layer
• Step	2	:	Collect	spoken	keywords	in	IL	from	NI	
• Method	

– 1	or	2	translations	in	IL	for	each	English	word	
• 108	words	for	Kinyarwanda;	122	words	for	Sinhala	

– Read/record	the	list	5	times	
• Issue	

– Prosody,	rising	tone	in	list	intonation	
• Ask	NI:		try	to	pretend	this	is	not	a	list;	multiple	reminders	

– Background	sounds	
• The	NIs	in	both	ILs	have	babies	crying,	people	walking,	cooking?	in	background



SF	Speech	–	Type	layer
• Step	3:	Find	keywords	from	speech		
• Method	

– Generate	acoustic	embeddings	for	spoken	words	
– Calculate	the	similarity	between	the	embeddings	of	IL	keywords	and	the	
embeddings	of	evaluation	utterances	
• 2s	sliding	window,	0.5s	stride	on	evaluation	utterances	

– The	confidence	score	of	each	SF	in	each	utterance	is	the	aggregation	of	
similarity	scores	of	all	keywords	that	are	related	to	that	SF



Siamese	Neural	Networks
• Base	structure:	generate	embeddings	for	spoken	words

BLSTM

BLSTM

BLSTM

Attention

Linear

Linear

Linear

MFCC	+	Δ	+	ΔΔ

Embeddings



Siamese	Neural	Networks
• Triplet	Loss	Function:	(anchor,	positive,	negative)	

– Bring	the	Anchor	(current	instance)	close	to	the	Positive	(another	instance	of	
the	same	word)	as	far	as	possible	from	the	Negative	(an	instance	of	a	
different	word)



Siamese	Neural	Networks
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Siamese	Neural	Networks
• In	each	triplet:	

– Anchor:	current	word	
– Positive:	another	sample	of	the	same	word	
– Negative:	the	nearest	among	5	randomly	chosen	different	word	

• A	problem	in	this	commonly	used	approach:	
– Whether	two	words	are	the	‘same	word’	or	‘different	word’	depends	on	their	
exact	orthographic	representations	

– ‘terrorist’	and	‘terrorism’	will	be	encourage	to	have	dissimilar	embeddings,	
even	if	they	share	the	same	stem	and	are	pronounced	similarly



Improving	Acoustic	Word	Embeddings
• Observation:		

– Both	IL9	(Kinyarwanda)	and	IL10	(Sinhala)	are	morphologically	rich	languages	
• IL9:	kwica	(crime),	kwicana	(criminal)	
• IL10:																																						terrorist	

																																																									terrorism				

• If	the	embedding	method	can	map	words	like	this	together,	we	may	not	need	
to	collect	all	possible	inflections



Improving	Acoustic	Word	Embeddings
1. Clustering	words	by	their	stems	

• In	each	triplet:	
– Anchor:	current	sample	
– Positive:	another	sample	of	the	same	stem	
– Negative:	the	nearest	among	5	samples	of	different	stems	

2. Learning	pronunciation	distance



Low-resource	Setting	Experiments
• Using	a	subset	of	Switchboard	(English)	

– 10k,	11k	and	11k	samples	on	the	train,	dev,	and	test		
– Less	than	2	hours	of	speech	for	training	

• Evaluation	metrics:	average	precision	on	word-pairs	(Word	AP);	average	
precision	on	stem-pairs	(Stem	AP);	the	correlation	of	embedding	distance	with	
phonetic	similarity	(Phonetic	Sim).



Zero-resource	Setting	Experiments
• Train	on	full	Switchboard	dataset	

• Select:	all	words	with	duration	0.5s	to	2.0s	&	appearing	at	least	2	times	
• 205270	samples,	11409	unique	words	

• Test	on	IL10	(Sinhala)	keywords:	610	samples,	121	unique	words	
• Note:	In	these	metrics,	acoustically	similar	words	in	IL10	such	as	‘terrorist’	and	
‘terrorism’	are	treated	as	different	words



Results	on	IL10	keywords
	t-Distributed	Stochastic	Neighbor	Embedding	(t-SNE)



Results	on	IL10	keywords
	t-Distributed	Stochastic	Neighbor	Embedding	(t-SNE)



Results	on	IL10	keywords
	t-Distributed	Stochastic	Neighbor	Embedding	(t-SNE)



Homework	4	-	Emotion	Recognition



Homework	4	-	Overview
• Emotion	recognition	in	speech	
• Dataset:	the	Emotional	Prosody	Speech	and	Transcript	

– 7	speakers:	4	female,	3	male	
– 15	emotions:	neutral,	interest,	anxiety,	pride,	boredom,	panic,	cold-anger,	
hot-anger,	contempt,	elation,	happy,	shame,	disgust,	sadness,	despair	

– 2324	speech	utterances	
– Acted	speech	
– Speech	contents	are	semantically	neutral	



Homework	4	-	Feature	Analysis
• Extract	six	features	from	each	speech	segment:			

– The	min,	max,	mean	of	pitch	
– The	min,	max,	mean	of	intensity	

• Praat	or	Parselmouth	
– Pitch	range	75~600	Hz;	autocorrelation	as	pitch	analysis	method	
– Use	only	the	left	channel	(channel	1)		

• Normalization	
– Z-score	normalization	over	the	individual	speaker	
– Normalizing	by	each	speaker’s	neutral	utterances



Homework	4	-	Feature	Analysis
• Plots	of	the	mean	and	standard	deviation	of	each	feature	across	all	emotion	
classes	
– 12	figures	(6	before	normalization,	6	after	normalization)	
– 15	bars	in	each	figure	(with	error	bars	for	std)	

• Report	and	discuss	at	least	5	observations



Homework	4	-	Classification	Experiments
• Extract	a	feature	set	using	openSMILE	toolkit		

– SMILExtract	-C	config/a_feature_set.conf	-I	speech.wav	-O	feature.csv	
– No	need	to	write	your	own	configuration	file		
– Use	the	provided	configuration	files	in	./config	

• Recommend:	The	INTERSPEECH	2009	Emotion	Challenge	feature	set	
(IS09_emotion.conf)	
– 384	features		
– Acoustic	features	(e.g.	pitch,	energy,	voicing	probability,	MFCCs)	
– Functions	(e.g.	min,	max,	range,	stddev,	slope	of	linear	approximation)



Homework	4	-	Classification	Experiments
• Experiments	

– Leave-one-speaker-out	cross	validation	
• 7	multiclass	classification	experiments	

– Report	the	average	of	precision,	average	of	recall,	and	average	of	F1	for	each	
emotion	class	(averaging	across	experiments)	

– Also	report	the	average	score	over	all	emotions	and	all	experiments	
• sklearn.metrics.classification_report()



Homework	4	-	Error	analysis
Analyze	the	errors	made	by	your	best	performing	experiment.		
• Which	class(es)	were	easiest	to	predict?	Why	do	you	think	they	were	easy?	
• Which	were	most	difficult?	Why	do	you	think	they	were	difficult?		
• Based	on	this	analysis,	what	ideas	do	you	have	to	further	improve	your	
classifier?



Homework	4	-	What	to	submit
• Code:	Feature	extraction	and	classification	experiments	
• Data:	You	don’t	have	to	submit	any	data,	but	please	make	sure	that	all	features	
used	in	the	experiments	can	be	reproduced	by	running	the	code.	

• Report:	(1)	feature	analysis,	(2)	classification	experiments,	(3)	error	analysis	
• README:	Documentation	of	your	code



Thank	you!


