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CHAPTER

26 Advanced Dialog Systems

A famous burlesque routine from the turn of the last century plays on the difficulty
of conversational understanding by inventing a baseball team whose members have
confusing names:

C: I want you to tell me the names of the fellows on the St. Louis team.
A: I’m telling you. Who’s on first, What’s on second, I Don’t Know is on third.
C: You know the fellows’ names?
A: Yes.
C: Well, then, who’s playing first?
A: Yes.
C: I mean the fellow’s name on first.
A: Who.
C: The guy on first base.
A: Who is on first.
C: Well what are you askin’ me for?
A: I’m not asking you – I’m telling you. Who is on first.

Who’s on First – Bud Abbott and Lou Costello’s version of an
old burlesque standard.

Of course outrageous names of baseball players are not a normal source of dif-
ficulty in conversation. What this famous comic conversation is pointing out is that
understanding and participating in dialog requires knowing whether the person you
are talking to is making a statement or asking a question. Asking questions, giving
orders, or making informational statements are things that people do in conversation,
yet dealing with these kind of actions in dialog—what we will call dialog acts—is
something that the GUS-style frame-based dialog systems of Chapter 25 are com-
pletely incapable of.

In this chapter we describe the dialog-state architecture, also called the belief-
state or information-state architecture. Like GUS systems, these agents fill slots,
but they are also capable of understanding and generating such dialog acts, actions
like asking a question, making a proposal, rejecting a suggestion, or acknowledging
an utterance and they can incorporate this knowledge into a richer model of the state
of the dialog at any point.

Like the GUS systems, the dialog-state architecture is based on filling in the slots
of frames, and so dialog-state systems have an NLU component to determine the
specific slots and fillers expressed in a user’s sentence. Systems must additionally
determine what dialog act the user was making, for example to track whether a user
is asking a question. And the system must take into account the dialog context (what
the system just said, and all the constraints the user has made in the past).

Furthermore, the dialog-state architecture has a different way of deciding what to
say next than the GUS systems. Simple frame-based systems often just continuously
ask questions corresponding to unfilled slots and then report back the results of some
database query. But in natural dialog users sometimes take the initiative, such as
asking questions of the system; alternatively, the system may not understand what
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the user said, and may need to ask clarification questions. The system needs a dialog
policy to decide what to say (when to answer the user’s questions, when to instead
ask the user a clarification question, make a suggestion, and so on).

Figure 26.1 shows a typical architecture for a dialog-state system. It has six
components. As with the GUS-style frame-based systems, the speech recognition
and understanding components extract meaning from the input, and the generation
and TTS components map from meaning to speech. The parts that are different than
the simple GUS system are the dialog state tracker which maintains the current
state of the dialog (which include the user’s most recent dialog act, plus the entire
set of slot-filler constraints the user has expressed so far) and the dialog policy,
which decides what the system should do or say next.DIALOG STATE TRACKING OVERVIEW
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Figure 1: Principal components of a spoken dialog system.

The topic of this paper is the dialog state tracker (DST). The DST takes as input all of the dialog
history so far, and outputs its estimate of the current dialog state – for example, in a restaurant
information system, the dialog state might indicate the user’s preferred price range and cuisine,
what information they are seeking such as the phone number of a restaurant, and which concepts
have been stated vs. confirmed. Dialog state tracking is difficult because ASR and SLU errors are
common, and can cause the system to misunderstand the user. At the same time, state tracking is
crucial because the dialog policy relies on the estimated dialog state to choose actions – for example,
which restaurants to suggest.

In the literature, numerous methods for dialog state tracking have been proposed. These are
covered in detail in Section 3; illustrative examples include hand-crafted rules (Larsson and Traum,
2000; Bohus and Rudnicky, 2003), heuristic scores (Higashinaka et al., 2003), Bayesian networks
(Paek and Horvitz, 2000; Williams and Young, 2007), and discriminative models (Bohus and Rud-
nicky, 2006). Techniques have been fielded which scale to realistically sized dialog problems and
operate in real time (Young et al., 2010; Thomson and Young, 2010; Williams, 2010; Mehta et al.,
2010). In end-to-end dialog systems, dialog state tracking has been shown to improve overall system
performance (Young et al., 2010; Thomson and Young, 2010).

Despite this progress, direct comparisons between methods have not been possible because past
studies use different domains and different system components for ASR, SLU, dialog policy, etc.
Moreover, there has not been a standard task or methodology for evaluating dialog state tracking.
Together these issues have limited progress in this research area.

The Dialog State Tracking Challenge (DSTC) series has provided a first common testbed and
evaluation suite for dialog state tracking. Three instances of the DSTC have been run over a three
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Figure 26.1 Architecture of a dialog-state system for task-oriented dialog from Williams et al. (2016).

As of the time of this writing, no commercial system uses a full dialog-state ar-
chitecture, but some aspects of this architecture are beginning to appear in industrial
systems, and there are a wide variety of these systems in research labs.

26.1 Dialog Acts

A key insight into conversation—due originally to the philosopher Wittgenstein
(1953) but worked out more fully by Austin (1962)—is that each utterance in a
dialog is a kind of action being performed by the speaker. These actions are com-
monly called speech acts; here’s one taxonomy consisting of 4 major classes (Bachspeech acts

and Harnish, 1979):
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Constatives: committing the speaker to something’s being the case (answering, claiming,
confirming, denying, disagreeing, stating)

Directives: attempts by the speaker to get the addressee to do something (advising, ask-
ing, forbidding, inviting, ordering, requesting)

Commissives: committing the speaker to some future course of action (promising, planning,
vowing, betting, opposing)

Acknowledgments: express the speaker’s attitude regarding the hearer with respect to some so-
cial action (apologizing, greeting, thanking, accepting an acknowledgment)

A user ordering a dialog system to do something (‘Turn up the music’) is issuing
a DIRECTIVE. A user asking a question to which the system is expected to answer
is also issuing a DIRECTIVE: in a sense the user is commanding the system to an-
swer (‘What’s the address of the second restaurant’). By contrast, a user stating a
constraint (‘I am flying on Tuesday’) is issuing a CONSTATIVE. A user thanking the
system is issuing an ACKNOWLEDGMENT. The dialog act expresses an important
component of the intention of the speaker (or writer) in saying what they said.

While this idea of speech acts is powerful, modern systems expand these early
taxonomies of speech acts to better describe actual conversations. This is because a
dialog is not a series of unrelated independent speech acts, but rather a collective act
performed by the speaker and the hearer. In performing this joint action the speaker
and hearer must constantly establish common ground (Stalnaker, 1978), the set ofcommon

ground
things that are mutually believed by both speakers.

The need to achieve common ground means that the hearer must ground thegrounding

speaker’s utterances. To ground means to acknowledge, to make it clear that the
hearer has understood the speaker’s meaning and intention. People need closure or
grounding for non-linguistic actions as well. For example, why does a well-designed
elevator button light up when it’s pressed? Because this indicates to the elevator
traveler that she has successfully called the elevator. Clark (1996) phrases this need
for closure as follows, after Norman (1988):

Principle of closure. Agents performing an action require evidence, sufficient
for current purposes, that they have succeeded in performing it.

Grounding is also important when the hearer needs to indicate that the speaker
has not succeeded. If the hearer has problems in understanding, she must indicate
these problems to the speaker, again so that mutual understanding can eventually be
achieved.

Clark and Schaefer (1989) point out a continuum of methods the hearer B can
use to ground the speaker A’s utterance, ordered from weakest to strongest:

Continued attention: B shows she is continuing to attend and therefore remains satisfied with
A’s presentation.

Next contribution: B starts in on the next relevant contribution.
Acknowledgment: B nods or says a continuer like uh-huh, yeah, or the like, or an assess-

ment like that’s great.
Demonstration: B demonstrates all or part of what she has understood A to mean, for

example, by reformulating (paraphrasing) A’s utterance or by collabo-
rative completion of A’s utterance.

Display: B displays verbatim all or part of A’s presentation.

Let’s look for examples of grounding in a conversation between a human travel
agent and a human client in Fig. 26.2.
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C1: . . . I need to travel in May.
A1: And, what day in May did you want to travel?
C2: OK uh I need to be there for a meeting that’s from the 12th to the 15th.
A2: And you’re flying into what city?
C3: Seattle.
A3: And what time would you like to leave Pittsburgh?
C4: Uh hmm I don’t think there’s many options for non-stop.
A4: Right. There’s three non-stops today.
C5: What are they?
A5: The first one departs PGH at 10:00am arrives Seattle at 12:05 their time. The

second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last
flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

C6: OK I’ll take the 5ish flight on the night before on the 11th.
A6: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air flight

115.
C7: OK.
Figure 26.2 Part of a conversation between a travel agent (A) and client (C).

Utterance A1 shows the strongest form of grounding, in which the hearer dis-
plays understanding by repeating verbatim part of the speaker’s words: in May.1

This particular fragment doesn’t have an example of an acknowledgment, but
there’s an example in another fragment:

C: He wants to fly from Boston to Baltimore
A: Uh huh

The word uh-huh here is a backchannel, also called a continuer or an acknowl-backchannel

continuer edgment token. A backchannel is a (short) optional utterance that acknowledges the
content of the utterance of the other and that doesn’t require an acknowledgment by
the other (Yngve 1970, Jefferson 1984, Schegloff 1982, Ward and Tsukahara 2000).

The third grounding method is to start in on the relevant next contribution, for
example in Fig. 26.2, where the speaker asks a question (A2) and the hearer (C3)
answers it.

In a more subtle act of grounding, the speaker can combine this method with the
previous one. For example, notice that whenever the client answers a question, the
agent begins the next question with And. The And indicates to the client that the
agent has successfully understood the answer to the last question.

Speech acts are important for practical dialog systems, which need to distin-
guish a statement from a directive, and which must distinguish (among the many
kinds of directives) an order to do something from a question asking for informa-
tion. Grounding is also crucial in dialog systems. Consider the unnaturalness of this
example from Cohen et al. (2004):

(26.1) System: Did you want to review some more of your personal profile?
Caller: No.
System: What’s next?

Without an acknowledgment, the caller doesn’t know that the system has under-
stood her ‘No’. The use of Okay below adds grounding, making (26.2) a much more
natural response than (26.1):

1 As Ken Forbus points out (p.c.), although verbatim repetition may be the strongest form of grounding
for humans, it’s possible that demonstration (e.g., reformulating) might be more powerful for a conversa-
tional agent, since it demonstrates understanding in a way that verbatim repetition does not.
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(26.2) System: Did you want to review some more of your personal profile?
Caller: No.
System: Okay, what’s next?

Tag Example
THANK Thanks
GREET Hello Dan
INTRODUCE It’s me again
BYE Alright bye
REQUEST-COMMENT How does that look?
SUGGEST from thirteenth through seventeenth June
REJECT No Friday I’m booked all day
ACCEPT Saturday sounds fine
REQUEST-SUGGEST What is a good day of the week for you?
INIT I wanted to make an appointment with you
GIVE REASON Because I have meetings all afternoon
FEEDBACK Okay
DELIBERATE Let me check my calendar here
CONFIRM Okay, that would be wonderful
CLARIFY Okay, do you mean Tuesday the 23rd?
DIGRESS [we could meet for lunch] and eat lots of ice cream
MOTIVATE We should go to visit our subsidiary in Munich
GARBAGE Oops, I-

Figure 26.3 The 18 high-level dialog acts for a meeting scheduling task, from the
Verbmobil-1 system (Jekat et al., 1995).

The ideas of speech acts and grounding are combined in a single kind of action
called a dialog act, a tag which represents the interactive function of the sentencedialog act

being tagged. Different types of dialog systems require labeling different kinds of
acts, and so the tagset—defining what a dialog act is exactly— tends to be designed
for particular tasks.

Figure 26.3 shows a domain-specific tagset for the task of two people scheduling
meetings. It has tags specific to the domain of scheduling, such as SUGGEST, used
for the proposal of a particular date to meet, and ACCEPT and REJECT, used for
acceptance or rejection of a proposal for a date, but also tags that have more general
function, like CLARIFY, used to request a user to clarify an ambiguous proposal.

Tag Sys User Description
HELLO(a = x,b = y, ...) X X Open a dialog and give info a = x,b = y, ...
INFORM(a = x,b = y, ...) X X Give info a = x,b = y, ...
REQUEST(a,b = x, ...) X X Request value for a given b = x, ...
REQALTS(a = x, ...) χ X Request alternative with a = x, ...
CONFIRM(a = x,b = y, ...) X X Explicitly confirm a = x,b = y, ...
CONFREQ(a = x, ...,d) X χ Implicitly confirm a = x, ... and request value of d
SELECT(a = x,a = y) X χ Implicitly confirm a = x, ... and request value of d
AFFIRM(a = x,b = y, ...) X X Affirm and give further info a = x,b = y, ...
NEGATE(a = x) χ X Negate and give corrected value a = x
DENY(a = x) χ X Deny that a = x
BYE() X X Close a dialog

Figure 26.4 Dialog acts used by the HIS restaurant recommendation system of Young et al.
(2010). The Sys and User columns indicate which acts are valid as system outputs and user
inputs, respectively.

Figure 26.4 shows a tagset for a restaurant recommendation system, and Fig. 26.5
shows these tags labeling a sample dialog from the HIS system (Young et al., 2010).
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This example also shows the content of each dialog acts, which are the slot fillers
being communicated.

Utterance Dialog act
U: Hi, I am looking for somewhere to eat. hello(task = find,type=restaurant)

S: You are looking for a restaurant. What
type of food do you like?

confreq(type = restaurant, food)

U: I’d like an Italian somewhere near the
museum.

inform(food = Italian, near=museum)

S: Roma is a nice Italian restaurant near
the museum.

inform(name = "Roma", type = restaurant,

food = Italian, near = museum)

U: Is it reasonably priced? confirm(pricerange = moderate)

S: Yes, Roma is in the moderate price
range.

affirm(name = "Roma", pricerange =

moderate)

U: What is the phone number? request(phone)

S: The number of Roma is 385456. inform(name = "Roma", phone = "385456")

U: Ok, thank you goodbye. bye()
Figure 26.5 A sample dialog from the HIS System of Young et al. (2010) using the dialog acts in Fig. 26.4.

Dialog acts don’t just appear discretely and independently; conversations have
structure, and dialog acts reflect some of that structure. One aspect of this struc-
ture comes from the field of conversational analysis or CA (Sacks et al., 1974)conversational

analysis
which focuses on interactional properties of human conversation. CA defines ad-
jacency pairs (Schegloff, 1968) as a pairing of two dialog acts, like QUESTIONSadjacency pair

and ANSWERS, PROPOSAL and ACCEPTANCE (or REJECTION), COMPLIMENTS and
DOWNPLAYERS, GREETING and GREETING.

The structure, composed of a first pair part and a second pair part, can help
dialog-state models decide what actions to take. However, dialog acts aren’t always
followed immediately by their second pair part. The two parts can be separated by a
side sequence (Jefferson 1972, Schegloff 1972). One very common side sequenceside sequence

in dialog systems is the clarification question, which can form a subdialog be-subdialog

tween a REQUEST and a RESPONSE as in the following example caused by speech
recognition errors:

User: What do you have going to UNKNOWN WORD on the 5th?
System: Let’s see, going where on the 5th?
User: Going to Hong Kong.

System: OK, here are some flights...

Another kind of dialog structure is the pre-sequence, like the following examplepre-sequence

where a user starts with a question about the system’s capabilities (“Can you make
train reservations”) before making a request.

User: Can you make train reservations?
System: Yes I can.
User: Great, I’d like to reserve a seat on the 4pm train to New York.

A dialog-state model must be able to both recognize these kinds of structures
and make use of them in interacting with users.
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26.2 Dialog State: Interpreting Dialog Acts

The job of the dialog-state tracker is to determine both the current state of the frame
(the fillers of each slot), as well as the user’s most recent dialog act. Note that the
dialog-state includes more than just the slot-fillers expressed in the current sentence;
it includes the entire state of the frame at this point, summarizing all of the user’s
constraints. The following example from Mrkšić et al. (2017) shows the required
output of the dialog state tracker after each turn:

User: I’m looking for a cheaper restaurant
inform(price=cheap)

System: Sure. What kind - and where?
User: Thai food, somewhere downtown

inform(price=cheap, food=Thai, area=centre)

System: The House serves cheap Thai food
User: Where is it?

inform(price=cheap, food=Thai, area=centre); request(address)

System: The House is at 106 Regent Street

How can we interpret a dialog act, deciding whether a given input is a QUES-
TION, a STATEMENT, or a SUGGEST (directive)? Surface syntax seems like a use-
ful cue, since yes-no questions in English have aux-inversion (the auxiliary verb
precedes the subject), statements have declarative syntax (no aux-inversion), and
commands have no syntactic subject:

(26.3) YES-NO QUESTION Will breakfast be served on USAir 1557?
STATEMENT I don’t care about lunch.
COMMAND Show me flights from Milwaukee to Orlando.

Alas, the mapping from surface form to dialog act is complex. For example, the
following utterance looks grammatically like a YES-NO QUESTION meaning some-
thing like Are you capable of giving me a list of. . . ?:

(26.4) Can you give me a list of the flights from Atlanta to Boston?

In fact, however, this person was not interested in whether the system was capa-
ble of giving a list; this utterance was a polite form of a REQUEST, meaning some-
thing like Please give me a list of. . . . What looks on the surface like a QUESTION
can really be a REQUEST.

Conversely, what looks on the surface like a STATEMENT can really be a QUES-
TION. The very common CHECK question (Carletta et al. 1997, Labov and Fan-
shel 1977) asks an interlocutor to confirm something that she has privileged knowl-
edge about. CHECKS have declarative surface form:

A OPEN-OPTION I was wanting to make some arrangements for a trip that I’m going
to be taking uh to LA uh beginning of the week after next.

B HOLD OK uh let me pull up your profile and I’ll be right with you here.
[pause]

B CHECK And you said you wanted to travel next week?
A ACCEPT Uh yes.

Utterances that use a surface statement to ask a question or a surface question
to issue a request are called indirect speech acts. These indirect speech acts have aindirect speech

act
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rich literature in philosophy, but viewed from the perspective of dialog understand-
ing, indirect speech acts are merely one instance of the more general problem of
determining the dialog act function of a sentence.

Many features can help in this task. To give just one example, in spoken-
language systems, prosody or intonation (Chapter ??) is a helpful cue. Prosodyprosody

intonation or intonation is the name for a particular set of phonological aspects of the speech
signal the tune and other changes in the pitch (which can be extracted from the fun-
damental frequency F0) the accent, stress, or loudness (which can be extracted from
energy), and the changes in duration and rate of speech. So, for example, a rise
in pitch at the end of the utterance is a good cue for a YES-NO QUESTION, while
declarative utterances (like STATEMENTS) have final lowering: a drop in F0 at thefinal lowering

end of the utterance.

26.2.1 Sketching an algorithm for dialog act interpretation
Since dialog acts places some constraints on the slots and values, the tasks of dialog-
act detection and slot-filling are often performed jointly. Consider the task of deter-
mining that

I’d like Cantonese food near the Mission District

has the structure

inform(food=cantonese,area=mission)).

The joint dialog act interpretation/slot filling algorithm generally begins with
a first pass classifier to decide on the dialog act for the sentence. In the case of
the example above, this classifier would choosing inform from among the set of
possible dialog acts in the tag set for this particular task. Dialog act interpretation is
generally modeled as a supervised classification task, trained on a corpus in which
each utterance is hand-labeled for its dialog act. The classifier can be neural or
feature-based; if feature-based, typical features include unigrams and bigrams (show
me is a good cue for a REQUEST, are there for a QUESTION), embeddings, parse
features, punctuation, dialog context, and the prosodic features described above.

A second pass classifier might use the sequence-model algorithms for slot-filler
extraction from Section ?? of Chapter 25, such as LSTM-based IOB tagging or
CRFs or a joint LSTM-CRF. Alternatively, a multinominal classifier can be used to
choose between all possible slot-value pairs, again either neural such as a bi-LSTM
or convolutional net, or feature-based using any of the feature functions defined in
Chapter 25. This is possible since the domain ontology for the system is fixed, so
there is a finite number of slot-value pairs.

26.2.2 A special case: detecting correction acts
Some dialog acts are important because of their implications for dialog control. If a
dialog system misrecognizes or misunderstands an utterance, the user will generally
correct the error by repeating or reformulating the utterance. Detecting these user
correction acts is therefore quite important. Ironically, it turns out that correctionsuser correction

acts
are actually harder to recognize than normal sentences! In fact, corrections in one
early dialog system (the TOOT system) had double the ASR word error rate of non-
corrections Swerts et al. (2000)! One reason for this is that speakers sometimes
use a specific prosodic style for corrections called hyperarticulation, in which thehyperarticula-

tion
utterance contains some exaggerated energy, duration, or F0 contours, such as I said
BAL-TI-MORE, not Boston (Wade et al. 1992, Levow 1998, Hirschberg et al. 2001).
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Even when they are not hyperarticulating, users who are frustrated seem to speak in
a way that is harder for speech recognizers (Goldberg et al., 2003).

What are the characteristics of these corrections? User corrections tend to be
either exact repetitions or repetitions with one or more words omitted, although they
may also be paraphrases of the original utterance. (Swerts et al., 2000). Detecting
these reformulations or correction acts can be done by any classifier; some stan-
dard features used for this task are shown below (Levow 1998, Litman et al. 1999,
Hirschberg et al. 2001, Bulyko et al. 2005, Awadallah et al. 2015):

lexical features words like “no”, “correction”, “I don’t”, or even swear words, utterance length
semantic features overlap between the candidate correction act and the user’s prior utterance (computed

by word overlap or via cosines over embedding vectors)
phonetic features phonetic overlap between the candidate correction act and the user’s prior utterance

(i.e. “WhatsApp” may be incorrectly recognized as “What’s up”)
prosodic features hyperarticulation, increases in F0 range, pause duration, and word duration, generally

normalized by the values for previous sentences
ASR features ASR confidence, language model probability

26.3 Dialog Policy

The goal of the dialog policy is to decide what action the system should take next,dialog policy

that is, what dialog act to generate. We begin in the next section by introducing one
specific dialog policy decision, relating to confirmation: how we confirm to the user
what we think she said. We then sketch a basic policy algorithm that could apply
to all decisions. Finally, once a speech act has been generated, the natural language
generation component needs to generate the text of a response to the user.

26.3.1 Generating Dialog Acts: Confirmation and Rejection
Modern dialog systems often make mistakes. It is therefore important for dialog
systems to make sure that they have achieved the correct interpretation of the user’s
input. This is generally done by two methods: confirming understandings with the
user and rejecting utterances that the system is likely to have misunderstood.

Various strategies can be employed for confirmation with the user. When using
the explicit confirmation strategy, a system asks the user a direct question to con-explicit

confirmation
firm the system’s understanding, like the two examples below in which the system
asks a (boldface) yes-no confirmation questions:

S: Which city do you want to leave from?
U: Baltimore.
S: Do you want to leave from Baltimore?
U: Yes.
U: I’d like to fly from Denver Colorado to New York City on September

twenty first in the morning on United Airlines
S: Let’s see then. I have you going from Denver Colorado to New York

on September twenty first. Is that correct?
U: Yes

When using the implicit confirmation strategy, a system instead uses the demon-implicit
confirmation
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stration or display grounding strategies described above, repeating back the system’s
understanding as part of asking the next question, as in the two examples below:

U: I want to travel to Berlin
S: When do you want to travel to Berlin?
U2: Hi I’d like to fly to Seattle Tuesday Morning
A3: Traveling to Seattle on Tuesday, August eleventh in the morning.

Your full name?

Explicit and implicit confirmation have complementary strengths. Explicit con-
firmation makes it easier for users to correct the system’s misrecognitions since a
user can just answer “no” to the confirmation question. But explicit confirmation is
awkward and increases the length of the conversation (Danieli and Gerbino 1995,
Walker et al. 1998). The explicit confirmation dialog fragments above sound non-
natural and definitely non-human; implicit confirmation is much more conversation-
ally natural.

Confirmation is just one kind of conversational action by which a system can
express lack of understanding. Another option is rejection, in which a system givesrejection

the user a prompt like I’m sorry, I didn’t understand that.
Sometimes utterances are rejected multiple times. This might mean that the user

is using language that the system is unable to follow. Thus, when an utterance is
rejected, systems often follow a strategy of progressive prompting or escalatingprogressive

prompting
detail (Yankelovich et al. 1995, Weinschenk and Barker 2000), as in this example
from Cohen et al. (2004):

System: When would you like to leave?
Caller: Well, um, I need to be in New York in time for the first World Series game.
System: <reject>. Sorry, I didn’t get that. Please say the month and day you’d like

to leave.
Caller: I wanna go on October fifteenth.

In this example, instead of just repeating “When would you like to leave?”, the
rejection prompt gives the caller more guidance about how to formulate an utter-
ance the system will understand. These you-can-say help messages are important in
helping improve systems’ understanding performance (Bohus and Rudnicky, 2005).
If the caller’s utterance gets rejected yet again, the prompt can reflect this (“I still
didn’t get that”), and give the caller even more guidance.

An alternative strategy for error handling is rapid reprompting, in which therapid
reprompting

system rejects an utterance just by saying “I’m sorry?” or “What was that?” Only
if the caller’s utterance is rejected a second time does the system start applying
progressive prompting. Cohen et al. (2004) summarize experiments showing that
users greatly prefer rapid reprompting as a first-level error prompt.

Various factors can be used as features to the dialog policy in deciding whether
to use explicit confirmation, implicit confirmation, or rejection. For example, the
confidence that the ASR system assigns to an utterance can be used by explicitly
confirming low-confidence sentences. Recall from page ?? that confidence is a met-
ric that the speech recognizer can assign to its transcription of a sentence to indi-
cate how confident it is in that transcription. Confidence is often computed from
the acoustic log-likelihood of the utterance (greater probability means higher confi-
dence), but prosodic features can also be used in confidence prediction. For example,
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utterances with large F0 excursions or longer durations, or those preceded by longer
pauses, are likely to be misrecognized (Litman et al., 2000).

Another common feature in confirmation is the cost of making an error. For ex-
ample, explicit confirmation is common before a flight is actually booked or money
in an account is moved. Systems might have a four-tiered level of confidence with
three thresholds α , β , and γ:

< α low confidence reject
≥ α above the threshold confirm explicitly
≥ β high confidence confirm implictly
≥ γ very high confidence don’t confirm at all

26.4 A simple policy based on local context

The goal of the dialog policy at turn i in the conversation is to predict which action
Ai to take, based on the entire dialog state. The state could mean the entire sequence
of dialog acts from the system (A) and from the user (U), in which case the task
would be to compute:

Âi = argmax
Ai∈A

P(Ai|(A1,U1, ...,Ai−1,Ui−1) (26.5)

We can simplify this by maintaining as the dialog state mainly just the set of
slot-fillers that the user has expressed, collapsing across the many different conver-
sational paths that could lead to the same set of filled slots.

Such a policy might then just condition on the current state of the frame Framei
(which slots are filled and with what) and the last turn by the system and user:

Âi = argmax
Ai∈A

P(Ai|Framei−1,Ai−1,Ui−1) (26.6)

Given a large enough corpus of conversations, these probabilities can be esti-
mated by your favorite classifier. Getting such enormous amounts of data can be
difficult, and often involves building user simulators to generate artificial conversa-
tions to train on.

26.5 Natural language generation in the dialog-state model

Once a dialog act has been decided, we need to generate the text of the response
to the user. The task of natural language generation (NLG) in the information-state
architecture is often modeled in two stages, content planning (what to say), andcontent

planning
sentence realization (how to say it).sentence

realization
Here we’ll assume content planning has been done by the dialog policy, which

has chosen the dialog act to generate, and perhaps also chosen some some additional
attributes (slots and values) that the planner wants to implicitly confirm to the user.
Fig. 26.6 shows a sample input structure from the policy/content planner, and one
example of a resulting sentence that the sentence realizer could generate from this
structure.

Let’s walk through the sentence realization stage for the example in Fig. 26.6,
which comes from the classic information state statistical NLG system of Oh and
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4.1. Template-based generation

Our NLG module started off with around 50 templates. The number of templates
grew as we added more functionality to our system. The largest expansion came
with the addition of a ‘‘help’’ speech act, which added 16 templates to provide context-
sensitive help messages. Additional information about the template system is available in
Oh (2000). Note that templates are not simple sentence frames with variable slots. They
also need to include a computational component that deals with options For example, for
the template ‘‘What time would you like to travel from {departure_city} on {depar-
ture_date}?’’, if the input frame did not contain values for the attributes {departure_city}
and {departure_date}, instead of generating the ungrammatical sentence ‘‘What time
would you like to travel from on?’’, it would generate ‘‘What time would you like to
travel?’’. This reduces the number of templates significantly, but only at the expense of
introducing more complexity to the templates, especially for templates that can have as
many as ten different attributes. Hence, the amount of time the developer needs to spend
on crafting and maintaining the templates does not decrease significantly. At one point,
the number of templates grew to nearly one hundred, some of them very complex and
cumbersome to maintain. Axelrod (2000) has alluded to similar requirements in the
system that he has described.

4.2. Development of corpus-based stochastic generator

What is perhaps more important than reducing development time is being able to
generate utterances that promote a natural interaction with the user. One of the diffi-
culties for a template writer is choosing the right words, the template system’s equiv-
alent of lexical selection. Often, the words that the template writer chooses for a given
utterance are different from what the domain expert would use. This mismatch may
hamper a smooth interaction because when a system utterance contains unfamiliar
words in that domain, not only does it sound unnatural, but it may also lead the user to
confusion or an inappropriate response.

One solution might be to base the generator on a corpus of task-oriented human–
human conversations between a domain expert and a client. We could, for example,
take the expert’s utterances and use them directly as templates. This is very simple, but
is not practical, as one would need to find an utterance for every possible combination
of attributes.

The statistical n-gram language model provides an alternative representation. The
n-gram language model has the advantage that it is simple to build and understand, and

Figure 3. An input frame to NLG in the Communicator.

392 A.H. Oh and A.I. Rudnicky

Figure 26.6 An input frame to NLG and a resulting output sentence, in the Communicator
system of Oh and Rudnicky (2000).

query arrive city hotel hotel chain inform flight earlier
query arrive time hotel hotel info inform flight earliest
query confirm hotel need car inform flight later
query depart date hotel need hotel inform flight latest
query depart time hotel where inform flight returning
query pay by card inform airport inform not avail
query preferred airport inform confirm utterance inform num flights
query return date inform epilogue inform price
query return time inform flight other
hotel car info inform flight another

Figure 26.7 Dialog acts in the CMU communicator system of Oh and Rudnicky (2000).

Rudnicky (2000), part of the CMU Communicator travel planning dialog system.
Notice first that the policy has decided to generate the dialog act QUERY with the
argument DEPART TIME. Fig. 26.7 lists the dialog acts in the Oh and Rudnicky
(2000) system, each of which combines an act with a potential argument. The input
frame in Fig. 26.6 also specifies some additional filled slots that should be included
in the sentence to the user (depart airport BOS, and the depart date).

The sentence realizer acts in two steps. It will first generate a delexicalizeddelexicalized

string like:

What time on [depart date] would you like to leave [depart airport]?

Delexicalization is the process of replacing specific words with a generic rep-
resentation of their slot types. A delexicalized sentence is much easier to generate
since we can train on many different source sentences from different specific dates
and airports. Then once we’ve generating the delexicalized string, we can simply use
the input frame from the content planner to relexicalize (fill in the exact departurerelexicalize

date and airport).
To generate the delexicalized sentences, the sentence realizer uses a large corpus

of human-human travel dialogs that were labeled with the dialog acts from Fig. 26.7
and the slots expressed in each turn, like the following:

QUERY DEPART TIME And what time would you like to leave [depart city Pittsburgh]?
QUERY ARRIVE CITY And you’re flying into what city?
QUERY ARRIVE TIME What time on [arrive date May 5]?
INFORM FLIGHT The flight departs [depart airport PGH] at [depart time 10 am] and arrives

[arrive city Seattle] at [arrive time 12:05 their time].

This corpus is then delexicalized, and divided up into separate corpora for each
dialog act. Thus the delexicalized corpus for one dialog act, QUERY DEPART TIME
might be trained on examples like:
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And what time would you like to leave depart city?
When would you like to leave depart city?
When would you like to leave?
What time do you want to leave on depart date?
OK, on depart date, what time do you want to leave?

A distinct N-gram grammar is then trained for each dialog act. Now, given
the dialog act QUERY DEPART TIME, the system samples random sentences from
this language model. Recall from the the ”Shannon” exercise of ?? that this works
(assuming a bigram LM) by first selecting a bigram (< s >,< w >) according to its
bigram probability in the language model, then drawing a bigram starting with <
w > according to its bigram probability, and so on until a full sentence is generated.
The probability of each successive word wi being generated from utterance class u
is thus

P(wi) = P(wi|wi−1,wi−2, ...,wi−(n−1),u) (26.7)

Each of these randomly sampled sentences is then assigned a score based on heuris-
tic rules that penalize sentences that are too short or too long, repeat slots, or lack
some of the required slots from the input frame (in this case, depart airport and de-
part date). The best scoring sentence is then chosen. Let’s suppose in this case we
produce the following (delexicalized) sentence:

What time on depart date would you like to leave depart airport?

This sentence is then relexicalized from the true values in the input frame, re-
sulting in the final sentence:

What time on October fifth would you like to leave Boston?

Modern implementations of the model replace the simplistic N-gram part of the
generator with neural models, which similarly learn to map from an input frame to
a resulting sentence (Wen et al. 2015a, Wen et al. 2015b).

It’s also possible to design NLG algorithms that are specific to a particular di-
alog act. For example, consider the task of generating clarification questions, inclarification

questions
cases where the speech recognition fails to understand some part of the user’s ut-
terance. While it is possible to use the generic dialog act REJECT (“Please repeat”,
or “I don’t understand what you said”), studies of human conversations show that
humans instead use targeted clarification questions that reprise elements of the mis-
understanding (Purver 2004, Ginzburg and Sag 2000, Stoyanchev et al. 2013).

For example, in the following hypothetical example the system reprises the
words “going” and “on the 5th” to make it clear which aspect of the user’s turn
the system needs to be clarified:

User: What do you have going to UNKNOWN WORD on the 5th?
System: Going where on the 5th?

Targeted clarification questions can be created by rules (such as replacing “go-
ing to UNKNOWN WORD” with “going where”) or by building classifiers to guess
which slots might have been misrecognized in the sentence (Chu-Carroll and Car-
penter 1999, Stoyanchev et al. 2014, Stoyanchev and Johnston 2015).
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26.6 Deep Reinforcement Learning for Dialog

TBD

26.7 Summary

• In dialog, speaking is a kind of action; these acts are referred to as speech
acts. Speakers also attempt to achieve common ground by acknowledging
that they have understand each other. The dialog act combines the intuition
of speech acts and grounding acts.

• The dialog-state or information-state architecture augments the frame-and-
slot state architecture by keeping track of user’s dialog acts and includes a
policy for generating its own dialog acts in return.

• Policies based on reinforcement learning architecture like the MDP and POMDP
offer ways for future dialog reward to be propagated back to influence policy
earlier in the dialog manager.
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to be continued
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