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Chapter 24 |
Dialogue and Conversational Agents

I want you to tell me the names of the fellows on the St. Lieais.
I'm telling you. Who's on first, What's on second, | Don'témis on third.
You know the fellows’ names?

Yes.

Well, then, who's playing first?

Yes.

I mean the fellow’s name on first.

Who.

The guy on first base.

Who is on first.

Well what are you askinmnefor?

I'm not asking you — I'm telling you. Who is on first.

Who's on First— Bud Abbott and Lou Costello’s version of an
old burlesque standard.
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The literature of the fantastic abounds in inanimate objetagically endowed with
sentience and the gift of speech. From Ovid’s statue of Pyigm#o Mary Shelley’s
Frankenstein, Cao Xue Qin’s Divine Luminescent Stone-gitig to Snow White’s
mirror, there is something deeply touching about creatorgething and then having
a chat with it. Legend has it that after finishing his sculptaf Moses Michelangelo
thought it so lifelike that he tapped it on the knee and conuhedrit to speak. Perhaps
this shouldn’t be surprising. Language has always been #rk of humanity and sen-
conversation  tience, andconversationor dialogueis the most fundamental and specially privileged

Dialogue  arena of language. It is the first kind of language we learrhddren, and for most of
us, it is the kind of language we most commonly indulge in, thbewe are ordering
curry for lunch or buying spinach, participating in busiseseetings or talking with
our families, booking airline flights or complaining abolhetweather.

This chapter introduces the fundamental structures anatitdghs in conversa-
tional agents Conversational agents most often communicate via spedbbrrthan
text, and so they are also known gggoken dialogue systemsor spoken language
systems These programs communicate with users in spoken natimglitge in order
to make travel arrangements, answer questions about weathggorts, route telephone
calls, act as a general telephone assistant, or performmuemsophisticated tasks.

Many of these tasks involve telephony, and also involve teatifuations where a
large screen and keyboard may not be available (Cohen arait01994). Applica-
tions relating to travel are thus very common. Indeed, traleaning and management
has been a key concern of dialogue systems since the eadgnitifll GUS system for
planning airline travel (Bobrow et al., 1977). More recgnd number of spoken lan-
guage systems for booking airline flights were built underAlir Traffic Information
System (ATIS) (Hemphill et al., 1990) and Communicator (dal 2001) programs.
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We will use this travel domain as an example throughout tleptr (as we used it to
discuss grammar rules for parsing ATIS sentences in Ch.Fig).24 shows a sample
dialogue from a Communicator system, taken from Xu and Rukgni2000).

S1: Hello. You've reached the [Communicator]. Tell me yaul hiame

U2: hii'd like to fly to seattle tuesday morning

S3:  Traveling to Seattle on Tuesday, August eleventh in tbemmg. Your full name?

U4: [John Doe]

S5: Hello, [John], I'm glad to hear from you again. You can rask me for help.

S6:  OK. Let's see | have a United flight departing Pittsburptea forty five a.m. arriving
into Seattle at one fifty seven p.m. Is that OK?

U7: Yes

S8:  Will you return to Pittsburgh from Seattle?

U9: noiwillgoto Los Angeles

S10: Traveling to Los Angeles. on what date

U11: Sorry can we go back to talk about the previous leg again

S12: For the first leg, you are on a United flight 1446 depariitsburgh at ten forty five
A.M. tomorrow, arriving in Seattle at one fifty seven P.M. Dauywant to take that?

U13: actually i want to leave on wednesday

S14: aflight on wednesday.

S15: | have a flight departing Pittsburgh at ten forty five aantives Seattle at one fifty
seven p.m. Is that OK?

U16: Yes

The travel domain: a fragment from a successful conversagitween a user (U)

and the Communicator system (S) of Xu and Rudnicky (2000).

Another promising domain is automatic call routing. A calliting system directs
incoming calls in a telephone call center, transferringdidléto the appropriate human.
Call routing dialogue systems generally begin by askingidex open-ended questions
like How may I help youZGorin et al., 1997), oHow may | direct your callAChu-
Carroll and Carpenter, 1999). Fig. 24 shows sample contiensafrom the AT&T
How May | Help You (HMIHY) system (Gorin et al., 1997).

How may | help you?

can you tell me how much it is to tokyo?

You want to know the cost of a call?

yes that's right

Please hold on for rate information.

How may | help you?

what's the area code for chicago?

You want an area code.

(silence)

. The area code for Chicago is 312.

The call routing domain: two conversations between a usgafid the AT&T
How May | Help You (HMIHY) system (S) (Gorin et al., 1997).

ncuwcunncncw

A somewhat different domain, which is very far from the télepy area, is auto-
matic tutoring systems. Fig. 24 shows part of a dialogue filoen TSPOKE dialogue
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system (Litman and Silliman, 2004), which uses the Whyzé\text-based tutoring
system as its tutoring backend (VanLehn et al., 2002).

S: Ididn't understand. What force acts on all objects witliose proximity to earth?

U: uh the force of gravity

S: Fine. Besides the Earth’s gravitational force, are thegeother forces acting on the
person, keys, and elevator after the release?

U: no

S: Yep. Thus, keep in mind that after the release, the onbefon the person, keys, and
elevator is the force of gravity. If gravity is the only foraeting on an object, will it
be moving or staying still?

U: it will be moving

S: Fine. Not only are the person, keys, and elevator movirey, have only gravitational
forces on them. When an object is falling and has only graeital force on it, it is
said to be in what?

U: freefall

SEOICELE The tutoring domain: part of an conversation between a stugger (U) and the
ITSPOKE system (S) of Litman and Silliman (2004).

Sec. 24.1 starts out with a summary of facts about human cgaen, includ-
ing the idea of turns and utterances, speech acts, groundigiggue structure, and
conversational implicature. The next few sections inte&lthe components of spo-
ken language systems and some evaluation metrics. We therntsec. 24.5 and
Sec. 24.6 to the more sophisticated information-state aack® decision processes
models of conversational agents, and we conclude with soiveenaed topics like the
BDI (belief-desire-intention) paradigm.

24.1 Properties of Human Conversations

Turn-taking

Conversation between humans is an intricate and compleixgotivity. Because of the
limitations of our current technologies, conversationsMeen humans and machines
are vastly simpler and more constrained than these humarexsations. Nonethe-
less, before we attempt to design a conversational ageonigecse with humans, it is
crucial to understand something about how humans convetiseach other.

In this section we discuss some properties of human-hunmarecsation that dis-
tinguish it from the kinds of (text-based) discourses weehseen so far. The main
difference is that conversation is a kind jofnt activity between two (or more) in-
terlocutors. This basic fact has a number of ramificationsyersations are built up
out of consecutivéurns, each turn consists ¢bint action of the speaker and hearer,
and the hearer make special inferences caltet/ersational implicaturesabout the
speaker’s intended meaning.

24.1.1 Turns and Turn-Taking

Dialogue is characterized liyrn-taking ; Speaker A says something, then speaker B,
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Adjacency pair
Dialogic pair
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then speaker A, and so on. If having a turn (or “taking the flpisra resource to be
allocated, what is the process by which turns are allocatéd® do speakers know
when it is the proper time to contribute their turn?

It turns out that conversation and language itself are &trad in such a way as
to deal efficiently with this resource allocation problemnelsource of evidence for
this is the timing of the utterances in normal human convinss. While speakers
can overlap each other while talking, it turns out that orrage the total amount of
overlap is remarkably small; perhaps less than 5% (Levink®83). Furthermore, the
amount of time between turns is generally less than a feweddilliseconds, which
is quite short given that it takes a speaker hundreds ofsadbnds for a speaker to plan
the motor routines for an utterance. Thus speakers must ipdgyining exactly what
moment to start their next utterance before the previoualksehas finished talking.
For this to be possible, natural conversation must be seh gpéh a way that (most
of the time) people can quickly figure outho should talk next, and exactlyhen
they should talk. This kind of turn-taking behavior is gaailrstudied in the field of
Conversation Analysis(CA). In a key conversation-analytic paper, Sacks et al. (1974)
argued that turn-taking behavior, at least in American Bhgls governed by a set of
turn-taking rules. These rules apply atransition-relevance place or TRP; places
where the structure of the language allows speaker shift¢aro Here is a version of
the turn-taking rules simplified from Sacks et al. (1974):

(24.1) Turn-taking Rule. At each TRP of each turn:

a. If during this turn the current speaker has selected Aaadit speaker
then A must speak next.

b. If the current speaker does not select the next speakeother speaker
may take the next turn.

c. If no one else takes the next turn, current speaker maythakeext turn.

There are a number of important implications of rule (24dr)dialogue model-
ing. First, subrule (24.1a) implies that there are someauttees by which the speaker
specifically selects who the next speaker will be. The mosgioals of these are ques-
tions, in which the speaker selects another speaker to artbe/guestion. Two-part
structures likeQUESTION-ANSWER are calledadjacency pairs (Schegloff, 1968) or
dialogic pair (Harris, 2005). Other adjacency pairs incluedREETING followed by
GREETING COMPLIMENT followed byDOWNPLAYER, REQUESTfollowed byGRANT.
We will see that these pairs and the dialogue expectati@ysgdét up will play an im-
portant role in dialogue modeling.

Subrule (24.1a) also has an implication for the interpiatabf silence. While
silence can occur after any turn, silence in between the &wts pf an adjacency pair
is significant silence For example Levinson (1983) notes this example from Atkins
and Drew (1979); pause lengths are marked in parenthesssd@mds):

(24.2) A: lIs there something bothering you or not?
(1.0)
A: Yesorno?
(1.5)
A: Eh?
B: No.
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Since A has just asked B a question, the silence is integhasta refusal to respond,
dispreferred  or perhaps dispreferred response (a response, like saying “no” to a request, which is

stigmatized). By contrast, silence in other places, fomgXa a lapse after a speaker
finishes a turn, is not generally interpretable in this wakiede facts are relevant for
user interface design in spoken dialogue systems; usedisinebed by the pauses in
dialogue systems caused by slow speech recognizers (taiddekt al., 1995).

Another implication of (24.1) is that transitions betwe@eakers don't occur just
anywhere; tha@ransition-relevance placeswhere they tend to occur are generally at

Utterance  Utterance boundaries. Recall from Ch. 12 that spoken utterances diffen written

sentences in a number of ways. They tend to be shorter, are likely to be single
clauses or even just single words, the subjects are usuallyopns rather than full
lexical noun phrases, and they include filled pauses andrsepahearer must take all
this (and other cues like prosody) into account to know whekeegin talking.

24.1.2 Language as Action: Speech Acts

The previous section showed that conversation consistssefjaence of turns, each
of which consists of one or more utterance. A key insight icdoversation due to
Wittgenstein (1953) but worked out more fully by Austin (296s that an utterance in
a dialogue is a kind odction being performed by the speaker.

performative The idea that an utterance is a kind of action is particuleldar inperformative
sentences like the following:

(24.3) I name this ship thé&itanic.
(24.4) 1 second that motion.
(24.5) | bet you five dollars it will snow tomorrow.

When uttered by the proper authority, for example, (24.3) the effect of changing
the state of the world (causing the ship to have the n@itaaic) just as any action can
change the state of the world. Verbs likameor secondwhich perform this kind of
action are called performative verbs, and Austin callede¢hdnds of actionspeech

speechact acts What makes Austin’s work so far-reaching is that speecs a not confined
to this small class of performative verbs. Austin’s clainthat the utterance of any
sentence in a real speech situation constitutes three &fraigs:

locutionary act: the utterance of a sentence with a particular meaning.
illocutionary act:  the act of asking, answering, promising, etc., in uttering a
sentence.

perlocutionary act: the (often intentional) production of certain effects upon
the feelings, thoughts, or actions of the addressee in-utter
ing a sentence.

For example, Austin explains that the utterance of exan®4e5) might have thi-
llocutionary force  locutionary force of protesting and the perlocutionary effect of stoppingdtidressee
from doing something, or annoying the addressee.

(24.6) You can't do that.



830 Chapter 24. Dialogue and Conversational Agents

The termspeech actis generally used to describe illocutionary acts rathentha
either of the other two types of acts. Searle (1975b), in fyodj a taxonomy of
Austin’s, suggests that all speech acts can be classifieairg of five major classes:

Assertives:  committing the speaker to something’s being the casgdesting
putting forward swearing boasting concluding.

Directives: attempts by the speaker to get the addressee to do somedkkigg
ordering, requestinginviting, advising begging.

Commissives: committing the speaker to some future course of actmarfising,
planning, vowing, betting, opposihg

Expressives: expressing the psychological state of the speaker aboataait af-
fairsthanking apologizing welcomingdeploring

Declarations: bringing about a different state of the world via the uttes(includ-
ing many of the performative examples abovesign, You're fired)

24.1.3 Language as Joint Action: Grounding

The previous section suggested that each turn or utteraute lose viewed as an action
by a speaker. But dialogue is not a series of unrelated indtkp# acts. Instead,
dialogue is a collective act performed by the speaker anti¢glaeer. One implication
of joint action is that, unlike in monologue, the speaker &edrer must constantly
[ establishfCommon ground]common ground (Stalnaker, 1978), the sdting$ that
are mutually believed by both speakers. The need to ach@wenon ground means
Grounding  that the hearer mugfround the speaker’s utterances, making it clear that the hearer
has understood the speaker’s meaning and intention.

As Clark (1996) points out, people need closure or grounétingron-linguistic
actions as well. For example, why does a well-designed &letatton light up when
it's pressed? Because this indicates to the elevator gatleat she has successfully
called the elevator. Clark phrases this need for closurels's, after Norman (1988):

Principle of closure. Agents performing an action require evidence, sufficient
for current purposes, that they have succeeded in perfgrinin

Grounding is also important when the hearer needs to ireltbat the speaker has
not succeeded in performing an action. If the hearer has prableranderstanding,
she must indicate these problems to the speaker, again tsmttiaal understanding
can eventually be achieved.

How is closure achieved? Clark and Schaefer (1989) intrede idea that each

Contribution  joint linguistic act orcontribution has two phases, callgatesentation and accep-
tance In the first phase, a speaker presents the hearer with aantee performing
a sort of speech act. In the acceptance phase, the hearer fnasihd the utterance,
indicating to the speaker whether understanding was agethiev

What methods can the hearer (call her B) use to ground th&epAa utterance?
Clark and Schaefer (1989) discuss five main types of metlwrdsyed from weakest
to strongest:
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Continued attention: B shows she is continuing to attend and therefore remairsdisdtwith

A's presentation.

Next Contribution: B starts in on the next relevant contribution.
Acknowledgement: B nods or says a continuer likéh-huh yeah or the like, or amassess-

ment like that's great

Demonstration: B demonstrates all or part of what she has understood A to nfean

Display:

Continuer
backchannel

example byreformulating (paraphrasing) A's utterance, or byllabo-
rative completion of A's utterance.
B displays verbatim all or part of A's presentation.

Let's look for examples of grounding in a conversation betwa human travel
agent and a human client in Fig. 24.4. We'll return to thidafiae throughout the
chapter to inform our design of a machine travel dialoguanage

Cy: ...l need to travel in May.

Aj: And, what day in May did you want to travel?

Cy: OK uh I need to be there for a meeting that's from the 12th ¢olthth.

Ao And you're flying into what city?

Ca: Seattle.

As: And what time would you like to leave Pittsburgh?

Cy: Uh hmm | don't think there’s many options for non-stop.

Ay Right. There's three non-stops today.

Cs: What are they?

As: The first one departs PGH at 10:00am arrives Seattle at 12e3ime. The

second flight departs PGH at 5:55pm, arrives Seattle at 8pnal the last
flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

Ce: OK I'll take the 5ish flight on the night before on the 11th.

Ag: On the 11th? OK. Departing at 5:55pm arrives Seattle at &b, Air flight
115.

Cr: OK.

SEOICPLY. Part of a conversation between a travel agent (A) and cli&ht (

Utterance A, in which the agent repeatsMay, repeated below in boldface, shows
the strongest form of grounding, in which the hearer displégngir understanding by
repeating verbatim part of the speakers words:

Ci: ...l needto travein May.
Ai: And, what dayin May did you want to travel?

This particular fragment doesn’'t have an example ofagknowledgemenbut
there’s an example in another fragment:

C: He wants to fly from Boston
A: Mm hmm
C: to Baltimore Washington International

The wordmm-hmmhere is acontinuer, also often called ®ackchannelor an
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acknowledgement token A continuer is a (short) optional utterance which acknowl-
edges the content of the utterance of the other, and whicéndaequire an acknowl-
edgement by the other (Yngve, 1970; Jefferson, 1984; Sofiedl982; Ward and
Tsukahara, 2000).

In Clark and Schaefer’s third method, the speaker startsitheir relevant next
contribution. We see a number of examples of this in the diadoin Fig. 24.4, for
example where the speaker asks a question and the heararaiisvwWe mentioned
theseadjacency pairsabove; other examples inclugeoprosaLfollowed by ACCEP-
TANCE Or REJECTION APOLOGY followed by ACCEPTANCHREJECTION SUMMONS
followed by ANSWER, and so on.

In a more subtle but very important kind of grounding act,dheaker can combine
this method with the previous one. For example notice thangkier the client answers
a question, the agent begins the next question Mttt TheAndindicates to the client
that the agent has successfully understood the answer tastiguestion:

And, what day in May did you want to travel?
And you're flying into what city?

And what time would you like to leave Pittsburgh?

As we will see in Sec. 24.5, the notions of grounding and doutions can be
combined with speech acts to give a more sophisticated nuddeint action in con-
versation; these more sophisticated models are cdilddgue acts

Grounding is just as crucial in human-machine conversaoit is in human con-
versation. The examples below, from Cohen et al. (2004)gastghow unnatural it
sounds when a machine doesn’t ground properly. The us@kal makes (24.7) a
much more natural response than (24.8) to ground a useg'stia):

(24.7) System: Did you want to review some more of your personal lefdfi
Caller: No.
System:Okay,what’s next?
(24.8) System: Did you want to review some more of your personal lefdfi
Caller: No.
System: What's next?
Indeed, this kind of lack of grounding can cause errors.eftiéin et al. (1993)

and Yankelovich et al. (1995) found that humans get confugeeh a conversational
system doesn’t give explicit acknowledgements.

24.1.4 Conversational Structure

We have already seen how conversation is structured byetjggairs and contribu-
tions. Here we’'ll briefly discuss one aspect of therall organization of a conversa-

tion: conversational openings. The openings of telephongearsations, for example,
tend to have a 4-part structure (Clark, 1994; Schegloff312679):

Stage 1:Enter a conversation, with summons-response adjacency pai
Stage 2:ldentification
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Stage 3:Establish joint willingness to converse
Stage 4:The first topic is raised, usually by the caller.

These four stages appear in the opening of this short taskted conversation
from Clark (1994).

Stage Speaker & Utterance
1 Ai: (rings B’s telephone)
1,2 B1: Benjamin Holloway

2 A;: thisis Professor Dwight's secretary, from Polymania Gyele
2,3 Bi: oohyes—

4 Aji: uh:m. about the: lexicology *seminar*

4 Bi: *yes*

It is common for the person who answers the phone to speakdiinse the caller's
ring functions as the first part of the adjacency pair) buttfigr caller to bring up the
first topic, as the caller did above concerning the “lexiggiseminar”. This fact that
the caller usually brings up the first topic causes confusiban the answerer brings
up the first topic instead; here’s an example of this from thigdB directory enquiry
service from Clark (1994):

Customer: (rings)

Operator: Directory Enquiries, for which town please?

Customer: Could you give me the phone number of um: Mrs. unittSon?
Operator: Yes, which town is this at please?

Customer: Huddleston.

Operator: Yes. And the name again?

Customer: Mrs. Smithson.

In the conversation above, the operator brings up the témievhich town pleasg?
in her first sentence, confusing the caller, who ignorestiii and brings up her own.
This fact that callers expect to bring up the topic explaity wonversational agents
for call routing or directory information often use very opprompts likeHow may
| help you? or How may | direct your call?rather than a directive prompt likeor
which town please?Open prompts allow the caller to state their own topic, céaly
recognition errors caused by customer confusion.

Conversation has many other kinds of structure, includimggittricate nature of
conversational closings and the wide use of presequenceswildiscuss structure
based ortoherencen Sec. 24.7.

24.1.5 Conversational Implicature

We have seen that conversation is a kind of joint activityvhich speakers produce
turns according to a systematic framework, and that theriborions made by these
turns include a presentation phase of performing a kind tbacand an acceptance
phase of grounding the previous actions of the interloci8orfar we have only talked
about what might be called the ‘infrastructure’ of convéima But we have so far said
nothing about the actual information that gets communétftam speaker to hearer in
dialogue.
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While Ch. 17 showed how we can compute meanings from serdeit¢erns out
that in conversation, the meaning of a contribution is offeite a bit extended from the
compositional meaning that might be assigned from the walalse. This is because
inference plays a crucial role in conversation. The intetgtion of an utterance relies
on more than just the literal meaning of the sentences. @entie client’s response
C, from the sample conversation in Fig. 24.4, repeated here:

A;: And, what day in May did you want to travel?
C,: OK uh | need to be there for a meeting that’s from the 12th éolthth.

Notice that the client does not in fact answer the questitie. dlient merely states
that he has a meeting at a certain time. The semantics fos¢nience produced by
a semantic interpreter will simply mention this meeting. a¥/ts it that licenses the
agent to infer that the client is mentioning this meeting stoainform the agent of the
travel dates?

Now consider another utterance from the sample conversdtiis one by the
agent:

Ag: ...There’s three non-stops today.

Now this statement would still be true if there were seven-simps today, since
if there are seven of something, there are by definition dismet But what the agent
means here is that there are theg®l not more than three non-stops today. How is
the client to infer that the agent meamdy three non-stops?

These two cases have something in common; in both casesghkesseems to ex-
pect the hearer to draw certain inferences; in other woneésspeaker is communicating
more information than seems to be present in the utteredswdrdese kind of exam-
ples were pointed out by Grice (1975, 1978) as part of hisrthebconversational
implicature. Implicature means a particular class of licensed inferences. Grice pro-
posed that what enables hearers to draw these inferentes ohversation is guided
by a set ofmaxims, general heuristics which play a guiding role in the intetption
of conversational utterances. He proposed the followitng foaxims:

e Maxim of Quantity: Be exactly as informative as is required:

1. Make your contribution as informative as is required ¢for current pur-
poses of the exchange).

2. Do not make your contribution more informative than isuieed.
e Maxim of Quality: Try to make your contribution one that is true:
1. Do not say what you believe to be false.
2. Do not say that for which you lack adequate evidence.
e Maxim of Relevance:Be relevant.
e Maxim of Manner: Be perspicuous:
1. Avoid obscurity of expression.
2. Avoid ambiguity.

3. Be brief (avoid unnecessary prolixity).
4. Be orderly.
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Itis the Maxim of Quantity (specifically Quantity 1) that@lis the hearer to know
thatthree non-stopdid not mearseven non-stopdhis is because the hearer assumes
the speaker is following the maxims, and thus if the speakesnhseven non-stops
she would have said seven non-stops (“as informative agyisire®”). The Maxim
of Relevance is what allows the agent to know that the cliesmite/ to travel by the
12th. The agent assumes the client is following the maximd, feence would only
have mentioned the meeting if it was relevant at this poinhéndialogue. The most
natural inference that would make the meeting relevantddriference that the client
meant the agent to understand that his departure time wagsstibE meeting time.

24.2 Basic Dialogue Systems

We've now seen a bit about how human dialogue works, althasghe’ll see, not ev-
ery aspect of human-human conversation is modeled in hurrasiiine conversation.
Let’s therefore turn to the spoken dialogue systems usednmercial applications.

Fig. 24.5 shows a typical architecture for a dialogue systéhas six components.
The speech recognition and understanding componentgextesning from the input,
while the generation and TTS components map from meaningetech. The dialogue
manager controls the whole process, along with a task mamdgeh has knowledge
about the task domain (such as air travel). We'll go througtheof these compo-
nents in the next sections. Then we’ll explore more soptattd research systems in
following sections.

S L Natural Language
Recognition Understanding

Dialogue |, _ Task
Manager | | Manager

Text-to-Speech Natural Language
Synthesis Generation

EEPICKZEE  Simplified architecture of the components of a conversatiagent.

24.2.1 ASR component

The ASR (automatic speech recognition) component takes &yult, generally from
a telephone, or from a PDA or desktop microphone, and retutremscribed string of
words, as discussed in Ch. 9.

Various aspects of the ASR system may be optimized spetyfical use in con-
versational agents. For example, the large vocabularchgeeognizers we discussed
in Ch. 9 for dictation or transcription focused on transicrgany sentence on any topic
using any English word. But for domain-dependent dialogistesns it is of little use
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Restrictive
grammar

to be able to transcribe such a wide variety of sentencessdatiences that the speech
recognizer needs to be able to transcribe need are just thaisean be understood by
the natural language understanding component. For thi®neeommercial dialogue
systems generally use non-probabilistic language modedsdon finite-state gram-
mars. These grammars are generally hand-written, andfgdicpossible responses
that the system understands. We'll see an example of suchdvatten grammar
for a VoiceXML system in Sec. 24.3. Such grammar-based laggunodels can also
be compiled automatically from, e.g., unification grammuassd for natural language
understanding (Rayner et al., 2006).

Because what the user says to the system is related to wistdteen has just said,
language models in conversational agent are usdalpgue-state dependerior ex-
ample, if the system has just asked the user “What city aredgparting from?”, the
ASR language model can be constrained to only consist oheityes, or perhaps sen-
tences of the form ‘| want to (leal@epart) from [CITYNAME]'. These dialogue-state-
specific language models often consist of hand-writtenefisiaite (or even context-
free) grammars as discussed above, one for each dialodee sta

In some systems, the understanding component is more pdwanid the set of
sentences the system can understand is larger. In such oestead of a finite-state
grammar, we can use dd-gram language model whose probabilities are similarly
conditioned on the dialogue state.

Whether we use a finite-state, context-free, oNagram language model, we call
such a dialogue-state dependent language modestactive grammar. When the
system wants to constrain the user to respond to the syskashstterance, it can use
a restrictive grammar. When the system wants to allow themsee options, it might
mix this state-specific language model with a more genergjuage model. As we
will see, the choice between these strategies can be tused ba how muchitiative
the user is allowed.

Speech recognition in dialogue, as well as in many otheliegns like dictation,
has the property that the identity of the speaker remainstaohacross many utter-
ances. This means that speaker adaptation techniques Lik&kMnd VTLN (Ch. 9)
can be applied to improve recognition as the system gets sparech from the user.

Embedding an ASR engine in a dialogue system also requiedsath ASR en-
gine to have realtime response, since users are unwilliag¢ept long pauses before
responses. Dialogue systems also generally require thaBRrsystem return eonfi-
dencevalue for a sentence, which can then be used for example &ididg whether
to ask the user to confirm a response.

24.2.2 NLU component

The NLU (natural language understanding) component obdis systems must pro-
duce a semantic representation which is appropriate falitiegue task. Many speech-
based dialogue systems, since as far back as the GUS systémnoBet al., 1977), are
based on the frame-and-slot semantics discussed in CHeptek travel system, for
example, which has the goal of helping a user find an appteftight, would have a
frame with slots for information about the flight; thus a sste likeShow me morn-
ing flights from Boston to San Francisco on Tuesdaght correspond to the following
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filled-out frame (from Miller et al. (1994)):

SHOW:
FLIGHTS:
ORIGIN:
CITY: Boston
DATE:
DAY-OF-WEEK: Tuesday
TIME:
PART-OF-DAY: morning
DEST:

CITY: San Francisco

How does the NLU component generate this semantic repamm® Some dia-
logue systems use general-purpose unification grammainsseihantic attachments,
such as the Core Language Engine introduced in Ch. 18. Aparsguces a sentence
meaning, from which the slot-fillers are extracted (Lewialet1999).

Other dialogue systems rely on simpler domain-specific séimanalyzers, such
assemantic grammars A semantic grammar is a CFG in which the rule left hand sides
correspond to the semantic entities being expressed, bs foltowing fragment:

SHOW — show me| iwant| cani seg..

DEPART.TIME _RANGE — (aftejaroundbefore) HOUR|
morning| afternoon| evening

HOUR — ondtwolthredfour.. [twelve (AMPM)
FLIGHTS — (a) flight| flights

AMPM — am|pm

ORIGIN — from CITY

DESTINATION — to CITY

CITY — Boston| San Francisc¢ Denver| Washington

These grammars take the form of context-free grammars arsme transition
networks (Issar and Ward, 1993; Ward and Issar, 1994), andehean be parsed by
any standard CFG parsing algorithm, such as the CKY or Eaftgyrithms introduced
in Ch. 13. The result of the CFG or RTN parse is a hierarchaatling of the input
string with semantic node labels:

SHOW FLIGHTS ORIGIN DESTINATION DEPART_DATE DEPART_TIME
to CITY
Show me flights from boston to san francisco on tuesday  morni ng

Since semantic grammar nodes like ORIGIN correspond toltis i the frame,
the slot-fillers can be read almost directly off the resgltparse above. It remains
only to put the fillers into some sort of canonical form (foaexple as discussed in
Chapter 15 dates can be normalized into a DD:MM:YY form, 8rivéo 24-hour time,
etc.).

The semantic grammar approach is very widely used, but islana deal with am-
biguity, and requires hand-written grammars that can bemsige and slow to create.

Ambiguity can be addressed by adding probabilities to themgnar; one such
probabilistic semantic grammar system is the TINA systeenéH, 1995) shown in
Fig. 24.6; note the mix of syntactic and semantic node narfike.grammar rules in
TINA are written by hand, but parse tree node probabilitiesteained by a modified
version of the SCFG method described in Ch. 14.

An alternative to semantic grammars that is probabilistid also avoids hand-
coding of grammars is the semantic HMM model of Pieraccinalet(1991). The
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Q-SUBJECT BE-QUESTION
N
WHAT STREET
| |
What  street
LINK SUBJECT PRED-ADJUNCT
Is ARTICLE A-PLACE ~ ON-STREET
| | NN
the A-HOTEL ON A-STREET
| | |
HOTEL-NAME on Q-SUBJECT
|
Hyatt

SEOICRPZN: A parse of a sentence in the TINA semantic grammar, afterfSgrg95).

hidden states of this HMM are semantic slot labels, whileabserved words are the
fillers of the slots. Fig. 24.7 shows how a sequence of hidties corresponding to
slot names, could be decoded from (or could generate) a segué observed words.
Note that the model includes a hidden state called DUMMY Wwiligcused to generate
words which do not fill any slots in the frame.

me flights that go  from Boston to San Francisco

The Pieraccini et al. (1991) HMM model of semantics for fiflislots in frame-
based dialogue systems. Each hidden state can generataemsedf words; such a model,
in which a single hidden state can correspond to multipleenfagions, is technically called a
semi-HMM.

The goal of the HMM model is to compute the labeling of sentantiesC =
C1,Cy,...,Gi (C for ‘cases’ or ‘concepts’) that has the highest probgbiiC|W) given
some word$V = wp, Wy, ..., W,. As usual, we use Bayes Rule as follows:

argmax%

argmaxP(W|C)P(C)
c

argmaP(C|W) =
c

N M
(24.9) = i|1 P(Wi[wi _1...w1,C)P(w1|C) iEL P(cilci-1..-C1)

The Pieraccini et al. (1991) model makes a simplificatiort tha concepts (the
hidden states) are generated by a Markov process (a codegpm model), and that
the observation probabilities for each state are genebgtadgtate-dependent (concept-
dependent) wordll-gram word model:
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(24.10) P(Wi|wi_1,....,w1,C) = P(Wi|Wi_1,...,Wj_N+1,Ci)
(24.11) P(cilci-1,....c1) = P(Ci[Ci-1,...,Ci-m+1)

With this simplifying assumption, the final HMM model equats are:

N M
(24.12) argmaP(C|W) = rLP(Wi|Wi,1...Wi,N+1,ci)rLP(ci|ci,1...ci,M+1)
c i= =

These probabilities can be trained on a labeled trainingurin which each
sentence is hand-labeled with the concepts/slot-namesiated with each string of
words. The best sequence of concepts for a sentence, andjtimaent of concepts to
word sequences, can be computed by the standard Viterbdohecalgorithm.

In summary, the resulting HMM model is a generative modéhwito components.
The P(C) component represents the choice of what meaning to exptesssigns a
prior over sequences of semantic slots, computed by a cohegpam. P(W|C) rep-
resents the choice of what words to use to express that nggahim likelihood of a
particular string of words being generated from a given stas computed by a word
N-gram conditioned on the semantic slot. This model is vemilar to the HMM
model fornamed entity detection we saw in Ch. 22. Technically, HMM models like
this, in which each hidden state correspond to multiple eibpservations, are called

semi-HMM  semi-HMMs. In a classic HMM, by contrast, each hidden state corresptind single
output observation.

Many other kinds of statistical models have been proposedhf® semantic un-
derstanding component of dialogue systems. These inchedditiden Understanding
Model (HUM), which adds hierarchical structure to the HMMdombine the advan-
tages of the semantic grammar and semantic HMM approachiier(kt al., 1994,
1996, 2000), or the decision-list method of Rayner and Hp¢R803).

24.2.3 Generation and TTS components

The generation component of a conversational agent chtfusesncepts to express to
the user, plans out how to express these concepts in wordsisaigns any necessary
prosody to the words. The TTS component then takes thesesvamditheir prosodic
annotations and synthesizes a waveform, as described 8. Ch.

The generation task can be separated into two taghkat to sayandhow to say it
Thecontent plannermodule addresses the first task, decides what content tessdar
the user, whether to ask a question, present an answer, and $he content planning
component of dialogue systems is generally merged with ihlegle manager, and
we will return to it below.

Thelanguage generatiormodule addresses the second task, choosing the syntac-
tic structures and words needed to express the meaningubgegyeneration modules
are implemented in one of two ways. In the simplest and masincon method, all
or most of the words in the sentence to be uttered to the usepraspecified by the
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dialogue designer. This method is known as template-baseedrgtion, and the sen-

Prompt  tences created by these templates are often caitatpts. While most of the words
in the template are fixed, templates can include some vasakhich are filled in by
the generator, as in the following:

What time do you want to leave CITY-ORIG?
Will you return to CITY-ORIG from CITY-DEST?

A second method for language generation relies on techsifjam the fieldnat-
ural language generation Here the dialogue manager builds a representation of the
meaning of the utterance to be expressed, and passes thigngneapresentation to
a full generator. Such generators generally have three coemis, a sentence plan-
ner, surface realizer, and prosody assigner. A sketch sfatthitecture is shown in
Fig. 24.8. See Reiter and Dale (2000) for further informatia natural language gen-
eration systems and their use in dialogue.

to Speech
Content Sentence Surface Prosody Synthesizer
Planner > Planner Realizer Assigner g
What to say How to Say it

SEOICRLR: Architecture of a natural language generation system faalaglie system, after
Walker and Rambow (2002).

In the hand-designed prompts that are common in currergmgsthere are a num-
ber of important conversational and discourse constrélirasmust be implemented.
Like any discourse, a conversation needs to be coherent.eXample, as Cohen
et al. (2004) show, the use of discourse markers and proriaths hand-built sys-
tem prompts makes the dialogue in (24.14) more natural thedialogue in (24.13):

(24.13) Please say the data.
Please say the start time.
Please say the duration.
Please say the subject.
(24.14) First, tell me the date.
N'ext, I'll need the time it starts.
:I."hanks.<pause Now, how long is it supposed to last?
Last of all, | just need a brief description...

Another important case of discourse coherence occurs whgityar prompts
may need to be said to the user repeatedly. In these casestandard in dialogue sys-
Tapered prompt  tems to useapered prompts, prompts which get incrementally shorter. The following
example from Cohen et al. (2004) shows a series of (handnoed) tapered prompts:
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(24.15) System: Now, what's the first company to add to your watcR list
Caller: Cisco
System: What's the next company hame? (Or, you can say stiéa.”)
Caller: IBM
System: Tell me the next company name, or say, “Finished.”
Caller: Intel
System: Next one?
Caller: America Online.
System: Next?
Caller: ...

Other constraints on generation are more specific to spolaogdie, and refer
to facts about human memory and attentional processes.xaorge, when humans
are prompted to give a particular response, it taxes theinong less if the suggested
response is the last thing they hear. Thus as Cohen et altYpoint out, the prompt
“To hear the list again, say ‘Repeat list” is easier for ssttran “Say ‘Repeat list’ to
hear the list again.”

Similarly, presentation of long lists of query results (gpptential flights, or movies)
can tax users. Thus most dialogue systems have contentqdemites to deal with this.
In the Mercury system for travel planning (Seneff, 2002),dwample, a rule specifies
that if there are more than three flights to describe to the tlse system will just list
the available airlines and describe explicitly only thdieat flight.

24.2.4 Dialogue Manager

The final component of a dialogue system is the dialogue neanadpich controls the
architecture and structure of the dialogue. The dialogueager takes input from the
ASR/NLU components, maintains some sort of state, intedadgth the task manager,
and passes output to the NLG/TTS modules.

We saw a very simple dialogue manager in Chapter 2's ELIZAsetarchitecture
was a simple read-substitute-printloop. The system reads@ntence, applied a series
of text transformations to the sentence, and then printedtit No state was kept; the
transformation rules were only aware of the current inpatesgce. In addition to its
ability to interact with a task manager, a modern dialogu@agar is very different
than ELIZA's manager in both the amount of state that the mankeeps about the
conversation, and the ability of the manager to model atrestof dialogue above the
level of a single response.

Four kinds of dialogue management architectures are mastnam. The simplest
and most commercially developed architectures, finittestad frame-based, are dis-
cussed in this section. Later sections discuss the morerfdwgormation-state dia-
logue managers, including a probabilistic version of infation-state managers based
on Markov Decision Processes, and finally the more clasait-phsed architectures.

The simplest dialogue manager architecture is a finitee stanager. For example,
imagine a trivial airline travel system whose job was to &skuser for a departure city,
a destination city, a time, and whether the trip was rouier not. Fig. 24.9 shows
a sample dialogue manager for such a system. The states BStheorrespond to
guestions that the dialogue manager asks the user, ancctheoarespond to actions to
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What city are you leaving from?

!

| Where are you going? |

!

| What date do you want to leave? |

Is it a one-way trip?

Yes No

Do you want to go from | What date do you want to return?
<FROM> to <TO> on <DATE>? +

v Do you want to go from <FROM> to <TO>
es on <DATE> returning on <RETURN>?

Yes

Book the flight
SEIICRZR: A simple finite-state automaton architecture for a dialogamager.

take depending on what the user responds. This system ctafypientrols the conver-
sation with the user. It asks the user a series of questignsting (or misinterpreting)
anything the user says that is not a direct answer to theraisstauestion, and then
going on to the next question.
system initiative Systems that control the conversation in this way are caljetiem initiative or
single initiative  single initiative systems. We say that the speaker that is in control of theareation
initiative ~ has theinitiative ; in normal human-human dialogue, initiative shifts backl éorth
between the participants (Walker and Whittaker, 1990he limited single-initiative
finite-state dialogue manager architecture has the adyantet the system always
knows what question the user is answering. This means thiensysan prepare the
speech recognition engine with a specific language modeldtto answers for this
question. Knowing what the user is going to be talking abtsa nakes the task of the
natural language understanding engine easier. Most fitie-systems also allami-
universal  versalcommands. Universals are commands that can be said anyiwhieesdialogue;
every dialogue state recognizes the universal commanddditi@n to the answer to
the question that the system just asked. Common universdigliehelp, which gives
the user a (possibly state-specific) help messatgt over (or main menu), which
returns the user to some specified main start state, and smnaf sommand to cor-
rect the system’s understanding of the users last statgi@antSegundo et al., 2001).
System-initiative finite-state dialogue managers withvarsals may be sufficient for
very simple tasks such as entering a credit card number, amerand password, on
the phone.
Pure system-initiative finite-state dialogue manageritectures are probably too

1 Single initiative systems can also be controlled by the,usexhich case they are calledser initiative
systems. Pure user initiative systems are generally usestdteless database querying systems, where the
user asks single questions of the system, which the systauweits into SQL database queries, and returns
the results from some database.
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mixed initiative

Frame-based
Form-based

restricted, however, even for the relatively uncomplidatesk of a spoken dialogue
travel agent system. The problem is that pure system-ingiaystems require that the
user answer exactly the question that the system askedhButan make a dialogue
awkward and annoying. Users often need to be able to say borgéhat is not exactly
the answer to a single question from the system. For exarpke travel planning
situation, users often want to express their travel goalk wdmplex sentences that
may answer more than one question at a time, as in Communiemple (24.16)
repeated from Fig. 24, or ATIS example (24.17).

(24.16) Hi I'd like to fly to Seattle Tuesday morning

(24.17) | want a flight from Milwaukee to Orlando one way leaving afige p.m. on
Wednesday.

Afinite state dialogue system, as typically implemented;tdsndle these kinds of
utterances since it requires that the user answer eachauastit is asked. Of course
it is theoretically possible to create a finite state ardiitee which has a separate state
for each possible subset of questions that the user’s staterould be answering, but
this would require a vast explosion in the number of statesking this a difficult
architecture to conceptualize.

Therefore, most systems avoid the pure system-initiathitefistate approach and
use an architecture that allowsixed initiative , in which conversational initiative can
shift between the system and user at various points in thegtia.

One common mixed initiative dialogue architecture reliastlve structure of the
frame itself to guide the dialogue. Thesame-basedor form-baseddialogue man-
agers asks the user questions to fill slots in the frame, law dhe user to guide the
dialogue by giving information that fills other slots in thare. Each slot may be
associated with a question to ask the user, of the followipg:t

Slot Question

ORIGIN CITY “From what city are you leaving?”
DESTINATION CITY “Where are you going?”
DEPARTURE TIME “When would you like to leave?”
ARRIVAL TIME “When do you want to arrive?”

A frame-based dialogue manager thus needs to ask quesfidihg oser, filling
any slot that the user specifies, until it has enough infoionab perform a data base
query, and then return the result to the user. If the userévapfo answer two or
three questions at a time, the system has to fill in these atatshen remember not
to ask the user the associated questions for the slots. Moy elot need have an
associated question, since the dialogue designer may mittha user deluged with
questions. Nonetheless, the system must be able to fill 8leteif the user happens
to specify them. This kind of form-filling dialogue managkus$ does away with the
strict constraints that the finite-state manager imposethermrder that the user can
specify information.

While some domains may be representable with a single fratheys, like the
travel domain, seem to require the ability to deal with nplétiframes. In order to han-
dle possible user questions, we might need frames with gerarte information (for
questions likewhich airlines fly from Boston to San Francisgpmformation about
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Open prompt

Directive prompt

airfare practices (for questions lilk#o | have to stay a specific number of days to get a
decent airfare or about car or hotel reservations. Since users may switch frame

to frame, the system must be able to disambiguate which slehizh frame a given
input is supposed to fill, and then switch dialogue contrdhat frame.

Because of this need to dynamically switch control, fraraedd systems are often
implemented aproduction rule systems. Different types of inputs cause different
productions to fire, each of which can flexibly fill in differtefnames. The production
rules can then switch control based on factors such as tins urgeut and some simple
dialogue history like the last question that the system@skbee Mercury flight reser-
vation system (Seneff and Polifroni, 2000; Seneff, 20025uslarge ‘dialogue control
table’ to store 200-350 rules, covering request for hellgsto determine if the user is
referring to a flight in a list ("I'll take that nine a.m. flight and rules to decide which
flights to describe to the user first.

Now that we've seen the frame-based architecture, letsmeb our discussion of
conversational initiative. It's possible in the same agetlow systeme-initiative, user-
initiative, and mixed-initiative interactions. We saidlger that initiative refers to who
has control of the conversation at any point. The phrased initiative is generally
used in two ways. It can mean that the system or the user cauildagily take or give
up the initiative in various ways (Walker and Whittaker, 09€hu-Carroll and Brown,
1997). This kind of mixed initiative is difficult to achieve turrent dialogue systems.
In form-based dialogue system, the term mixed initiatiugsisd for a more limited kind
of shift, operationalized based on a combination of proyyp {open versus directive)
and the type of grammar used in the ASR. @pen promptis one in which the system
gives the user very few constraints, allowing the user tpaed however they please,
asin:

How may | help you?
A directive prompt is one which explicitly instructs the user how to respond:
Sayyesif you accept the call; otherwise, sagp.

A restrictive grammar (Sec. 24.2.1) is a language model which stronglgtcains the
ASR system, only recognizing proper responses to a givemjt.o

We can combine these as in Fig. 24.10 to define initiative ad usform-based
dialogue systems, following Singh et al. (2002) and others.

Prompt Type
Grammar Open Directive
Restrictive Doesn’'t make sense System Initiative
Non-Restrictive User Initiative Mixed Initiative

SEIICPZEN  Operational definition of initiative, following Singh et §2002).

Here a system initiative interaction uses a directive prioamgl a restrictive gram-
mar; the user is told how to respond, and the ASR system isreamsd to only rec-
ognize the responses that are prompted for. In user iniigthe user is given an open
prompt, and the grammar must recognize any kind of respsimez the user could say
anything. Finally, in a mixed initiative interaction, thgstéem gives the user a direc-
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Explicit
confirmation

Implicit
confirmation

tive prompt with particular suggestions for response, batrton-restrictive grammar
allows the user to respond outside the scope of the prompt.

Defining initiative as a property of the prompt and grammaetin this way allows
systems to dynamically change their initiative type fofetiént users and interactions.
Novice users, or users with high speech recognition errahnbe better served by
more system initiative. Expert users, or those who happspéak more recognizably,
might do well with mixed or user initiative interactions. Well see in Sec. 24.6 how
machine learning techniques can be used to choose indtiativ

24.2.5 Dialogue Manager Error Handling: Confirmation/Rejection

In a dialogue system, mishearings are a particularly ingmrtlass of problems, be-
cause speech recognition has such a high error rate. Itrisftiie important for di-
alogue systems to make sure that they have achieved thecmterpretation of the
user’s input. This is generally done by two methocsnfirming understandings with
the user, andejecting utterances that the system is likely to have misunderstood.

Various strategies can be employed for confirmation withuber. A system us-
ing theexplicit confirmation strategy asks the user a direct question to confirm their
understanding. Here are two examples of explicit confiromatifrom travel planning
systems. The (boldface) confirmation questions are botmgegiestions, one using a
single sentence, the other presenting a declarative senteltowed by a tag question
(a short question phrase like “right?” or “isn't it?"):

Which city do you want to leave from?

Baltimore.

Do you want to leave from Baltimore?

Yes.

I'd like to fly from Denver Colorado to New York City on Septemb
twenty first in the morning on United Airlines

Let's see then. | have you going from Denver Colorado to New Y&
on September twenty first. Is that correct?

U: Yes

cecrcw

n

A system using thamplicit confirmation strategy, rather than asking a direct ques-
tion, uses thelemonstratioror displaygrounding strategies described above, confirm-
ing to the user by repeating back what the system underst@oaser to have said:

U: | wantto travel to Berlin

S:  When do you want to travel to Berlin?

U2: Hil'd like to fly to Seattle Tuesday Morning

A3: Traveling to Seattle on Tuesday, August eleventh in the moiing.
Your full name?

Explicit and implicit confirmation have complementary sigéhs. Explicit confir-
mation makes it easier for users to correct the system’ssgugmnitions since the user
can just answer ‘no’ to the confirmation question. But expdionfirmation is awkward
and increases the length of the conversation (Danieli amtiGe 1995; Walker et al.,
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1998). The explicit confirmation dialogue fragments abawesl non-natural and def-
initely non-human; implicit confirmation is much more corsationally natural.
Confirmation is just one kind of conversational action thaystem has to express
lack of understanding. Another optionrigjection. An ASR system rejects an utter-
ance by giving the user a prompt liken sorry, | didn’t understand thatSometimes
utterances are rejected multiple times. This might meattlieeuser is using language
that the system is unable to follow. Thus when an utteranogjésted, systems often
follow a strategy ofprogressive prompting or escalating detail(Yankelovich et al.,
1995; Weinschenk and Barker, 2000) as in this example frohe€et al. (2004):

System: When would you like to leave?

Caller: Well, um, I need to be in New York in time for the first World Sssigame.

System: <reject>. Sorry, | didn’t get that. Please say the month and day yaked |
to leave.

Caller: | wanna go on October fifteenth.

In this example, instead of just repeating ‘When would y&ae ko leave?’, the re-
jection prompt gives the caller more guidance about howtmédate an utterance the
system will understand. Thegeu-can-sayelp messages are important in helping im-
prove systems understanding performance (Bohus and Ryg@@05). If the caller’'s
utterance gets rejected yet again, the prompt can reflec{‘ttstill didn't get that),
and give the caller even more guidance.

An alternative strategy for error handlingrespid reprompting , in which the sys-
tem rejects an utterance just by saying “I'm sorry?” or “Whais that?”. Only if the
caller’s utterance is rejected a second time does the syst@tapplying progressive
prompting. Cohen et al. (2004) summarizes experiments isigotliat users greatly
prefer rapid reprompting as a first-level error prompt.

24.3 \oiceXML

VoiceXML

vxml

VoiceXML is the Voice Extensible Markup Language, an XML-based diaéodesign
language released by the W3C, and the most commonly used ofatious speech
markup languages (such as SALT). The goal of VoiceXMLvanl) is to create simple
audio dialogues of the type we have been describing, malsegfl ASR and TTS,
and dealing with very simple mixed-initiative in a frameskd architecture. While
VoiceXML is more common in the commercial rather than acadesatting, it is a
good way for the student to get a hands-on grasp of dialoggtersydesign issues.

A VoiceXML document contains a set of dialogues, each of Wwisign be dorm or
amenu We will limit ourselves to introducing forms; sé&p://www.voicexml.
org/ for more information on VoiceXML in general. The VoiceXML dament in
Fig. 24.11 defines a form with a single field named ‘transppgt The field has an
attached promptPlease choose airline, hotel, or rental ¢awhich can be passed to
the TTS system. It also has a grammar (language model) whighsised to the speech
recognition engine to specify which words the recognizeliswed to recognize. In
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<form>
<field name="transporttype">
<prompt>
Please choose airline, hotel, or rental car.
</prompt>
<grammar type="application/x=nuance-gsl">
[airline hotel "rental car"]
</grammar>
</field>
<block>
<prompt>
You have chosen <value expr="transporttype">.
</prompt>
</block>
</form>

SEIICRPZEE A minimal VoiceXML script for a form with a single field. Uses iprompted,
and the response is then repeated back.

the example in Fig. 24.11, the grammar consists of a disjpmaif the three words
airline, hotel andrental car.

A <form> generally consists of a sequence<dield> s, together with a few
other commands. Each field has a namtnansporttype is the name of the field
in Fig. 24.11) which is also the name of the variable whereutex’s response will be
stored. The prompt associated with the field is specifieché&prompt> command.
The grammar associated with the field is specified viatgmmmar> command.
VoiceXML supports various ways of specifying a grammar/)udang XML Speech
Grammar, ABNF, and commercial standards, like Nuance GSLwill be using the
Nuance GSL format in the following examples.

The VoiceXML interpreter walks through a form in documender, repeatedly
selecting each item in the form. If there are multiple fieldh® interpreter will visit
each one in order. The interpretation order can be changetious ways, as we will
see later. The example in Fig. 24.12 shows a form with thrédsfiéor specifying the
origin, destination, and flight date of an airline flight.

The prologue of the example shows two global defaults foorehandling. If
the user doesn’t answer after a prompt (i.e., silence escaeineout threshold), the
VoiceXML interpreter will play the<noinput> prompt. If the user says something,
but it doesn’t match the grammar for that field, the VoiceXMiterpreter will play
the<nomatch> prompt. After any failure of this type, it is normal to re-a$le user
the question that failed to get a response. Since thesenesutan be called from any
field, and hence the exact prompt will be different every tivMgiceXML provides a
<reprompt\> command, which will repeat the prompt for whatever field ealthe
error.

The three fields of this form show another feature of VoiceXNie <filled>
tag. The<filled> tag for a field is executed by the interpreter as soon as the fiel
has been filled by the user. Here, this feature is used to g@zader a confirmation of
their input.

The last field departdate , shows another feature of VoiceXML, tlygpe at-
tribute. VoiceXML 2.0 specifies seven built-in grammar tggmolean , currency ,
date , digits , number, phone, andtime . Since the type of this field idate ,

a data-specific language model (grammar) will be automijtipassed to the speech
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<noinput>
I'm sorry, | didn’t hear you. <reprompt/>
</noinput>

<nomatch>
I'm sorry, | didn't understand that. <reprompt/>
</nomatch>

<form>
<block> Welcome to the air travel consultant. </block>
<field name="origin">
<prompt> Which city do you want to leave from? </prompt>
<grammar type="application/x=nuance-gsl">
[(san francisco) denver (new york) barcelona]
</grammar>
<filled>
<prompt> OK, from <value expr="origin"> </prompt>
</ffilled>
</field>
<field name="destination">
<prompt> And which city do you want to go to? </prompt>
<grammar type="application/x=nuance-gsl">
[(san francisco) denver (new york) barcelona]
</grammar>
<filled>
<prompt>  OK, to <value expr="destination">  </prompt>
</ffilled>
<[field>
<field name="departdate" type="date">
<prompt> And what date do you want to leave? </prompt>

<filled>
<prompt>  OK, on <value expr="departdate">  </prompt>
</ffilled>
</field>
<block>
<prompt> OK, | have you are departing from <value expr="orig in">
to <value expr="destination"> on <value expr="departdate ">
</prompt>
send the info to book a flight...
</block>

</form>

SIICRLEY. A \oiceXML script for a form with 3 fields, which confirms eactelid and
handles theoinput andnomatch situations.

recognizer, so we don’t need to specify the grammar herecitkpl

Fig. 24.13 gives a final example which shows mixed initiativea mixed initiative
dialogue, users can choose not to answer the question tisahskad by the system.
For example, they might answer a different question, or use@ sentence to fill in
multiple slots at once. This means that the VoiceXML intetpr can no longer just
evaluate each field of the form in order; it needs to skip fieltiese values are set.
This is done by ayuard condition a test that keeps a field from being visited. The
default guard condition for a field tests to see if the fieldisnf item variable has a
value, and if so the field is not interpreted.

Fig. 24.13 also shows a much more complex use of a grammag.gfammar is a
CFG grammar with two rewrite rules, nametight andCity . The Nuance GSL
grammar formalism uses parentheses () to mean concatematibsquare brackets []
to mean disjunction. Thus a rule like (24.18) means Wanhtsentence can be ex-
panded as want to fly ori want to go ,andAirports can be expanded
assan francisco  ordenver .

(24.18) Wantsentence (i want to [fly go])
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<noinput> I'm sorry, | didn't hear you. <reprompt/> </noinp ut>
<nomatch> I'm sorry, | didn’t understand that. <reprompt/> </nomatch>
<form>

<grammar type="application/x=nuance-gs|">

<I[ CDATA[

Flight (?[

(i [wanna (want to)] [fly go])
("d like to [fly go])
([(i wanna)(i'd like a)] flight)

( [from leaving departing] City:x) {<origin $x>}
( [(?going to)(arriving in)] City:x) {<destination $x>}
( [from leaving departing] City:x

[(?going to)(arriving in)] City:y) {<origin $x> <destinat ion $y>}
?please
)
City [ [(san francisco) (s f 0)] {return( "san francisco, cal ifornia")}

[(denver) (d e n)] {return( "denver, colorado")}
[(seattle) (s t x)] {return( "seattle, washington")}

]I> </grammar>

<initial name="init">
<prompt> Welcome to the consultant. What are your travel pla ns? </prompt>
<finitial>

<field name="origin">
<prompt> Which city do you want to leave from? </prompt>
<filled>
<prompt> OK, from <value expr="origin"> </prompt>
</filled>
</field>
<field name="destination">
<prompt> And which city do you want to go to? </prompt>

<filled>
<prompt> OK, to <value expr="destination"> </prompt>
</filled>
</field>
<block>
<prompt> OK, | have you are departing from <value expr="orig in">

to <value expr="destination">. </prompt>
send the info to book a flight...
</block>
</form>

EEPICKZEER A mixed initiative VoiceXML dialogue. The grammar allowsngéences which
specify the origin or destination cities or both. User caspomnd to the initial prompt by speci-
fying origin city, destination city, or both.

Airports [(san francisco) denver]

Grammar rules can refer to other grammar rules recursiaatyso in the grammar
in Fig. 24.13 we see the grammar féight  referring to the rule foCity

VoiceXML grammars take the form of CFG grammars with optios@mantic
attachments. The semantic attachments are generally @itlext string (such as
"denver, colorado” ) or a slot and a filler. We can see an example of the for-
mer in the semantic attachments for iy rule (thereturn statements at the end
of each line), which pass up the city and state name. The senadtachments for the
Flight rule shows the latter case, where the sair(gin>  or <destination>
or both) is filled with the value passed up in the variabfeom theCity rule.

Because Fig. 24.13 is a mixed initiative grammar, the graniraato be applicable
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to any of the fields. This is done by making the expansiorHaht a disjunction;
note that it allows the user to specify only the origin citye destination city, or both.

24.4 Dialogue System Design and Evaluation

24.4.1 Designing Dialogue Systems

How does a dialogue system developer choose dialoguegstarchitectures, prompts,
VUl error messages, and so on? This process is often ¢allédVoice User Interface
design. Thauser-centered desigrprinciples of Gould and Lewis (1985) are:

1. Study the user and task:Understand the potential users and the nature of the
task, via interviews with users and investigation of simskgstems, and study of related
human-human dialogues.

Wizard-of-Oz 2. Build simulations and prototypes: In Wizard-of-Oz systems(WOZ) or
PNAMBIC (Pay No Attention to the Man Behlind the Curtain) €8s, the users inter-
act with what they think is a software system, but is in facienhn operator (“wizard”)
behind some disguising interface software (e.g. Gould.e8B3; Good et al., 1984;
Fraser and Gilbert, 199%)A WOZ system can be used to test out an architecture be-
fore implementation; only the interface software and dasals need to be in place. The
wizard’s linguistic output can be disguised by a text-teeagh system, or via text-only
interactions. It is difficult for the wizard to exactly sinaté the errors, limitations, or
time constraints of a real system; results of WOZ studieshare somewhat idealized,
but still can provide a useful first idea of the domain issues.

3. lIteratively test the design on users:An iterative design cycle with embed-
ded user testing is essential in system design (Nielser?;X98le et al., 1994, 1997,
Yankelovich et al., 1995; Landauer, 1995). For exampleeBtiéin et al. (1993) built
a system that originally required the user to press a keytasrupt the system. They

Barge-in  found in user testing that users instead tried to interraptdystem lfarge-in), sug-
gesting a redesign of the system to recognize overlappetkp&he iterative method
is also important for designing prompts which cause the tesegspond in normative
ways, such as the use in particular situations of constildfiorens (Oviatt et al., 1993)
or directive prompts rather than open prompts (Kamm, 1994; Cole et al., 1993)- Sim
ulations can also be used at this stage; user simulatiohéntieeact with a dialogue
system can help test the interface for brittleness or efféinsing, 2004).

See Cohen et al. (2004), Harris (2005) for more on convensatinterface design.

24.4.2 Dialogue System Evaluation

We said above that user testing and evaluation is crucialalogue system design.
Computing auser satisfaction ratingcan be done by having users interact with a
dialogue system to perform a task, and then having them ampl questionnaire
(Shriberg et al., 1992; Polifroni et al., 1992; Stifelmarakt 1993; Yankelovich et al.,

2 The name comes from the children’s bobke Wizard of O#Baum, 1900), in which the Wizard turned
out to be just a simulation controlled by a man behind a aurtai
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Barge-in

Concept accuracy

TTS Performance Was the system easy to understand ?

ASR Performance Did the system understand what you said?

Task Ease Was it easy to find the message/flight/train you wanted?
Interaction Pace Was the pace of interaction with the system appropriate?
User Expertise Did you know what you could say at each point?

System Response How often was the system sluggish and slow to reply to you?
Expected Behavior Did the system work the way you expected it to?
Future Use Do you think you'd use the system in the future?

User satisfaction survey, adapted from Walker et al. (2001)

1995; Moller, 2002). For example Fig. 24.4.2 shows mudtiphoice questions of the
sort used by Walker et al. (2001); responses are mappedhetahge of 1 to 5, and
then averaged over all questions to get a total user satmfaating.

It is often economically infeasible to run complete useiséattion studies after
every change in a system. For this reason it is often usehdve performance evalua-
tion heuristics which correlate well with human satisfanctiA number of such factors
and heuristics have been studied. One method that has begtoudassify these fac-
tors is based on the idea that an optimal dialogue systemneisvbich allows a user to
accomplish their goals (maximizing task success) with éast problems (minimizing
costs). Then we can study metrics which correlate with theeecriteria.

Task Completion Success: Task success can be measured by evaluating the correct-
ness of the total solution. For a frame-based architecthiemight be the percentage

of slots that were filled with the correct values, or the petage of subtasks that were
completed (Polifroni et al., 1992). Since different dialegsystems may be applied

to different tasks, it is hard to compare them on this mesa@Walker et al. (1997)
suggested using the Kappa coefficiantto compute a completion score which is nor-
malized for chance agreement and better enables crogsysgsmparison.

Efficiency Cost: Efficiency costs are measures of the system’s efficiencylptrite
users. This can be measured via the total elapsed time fatigthegue in seconds,
the number of total turns or of system turns, or the total neinab queries (Polifroni
etal., 1992). Other metrics include the number of systemnesponses, and the “turn
correction ratio”: the number of system or user turns thatewesed solely to correct
errors, divided by the total number of turns (Danieli and ltd&w, 1995; Hirschman
and Pao, 1993).

Quality Cost:  Quality cost measures other aspects of the interactiomtfest users’

perception of the system. One such measure is the numbened the ASR system
failed to return any sentence, or the number of ASR rejeqtiimmpts. Similar met-

rics include the number of times the user hadé&rge-in (interrupt the system), or
the number of time-out prompts played when the user didsjiead quickly enough.
Other quality metrics focus on how well the system undeidtand responded to the
user. This can include the inappropriateness (verbose bigaious) of the system’s
questions, answers, and error messages (Zue et al., 1988 oorrectness of each
question, answer, or error message (Zue et al., 1989; &wiliét al., 1992). A very

important quality cost isoncept accuracyor concept error rate, which measures the
percentage of semantic concepts that the NLU componemhsetorrectly. For frame-
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based architectures this can be measured by counting therage of slots that are
filled with the correct meaning. For example if the sentemeent to arrive in Austin
at 5:00’ is misrecognized to have the semantics "DEST-CBoéton, Time: 5:00” the
concept accuracy would be 50% (one of two slots are wrong).

| MAXIMIZE USER SATISFACTION ‘

MAXIMIZE TASK SUCCESS | | MINIMIZE COSTS |

O

| EFFICIENCY MEASURES | | QUALITY MEASURES

SICRPZEE PARADISE's structure of objectives for spoken dialoguef@enance. After
Walker et al. (1997).

How should these success and cost metrics be combined agtted? One ap-
proach is the PARADISE algorithm (PARAdigm for Dlalogue f&m Evaluation),
which applies multiple regression to this problem. The gthm first assigns each
dialogue a user satisfaction rating using questionnaikkeshe one in Fig. 24.4.2. A
set of cost and success factors like those above is theedraata set of independent
factors; multiple regression is used to train a weight fahefactor, measuring its im-
portance in accounting for user satisfaction. Fig. 24.<dshthe particular model of
performance that the PARADISE experiments have assumech @ is related to
a set of factors that we summarized on the previous page. dhting metric can
be used to compare quite different dialogue strategiesyatians using methods like
PARADISE have suggested that task completion and conceptacy may be the most
important predictors of user satisfaction; see Walker.€t18197, 2001, 2002).

A wide variety of other evaluation metrics and taxonomiesshiaeen proposed for
describing the quality of spoken dialogue systems (Frd€92; Moller, 2002, 2004;
Delgado and Araki, 2005, inter alia).

24.5 Information-state & Dialogue Acts

The basic frame-based dialogue systems we have introduckd are only capable

of limited domain-specific conversations. This is becahgesemantic interpretation
and generation processes in frame-based dialogue systerhased only on what is

needed to fill slots. In order to be usable for more than jushfélling applications,

a conversational agent needs to be able to do things likelelaghen the user has
asked a question, made a proposal, or rejected a suggestiomeeds to be able to
ground a users utterance, ask clarification questions, @ggest plans. This suggests
that a conversational agent needs sophisticated modeltegpretation and generation
in terms of speech acts and grounding, and a more sophésticapresentation of the

dialogue context than just a list of slots.
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Information-state

In this section we sketch a more advanced architecture &doglie management
which allows for these more sophisticated components. idel is generally called
theinformation-state architecture (Traum and Larsson, 2003, 2000), although iire w
use the term loosely to include architectures such as All@h €2001). A probabilis-
tic architecture which can be seen as an extension of theniafiion-state approach,
the Markov decision processmodel, will be described in the next section. The term
information-state architecture is really a cover term for a number of quite different
efforts toward more sophisticated agents; we’ll assume aetructure consisting of 5
components:

the information state (the ‘discourse context’ or ‘mentaidal’)
a dialogue act interpreter (or “interpretation engine”)
a dialogue act generator (or “generation engine”)

a set of update rules, which update the information stateidegilie acts are
interpreted, and which include rules to generate dialogte a

e a control structure to select which update rules to apply

The terminformation state is intended to be very abstract, and might include
things like the discourse context and the common groundefitlo speakers, the be-
liefs or intentions of the speakers, user models, and so nreidly, information state
is intended to be a more complex notion than the static state$inite-state dialogue
manager; the current state includes the values of manyblesiahe discourse context,
and other elements that are not easily modeled by a statbéenima finite network.

Dialogue acts are an extension of speech acts which inteigleds from grounding
theory, and will be defined more fully in the next subsectiblne interpretation engine
takes speech as input and figures out sentential semanti@naappropriate dialogue
act. The dialogue act generator takes dialogue acts andngihisemantics as input
and produces text/speech as output.

Finally, the update rules modify the information state vtfite information from the
dialogue acts. These update rules are a generalizatior gfrtiduction rules used in
frame-based dialogue systems described above (Senefidifrdi, 2000, inter alia).

A subset of update rules, callegtlection rules are used to generate dialogue acts.
For example, an update rule might say that when the intexfioetengine recognizes
an assertion, that the information state should be updaitbdtine information in the
assertion, and an obligation to perform a grounding actsieetle added to the infor-
mation state. When a question is recognized, an update ligle specify the need to
answer the question. We can refer to the combination of tldateprules and control
structure as thBehavioral AgenfAllen et al., 2001), as suggested in Fig. 24.16.

While the intuition of the information-state model is quéienple, the details can
be quite complex. The information state might involve ricgkcdurse models such as
Discourse Representation Theory or sophisticated modeleaiser’s belief, desire,
and intention (which we will return to in Sec. 24.7). Insteddiescribing a particular
implementation here, we will focus in the next few sectiondtte dialogue act inter-
pretation and generation engines, and a probabilisticimétion-state architecture via
Markov decision processes.
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Speech Speech
| Natural Language Understanding Natural Language Generation |
\ Information State
-discourse context
| Dialogue Act Interpreter |4/' :ggglesfs ‘\‘| Dialogue Act Generator |

-user model
-task context

'

Behavioral Agent
-update rules
-control

SEOICPLEL A version of the information-state approach to dialogudidecture.

24.5.1 Dialogue Acts

As we implied above, the speech acts as originally definedustiA don’t model key
features of conversation such as grounding, contributiadgcency pairs and so on.
In order to capture these conversational phenomena, werusgtension of speech
dialogue act  acts calleddialogue acts(Bunt, 1994) (ordialogue movesor conversational moves
Conversational - (Power, 1979; Carletta et al., 1997b). A dialogue act extespetech acts with internal
structure related specifically to these other conversatifumctions (Allen and Core,
1997; Bunt, 2000).

A wide variety of dialogue act tagsets have been proposed. Z4.17 shows a
very domain-specific tagset for the Verbmobil two-partyestiling domain, in which
speakers were asked to plan a meeting at some future daiee @it it has many very
domain-specific tags, such as &GEsT, used for when someone proposes a particular
date to meet, and @cepTand REJECT, used to accept or reject a proposal for a date.
Thus it has elements both from the presentation and acaaptarases of the Clark
contributions discussed on page 830.

There are a number of more general and domain-independdogde act tagsets.
In the DAMSL (Dialogue Act Markup in Several Layers) arcleiiere inspired by the
work of Clark and Schaefer (1989), Allwood et al. (1992), éAtlwood, 1995) each
utterance is tagged for two types of functioftsward looking functions like speech
act functions, antbackward looking functions, like grounding and answering, which
‘look back’ to the interlocutor’s previous utterance (Adland Core, 1997; Walker
et al., 1996; Carletta et al., 1997a; Core et al., 1999).

Traum and Hinkelman (1992) proposed that the core speeshaact grounding
acts that constitute dialogue acts could fit into an evererittierarchy ofconversa-

Conversationact  tion acts. Fig. 24.5.1 shows the four levels of act types they propegh,the two mid-
dle levels corresponding to DAMSL dialogue acts (grounding core speech acts).
The two new levels include turn-taking acts and a type of oaiee relations called
argumentatiorrelations.

The acts form a hierarchy, in that performance of an act aglagnilevel (for exam-
ple a core speech act) entails performance of a lower levétadng a turn). We will
see the use of conversational acts in generation later drisiséction, and will return
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Tag Example
THANK Thanks
GREET Hello Dan
INTRODUCE It's me again
BYE Allright bye
REQUESFCOMMENT How does that look?
SUGGEST from thirteenth through seventeenth June
REJECT No Friday I'm booked all day
ACCEPT Saturday sounds fine,
REQUESFSUGGEST What is a good day of the week for you?
INIT | wanted to make an appointment with you
GIVE_REASON Because | have meetings all afternoon
FEEDBACK Okay
DELIBERATE Let me check my calendar here
CONFIRM Okay, that would be wonderful
CLARIFY Okay, do you mean Tuesday the 23rd?
DIGRESS [we could meet for lunch] and eat lots of ice cream
MOTIVATE We should go to visit our subsidiary in Munich
GARBAGE Oops, I-

EEPICKZEN, The 18 high-level dialogue acts used in Verbmobil-1, alssdchover a total of
43 more specific dialogue acts. Examples are from Jekat @tQ45).

Act type Sample Acts

turn-taking take-turn, keep-turn, release-turn, assign-
grounding acknowledge, repair, continue

core speech acts inform, wh-question, accept, request, off
argumentation elaborate, summarize, question-ansveifycl

Conversation act types, from Traum and Hinkelman (1992).
to the question of coherence and dialogue structure in Set€. 2

24.5.2

How can we do dialogue act interpretation, deciding wheshgiven input is QUES
TION, a STATEMENT, a SUGGEST(directive), or anACKNOWLEDGEMENT? Perhaps
we can just rely on surface syntax? We saw in Ch. 12 that yegdestions in English
haveaux-inversion (the auxiliary verb precedes the subject) statements heslard-
tive syntax (no aux-inversion), and commands have no siiotsubject:

(24.19) YES-NO-QUESTION Will breakfast be served on USAir 15577
STATEMENT | don't care about lunch
COMMAND Show me flights from Milwaukee to Orlando.

Interpreting Dialogue Acts

Alas, as is clear from Abbott and Costello’s famaMBo’s on Firstroutine at the be-
ginning of the chapter, the mapping from surface form tacilidonary act is complex.
For example, the following ATIS utterance looks likeras-NO-QUESTION meaning
something likeAre you capable of giving me a list of. ... ?

(24.20) Can you give me a list of the flights from Atlanta to Boston?

In fact, however, this person was not interested in whetesystem wasapable
of giving a list; this utterance was a polite form oR&QUEST, meaning something
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Indirect speech
act

microgrammar

Final lowering

more likePlease give me a list of... Thus what looks on the surface likeQ@ESTION
can really be ®EQUEST

Similarly, what looks on the surface likessATEMENT can really be @UESTION
The very commortHECK question (Carletta et al., 1997b; Labov and Fanshel, 1977),
is used to ask an interlocutor to confirm something that slsephgileged knowledge
about.cHECKshave declarative surface form:

A OPENOPTION | was wanting to make some arrangements for a trip that I’'mgjoi
to be taking uh to LA uh beginning of the week after next.

B HOLD OK uh let me pull up your profile and I'll be right with you here.
[pause]

B CHECK And you said you wanted to travel next week?

A ACCEPT Uh yes.

Utterances that use a surface statement to ask a questiarsusface question to
issue a request, are calledlirect speech acts

In order to resolve these dialogue act ambiguities we carehtbidlogue act inter-
pretation as a supervised classification task, with disdaggt labels as hidden classes
to be detected. We train classifiers on a corpus in which ettehance is hand-labeled
for dialogue acts. The features used for dialogue act indéafion derive from the
conversational context and from the agtiscrogrammar (Goodwin, 1996) (its char-
acteristic lexical, grammatical, and prosodic propejties

1. Words and Collocations: Pleaseor would youis a good cue for REQUEST, are
youfor YES-NO-QUESTIONS detected viaialogue-specifidN-gram grammars.

2. Prosody: Rising pitch is a good cue forees-NO-QUESTION, while declarative
utterances (likesTATEMENTS) havefinal lowering: a drop in FO at the end of
the utterance. Loudness or stress can help distinguisfetitghat is anAGREE-
MENT from theyeahthat is aBACKCHANNEL. We can extract acoustic correlates
of prosodic features like FO, duration, and energy.

3. Conversational Structure: A yeahfollowing a proposal is probably axGREE-
MENT; ayeahafter aniNFORM is likely aBACKCHANNEL. Drawing on the idea
of adjacency pairs (Schegloff, 1968; Sacks et al., 1974amemodel conversa-
tional structure as a bigram of dialogue acts.

Formally our goal is to find the dialogue att that has the highest posterior prob-
ability P(d|o) given the observation of a sentence,

d* = argmax¥(d|o)
d

_ P(d)P(o|d)
= argdmaxw

(24.21) = argma¥(d)P(o|d)
d

Making some simplifying assumptions (that the prosody efghntencé and the
word sequencé/ are independent, and that the prior of a dialogue act can loeled
by the conditional given the previous dialogue act) we cdimede the observation
likelihood for a dialogue aal as in (24.22):
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Correction

(24.22) P(old) = P(f|d)P(W|d)
(24.23) d* = argmax¥(d|d;_1)P(f|d)P(W|d)
d
where
N
(24.24) PW[d) = _I_lP(Wi|Wi71---Wi—N+1ad)

Training the prosodic predictor to compuRef |d) has often been done with a deci-
sion tree. Shriberg et al. (1998), for example, built a CARE1to distinguish the four
dialogue actSTATEMENT (S), YES-NO QUESTION(QY), DECLARATIVE-QUESTION
like cHECK (QD) andwH-QUESTION (QW) based on acoustic features such as the
slope of FO at the end of the utterance, the average energffexedt places in the
utterance, and various normalized duration measures.2Bi@9 shows the decision
tree which gives the posterior probabilRyd|f) of a dialogue actl type given a set of
acoustic feature$. Note that the difference between S and QY toward the rigtief
tree is based on the featurerm _fO _diff (normalized difference between mean FO
of end and penultimate regions), while the difference betw@W and QD at the bot-
tom left is based ontt _grad , which measures FO slope across the whole utterance.

Since decision trees produce a posterior probatf{| f ), and equation (24.23)
requires a likelihoodP(f|d), we need to massage the output of the decision tree by
Bayesian inversion (dividing by the pri&(d;) to turn it into a likelihood); we saw this
same process with the use of SVMs and MLPs instead of Gaudsaissifiers in speech
recognition in Sec. 10.4.2. After all our simplifying asguiions the resulting equation
for choosing a dialogue act tag would be:

d* argmaxP(d)P(f|d)P(W|d)
d

(24.25)

argdma>P(d|dt,1) P(Wi|Wi_1...W_n1,d)

24.5.3 Detecting Correction Acts

In addition to general-purpose dialogue act interpretatiee may want to build special-
purpose detectors for particular acts. Let’s consider aich sletector, for the recog-
nition of usercorrection of system errors. If a dialogue system misrecognizes an
utterance (usually as a result of ASR errors) the user wilkgally correct the error by
repeating themselves, or rephrasing the utterance. Dialsgstems need to recognize
that users are doing a correction, and then figure out whaidéeis trying to correct,
perhaps by interacting with the user further.

Unfortunately, corrections are actual@rderto recognize than normal sentences.
Swerts et al. (2000) found that corrections in the TOOT djatsystem were misrec-
ognized about twice as often (in terms of WER) as non-cdoest One reason for this
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QD S QY QW
0.250.250.250.25

cont_speech_frames < 196.5\ cont_speech_frames >= 196.5

ow S
0.2561 0.1642 0.2732 0.306 0.2357 0.4508 0.1957 0.1178

end_grad < 32.345 | end_grad >= 32.345 cont_speech_frames_n < 98.334

ow QY S S
0.2327 0.2018 0.1919 0.3735 0.2978 0.09721 0.4181 0.1869 0.2581 0.2984 0.2796 0.164 0.2191 0.5637 0.1335 0.0836

f0_mean_zcv < 0.76806 \ fO_mean_zcv >= 0.76806 norm_f0_diff < 0.064562 norm_f0_diff >= 0.064562

S ow S QY
0.276 0.2811 0.1747 0.2683 0.1859 0.116 0.2106 0.4876 0.3089 0.3387 0.1419 0.210/ 0.1857 0.241 0.4756 0.097,

cont_speech_frames_n < 98.388\ cont_speech_frames_n >= 98.388 f0_mean_zcv < 0.76197 \ f0_mean_zcv >= 0.76197

QW S S Qw
0.29350.1768 0.2017 0.328 0.2438 0.4729 0.125 0.1583 0.3253 0.4315 0.1062 0.1 0.2759 0.1517 0.2138 0.3586

utt_grad <-36.113 | utt_grad >=-36.113 stdev_enr_utt < 0.02903 stdev_enr_utt >= 0.02903

ow QD ow S
0.2044 0.1135 0.1362 0.5459 0.3316 0.2038 0.2297 0.2349 0.3069 0.08995 0.1799 0.42; 0.2283 0.5668 0.1115 0.09339

Decision tree for classifyin@ECLARATIVE QUESTIONS (QD), STATEMENT (S), YES-NO QUES
TIONS (QY), andwH-QUESTIONS(QW), after Shriberg et al. (1998). Each node in the tree sHowr probabilities,
one for each of the four dialogue acts in the order QD, S, QY; @é&/most likely of the four is shown as the label for
the node. Note that questions are shorter than statememitssfgzeechframes), that QY’s rise at the end (egdad),
and that QD’s rise throughout the utterance_griad).

cont_speech_frames_n >= 98.334

Hyperarticulation  is that speakers use a very different prosodic style calgerarticulation for correc-
tions. In hyperarticulated speech, some part of the utterdias exaggerated energy,
duration, or FO contours, such bsaid BAL-TI-MORE, not Bostofwade et al., 1992;
Oviatt et al., 1998; Levow, 1998; Hirschberg et al., 2001).

Speakers use various strategies to make corrections; Seteai. (2000) catego-
rize these as repetition (REP), paraphrase (PAR), addinigob(ADD), and omitting
content (OMIT), as shown in Fig. 24.5.3. They found that nomstections were repe-
titions and omissions rather than paraphrases.

Various machine learning classifiers have been appliedstptthblem of detecting
correction acts. Useful features include lexical inforimaiwords like “no”, “correc-
tion”, “I don't”, swear words), prosodic and hyperartictitan features (increases in
FO range, pause duration, and word duration, generally alired by the values for
previous sentences), features indicating utterance HegBR features (confidence,
language model probability), and various dialogue featirevow, 1998; Hirschberg
et al., 2001; Bulyko et al., 2005).

In addition to correction detection, a conversational 4@g¢so needs appropriate
control or update rules in the dialogue manager (Bulyko.e2a5).

24.5.4 Generating Dialogue Acts: Confirmation and Rejectio

Deciding which dialogue acts to generate has received negshdttention than dia-
logue act interpretation. Stent (2002) is one recent mofidladogue act generation
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Turn Corr
Type

On which day of the week do you want to leave?

Sorry, | didn’t hear anything from you. Please tell me yoepatture date

Um tomorrow NA
You can say the departure date. For example, you can say’tod’tomorrow’.

Or you can say 'Monday’, 'Tuesday’, 'Wednesday'...

Tomorrow REP
You can say the departure date. For example, you can say’tod’tomorrow’.

Or you can say 'Monday’, 'Tuesday’, 'Wednesday'...

Saturday PAR
Do you want to leave on Saturday?

Yes

What time do you want to leave?

Eight o’clock AM

Do you want to leave around ten oclock p-m

Eight o’clock OMIT
Do you want to leave around ten oclock p-m

No OMIT
What time do you want to leave?

Eight o'clock AM ADD
Dialogue fragment from the TOOT system labeled for corcectiype, from
Swerts et al. (2000).

ncununm

w C

cCnonCcunncCcunmcCcwmwcwmcCc

Cue Turn-taking acts signaled

um KEEP-TURN, TAKE-TURN, RELEASE-TURN
<lipsmack>, <click>, so, uh KEEP-TURN, TAKE-TURN

you know, isn't that so ASSIGN-TURN

SICPZWE Language used to perform turn-taking acts, from Stent (R002

in the TRIPS system (Allen et al., 2001), based on Convensatcts (page 855) and
the BDI model to be described in Sec. 24.7. Stent uses a setaterules for content
planning. One such rule says that if a user has just releagetlitn, the system can
perform a TAKE-TURN act. Another rule says that if the systeas a problem-solving
need to summarize some information for the user, then itlshee the ASSERT con-
versation act with that information as the semantic confEiné¢ content is then mapped
into words using the standard techniques of natural langgageration systems (see
e.g., Reiter and Dale (2000)). After an utterance is geedrahe information state
(discourse context) is updated with its words, syntactiecttire, semantic form, and
semantic and conversation act structure. We will sketctein 34.7 some of the issues
in modeling and planning that make generation a tough ongaisearch effort.

Stent showed that a crucial issue in dialogue generatidmitesn’t occur in mono-
logue text generation is turn-taking acts. Fig. 24.5.4 shseme example of the turn-
taking function of various linguistic forms, from her labg of conversation acts in
the Monroe corpus.

A focus of much work on dialogue act generation is the taskesfegating the
confirmation andrejection acts discussed in Sec. 24.2.5. Because this task is often
solved by probabilistic methods, we’ll begin this discosshere, but continue it in the
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following section.

For example, while early dialogue systems tended to fix tloécehofexplicit ver-
susimplicit confirmation, recent systems treat the question of how téircomore like
a dialogue act generation task, in which the confirmaticatetyy is adaptive, changing
from sentence to sentence.

Various factors can be included in the information-statéthen used as features to
a classifier in making this decision. For example tbhafidencethat the ASR system
assigns to an utterance can be used by explicitly confirnawgdonfidence sentences
(Bouwman et al., 1999; San-Segundo et al., 2001; Litman €299; Litman and Pan,
2002). Recall from page 10.1 that confidence is a metric Heaspeech recognizer can
assign to its transcription of a sentence to indicate hovident it is in that transcrip-
tion. Confidence is often computed from the acoustic loghiifood of the utterance
(greater probability means higher confidence), but prasfaditures can also be used
in confidence prediction. For example utterances preceydadnger pauses, or with
large FO excursions, or longer durations are likely to be@cisgnized (Litman et al.,
2000).

Another common feature in confirmation is tbestof making an error. Thus for
example explicit confirmation is common before actually king a flight or moving
money in an account (Kamm, 1994; Cohen et al., 2004).

A system can also choose tteject an utterance when the ASR confidence is so
low, or the best interpretation is so semantically ill-fan that the system can be
relatively sure that the user’s input was not recognized.aSgstems thus might have
a three-tiered level of confidence; below a certain confideheeshold, an utterance
is rejected. Above the threshold, it is explicitly confirmdfithe confidence is even
higher, the utterance is implicitly confirmed.

Instead of rejecting or confirming entire utterances, it lddue nice to be able to
clarify only the parts of the utterance that the system didnderstand. If a system can
assign confidence at a more fine-grained level than the otterat can clarify such

clarification  individual elements viglarification subdialogues

Much of the recent work on generating dialogue acts has béaimvthe Markov
Decision Process framework, which we therefore turn to.next

24.6 Markov Decision Process Architecture

One of the fundamental insights of the information-stafgrapch to dialogue architec-
ture is that the choice of conversational actions is dynalyidependent on the current
information state. The previous section discussed hovegisd systems could change
confirmation and rejection strategies based on contexteXxample if the ASR or NLU
confidence is low, we might choose to do explicit confirmatidrconfidence is high,
we might chose implicit confirmation, or even decide not tafam at all. Using a
dynamic strategy lets us choose the action which maximimdeglie success, while
minimizing costs. This idea of changing the actions of aatjak system based on
optimizing some kinds of rewards or costs is the fundamentaition behind model-
Markov decision  ing dialogue as Markov decision process This model extends the information-state
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MDP

model by adding a probabilistic way of deciding on the praagions given the current
state.

A Markov decision process &DP is characterized by a set sfatesS an agent
can be in, a set ofictions A the agent can take, andreward r(a,s) that the agent
receives for taking an action in a state. Given these facteescan compute policy
rtwhich specifies which actioathe agent should take when in a given s&to as to
receive the best reward. To understand each of these comigome’ll need to look
at a tutorial example in which the state space is extremelyaed. Thus we’ll return
to the simple frame-and-slot world, looking at a pedagdditBP implementation
taken from Levin et al. (2000). Their tutorial example is aayPand-Month” dialogue
system, whose goal is to get correct values of day and month iwo-slot frame via
the shortest possible interaction with the user.

In principle, a state of an MDP could include any possibl@infation about the
dialogue, such as the complete dialogue history so far. dJsirch a rich model of
state would make the number of possible states extraoilyifege. So a model of
state is usually chosen which encodes a much more limiteaf #gfiormation, such as
the values of the slots in the current frame, the most reagestepn asked to the user,
the users most recent answer, the ASR confidence, and so otheHday-and-Month
example let’s represent the state of the system as the vafubhe two slotsday and
month There are a total of 411 states (366 states with a day andnjomtnting leap
year), 12 states with a month but no day (d=0, m= 1,2,...1P}ta8tes with a day but
no month (m=0, d=1,2,...31), and a special initial sgatend final states;.

Actions of a MDP dialogue system might include generatingigalar speech acts,
or performing a database query to find out information. Fei@ay-and-Month exam-
ple, Levin et al. (2000) propose the following actions:

ag4: a question asking for the day

am: a question asking for the month

agm: a question asking for both the day and the month

as: afinal action submitting the form and terminating the diple

Since the goal of the system is to get the correct answer hétbhortest interaction,
one possible reward function for the system would integitatee terms:

(24.26) R = —(Winj + WeNe + Wi Ng )

The termn; is the number of interactions with the useg,is the number of errors,
n¢ is the number of slots which are filled (0, 1, or 2), andwseare weights.

Finally, a dialogue policyt specifies which actions to apply in which state. Con-
sider two possible policies: (1) asking for day and monttasately, and (2) asking for
them together. These might generate the two dialogues simolig. 24.22.

In policy 1, the action specified for the no-date/no-monéhests to ask for a day,
while the action specified for any of the 31 states where we haday but not a month
is to ask for a month. In policy 2, the action specified for tloedate/no-month state
is to ask an open-ended questidvh(ich datg to get both a day and a month. The two
policies have different advantages; an open prompt cantteatorter dialogues but
is likely to cause more errors, while a directive prompt @agr but less error-prone.
Thus the optimal policy depends on the values of the weighend also on the error
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Discounte&i
rewar

Bellman equation

Policy 1 (directive)

. . "
d=0 Which day?‘ d=D Which month .‘m Goodbye. -
m "\ m=0 / "\ m=M / g

Cq = -3w; + 2pywg

(%
I
.
N

3
1l

Policy 2 (open)

. What date? . Goodbye.

Cp = -2w; + 2powe

Two policies for getting a month and a day. After Levin et 2D@0).

rates of the ASR component. Let's caly the probability of the recognizer making
an error interpreting a month or a day value after a diregtieenpt. The (presumably
higher) probability of error interpreting a month or dayuwalafter an open prompt
we'll call po. The reward for the first dialogue in Fig. 24.22 is tht@ x Wi + 2 x pg x
We. The reward for the second dialogue in Fig. 24.22 Bx w; + 2 X po X We. The
directive prompt policy, policy 1, is thus better than pglitwhen the improved error
rate justifies the longer interaction, i.e., whgy— po > %‘e

In the example we've seen so far, there were only two posaittiens, and hence
only a tiny number of possible policies. In general, the nemtif possible actions,
states, and policies is quite large, and so the problem oiffintthe optimal policyrt*
is much harder.

Markov decision theory together with classical reinforesmlearning gives us a
way to think about this problem. First, generalizing frong.R24.22, we can think of
any particular dialogue as a trajectory in state space:

(24.27) S1 —alrl  —a2,r2S3 —a3r3 -

The best policyt" is the one with the greatest expected reward over all trajiest
What is the expected reward for a given state sequence? Tétecoromon way to as-
sign utilities or rewards to sequences is to diseounted rewards Here we compute
the expected cumulative rewa@lof a sequence as a discounted sum of the utilities of
the individual states:

(24.28) Q([s0,0,51,81,%,2-]) = R(S0,80) + YR(s1,a1) + Y?R(Sp, @) + - - -,

The discount factoy is a number between 0 and 1. This makes the agent care
more about current rewards than future rewards; the motedwt reward, the more
discounted its value.

Given this model, it is possible to show that the expectedutative reward)(s, a)
for taking a particular action from a particular state isfiblélowing recursive equation
called theBellman equation

(24.29) Q(s,a) =R(s.a) +y P(s|s,a)maxQ(s,a)
g ¥
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Value iteration

What the Bellman equation says is that the expected cumali@ivard for a given
state/action pair is the immediate reward for the curremtiesplus the expected dis-
counted utility of all possible next statgs weighted by the probability of moving to
that states’, and assuming once there we take the optimal aetion

Eq. 24.29 makes use of two parameters. We need a mod&kos, a), i.e. how
likely a given state/action paifs,a) is to lead to a new statg. And we also need
a good estimate dR(s,a). If we had lots of labeled training data, we could simply
compute both of these from labeled counts. For example, lafibled dialogues, we
could simply count how many times we were in a given sgtend out of that how
many times we took actioa to get to states, to estimateP(s|s,a). Similarly, if we
had a hand-labeled reward for each dialogue, we could buiiddel ofR(s,a).

Given these parameters, it turns out that there is an ieratgorithm for solving
the Bellman equation and determining proper Q valuesydhge iteration algorithm
(Sutton and Barto, 1998; Bellman, 1957). We won't preseisthiere, but see Chapter
17 of Russell and Norvig (2002) for the details of the alduritas well as further
information on Markov Decision Processes.

How do we get enough labeled training data to set these p&eesfeThis is espe-
cially worrisome in any real problem, where the number ofestais extremely large.
Two methods have been applied in the past. The first is towaréfand-tune the states
and policies so that there are a very small number of statgpalicies that need to
be set automatically. In this case we can build a dialogutesysvhich explore the
state space by generating random conversations. Prdtebdian then be set from this
corpus of conversations. The second is to build a simulased urhe user interacts
with the system millions of times, and the system learns tie $ransition and reward
probabilities from this corpus.

The first approach, using real users to set parameters in h Sata space, was
taken by Singh et al. (2002). They used reinforcement legrtt make a small set of
optimal policy decisions. Their NJFun system learned tooskeactions which varied
the initiative (system, user, or mixed) and the confirmasivategy (explicit or none).
The state of the system was specified by values of 7 featucksgding which slot in
the frame is being worked on (1-4), the ASR confidence valdg) (Gow many times
a current slot question had been asked, whether a restriotinon-restrictive gram-
mar was used, and so on. The result of using only 7 featurdsangtmall number of
attributes resulted in a small state space (62 states). &atdh had only 2 possible
actions (system versus user initiative when asking questiexplicit versus no con-
firmation when receiving answers). They ran the system veitth users, creating 311
conversations. Each conversation had a very simple birgavgnd function; 1 if the
user completed the task (finding specified museums, thewiteztasting in the New
Jersey area), 0 if the user did not. The system successfobl@éa good dialogue pol-
icy (roughly, start with user initiative, then back of totest mixed or system initiative
when reasking for an attribute; confirm only at lower confickemalues; both initiative
and confirmation policies, however, are different for difiet attributes). They showed
that their policy actually was more successful based omuambjective measures than
many hand-designed policies reported in the literature.

The simulated user strategy was taken by Levin et al. (206@heir MDP model
with reinforcement learning in the ATIS task. Their simeldtuser was a generative
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stochastic model that given the system'’s current state etiaha, produces a frame-slot
representation of a user response. The parameters of thiagdthuser were estimated
from a corpus of ATIS dialogues. The simulated user was tlsed to interact with the
system for tens of thousands of conversations, leading tgptimal dialogue policy.

While the MDP architecture offers a powerful new way of maugdialogue be-
havior, it relies on the problematic assumption that théesysactually knows what
state it is in. This is of course not true in a number of ways; ghstem never knows
the true internal state of the user, and even the state inighegde may be obscured
by speech recognition errors. Recent attempts to relaxadgamption have relied on
Partially Observable Markov Decision Processes, or POMB&®setimes pronounced
‘pom-deepeez’). In a POMDP, we model the user output as aerebdd signal gen-
erated from yet another hidden variable. There are alsolgmabwith MDPs and
POMDPs related to computational complexity and simulatiohich aren’t reflective
of true user behavior; See the end notes for references.

24.7 Advanced: Plan-based Dialogue Agents

BDI

One of the earliest models of conversational agent behaat also one of the most
sophisticated, is based on the use of Al planning technidt@®example, the Rochester
TRIPS agent (Allen et al., 2001) simulates helping with eyeacy management, plan-
ning where and how to supply ambulances or personnel in alaietlemergency sit-
uation. The same planning algorithms that reason how torgat@bulance from point
A to point B can be applied to conversation as well. Since comigation and conver-
sation are just special cases of rational action in the wttise actions can be planned
like any other. So an agent seeking to find out some informatim come up with the
plan of asking the interlocutor for the information. An aglhearing an utterance can
interpret a speech act by running the planner ‘in reversanginference rules to infer
what plan the interlocutor might have had to cause them tovbeag they said.

Using plans to generate and interpret sentences in this@eayre that the planner
have good models of itseliefs desires andintentions (BDI), as well as those of the
interlocutor. Plan-based models of dialogue are thus atferred to a88DI models.
BDI models of dialogue were first introduced by Allen, Cohearrault, and their col-
leagues and students in a number of influential papers skydvaw speech acts could
be generated (Cohen and Perrault, 1979), and interpregxda(fit and Allen, 1980;
Allen and Perrault, 1980). At the same time, Wilensky (198&pduced plan-based
models of understanding as part of the task of interpretioges. In another related
line of research, Grosz and her colleagues and studenteshoow using similar no-
tions of intention and plans allowed ideas of discoursecsting and coherence to be
applied to dialogue.

24.7.1 Plan-Inferential Interpretation and Production

Let'’s first sketch out the ideas of plan-based compreherammhproduction. How
might a plan-based agent act as the human travel agent tostizule sentence,Gn
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Action schema

the dialogue repeated below?

Ci: I need to travel in May.
Ai1: And, what day in May did you want to travel?

Co: OK uh I need to be there for a meeting that's from the 12th éolibth.

The Gricean principle of Relevance can be used to infer bieatlient’'s meeting is
relevant to the flight booking. The system may know that ome@ndition for having
a meeting (at least before web conferencing) is being atlimepvhere the meeting is
in. One way of being at a place is flying there, and booking affiigja precondition for
flying there. The system can follow this chain of inferend®ducing that user wants
to fly on a date before the 12th.

Next, consider how our plan-based agent could act as the ihtraeel agent to
produce sentence;An the dialogue above. The planning agent would reason that i
order to help a client book a flight it must know enough infotimaabout the flight to
book it. It reasons that knowing the month (May) is insuffitiemformation to specify
a departure or return date. The simplest way to find out thdetedate information is
to ask the client.

In the rest of this section, we'll flesh out the sketchy owttirof planning for un-
derstanding and generation using Perrault and Allen’s &definitions of belief and
desire in the predicate calculus. Reasoning about beligfis with a number of axiom
schemas inspired by Hintikka (1969). We'll represeBttlieves the propositioR”
as the two-place predicaB{S P), with axiom schemas such 8A,P) AB(A, Q) =
B(A,PAQ). Knowledge is defined as “true beliefd knows that Rvill be represented
askKNOW(S,P), defined as KNOWS,P) = PAB(S P).

The theory of desire relies on the predicate WANT. If an agamantsP to be true,
we sayWANT(S,P), or W(S,P) for short. P can be a state or the execution of some
action. Thus if ACT is the name of an actioi{S,ACT(H)) means thaSwantsH to
do ACT. The logic of WANT relies on its own set of axiom scherusd like the logic
of belief.

The BDI models also require an axiomatization of actions @ladning; the sim-
plest of these is based on a setagtion schema based on the simple Al planning
model STRIPS (Fikes and Nilsson, 1971). Each action schema et of parameters
with constraintsabout the type of each variable, and three parts:

e Preconditions:Conditions that must already be true to perform the action.
o Effects:Conditions that become true as a result of performing thieract
e Body: A set of partially ordered goal states that must be achiavgeiforming

the action.

In the travel domain, for example, the action of agatooking flightF 1 for clientC
might have the following simplified definition:
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BOOK-FLIGHT(A,C,F) :

Constraints:  Agent(A) Flight(F) A Client(C)

Precondition: Know(A,depart-date(F)) A Know(A,depart-time(F))
A Know(A,origin(F)) A Know(A, flight-type(F))
A Know(A,destination(F)) A Has-Seats(F) A
W(C,(BOOK(A,C,F)A ...

Effect: Flight-Booked(A,C,F)

Body: Make-Reservation(A,F,C)

This same kind of STRIPS action specification can be usedpfeech acts. IN-
FORM is the speech act of informing the hearer of some préipasbased on Grice’s
(1957) idea that a speaker informs the hearer of somethinglytey causing the hearer
to believe that the speaker wants them to know something:

INFORM(S,H,P):
Constraints:  Speaker(8)Hearer(H)A Proposition(P)
Precondition: Know(S,P) W(S, INFORM(S, H, P))
Effect: Know(H,P)
Body: B(H,W(S,Know(H,P)))

REQUEST is the directive speech act for requesting the héaneerform some
action:

REQUEST(S,H,ACT):
Constraints:  Speaker(8)Hearer(H)A ACT(A) A H is agent of ACT
Precondition: W(S,ACT(H))
Effect: W(H,ACT(H))
Body: B(H,W(S,ACT(H)))

Let's now see how a plan-based dialogue system might irgetipe sentence:
C,: I need to be there for a meeting that's from the 12th to thé.15t

We'll assume the system has the BOOK-FLIGHT plan mentiortsale. In ad-
dition, we’ll need knowledge about meetings and gettinchen, in the form of the
MEETING, FLY-TO, and TAKE-FLIGHT plans, sketched broadlglbw:

MEETING(P,L,T1,T2):
Constraints:  Person(R) Location (L)A Time (T1)A Time (T2)A Time (TA)
Precondition: At (P, L, TA)
Before (TA, T1)
Body:

FLY-TO(P, L, T):
Constraints: Person(R)Location (L)A Time (T)
Effect: At(P, L, T)
Body: TAKE-FLIGHT(P, L, T)
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TAKE-FLIGHT(P, L, T):
Constraints:  Person(R) Location (L)A Time (T) A Flight (F) A Agent (A)
Precondition: BOOK-FLIGHT (A, P, F)
Destination-Time(F) =T
Destination-Location(F) = L
Body:

Now let's assume that an NLU module returns a semantics éocltbnt’s utterance
which (among other things) includes the following semaatintent:

MEETING (P, ?L, T1, T2)
Constraints: P = Client T1 = May 12A T2 = May 15

Our plan-based system now has two plans established, onélfMEEplan from
this utterance, and one BOOK-FLIGHT plan from the previotisrance. The system
implicitly uses the Gricean Relevance intuition to try tooect them. Since BOOK-
FLIGHT is a precondition for TAKE-FLIGHT, the system may tothesize (infer) that
the user is planning a TAKE-FLIGHT. Since TAKE-FLIGHT is iha body of FLY-
TO, the system further infers a FLY-TO plan. Finally, sinbe effect of FLY-TO is
a precondition of the MEETING, the system can unify each efgieople, locations,
and times of all of these plans. The result will be that theesysknows that the client
wants to arrive at the destination before May 12th.

Let's turn to the details of our second example:

Ci: I need to travel in May.
Ai: And, what day in May did you want to travel?

How does a plan-based agent know to ask questigh Ahis knowledge comes
from the BOOK-FLIGHT plan, whose preconditions were that dyent know a vari-
ety of flight parameters including the departure date and,tionigin and destination
cities, and so forth. Utterance €ontains the origin city and partial information about
the departure date; the agent has to request the rest. Apkad agent would use an
action schema like REQUEST-INFO to represent a plan fomaskiformation ques-
tions (simplified from Cohen and Perrault (1979)):

REQUEST-INFO(A,C,I):
Constraints:  Agent(A) Client(C)
Precondition: Know(C,I)
Effect: Know(A,I)
Body: B(C,W(A,Know(A,1)))

Because the effects of REQUEST-INFO match each precondifiBOOK-FLIGHT,
the agent can use REQUEST-INFO to achieve the missing irgftom

24.7.2 The Intentional Structure of Dialogue

In Sec. 21.2 we introduced the idea that the segments of awdise are related by
coherence relationsike Explanation or Elaboration which describe thénforma-

tional relation between discourse segments. The BDI approachei@nte interpreta-
tion gives rise to another view of coherence which is paldidy relevant for dialogue,
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theintentional approach (Grosz and Sidner, 1986). According to this ampro&hat
Intentional - makes a dialogue coherent isiitéentional structure, the plan-based intentions of the
speaker underlying each utterance.

These intentions are instantiated in the model by assurhaigeich discourse has
an underlying purpose held by the person who initiates ltedahediscourse pur-

Dgﬁ%ggg pose(DP). Each discourse segment within the discourse has aspmnding purpose,
Segme%'fggyggge a discourse segment purpos¢DSP), which has a role in achieving the overall DP.
Possible DPs/DSPs include intending that some agent indgmelform some physical
task, or that some agent believe some fact.

As opposed to the larger sets of coherence relations usatbimational accounts
of coherence, Grosz and Sidner propose only two such refatidominance and
satisfaction-precedenceDSR dominates DSPif satisfying DSR is intended to pro-
vide part of the satisfaction of DgPDSR satisfaction-precedes DR DSP; must
be satisfied before DSP

Ci: I needto travel in May.

Ai:  And, what day in May did you want to travel?

C,:  OKuh I need to be there for a meeting that's from the 12th éoltbth.

A2 And you're flying into what city?

Cs:  Seattle.

A3 And what time would you like to leave Pittsburgh?

C4:  Uh hmm | don't think there’s many options for non-stop.

A4 Right. There’s three non-stops today.

Cs:  What are they?

As:  The first one departs PGH at 10:00am arrives Seattle at 1Bdd5time. The
second flight departs PGH at 5:55pm, arrives Seattle at 8pmd tAe last
flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

Cs:  OK I'll take the 5ish flight on the night before on the 11th.

Ag:  Onthe 11th? OK. Departing at 5:55pm arrives Seattle at &b, Air flight
115.

C;: OK.

A fragment from a telephone conversation between a cliepta(@ a travel
agent (A) (repeated from Fig. 24.4).

Consider the dialogue between a client (C) and a travel agdnthat we saw
earlier, repeated here in Fig. 24.23. Collaboratively,dhker and agent successfully
identify a flight that suits the caller’s needs. Achievingstfoint goal requires that
a top-level discourse intention be satisfied, listed as lbviaein addition to several
intermediate intentions that contributed to the satigiaodf 11, listed as 12-15:

11: (Intend C (Intend A (A find a flight for C)))

12: (Intend A (Intend C (Tell C A departure date)))

I13: (Intend A (Intend C (Tell C A destination city)))

14: (Intend A (Intend C (Tell C A departure time)))

I5: (Intend C (Intend A (A find a nonstop flight for C)))
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Intentions 12—15 are all subordinate to intention |1, ag/tivere all adopted to meet pre-
conditions for achieving intention 11. This is reflected lire tdominance relationships
below:

11 dominates I\ 11 dominates I3\ 11 dominates 14 |1 dominates 15

Furthermore, intentions 12 and I3 needed to be satisfiedrééfivention 15, since the
agent needed to know the departure date and destinatiodentorstart listing nonstop
flights. This is reflected in the satisfaction-precedentionships below:

12 satisfaction-precedes I513 satisfaction-precedes 15

The dominance relations give rise to the discourse stractapicted in Fig. 24.24.
Each discourse segment is numbered in correspondencéwithtention number that
serves as its DP/DSP.

DS1

C, DS, DS3 DS; DS

Al—Cz A2—C3 A3 C4—C7
SEOICRZ®X.  Discourse Structure of the Flight Reservation Dialogue

Intentions and their relationships give rise to a coheréstalirse based on their
role in the overalplan that the caller is inferred to have. We assume that the caller
and agent have the plan BOOK-FLIGHT described on page 86& pian requires
that the agent know the departure time and date and so on. Agsaiessed above, the
agent can use the REQUEST-INFO action scheme from page 8&5ktthe user for
this information.

Subdialogue Subsidiary discourse segments are also callgmtialogues DS2 and DS3 in par-
ticular areinformation-sharing (Chu-Carroll and Carberry, 199Bh)owledge precon-
dition subdialogues (Lochbaum et al., 1990; Lochbaum, 1998)eshmey are initiated
by the agent to help satisfy preconditions of a higher-lgeil.

Algorithms for inferring intentional structure in dialogwork similarly to algo-
rithms for inferring dialogue acts, either employing thelBibdel (e.g., Litman, 1985;
Grosz and Sidner, 1986; Litman and Allen, 1987; Carberr90] ®assonneau and Lit-
man, 1993; Chu-Carroll and Carberry, 1998), or machinenlagrarchitectures based
on cue phrases (Reichman, 1985; Grosz and Sidner, 198&hHesy and Litman,
1993), prosody (Hirschberg and Pierrehumbert, 1986; GaosizHirschberg, 1992;
Pierrehumbert and Hirschberg, 1990; Hirschberg and Nakdt@96), and other cues.

24.8 Summary

Conversational agentsare a crucial speech and language processing applicatbn th
are already widely used commercially. Research on thesgsagalies crucially on an
understanding of human dialogue or conversational pregtic
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¢ Dialogue systems generally have 5 components: speechmiéioongnatural lan-
guage understanding, dialogue management, natural lgaggeneration, and
speech synthesis. They may also have a task manager spedliie task do-
main.

o Dialogue architectures for conversational agents inclinite-state systemgame-
basedproduction systems, and advanced systems such as inforsttite, Markov
Decision Processes, aBdD| (belief-desire-intention) models.

e Turn-taking, grounding, conversational structure, ircglure, and initiative are
crucial human dialogue phenomena that must also be dehlimdbnversational
agents.

e Speaking in dialogue is a kind of action; these acts areneddo as speech acts
or dialogue acts Models exist for generating and interpreting these acts.

Bibliographical and Historical Notes

Early work on speech and language processing had verydttighasis on the study
of dialogue. The dialogue manager for the simulation of tampoid agent PARRY
(Colby et al., 1971), was a little more complex. Like ELIZAwas based on a pro-
duction system, but where ELIZA's rules were based only awtords in the user’s
previous sentence, PARRY'’s rules also rely on global végmimdicating its emotional
state. Furthermore, PARRY'’s output sometimes makes useriptdike sequences of
statements when the conversation turns to its delusions.example, if PARRY's
angervariable is high, he will choose from a set of “hostile” outguf the input men-
tions his delusion topic, he will increase the value offear variable and then begin
to express the sequence of statements related to his delusio

The appearance of more sophisticated dialogue manageitedwlae better un-
derstanding of human-human dialogue. Studies of the ptiegenf human-human
dialogue began to accumulate in the 1970’s and 1980's. ThweZsation Analy-
sis community (Sacks et al., 1974; Jefferson, 1984; Sced®82) began to study
the interactional properties of conversation. Grosz's{4§) dissertation significantly
influenced the computational study of dialogue with itsadtrction of the study of
dialogue structure, with its finding that “task-orientedldgues have a structure that
closely parallels the structure of the task being perforifpd 27), which led to her
work on intentional and attentional structure with Sidriierchbaum et al. (2000) is a
good recent summary of the role of intentional structureiatogjue. The BDI model
integrating earlier Al planning work (Fikes and Nilsson719 with speech act theory
(Austin, 1962; Gordon and Lakoff, 1971; Searle, 1975a) was fiorked out by Co-
hen and Perrault (1979), showing how speech acts could lezafed, and Perrault and
Allen (1980) and Allen and Perrault (1980), applying theraagh to speech-act inter-
pretation. Simultaneous work on a plan-based model of wtaleding was developed
by Wilensky (1983) in the Schankian tradition.

Probabilistic models of dialogue act interpretation werfpimed by linguistic
work which focused on the discourse meaning of prosody (8dd &erman, 1975;
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Pierrehumbert, 1980), by Conversation Analysis work onragicammar (e.g. Good-
win, 1996), by work such as Hinkelman and Allen (1989), whoveed how lexical and
phrasal cues could be integrated into the BDI model, andwaeked out at a number
of speech and dialogue labs in the 1990’s (Waibel, 1988; Bati/Zue, 1992; Kompe
et al., 1993; Nagata and Morimoto, 1994; Woszczyna and Wall®®4; Reithinger
et al., 1996; Kita et al., 1996; Warnke et al., 1997; Chu-al§rt998; Stolcke et al.,
1998; Taylor et al., 1998; Stolcke et al., 2000).

Modern dialogue systems drew on research at many diffeadastih the 1980's
and 1990's. Models of dialogue as collaborative behaviaevigtroduced in the late
1980’s and 1990's, including the ideas of common groundriCiad Marshall, 1981),
reference as a collaborative process (Clark and Wilke$®$ith986), and models of
joint intentions (Levesque et al., 1990), asthared plans(Grosz and Sidner, 1980).
Related to this area is the study iaftiative in dialogue, studying how the dialogue
control shifts between participants (Walker and Whittal#®90; Smith and Gordon,
1997; Chu-Carroll and Brown, 1997).

A wide body of dialogue research came out of AT&T and Bell Ligtories around
the turn of the century, including much of the early work on MDialogue systems
as well as fundamental work on cue-phrases, prosody, aectiaj and confirmation.
Work on dialogue acts and dialogue moves drew from a numbsowfces, including
HCRC'’s Map Task (Carletta et al., 1997b), and the work of JaAiken and his col-
leagues and students, for example Hinkelman and Allen (1$8®wing how lexical
and phrasal cues could be integrated into the BDI model oédadpacts, and Traum
(2000), Traum and Hinkelman (1992), and from Sadek (1991).

Much recent academic work in dialogue focuses on multimapplications (John-
ston et al., 2007; Niekrasz and Purver, 2006, inter aliajherinformation-state model
(Traum and Larsson, 2003, 2000) or on reinforcement legraiinhitectures including
POMDPs (Roy et al., 2000; Young, 2002; Lemon et al., 2006{i&tis and Young,
2005, 2000). Work in progress on MDPs and POMDPs focusesmipgtational com-
plexity (they currently can only be run on quite small donsainth limited numbers of
slots), and on improving simulations to make them more rifleof true user behav-
ior. Alternative algorithms include SMDPs (Cuayahuitbgt 2007). See Russell and
Norvig (2002) and Sutton and Barto (1998) for a general ohition to reinforcement
learning.

Recent years have seen the widespread commercial use afakaesystems, often
based on VoiceXML. Some more sophisticated systems haveats deployment. For
exampleClarissa, the first spoken dialogue system used in space, is a speatied
procedure navigator that was used by astronauts on thentienal Space Station
(Rayner and Hockey, 2004; Aist et al., 2002). Much researchges on more mundane
in-vehicle applications in cars Weng et al. (20@&ger alia). Among the important
technical challenges in embedding these dialogue systeresliapplications are good
techniques for endpointing (deciding if the speaker is datkng) (Ferrer et al., 2003)
and for noise robustness.

Good surveys on dialogue systems include Harris (2005)e@at al. (2004),
McTear (2002, 2004), Sadek and De Mori (1998), Delgado arakiAf2005), and
the dialogue chapter in Allen (1995).
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Exercises

24.1
24.2

24.3

24.4

24.5

24.6

24.7

24.8

24.9

List the dialogue act misinterpretations in h#o’s On Firstroutine at the be-
ginning of the chapter.

Write a finite-state automaton for a dialogue manager focking your bank
balance and withdrawing money at an automated teller machin

Dispreferred responses (for example turning down a rejjaesusually signaled
by surface cues, such as significant silence. Try to notiesn#xt time you or
someone else utters a dispreferred response, and writetlewatterance. What
are some other cues in the response that a system might uetetd d dispre-
ferred response? Consider non-verbal cues like eye-galzeaty gestures.

When asked a question to which they aren't sure they know tisever, peo-
ple display their lack of confidence via cues that resembterotlispreferred
responses. Try to notice some unsure answers to questionat ake some of
the cues? If you have trouble doing this, read Smith and GE®R3) and listen
specifically for the cues they mention.

Build a VoiceXML dialogue system for giving the current timeund the world.
The system should ask the user for a city and a time format ¢24, letc) and
should return the current time, properly dealing with tinoees.

Implement a small air-travel help system based on text ingaur system should
get constraints from the user about a particular flight thay twant to take,
expressed in natural language, and display possible flyhts screen. Make
simplifying assumptions. You may build in a simple flightala&ése or you may
use a flight information system on the web as your backend.

Augment your previous system to work with speech input vic®8ML. (or
alternatively, describe the user interface changes yoddimave to make for it
to work via speech over the phone). What were the major diffees?

Design a simple dialogue system for checking your email ¢iertelephone.
Implement in VoiceXML.

Test your email-reading system on some potential users.osghsome of the
metrics described in Sec. 24.4.2 and evaluate your system.
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