
DRAFT

P R E L I M I N A R Y P R O O F S .
Unpublished Work c©2008 by Pearson Education, Inc. To be published by Pearson Pr entice Hall,
Pearson Education, Inc., Upper Saddle River, New Jersey. Al l rights reserved. Permission to use
this unpublished Work is granted to individuals registerin g through Melinda_Haggerty@prenhall.com
for the instructional purposes not exceeding one academic t erm or semester.

Chapter 24
Dialogue and Conversational Agents

C: I want you to tell me the names of the fellows on the St. Louisteam.
A: I’m telling you. Who’s on first, What’s on second, I Don’t Know is on third.
C: You know the fellows’ names?
A: Yes.
C: Well, then, who’s playing first?
A: Yes.
C: I mean the fellow’s name on first.
A: Who.
C: The guy on first base.
A: Who is on first.
C: Well what are you askin’mefor?
A: I’m not asking you – I’m telling you. Who is on first.

Who’s on First– Bud Abbott and Lou Costello’s version of an
old burlesque standard.

The literature of the fantastic abounds in inanimate objects magically endowed with
sentience and the gift of speech. From Ovid’s statue of Pygmalion to Mary Shelley’s
Frankenstein, Cao Xue Qin’s Divine Luminescent Stone-in-Waiting to Snow White’s
mirror, there is something deeply touching about creating something and then having
a chat with it. Legend has it that after finishing his sculpture of Moses, Michelangelo
thought it so lifelike that he tapped it on the knee and commanded it to speak. Perhaps
this shouldn’t be surprising. Language has always been the mark of humanity and sen-
tience, andconversationor dialogue is the most fundamental and specially privilegedconversation

Dialogue arena of language. It is the first kind of language we learn as children, and for most of
us, it is the kind of language we most commonly indulge in, whether we are ordering
curry for lunch or buying spinach, participating in business meetings or talking with
our families, booking airline flights or complaining about the weather.

This chapter introduces the fundamental structures and algorithms in conversa-
tional agents. Conversational agents most often communicate via speech rather than
text, and so they are also known asspoken dialogue systems, or spoken language
systems. These programs communicate with users in spoken natural language in order
to make travel arrangements, answer questions about weather or sports, route telephone
calls, act as a general telephone assistant, or perform evenmore sophisticated tasks.

Many of these tasks involve telephony, and also involve mobile situations where a
large screen and keyboard may not be available (Cohen and Oviatt, 1994). Applica-
tions relating to travel are thus very common. Indeed, travel planning and management
has been a key concern of dialogue systems since the early influential GUS system for
planning airline travel (Bobrow et al., 1977). More recently, a number of spoken lan-
guage systems for booking airline flights were built under the Air Traffic Information
System (ATIS) (Hemphill et al., 1990) and Communicator (Walker, 2001) programs.

DRAFT

826 Chapter 24. Dialogue and Conversational Agents

We will use this travel domain as an example throughout the chapter (as we used it to
discuss grammar rules for parsing ATIS sentences in Ch. 12).Fig. 24 shows a sample
dialogue from a Communicator system, taken from Xu and Rudnicky (2000).

S1: Hello. You’ve reached the [Communicator]. Tell me your full name
U2: hi i’d like to fly to seattle tuesday morning
S3: Traveling to Seattle on Tuesday, August eleventh in the morning. Your full name?
U4: [John Doe]
S5: Hello, [John], I’m glad to hear from you again. You can nowask me for help.
S6: OK. Let’s see I have a United flight departing Pittsburgh at ten forty five a.m. arriving

into Seattle at one fifty seven p.m. Is that OK?
U7: Yes
S8: Will you return to Pittsburgh from Seattle?
U9: no i will go to Los Angeles
S10: Traveling to Los Angeles. on what date
U11: Sorry can we go back to talk about the previous leg again
S12: For the first leg, you are on a United flight 1446 departingPittsburgh at ten forty five

A.M. tomorrow, arriving in Seattle at one fifty seven P.M. Do you want to take that?
U13: actually i want to leave on wednesday
S14: a flight on wednesday.
S15: I have a flight departing Pittsburgh at ten forty five a.m., arrives Seattle at one fifty

seven p.m. Is that OK?
U16: Yes
Figure 24.1 The travel domain: a fragment from a successful conversation between a user (U)
and the Communicator system (S) of Xu and Rudnicky (2000).

Another promising domain is automatic call routing. A call routing system directs
incoming calls in a telephone call center, transferring thecall to the appropriate human.
Call routing dialogue systems generally begin by asking theuser open-ended questions
like How may I help you?(Gorin et al., 1997), orHow may I direct your call?(Chu-
Carroll and Carpenter, 1999). Fig. 24 shows sample conversations from the AT&T
How May I Help You (HMIHY) system (Gorin et al., 1997).

S: How may I help you?
U: can you tell me how much it is to tokyo?
S: You want to know the cost of a call?
U: yes that’s right
S: Please hold on for rate information.
S: How may I help you?
U: what’s the area code for chicago?
S: You want an area code.
U: (silence)
S: The area code for Chicago is 312.

Figure 24.2 The call routing domain: two conversations between a user (U) and the AT&T
How May I Help You (HMIHY) system (S) (Gorin et al., 1997).

A somewhat different domain, which is very far from the telephony area, is auto-
matic tutoring systems. Fig. 24 shows part of a dialogue fromthe ITSPOKE dialogue

DRAFT

Section 24.1. Properties of Human Conversations 827

system (Litman and Silliman, 2004), which uses the Why2-Atlas text-based tutoring
system as its tutoring backend (VanLehn et al., 2002).

S: I didn’t understand. What force acts on all objects withinclose proximity to earth?
U: uh the force of gravity
S: Fine. Besides the Earth’s gravitational force, are thereany other forces acting on the

person, keys, and elevator after the release?
U: no
S: Yep. Thus, keep in mind that after the release, the only force on the person, keys, and

elevator is the force of gravity. If gravity is the only forceacting on an object, will it
be moving or staying still?

U: it will be moving
S: Fine. Not only are the person, keys, and elevator moving, they have only gravitational

forces on them. When an object is falling and has only gravitational force on it, it is
said to be in what?

U: freefall

Figure 24.3 The tutoring domain: part of an conversation between a student user (U) and the
ITSPOKE system (S) of Litman and Silliman (2004).

Sec. 24.1 starts out with a summary of facts about human conversation, includ-
ing the idea of turns and utterances, speech acts, grounding, dialogue structure, and
conversational implicature. The next few sections introduce the components of spo-
ken language systems and some evaluation metrics. We then turn in Sec. 24.5 and
Sec. 24.6 to the more sophisticated information-state and Markov decision processes
models of conversational agents, and we conclude with some advanced topics like the
BDI (belief-desire-intention) paradigm.

24.1 Properties of Human Conversations

Conversation between humans is an intricate and complex joint activity. Because of the
limitations of our current technologies, conversations between humans and machines
are vastly simpler and more constrained than these human conversations. Nonethe-
less, before we attempt to design a conversational agent to converse with humans, it is
crucial to understand something about how humans converse with each other.

In this section we discuss some properties of human-human conversation that dis-
tinguish it from the kinds of (text-based) discourses we have seen so far. The main
difference is that conversation is a kind ofjoint activity between two (or more) in-
terlocutors. This basic fact has a number of ramifications; conversations are built up
out of consecutiveturns, each turn consists ofjoint action of the speaker and hearer,
and the hearer make special inferences calledconversational implicaturesabout the
speaker’s intended meaning.

24.1.1 Turns and Turn-Taking

Dialogue is characterized byturn-taking ; Speaker A says something, then speaker B,Turn-taking

DRAFT

828 Chapter 24. Dialogue and Conversational Agents

then speaker A, and so on. If having a turn (or “taking the floor”) is a resource to be
allocated, what is the process by which turns are allocated?How do speakers know
when it is the proper time to contribute their turn?

It turns out that conversation and language itself are structured in such a way as
to deal efficiently with this resource allocation problem. One source of evidence for
this is the timing of the utterances in normal human conversations. While speakers
can overlap each other while talking, it turns out that on average the total amount of
overlap is remarkably small; perhaps less than 5% (Levinson, 1983). Furthermore, the
amount of time between turns is generally less than a few hundred milliseconds, which
is quite short given that it takes a speaker hundreds of milliseconds for a speaker to plan
the motor routines for an utterance. Thus speakers must begin planning exactly what
moment to start their next utterance before the previous speaker has finished talking.
For this to be possible, natural conversation must be set up in such a way that (most
of the time) people can quickly figure outwho should talk next, and exactlywhen
they should talk. This kind of turn-taking behavior is generally studied in the field of
Conversation Analysis(CA). In a key conversation-analytic paper, Sacks et al. (1974)Conversation

Analysis

argued that turn-taking behavior, at least in American English, is governed by a set of
turn-taking rules. These rules apply at atransition-relevance place, or TRP; places
where the structure of the language allows speaker shift to occur. Here is a version of
the turn-taking rules simplified from Sacks et al. (1974):

(24.1) Turn-taking Rule. At each TRP of each turn:

a. If during this turn the current speaker has selected A as the next speaker
then A must speak next.

b. If the current speaker does not select the next speaker, any other speaker
may take the next turn.

c. If no one else takes the next turn, current speaker may takethe next turn.

There are a number of important implications of rule (24.1) for dialogue model-
ing. First, subrule (24.1a) implies that there are some utterances by which the speaker
specifically selects who the next speaker will be. The most obvious of these are ques-
tions, in which the speaker selects another speaker to answer the question. Two-part
structures likeQUESTION-ANSWER are calledadjacency pairs (Schegloff, 1968) orAdjacency pair

dialogic pair (Harris, 2005). Other adjacency pairs includeGREETING followed byDialogic pair

GREETING, COMPLIMENT followed byDOWNPLAYER, REQUESTfollowed byGRANT.
We will see that these pairs and the dialogue expectations they set up will play an im-
portant role in dialogue modeling.

Subrule (24.1a) also has an implication for the interpretation of silence. While
silence can occur after any turn, silence in between the two parts of an adjacency pair
is significant silence. For example Levinson (1983) notes this example from AtkinsonSignificant silence

and Drew (1979); pause lengths are marked in parentheses (inseconds):

(24.2) A: Is there something bothering you or not?
(1.0)

A: Yes or no?
(1.5)

A: Eh?
B: No.

DRAFT

Section 24.1. Properties of Human Conversations 829

Since A has just asked B a question, the silence is interpreted as a refusal to respond,
or perhaps adispreferred response (a response, like saying “no” to a request, which isdispreferred

stigmatized). By contrast, silence in other places, for example a lapse after a speaker
finishes a turn, is not generally interpretable in this way. These facts are relevant for
user interface design in spoken dialogue systems; users aredisturbed by the pauses in
dialogue systems caused by slow speech recognizers (Yankelovich et al., 1995).

Another implication of (24.1) is that transitions between speakers don’t occur just
anywhere; thetransition-relevance placeswhere they tend to occur are generally at
utterance boundaries. Recall from Ch. 12 that spoken utterances differ from writtenUtterance

sentences in a number of ways. They tend to be shorter, are more likely to be single
clauses or even just single words, the subjects are usually pronouns rather than full
lexical noun phrases, and they include filled pauses and repairs. A hearer must take all
this (and other cues like prosody) into account to know whereto begin talking.

24.1.2 Language as Action: Speech Acts

The previous section showed that conversation consists of asequence of turns, each
of which consists of one or more utterance. A key insight intoconversation due to
Wittgenstein (1953) but worked out more fully by Austin (1962) is that an utterance in
a dialogue is a kind ofaction being performed by the speaker.

The idea that an utterance is a kind of action is particularlyclear inperformativeperformative

sentences like the following:

(24.3) I name this ship theTitanic.

(24.4) I second that motion.

(24.5) I bet you five dollars it will snow tomorrow.

When uttered by the proper authority, for example, (24.3) has the effect of changing
the state of the world (causing the ship to have the nameTitanic) just as any action can
change the state of the world. Verbs likenameor secondwhich perform this kind of
action are called performative verbs, and Austin called these kinds of actionsspeech
acts. What makes Austin’s work so far-reaching is that speech acts are not confinedSpeech act

to this small class of performative verbs. Austin’s claim isthat the utterance of any
sentence in a real speech situation constitutes three kindsof acts:

locutionary act: the utterance of a sentence with a particular meaning.
illocutionary act: the act of asking, answering, promising, etc., in uttering a

sentence.
perlocutionary act: the (often intentional) production of certain effects upon

the feelings, thoughts, or actions of the addressee in utter-
ing a sentence.

For example, Austin explains that the utterance of example (24.6) might have theil-
locutionary force of protesting and the perlocutionary effect of stopping theaddresseeIllocutionary force

from doing something, or annoying the addressee.

(24.6) You can’t do that.

DRAFT

830 Chapter 24. Dialogue and Conversational Agents

The termspeech actis generally used to describe illocutionary acts rather than
either of the other two types of acts. Searle (1975b), in modifying a taxonomy of
Austin’s, suggests that all speech acts can be classified into one of five major classes:

Assertives: committing the speaker to something’s being the case (suggesting,
putting forward, swearing, boasting, concluding).

Directives: attempts by the speaker to get the addressee to do something (asking,
ordering, requesting, inviting, advising, begging).

Commissives: committing the speaker to some future course of action (promising,
planning, vowing, betting, opposing).

Expressives: expressing the psychological state of the speaker about a state of af-
fairs thanking, apologizing, welcoming, deploring.

Declarations: bringing about a different state of the world via the utterance (includ-
ing many of the performative examples above;I resign, You’re fired.)

24.1.3 Language as Joint Action: Grounding

The previous section suggested that each turn or utterance could be viewed as an action
by a speaker. But dialogue is not a series of unrelated independent acts. Instead,
dialogue is a collective act performed by the speaker and thehearer. One implication
of joint action is that, unlike in monologue, the speaker andhearer must constantly
establish[Common ground]common ground (Stalnaker, 1978), the set of things that[

are mutually believed by both speakers. The need to achieve common ground means
that the hearer mustground the speaker’s utterances, making it clear that the hearerGrounding

has understood the speaker’s meaning and intention.
As Clark (1996) points out, people need closure or groundingfor non-linguistic

actions as well. For example, why does a well-designed elevator button light up when
it’s pressed? Because this indicates to the elevator traveler that she has successfully
called the elevator. Clark phrases this need for closure as follows, after Norman (1988):

Principle of closure. Agents performing an action require evidence, sufficient
for current purposes, that they have succeeded in performing it.

Grounding is also important when the hearer needs to indicate that the speaker has
not succeeded in performing an action. If the hearer has problems in understanding,
she must indicate these problems to the speaker, again so that mutual understanding
can eventually be achieved.

How is closure achieved? Clark and Schaefer (1989) introduce the idea that each
joint linguistic act orcontribution has two phases, calledpresentation andaccep-Contribution

tance. In the first phase, a speaker presents the hearer with an utterance, performing
a sort of speech act. In the acceptance phase, the hearer has to ground the utterance,
indicating to the speaker whether understanding was achieved.

What methods can the hearer (call her B) use to ground the speaker A’s utterance?
Clark and Schaefer (1989) discuss five main types of methods,ordered from weakest
to strongest:

DRAFT

Section 24.1. Properties of Human Conversations 831

Continued attention: B shows she is continuing to attend and therefore remains satisfied with
A’s presentation.

Next Contribution: B starts in on the next relevant contribution.
Acknowledgement: B nods or says a continuer likeuh-huh, yeah, or the like, or anassess-

ment like that’s great.
Demonstration: B demonstrates all or part of what she has understood A to mean, for

example byreformulating (paraphrasing) A’s utterance, or bycollabo-
rative completion of A’s utterance.

Display: B displays verbatim all or part of A’s presentation.

Let’s look for examples of grounding in a conversation between a human travel
agent and a human client in Fig. 24.4. We’ll return to this dialogue throughout the
chapter to inform our design of a machine travel dialogue agent.

C1: . . . I need to travel in May.
A1: And, what day in May did you want to travel?
C2: OK uh I need to be there for a meeting that’s from the 12th to the 15th.
A2: And you’re flying into what city?
C3: Seattle.
A3: And what time would you like to leave Pittsburgh?
C4: Uh hmm I don’t think there’s many options for non-stop.
A4: Right. There’s three non-stops today.
C5: What are they?
A5: The first one departs PGH at 10:00am arrives Seattle at 12:05their time. The

second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last
flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

C6: OK I’ll take the 5ish flight on the night before on the 11th.
A6: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm,U.S. Air flight

115.
C7: OK.
Figure 24.4 Part of a conversation between a travel agent (A) and client (C).

Utterance A1, in which the agent repeatsin May, repeated below in boldface, shows
the strongest form of grounding, in which the hearer displays their understanding by
repeating verbatim part of the speakers words:

C1: . . . I need to travelin May .
A1: And, what dayin May did you want to travel?

This particular fragment doesn’t have an example of anacknowledgement, but
there’s an example in another fragment:

C: He wants to fly from Boston
A: Mm hmm
C: to Baltimore Washington International

The wordmm-hmmhere is acontinuer, also often called abackchannelor anContinuer

backchannel

DRAFT

832 Chapter 24. Dialogue and Conversational Agents

acknowledgement token. A continuer is a (short) optional utterance which acknowl-
edges the content of the utterance of the other, and which doesn’t require an acknowl-
edgement by the other (Yngve, 1970; Jefferson, 1984; Schegloff, 1982; Ward and
Tsukahara, 2000).

In Clark and Schaefer’s third method, the speaker starts in on their relevant next
contribution. We see a number of examples of this in the dialogue in Fig. 24.4, for
example where the speaker asks a question and the hearer answers it. We mentioned
theseadjacency pairsabove; other examples includePROPOSALfollowed byACCEP-
TANCE or REJECTION, APOLOGY followed byACCEPTANCE/REJECTION, SUMMONS

followed byANSWER, and so on.
In a more subtle but very important kind of grounding act, thespeaker can combine

this method with the previous one. For example notice that whenever the client answers
a question, the agent begins the next question withAnd. TheAndindicates to the client
that the agent has successfully understood the answer to thelast question:

And, what day in May did you want to travel?
...
And you’re flying into what city?
...
And what time would you like to leave Pittsburgh?

As we will see in Sec. 24.5, the notions of grounding and contributions can be
combined with speech acts to give a more sophisticated modelof joint action in con-
versation; these more sophisticated models are calleddialogue acts.

Grounding is just as crucial in human-machine conversationas it is in human con-
versation. The examples below, from Cohen et al. (2004), suggest how unnatural it
sounds when a machine doesn’t ground properly. The use ofOkay makes (24.7) a
much more natural response than (24.8) to ground a user’s rejection:

(24.7) System: Did you want to review some more of your personal profile?
Caller: No.
System:Okay,what’s next?

(24.8) System: Did you want to review some more of your personal profile?
Caller: No.
System: What’s next?

Indeed, this kind of lack of grounding can cause errors. Stifelman et al. (1993)
and Yankelovich et al. (1995) found that humans get confusedwhen a conversational
system doesn’t give explicit acknowledgements.

24.1.4 Conversational Structure

We have already seen how conversation is structured by adjacency pairs and contribu-
tions. Here we’ll briefly discuss one aspect of theoverall organization of a conversa-
tion: conversational openings. The openings of telephone conversations, for example,
tend to have a 4-part structure (Clark, 1994; Schegloff, 1968, 1979):

Stage 1:Enter a conversation, with summons-response adjacency pair
Stage 2:Identification

DRAFT

Section 24.1. Properties of Human Conversations 833

Stage 3:Establish joint willingness to converse
Stage 4:The first topic is raised, usually by the caller.

These four stages appear in the opening of this short task-oriented conversation
from Clark (1994).

Stage Speaker & Utterance
1 A1: (rings B’s telephone)
1,2 B1: Benjamin Holloway
2 A1: this is Professor Dwight’s secretary, from Polymania College
2,3 B1: ooh yes –
4 A1: uh:m . about the: lexicology *seminar*
4 B1: *yes*

It is common for the person who answers the phone to speak first(since the caller’s
ring functions as the first part of the adjacency pair) but forthe caller to bring up the
first topic, as the caller did above concerning the “lexicology seminar”. This fact that
the caller usually brings up the first topic causes confusionwhen the answerer brings
up the first topic instead; here’s an example of this from the British directory enquiry
service from Clark (1994):

Customer: (rings)
Operator: Directory Enquiries, for which town please?
Customer: Could you give me the phone number of um: Mrs. um: Smithson?
Operator: Yes, which town is this at please?
Customer: Huddleston.
Operator: Yes. And the name again?
Customer: Mrs. Smithson.

In the conversation above, the operator brings up the topic (for which town please?)
in her first sentence, confusing the caller, who ignores thistopic and brings up her own.
This fact that callers expect to bring up the topic explains why conversational agents
for call routing or directory information often use very open prompts likeHow may
I help you? or How may I direct your call?rather than a directive prompt likeFor
which town please?. Open prompts allow the caller to state their own topic, reducing
recognition errors caused by customer confusion.

Conversation has many other kinds of structure, including the intricate nature of
conversational closings and the wide use of presequences. We will discuss structure
based oncoherencein Sec. 24.7.

24.1.5 Conversational Implicature

We have seen that conversation is a kind of joint activity, inwhich speakers produce
turns according to a systematic framework, and that the contributions made by these
turns include a presentation phase of performing a kind of action, and an acceptance
phase of grounding the previous actions of the interlocutor. So far we have only talked
about what might be called the ‘infrastructure’ of conversation. But we have so far said
nothing about the actual information that gets communicated from speaker to hearer in
dialogue.

DRAFT

834 Chapter 24. Dialogue and Conversational Agents

While Ch. 17 showed how we can compute meanings from sentences, it turns out
that in conversation, the meaning of a contribution is oftenquite a bit extended from the
compositional meaning that might be assigned from the wordsalone. This is because
inference plays a crucial role in conversation. The interpretation of an utterance relies
on more than just the literal meaning of the sentences. Consider the client’s response
C2 from the sample conversation in Fig. 24.4, repeated here:

A1: And, what day in May did you want to travel?

C2: OK uh I need to be there for a meeting that’s from the 12th to the 15th.

Notice that the client does not in fact answer the question. The client merely states
that he has a meeting at a certain time. The semantics for thissentence produced by
a semantic interpreter will simply mention this meeting. What is it that licenses the
agent to infer that the client is mentioning this meeting so as to inform the agent of the
travel dates?

Now consider another utterance from the sample conversation, this one by the
agent:

A4: . . . There’s three non-stops today.

Now this statement would still be true if there were seven non-stops today, since
if there are seven of something, there are by definition also three. But what the agent
means here is that there are threeand not more than threenon-stops today. How is
the client to infer that the agent meansonly three non-stops?

These two cases have something in common; in both cases the speaker seems to ex-
pect the hearer to draw certain inferences; in other words, the speaker is communicating
more information than seems to be present in the uttered words. These kind of exam-
ples were pointed out by Grice (1975, 1978) as part of his theory of conversational
implicature . Implicature means a particular class of licensed inferences. Grice pro-Implicature

posed that what enables hearers to draw these inferences is that conversation is guided
by a set ofmaxims, general heuristics which play a guiding role in the interpretationMaxim

of conversational utterances. He proposed the following four maxims:

• Maxim of Quantity: Be exactly as informative as is required:quantity

1. Make your contribution as informative as is required (forthe current pur-
poses of the exchange).

2. Do not make your contribution more informative than is required.

• Maxim of Quality: Try to make your contribution one that is true:quality

1. Do not say what you believe to be false.
2. Do not say that for which you lack adequate evidence.

• Maxim of Relevance:Be relevant.relevance

• Maxim of Manner: Be perspicuous:manner

1. Avoid obscurity of expression.
2. Avoid ambiguity.
3. Be brief (avoid unnecessary prolixity).
4. Be orderly.

DRAFT

Section 24.2. Basic Dialogue Systems 835

It is the Maxim of Quantity (specifically Quantity 1) that allows the hearer to know
that three non-stopsdid not meanseven non-stops. This is because the hearer assumes
the speaker is following the maxims, and thus if the speaker meant seven non-stops
she would have said seven non-stops (“as informative as is required”). The Maxim
of Relevance is what allows the agent to know that the client wants to travel by the
12th. The agent assumes the client is following the maxims, and hence would only
have mentioned the meeting if it was relevant at this point inthe dialogue. The most
natural inference that would make the meeting relevant is the inference that the client
meant the agent to understand that his departure time was before the meeting time.

24.2 Basic Dialogue Systems

We’ve now seen a bit about how human dialogue works, althoughas we’ll see, not ev-
ery aspect of human-human conversation is modeled in human-machine conversation.
Let’s therefore turn to the spoken dialogue systems used in commercial applications.

Fig. 24.5 shows a typical architecture for a dialogue system. It has six components.
The speech recognition and understanding components extract meaning from the input,
while the generation and TTS components map from meaning to speech. The dialogue
manager controls the whole process, along with a task manager which has knowledge
about the task domain (such as air travel). We’ll go through each of these compo-
nents in the next sections. Then we’ll explore more sophisticated research systems in
following sections.

S
Recognition

Natural Language
Understanding

Dialogue
Manager

Task
Manager

Natural Language
Generation

Text-to-Speech
Synthesis

Figure 24.5 Simplified architecture of the components of a conversational agent.

24.2.1 ASR component

The ASR (automatic speech recognition) component takes audio input, generally from
a telephone, or from a PDA or desktop microphone, and returnsa transcribed string of
words, as discussed in Ch. 9.

Various aspects of the ASR system may be optimized specifically for use in con-
versational agents. For example, the large vocabulary speech recognizers we discussed
in Ch. 9 for dictation or transcription focused on transcribing any sentence on any topic
using any English word. But for domain-dependent dialogue systems it is of little use

DRAFT

836 Chapter 24. Dialogue and Conversational Agents

to be able to transcribe such a wide variety of sentences. Thesentences that the speech
recognizer needs to be able to transcribe need are just thosethat can be understood by
the natural language understanding component. For this reason commercial dialogue
systems generally use non-probabilistic language models based on finite-state gram-
mars. These grammars are generally hand-written, and specify all possible responses
that the system understands. We’ll see an example of such a hand-written grammar
for a VoiceXML system in Sec. 24.3. Such grammar-based language models can also
be compiled automatically from, e.g., unification grammarsused for natural language
understanding (Rayner et al., 2006).

Because what the user says to the system is related to what thesystem has just said,
language models in conversational agent are usuallydialogue-state dependent. For ex-
ample, if the system has just asked the user “What city are youdeparting from?”, the
ASR language model can be constrained to only consist of citynames, or perhaps sen-
tences of the form ‘I want to (leave|depart) from [CITYNAME]’. These dialogue-state-
specific language models often consist of hand-written finite-state (or even context-
free) grammars as discussed above, one for each dialogue state.

In some systems, the understanding component is more powerful, and the set of
sentences the system can understand is larger. In such cases, instead of a finite-state
grammar, we can use anN-gram language model whose probabilities are similarly
conditioned on the dialogue state.

Whether we use a finite-state, context-free, or anN-gram language model, we call
such a dialogue-state dependent language model arestrictive grammar . When theRestrictive

grammar

system wants to constrain the user to respond to the system’slast utterance, it can use
a restrictive grammar. When the system wants to allow the user more options, it might
mix this state-specific language model with a more general language model. As we
will see, the choice between these strategies can be tuned based on how muchinitiative
the user is allowed.

Speech recognition in dialogue, as well as in many other applications like dictation,
has the property that the identity of the speaker remains constant across many utter-
ances. This means that speaker adaptation techniques like MLLR and VTLN (Ch. 9)
can be applied to improve recognition as the system gets morespeech from the user.

Embedding an ASR engine in a dialogue system also requires that an ASR en-
gine to have realtime response, since users are unwilling toaccept long pauses before
responses. Dialogue systems also generally require that anASR system return aconfi-
dencevalue for a sentence, which can then be used for example for deciding whether
to ask the user to confirm a response.

24.2.2 NLU component

The NLU (natural language understanding) component of dialogue systems must pro-
duce a semantic representation which is appropriate for thedialogue task. Many speech-
based dialogue systems, since as far back as the GUS system (Bobrow et al., 1977), are
based on the frame-and-slot semantics discussed in Chapter15. A travel system, for
example, which has the goal of helping a user find an appropriate flight, would have a
frame with slots for information about the flight; thus a sentence likeShow me morn-
ing flights from Boston to San Francisco on Tuesdaymight correspond to the following

DRAFT

Section 24.2. Basic Dialogue Systems 837

filled-out frame (from Miller et al. (1994)):
SHOW:
FLIGHTS:

ORIGIN:
CITY: Boston
DATE:

DAY-OF-WEEK: Tuesday
TIME:

PART-OF-DAY: morning
DEST:

CITY: San Francisco

How does the NLU component generate this semantic representation? Some dia-
logue systems use general-purpose unification grammars with semantic attachments,
such as the Core Language Engine introduced in Ch. 18. A parser produces a sentence
meaning, from which the slot-fillers are extracted (Lewin etal., 1999).

Other dialogue systems rely on simpler domain-specific semantic analyzers, such
assemantic grammars. A semantic grammar is a CFG in which the rule left hand sides
correspond to the semantic entities being expressed, as in the following fragment:

SHOW → show me| i want | can i see|...
DEPART TIME RANGE → (after|around|before) HOUR|

morning| afternoon| evening
HOUR → one|two|three|four...|twelve (AMPM)
FLIGHTS → (a) flight | flights
AMPM → am | pm
ORIGIN → from CITY
DESTINATION → to CITY
CITY → Boston| San Francisco| Denver|Washington

These grammars take the form of context-free grammars or recursive transition
networks (Issar and Ward, 1993; Ward and Issar, 1994), and hence can be parsed by
any standard CFG parsing algorithm, such as the CKY or Earleyalgorithms introduced
in Ch. 13. The result of the CFG or RTN parse is a hierarchical labeling of the input
string with semantic node labels:

SHOW FLIGHTS ORIGIN DESTINATION DEPART_DATE DEPART_TIME
to CITY

Show me flights from boston to san francisco on tuesday morni ng

Since semantic grammar nodes like ORIGIN correspond to the slots in the frame,
the slot-fillers can be read almost directly off the resulting parse above. It remains
only to put the fillers into some sort of canonical form (for example as discussed in
Chapter 15 dates can be normalized into a DD:MM:YY form, times into 24-hour time,
etc.).

The semantic grammar approach is very widely used, but is unable to deal with am-
biguity, and requires hand-written grammars that can be expensive and slow to create.

Ambiguity can be addressed by adding probabilities to the grammar; one such
probabilistic semantic grammar system is the TINA system (Seneff, 1995) shown in
Fig. 24.6; note the mix of syntactic and semantic node names.The grammar rules in
TINA are written by hand, but parse tree node probabilities are trained by a modified
version of the SCFG method described in Ch. 14.

An alternative to semantic grammars that is probabilistic and also avoids hand-
coding of grammars is the semantic HMM model of Pieraccini etal. (1991). The

DRAFT

838 Chapter 24. Dialogue and Conversational Agents

S

Q-SUBJECT

WHAT

What

STREET

street

BE-QUESTION

LINK

is

SUBJECT

ARTICLE

the

A-PLACE

A-HOTEL

HOTEL-NAME

Hyatt

PRED-ADJUNCT

ON-STREET

ON

on

A-STREET

Q-SUBJECT

Figure 24.6 A parse of a sentence in the TINA semantic grammar, after Seneff (1995).

hidden states of this HMM are semantic slot labels, while theobserved words are the
fillers of the slots. Fig. 24.7 shows how a sequence of hidden states, corresponding to
slot names, could be decoded from (or could generate) a sequence of observed words.
Note that the model includes a hidden state called DUMMY which is used to generate
words which do not fill any slots in the frame.

S �� flights that go from Boston to San Francisco

ORIGINSHOW DUMMYFLIGHTS DEST

Figure 24.7 The Pieraccini et al. (1991) HMM model of semantics for filling slots in frame-
based dialogue systems. Each hidden state can generate a sequence of words; such a model,
in which a single hidden state can correspond to multiple observations, is technically called a
semi-HMM .

The goal of the HMM model is to compute the labeling of semantic rolesC =
c1,c2, ...,ci (C for ‘cases’ or ‘concepts’) that has the highest probability P(C|W) given
some wordsW = w1,w2, ...,wn. As usual, we use Bayes Rule as follows:

argmax
C

P(C|W) = argmax
C

P(W|C)P(C)

P(W)

= argmax
C

P(W|C)P(C)

=
N

∏
i=2

P(wi |wi−1...w1,C)P(w1|C)
M

∏
i=2

P(ci |ci−1...c1)(24.9)

The Pieraccini et al. (1991) model makes a simplification that the concepts (the
hidden states) are generated by a Markov process (a conceptM-gram model), and that
the observation probabilities for each state are generatedby a state-dependent (concept-
dependent) wordN-gram word model:

DRAFT

Section 24.2. Basic Dialogue Systems 839

P(wi |wi−1, ...,w1,C) = P(wi |wi−1, ...,wi−N+1,ci)(24.10)

P(ci |ci−1, ...,c1) = P(ci |ci−1, ...,ci−M+1)(24.11)

With this simplifying assumption, the final HMM model equations are:

argmax
C

P(C|W) =
N

∏
i=2

P(wi |wi−1...wi−N+1,ci)
M

∏
i=2

P(ci |ci−1...ci−M+1)(24.12)

These probabilities can be trained on a labeled training corpus, in which each
sentence is hand-labeled with the concepts/slot-names associated with each string of
words. The best sequence of concepts for a sentence, and the alignment of concepts to
word sequences, can be computed by the standard Viterbi decoding algorithm.

In summary, the resulting HMM model is a generative model with two components.
The P(C) component represents the choice of what meaning to express;it assigns a
prior over sequences of semantic slots, computed by a concept N-gram. P(W|C) rep-
resents the choice of what words to use to express that meaning; the likelihood of a
particular string of words being generated from a given slot. It is computed by a word
N-gram conditioned on the semantic slot. This model is very similar to the HMM
model fornamed entity detection we saw in Ch. 22. Technically, HMM models like
this, in which each hidden state correspond to multiple output observations, are called
semi-HMMs. In a classic HMM, by contrast, each hidden state corresponds to a singleSemi-HMM

output observation.
Many other kinds of statistical models have been proposed for the semantic un-

derstanding component of dialogue systems. These include the Hidden Understanding
Model (HUM), which adds hierarchical structure to the HMM tocombine the advan-
tages of the semantic grammar and semantic HMM approaches (Miller et al., 1994,
1996, 2000), or the decision-list method of Rayner and Hockey (2003).

24.2.3 Generation and TTS components

The generation component of a conversational agent choosesthe concepts to express to
the user, plans out how to express these concepts in words, and assigns any necessary
prosody to the words. The TTS component then takes these words and their prosodic
annotations and synthesizes a waveform, as described in Ch.8.

The generation task can be separated into two tasks:what to say, andhow to say it.
Thecontent plannermodule addresses the first task, decides what content to express to
the user, whether to ask a question, present an answer, and soon. The content planning
component of dialogue systems is generally merged with the dialogue manager, and
we will return to it below.

The language generationmodule addresses the second task, choosing the syntac-
tic structures and words needed to express the meaning. Language generation modules
are implemented in one of two ways. In the simplest and most common method, all
or most of the words in the sentence to be uttered to the user are prespecified by the

DRAFT

840 Chapter 24. Dialogue and Conversational Agents

dialogue designer. This method is known as template-based generation, and the sen-
tences created by these templates are often calledprompts. While most of the wordsPrompt

in the template are fixed, templates can include some variables which are filled in by
the generator, as in the following:

What time do you want to leave CITY-ORIG?
Will you return to CITY-ORIG from CITY-DEST?

A second method for language generation relies on techniques from the fieldnat-
ural language generation. Here the dialogue manager builds a representation of the
meaning of the utterance to be expressed, and passes this meaning representation to
a full generator. Such generators generally have three components, a sentence plan-
ner, surface realizer, and prosody assigner. A sketch of this architecture is shown in
Fig. 24.8. See Reiter and Dale (2000) for further information on natural language gen-
eration systems and their use in dialogue.

Content
Planner

Sentence
Planner

Surface
Realizer

Prosody
Assigner

What to say How to Say it

to Speech
 Synthesizer

Figure 24.8 Architecture of a natural language generation system for a dialogue system, after
Walker and Rambow (2002).

In the hand-designed prompts that are common in current systems, there are a num-
ber of important conversational and discourse constraintsthat must be implemented.
Like any discourse, a conversation needs to be coherent. Forexample, as Cohen
et al. (2004) show, the use of discourse markers and pronounsin the hand-built sys-
tem prompts makes the dialogue in (24.14) more natural than the dialogue in (24.13):

(24.13) Please say the data.
...
Please say the start time.
...
Please say the duration.
...
Please say the subject.

(24.14) First, tell me the date.
...
Next, I’ll need the time it starts.
...
Thanks.<pause> Now, how long is it supposed to last?
...
Last of all, I just need a brief description...

Another important case of discourse coherence occurs when particular prompts
may need to be said to the user repeatedly. In these cases, it is standard in dialogue sys-
tems to usetapered prompts, prompts which get incrementally shorter. The followingTapered prompt

example from Cohen et al. (2004) shows a series of (hand-designed) tapered prompts:

DRAFT

Section 24.2. Basic Dialogue Systems 841

(24.15) System: Now, what’s the first company to add to your watch list?
Caller: Cisco
System: What’s the next company name? (Or, you can say, “Finished.”)
Caller: IBM
System: Tell me the next company name, or say, “Finished.”
Caller: Intel
System: Next one?
Caller: America Online.
System: Next?
Caller: ...

Other constraints on generation are more specific to spoken dialogue, and refer
to facts about human memory and attentional processes. For example, when humans
are prompted to give a particular response, it taxes their memory less if the suggested
response is the last thing they hear. Thus as Cohen et al. (2004) point out, the prompt
“To hear the list again, say ‘Repeat list’” is easier for users than “Say ‘Repeat list’ to
hear the list again.”

Similarly, presentation of long lists of query results (e.g., potential flights, or movies)
can tax users. Thus most dialogue systems have content planning rules to deal with this.
In the Mercury system for travel planning (Seneff, 2002), for example, a rule specifies
that if there are more than three flights to describe to the user, the system will just list
the available airlines and describe explicitly only the earliest flight.

24.2.4 Dialogue Manager

The final component of a dialogue system is the dialogue manager, which controls the
architecture and structure of the dialogue. The dialogue manager takes input from the
ASR/NLU components, maintains some sort of state, interfaces with the task manager,
and passes output to the NLG/TTS modules.

We saw a very simple dialogue manager in Chapter 2’s ELIZA, whose architecture
was a simple read-substitute-print loop. The system read ina sentence, applied a series
of text transformations to the sentence, and then printed itout. No state was kept; the
transformation rules were only aware of the current input sentence. In addition to its
ability to interact with a task manager, a modern dialogue manager is very different
than ELIZA’s manager in both the amount of state that the manager keeps about the
conversation, and the ability of the manager to model structures of dialogue above the
level of a single response.

Four kinds of dialogue management architectures are most common. The simplest
and most commercially developed architectures, finite-state and frame-based, are dis-
cussed in this section. Later sections discuss the more powerful information-state dia-
logue managers, including a probabilistic version of information-state managers based
on Markov Decision Processes, and finally the more classic plan-based architectures.

The simplest dialogue manager architecture is a finite-state manager. For example,
imagine a trivial airline travel system whose job was to ask the user for a departure city,
a destination city, a time, and whether the trip was round-trip or not. Fig. 24.9 shows
a sample dialogue manager for such a system. The states of theFSA correspond to
questions that the dialogue manager asks the user, and the arcs correspond to actions to

DRAFT

842 Chapter 24. Dialogue and Conversational Agents

What city are you leaving from?

Do you want to go from
 <FROM> to <TO> on <DATE>?

Yes

Where are you going?

What date do you want to leave?

Is it a one-way trip?

What date do you want to return?

Do you want to go from <FROM> to <TO>
on <DATE> returning on <RETURN>?

No

No Yes

Yes
No

Book the flight

Figure 24.9 A simple finite-state automaton architecture for a dialoguemanager.

take depending on what the user responds. This system completely controls the conver-
sation with the user. It asks the user a series of questions, ignoring (or misinterpreting)
anything the user says that is not a direct answer to the system’s question, and then
going on to the next question.

Systems that control the conversation in this way are calledsystem initiative orsystem initiative

single initiative systems. We say that the speaker that is in control of the conversationsingle initiative

has theinitiative ; in normal human-human dialogue, initiative shifts back and forthInitiative

between the participants (Walker and Whittaker, 1990).1 The limited single-initiative
finite-state dialogue manager architecture has the advantage that the system always
knows what question the user is answering. This means the system can prepare the
speech recognition engine with a specific language model tuned to answers for this
question. Knowing what the user is going to be talking about also makes the task of the
natural language understanding engine easier. Most finite-state systems also allowuni-
versalcommands. Universals are commands that can be said anywherein the dialogue;Universal

every dialogue state recognizes the universal commands in addition to the answer to
the question that the system just asked. Common universals includehelp, which gives
the user a (possibly state-specific) help message,start over (or main menu), which
returns the user to some specified main start state, and some sort of command to cor-
rect the system’s understanding of the users last statement(San-Segundo et al., 2001).
System-initiative finite-state dialogue managers with universals may be sufficient for
very simple tasks such as entering a credit card number, or a name and password, on
the phone.

Pure system-initiative finite-state dialogue manager architectures are probably too

1 Single initiative systems can also be controlled by the user, in which case they are calleduser initiative
systems. Pure user initiative systems are generally used for stateless database querying systems, where the
user asks single questions of the system, which the system converts into SQL database queries, and returns
the results from some database.

DRAFT

Section 24.2. Basic Dialogue Systems 843

restricted, however, even for the relatively uncomplicated task of a spoken dialogue
travel agent system. The problem is that pure system-initiative systems require that the
user answer exactly the question that the system asked. But this can make a dialogue
awkward and annoying. Users often need to be able to say something that is not exactly
the answer to a single question from the system. For example,in a travel planning
situation, users often want to express their travel goals with complex sentences that
may answer more than one question at a time, as in Communicator example (24.16)
repeated from Fig. 24, or ATIS example (24.17).

(24.16) Hi I’d like to fly to Seattle Tuesday morning

(24.17) I want a flight from Milwaukee to Orlando one way leaving afterfive p.m. on
Wednesday.

A finite state dialogue system, as typically implemented, can’t handle these kinds of
utterances since it requires that the user answer each question as it is asked. Of course
it is theoretically possible to create a finite state architecture which has a separate state
for each possible subset of questions that the user’s statement could be answering, but
this would require a vast explosion in the number of states, making this a difficult
architecture to conceptualize.

Therefore, most systems avoid the pure system-initiative finite-state approach and
use an architecture that allowsmixed initiative , in which conversational initiative canmixed initiative

shift between the system and user at various points in the dialogue.
One common mixed initiative dialogue architecture relies on the structure of the

frame itself to guide the dialogue. Theseframe-basedor form-baseddialogue man-Frame-based

Form-based agers asks the user questions to fill slots in the frame, but allow the user to guide the
dialogue by giving information that fills other slots in the frame. Each slot may be
associated with a question to ask the user, of the following type:

Slot Question
ORIGIN CITY “From what city are you leaving?”
DESTINATION CITY “Where are you going?”
DEPARTURE TIME “When would you like to leave?”
ARRIVAL TIME “When do you want to arrive?”

A frame-based dialogue manager thus needs to ask questions of the user, filling
any slot that the user specifies, until it has enough information to perform a data base
query, and then return the result to the user. If the user happens to answer two or
three questions at a time, the system has to fill in these slotsand then remember not
to ask the user the associated questions for the slots. Not every slot need have an
associated question, since the dialogue designer may not want the user deluged with
questions. Nonetheless, the system must be able to fill theseslots if the user happens
to specify them. This kind of form-filling dialogue manager thus does away with the
strict constraints that the finite-state manager imposes onthe order that the user can
specify information.

While some domains may be representable with a single frame,others, like the
travel domain, seem to require the ability to deal with multiple frames. In order to han-
dle possible user questions, we might need frames with general route information (for
questions likeWhich airlines fly from Boston to San Francisco?), information about

DRAFT

844 Chapter 24. Dialogue and Conversational Agents

airfare practices (for questions likeDo I have to stay a specific number of days to get a
decent airfare?) or about car or hotel reservations. Since users may switch from frame
to frame, the system must be able to disambiguate which slot of which frame a given
input is supposed to fill, and then switch dialogue control tothat frame.

Because of this need to dynamically switch control, frame-based systems are often
implemented asproduction rule systems. Different types of inputs cause different
productions to fire, each of which can flexibly fill in different frames. The production
rules can then switch control based on factors such as the user’s input and some simple
dialogue history like the last question that the system asked. The Mercury flight reser-
vation system (Seneff and Polifroni, 2000; Seneff, 2002) uses a large ‘dialogue control
table’ to store 200-350 rules, covering request for help, rules to determine if the user is
referring to a flight in a list (”I’ll take that nine a.m. flight”), and rules to decide which
flights to describe to the user first.

Now that we’ve seen the frame-based architecture, let’s return to our discussion of
conversational initiative. It’s possible in the same agentto allow system-initiative, user-
initiative, and mixed-initiative interactions. We said earlier that initiative refers to who
has control of the conversation at any point. The phrasemixed initiative is generally
used in two ways. It can mean that the system or the user could arbitrarily take or give
up the initiative in various ways (Walker and Whittaker, 1990; Chu-Carroll and Brown,
1997). This kind of mixed initiative is difficult to achieve in current dialogue systems.
In form-based dialogue system, the term mixed initiative isused for a more limited kind
of shift, operationalized based on a combination of prompt type (open versus directive)
and the type of grammar used in the ASR. Anopen prompt is one in which the systemOpen prompt

gives the user very few constraints, allowing the user to respond however they please,
as in:

How may I help you?

A directive prompt is one which explicitly instructs the user how to respond:Directive prompt

Sayyesif you accept the call; otherwise, sayno.

A restrictive grammar (Sec. 24.2.1) is a language model which strongly constrains the
ASR system, only recognizing proper responses to a given prompt.

We can combine these as in Fig. 24.10 to define initiative as used in form-based
dialogue systems, following Singh et al. (2002) and others.

Prompt Type
Grammar Open Directive
Restrictive Doesn’t make sense System Initiative
Non-Restrictive User Initiative Mixed Initiative

Figure 24.10 Operational definition of initiative, following Singh et al. (2002).

Here a system initiative interaction uses a directive prompt and a restrictive gram-
mar; the user is told how to respond, and the ASR system is constrained to only rec-
ognize the responses that are prompted for. In user initiative, the user is given an open
prompt, and the grammar must recognize any kind of response,since the user could say
anything. Finally, in a mixed initiative interaction, the system gives the user a direc-

DRAFT

Section 24.2. Basic Dialogue Systems 845

tive prompt with particular suggestions for response, but the non-restrictive grammar
allows the user to respond outside the scope of the prompt.

Defining initiative as a property of the prompt and grammar type in this way allows
systems to dynamically change their initiative type for different users and interactions.
Novice users, or users with high speech recognition error, might be better served by
more system initiative. Expert users, or those who happen tospeak more recognizably,
might do well with mixed or user initiative interactions. Wewill see in Sec. 24.6 how
machine learning techniques can be used to choose initiative.

24.2.5 Dialogue Manager Error Handling: Confirmation/Rejection

In a dialogue system, mishearings are a particularly important class of problems, be-
cause speech recognition has such a high error rate. It is therefore important for di-
alogue systems to make sure that they have achieved the correct interpretation of the
user’s input. This is generally done by two methods:confirming understandings with
the user, andrejecting utterances that the system is likely to have misunderstood.

Various strategies can be employed for confirmation with theuser. A system us-
ing theexplicit confirmation strategy asks the user a direct question to confirm theirExplicit

confirmation
understanding. Here are two examples of explicit confirmations from travel planning
systems. The (boldface) confirmation questions are both yes-no questions, one using a
single sentence, the other presenting a declarative sentence followed by a tag question
(a short question phrase like “right?” or “isn’t it?”):

S: Which city do you want to leave from?
U: Baltimore.
S: Do you want to leave from Baltimore?
U: Yes.
U: I’d like to fly from Denver Colorado to New York City on September

twenty first in the morning on United Airlines
S: Let’s see then. I have you going from Denver Colorado to New York

on September twenty first. Is that correct?
U: Yes

A system using theimplicit confirmation strategy, rather than asking a direct ques-Implicit
confirmation

tion, uses thedemonstrationor displaygrounding strategies described above, confirm-
ing to the user by repeating back what the system understood the user to have said:

U: I want to travel to Berlin
S: When do you want to travel to Berlin?
U2: Hi I’d like to fly to Seattle Tuesday Morning
A3: Traveling to Seattle on Tuesday, August eleventh in the morning.

Your full name?

Explicit and implicit confirmation have complementary strengths. Explicit confir-
mation makes it easier for users to correct the system’s misrecognitions since the user
can just answer ‘no’ to the confirmation question. But explicit confirmation is awkward
and increases the length of the conversation (Danieli and Gerbino, 1995; Walker et al.,

DRAFT

846 Chapter 24. Dialogue and Conversational Agents

1998). The explicit confirmation dialogue fragments above sound non-natural and def-
initely non-human; implicit confirmation is much more conversationally natural.

Confirmation is just one kind of conversational action that asystem has to express
lack of understanding. Another option isrejection. An ASR system rejects an utter-Rejection

ance by giving the user a prompt likeI’m sorry, I didn’t understand that. Sometimes
utterances are rejected multiple times. This might mean that the user is using language
that the system is unable to follow. Thus when an utterance isrejected, systems often
follow a strategy ofprogressive promptingor escalating detail(Yankelovich et al.,Progressive

prompting

1995; Weinschenk and Barker, 2000) as in this example from Cohen et al. (2004):

System: When would you like to leave?
Caller: Well, um, I need to be in New York in time for the first World Series game.
System: <reject>. Sorry, I didn’t get that. Please say the month and day you’d like

to leave.
Caller: I wanna go on October fifteenth.

In this example, instead of just repeating ‘When would you like to leave?’, the re-
jection prompt gives the caller more guidance about how to formulate an utterance the
system will understand. Theseyou-can-sayhelp messages are important in helping im-
prove systems understanding performance (Bohus and Rudnicky, 2005). If the caller’s
utterance gets rejected yet again, the prompt can reflect this (‘I still didn’t get that’),
and give the caller even more guidance.

An alternative strategy for error handling israpid reprompting , in which the sys-Rapid
reprompting

tem rejects an utterance just by saying “I’m sorry?” or “Whatwas that?”. Only if the
caller’s utterance is rejected a second time does the systemstart applying progressive
prompting. Cohen et al. (2004) summarizes experiments showing that users greatly
prefer rapid reprompting as a first-level error prompt.

24.3 VoiceXML

VoiceXML is the Voice Extensible Markup Language, an XML-based dialogue designVoiceXML

language released by the W3C, and the most commonly used of the various speech
markup languages (such as SALT). The goal of VoiceXML (orvxml) is to create simplevxml

audio dialogues of the type we have been describing, making use of ASR and TTS,
and dealing with very simple mixed-initiative in a frame-based architecture. While
VoiceXML is more common in the commercial rather than academic setting, it is a
good way for the student to get a hands-on grasp of dialogue system design issues.

A VoiceXML document contains a set of dialogues, each of which can be aformor
amenu. We will limit ourselves to introducing forms; seehttp://www.voicexml.
org/ for more information on VoiceXML in general. The VoiceXML document in
Fig. 24.11 defines a form with a single field named ‘transporttype’. The field has an
attached prompt,Please choose airline, hotel, or rental car, which can be passed to
the TTS system. It also has a grammar (language model) which is passed to the speech
recognition engine to specify which words the recognizer isallowed to recognize. In

DRAFT
Section 24.3. VoiceXML 847

<form>
<field name="transporttype">

<prompt>
Please choose airline, hotel, or rental car.

</prompt>
<grammar type="application/x=nuance-gsl">

[airline hotel "rental car"]
</grammar>

</field>
<block>

<prompt>
You have chosen <value expr="transporttype">.

</prompt>
</block>

</form>

Figure 24.11 A minimal VoiceXML script for a form with a single field. User is prompted,
and the response is then repeated back.

the example in Fig. 24.11, the grammar consists of a disjunction of the three words
airline, hotel, andrental car.

A <form> generally consists of a sequence of<field> s, together with a few
other commands. Each field has a name (transporttype is the name of the field
in Fig. 24.11) which is also the name of the variable where theuser’s response will be
stored. The prompt associated with the field is specified via the<prompt> command.
The grammar associated with the field is specified via the<grammar> command.
VoiceXML supports various ways of specifying a grammar, including XML Speech
Grammar, ABNF, and commercial standards, like Nuance GSL. We will be using the
Nuance GSL format in the following examples.

The VoiceXML interpreter walks through a form in document order, repeatedly
selecting each item in the form. If there are multiple fields,the interpreter will visit
each one in order. The interpretation order can be changed invarious ways, as we will
see later. The example in Fig. 24.12 shows a form with three fields, for specifying the
origin, destination, and flight date of an airline flight.

The prologue of the example shows two global defaults for error handling. If
the user doesn’t answer after a prompt (i.e., silence exceeds a timeout threshold), the
VoiceXML interpreter will play the<noinput> prompt. If the user says something,
but it doesn’t match the grammar for that field, the VoiceXML interpreter will play
the<nomatch> prompt. After any failure of this type, it is normal to re-askthe user
the question that failed to get a response. Since these routines can be called from any
field, and hence the exact prompt will be different every time, VoiceXML provides a
<reprompt\> command, which will repeat the prompt for whatever field caused the
error.

The three fields of this form show another feature of VoiceXML, the<filled>
tag. The<filled> tag for a field is executed by the interpreter as soon as the field
has been filled by the user. Here, this feature is used to give the user a confirmation of
their input.

The last field,departdate , shows another feature of VoiceXML, thetype at-
tribute. VoiceXML 2.0 specifies seven built-in grammar types,boolean , currency ,
date , digits , number , phone , andtime . Since the type of this field isdate ,
a data-specific language model (grammar) will be automatically passed to the speech

DRAFT

848 Chapter 24. Dialogue and Conversational Agents

<noinput>
I’m sorry, I didn’t hear you. <reprompt/>
</noinput>

<nomatch>
I’m sorry, I didn’t understand that. <reprompt/>
</nomatch>

<form>
<block> Welcome to the air travel consultant. </block>
<field name="origin">

<prompt> Which city do you want to leave from? </prompt>
<grammar type="application/x=nuance-gsl">

[(san francisco) denver (new york) barcelona]
</grammar>
<filled>

<prompt> OK, from <value expr="origin"> </prompt>
</filled>

</field>
<field name="destination">

<prompt> And which city do you want to go to? </prompt>
<grammar type="application/x=nuance-gsl">

[(san francisco) denver (new york) barcelona]
</grammar>
<filled>

<prompt> OK, to <value expr="destination"> </prompt>
</filled>

</field>
<field name="departdate" type="date">

<prompt> And what date do you want to leave? </prompt>
<filled>

<prompt> OK, on <value expr="departdate"> </prompt>
</filled>

</field>
<block>

<prompt> OK, I have you are departing from <value expr="orig in">
to <value expr="destination"> on <value expr="departdate ">

</prompt>
send the info to book a flight...

</block>
</form>

Figure 24.12 A VoiceXML script for a form with 3 fields, which confirms each field and
handles thenoinput andnomatch situations.

recognizer, so we don’t need to specify the grammar here explicitly.
Fig. 24.13 gives a final example which shows mixed initiative. In a mixed initiative

dialogue, users can choose not to answer the question that was asked by the system.
For example, they might answer a different question, or use along sentence to fill in
multiple slots at once. This means that the VoiceXML interpreter can no longer just
evaluate each field of the form in order; it needs to skip fieldswhose values are set.
This is done by aguard condition, a test that keeps a field from being visited. The
default guard condition for a field tests to see if the field’s form item variable has a
value, and if so the field is not interpreted.

Fig. 24.13 also shows a much more complex use of a grammar. This grammar is a
CFG grammar with two rewrite rules, namedFlight andCity . The Nuance GSL
grammar formalism uses parentheses () to mean concatenation and square brackets []
to mean disjunction. Thus a rule like (24.18) means thatWantsentence can be ex-
panded asi want to fly or i want to go , andAirports can be expanded
assan francisco or denver .

(24.18) Wantsentence (i want to [fly go])

DRAFT
Section 24.3. VoiceXML 849

<noinput> I’m sorry, I didn’t hear you. <reprompt/> </noinp ut>

<nomatch> I’m sorry, I didn’t understand that. <reprompt/> </nomatch>

<form>
<grammar type="application/x=nuance-gsl">

<![CDATA[
Flight (?[

(i [wanna (want to)] [fly go])
(i’d like to [fly go])
([(i wanna)(i’d like a)] flight)

]
[

([from leaving departing] City:x) {<origin $x>}
([(?going to)(arriving in)] City:x) {<destination $x>}
([from leaving departing] City:x

[(?going to)(arriving in)] City:y) {<origin $x> <destinat ion $y>}
]
?please

)
City [[(san francisco) (s f o)] {return("san francisco, cal ifornia")}

[(denver) (d e n)] {return("denver, colorado")}
[(seattle) (s t x)] {return("seattle, washington")}

]
]]> </grammar>

<initial name="init">
<prompt> Welcome to the consultant. What are your travel pla ns? </prompt>

</initial>

<field name="origin">
<prompt> Which city do you want to leave from? </prompt>
<filled>

<prompt> OK, from <value expr="origin"> </prompt>
</filled>

</field>
<field name="destination">

<prompt> And which city do you want to go to? </prompt>
<filled>

<prompt> OK, to <value expr="destination"> </prompt>
</filled>

</field>
<block>

<prompt> OK, I have you are departing from <value expr="orig in">
to <value expr="destination">. </prompt>

send the info to book a flight...
</block>

</form>

Figure 24.13 A mixed initiative VoiceXML dialogue. The grammar allows sentences which
specify the origin or destination cities or both. User can respond to the initial prompt by speci-
fying origin city, destination city, or both.

Airports [(san francisco) denver]

Grammar rules can refer to other grammar rules recursively,and so in the grammar
in Fig. 24.13 we see the grammar forFlight referring to the rule forCity .

VoiceXML grammars take the form of CFG grammars with optional semantic
attachments. The semantic attachments are generally either a text string (such as
"denver, colorado") or a slot and a filler. We can see an example of the for-
mer in the semantic attachments for theCity rule (thereturn statements at the end
of each line), which pass up the city and state name. The semantic attachments for the
Flight rule shows the latter case, where the slot (<origin> or <destination>
or both) is filled with the value passed up in the variablex from theCity rule.

Because Fig. 24.13 is a mixed initiative grammar, the grammar has to be applicable

DRAFT

850 Chapter 24. Dialogue and Conversational Agents

to any of the fields. This is done by making the expansion forFlight a disjunction;
note that it allows the user to specify only the origin city, the destination city, or both.

24.4 Dialogue System Design and Evaluation

24.4.1 Designing Dialogue Systems

How does a dialogue system developer choose dialogue strategies, architectures, prompts,
error messages, and so on? This process is often calledVUI (Voice User Interface)VUI

design. Theuser-centered designprinciples of Gould and Lewis (1985) are:
1. Study the user and task:Understand the potential users and the nature of the

task, via interviews with users and investigation of similar systems, and study of related
human-human dialogues.

2. Build simulations and prototypes: In Wizard-of-Oz systems(WOZ) orWizard-of-Oz

PNAMBIC (Pay No Attention to the Man BehInd the Curtain) systems, the users inter-
act with what they think is a software system, but is in fact a human operator (“wizard”)
behind some disguising interface software (e.g. Gould et al., 1983; Good et al., 1984;
Fraser and Gilbert, 1991).2 A WOZ system can be used to test out an architecture be-
fore implementation; only the interface software and databases need to be in place. The
wizard’s linguistic output can be disguised by a text-to-speech system, or via text-only
interactions. It is difficult for the wizard to exactly simulate the errors, limitations, or
time constraints of a real system; results of WOZ studies arethus somewhat idealized,
but still can provide a useful first idea of the domain issues.

3. Iteratively test the design on users:An iterative design cycle with embed-
ded user testing is essential in system design (Nielsen, 1992; Cole et al., 1994, 1997;
Yankelovich et al., 1995; Landauer, 1995). For example Stifelman et al. (1993) built
a system that originally required the user to press a key to interrupt the system. They
found in user testing that users instead tried to interrupt the system (barge-in), sug-Barge-in

gesting a redesign of the system to recognize overlapped speech. The iterative method
is also important for designing prompts which cause the userto respond in normative
ways, such as the use in particular situations of constrained forms (Oviatt et al., 1993)
or directive prompts rather than open prompts (Kamm, 1994; Cole et al., 1993). Sim-
ulations can also be used at this stage; user simulations that interact with a dialogue
system can help test the interface for brittleness or errors(Chung, 2004).

See Cohen et al. (2004), Harris (2005) for more on conversational interface design.

24.4.2 Dialogue System Evaluation

We said above that user testing and evaluation is crucial in dialogue system design.
Computing auser satisfaction ratingcan be done by having users interact with a
dialogue system to perform a task, and then having them complete a questionnaire
(Shriberg et al., 1992; Polifroni et al., 1992; Stifelman etal., 1993; Yankelovich et al.,

2 The name comes from the children’s bookThe Wizard of Oz(Baum, 1900), in which the Wizard turned
out to be just a simulation controlled by a man behind a curtain.

DRAFT

Section 24.4. Dialogue System Design and Evaluation 851

TTS Performance Was the system easy to understand ?
ASR Performance Did the system understand what you said?
Task Ease Was it easy to find the message/flight/train you wanted?
Interaction Pace Was the pace of interaction with the system appropriate?
User Expertise Did you know what you could say at each point?
System Response How often was the system sluggish and slow to reply to you?
Expected Behavior Did the system work the way you expected it to?
Future Use Do you think you’d use the system in the future?

Figure 24.14 User satisfaction survey, adapted from Walker et al. (2001).

1995; Möller, 2002). For example Fig. 24.4.2 shows multiple-choice questions of the
sort used by Walker et al. (2001); responses are mapped into the range of 1 to 5, and
then averaged over all questions to get a total user satisfaction rating.

It is often economically infeasible to run complete user satisfaction studies after
every change in a system. For this reason it is often useful tohave performance evalua-
tion heuristics which correlate well with human satisfaction. A number of such factors
and heuristics have been studied. One method that has been used to classify these fac-
tors is based on the idea that an optimal dialogue system is one which allows a user to
accomplish their goals (maximizing task success) with the least problems (minimizing
costs). Then we can study metrics which correlate with thesetwo criteria.

Task Completion Success: Task success can be measured by evaluating the correct-
ness of the total solution. For a frame-based architecture,this might be the percentage
of slots that were filled with the correct values, or the percentage of subtasks that were
completed (Polifroni et al., 1992). Since different dialogue systems may be applied
to different tasks, it is hard to compare them on this metric,so Walker et al. (1997)
suggested using the Kappa coefficient,κ , to compute a completion score which is nor-
malized for chance agreement and better enables cross-system comparison.

Efficiency Cost: Efficiency costs are measures of the system’s efficiency at helping
users. This can be measured via the total elapsed time for thedialogue in seconds,
the number of total turns or of system turns, or the total number of queries (Polifroni
et al., 1992). Other metrics include the number of system non-responses, and the “turn
correction ratio”: the number of system or user turns that were used solely to correct
errors, divided by the total number of turns (Danieli and Gerbino, 1995; Hirschman
and Pao, 1993).

Quality Cost: Quality cost measures other aspects of the interaction thataffect users’
perception of the system. One such measure is the number of times the ASR system
failed to return any sentence, or the number of ASR rejectionprompts. Similar met-
rics include the number of times the user had tobarge-in (interrupt the system), orBarge-in

the number of time-out prompts played when the user didn’t respond quickly enough.
Other quality metrics focus on how well the system understood and responded to the
user. This can include the inappropriateness (verbose or ambiguous) of the system’s
questions, answers, and error messages (Zue et al., 1989), or the correctness of each
question, answer, or error message (Zue et al., 1989; Polifroni et al., 1992). A very
important quality cost isconcept accuracyor concept error rate, which measures theConcept accuracy

percentage of semantic concepts that the NLU component returns correctly. For frame-

DRAFT

852 Chapter 24. Dialogue and Conversational Agents

based architectures this can be measured by counting the percentage of slots that are
filled with the correct meaning. For example if the sentence ‘I want to arrive in Austin
at 5:00’ is misrecognized to have the semantics ”DEST-CITY:Boston, Time: 5:00” the
concept accuracy would be 50% (one of two slots are wrong).

MAXIMIZE USER SATISFACTION

MAXIMIZE TASK SUCCESS MINIMIZE COSTS

EFFICIENCY MEASURES QUALITY MEASURES

Figure 24.15 PARADISE’s structure of objectives for spoken dialogue performance. After
Walker et al. (1997).

How should these success and cost metrics be combined and weighted? One ap-
proach is the PARADISE algorithm (PARAdigm for DIalogue System Evaluation),
which applies multiple regression to this problem. The algorithm first assigns each
dialogue a user satisfaction rating using questionnaires like the one in Fig. 24.4.2. A
set of cost and success factors like those above is then treated as a set of independent
factors; multiple regression is used to train a weight for each factor, measuring its im-
portance in accounting for user satisfaction. Fig. 24.15 shows the particular model of
performance that the PARADISE experiments have assumed. Each box is related to
a set of factors that we summarized on the previous page. The resulting metric can
be used to compare quite different dialogue strategies; evaluations using methods like
PARADISE have suggested that task completion and concept accuracy may be the most
important predictors of user satisfaction; see Walker et al. (1997, 2001, 2002).

A wide variety of other evaluation metrics and taxonomies have been proposed for
describing the quality of spoken dialogue systems (Fraser,1992; Möller, 2002, 2004;
Delgado and Araki, 2005, inter alia).

24.5 Information-state & Dialogue Acts

The basic frame-based dialogue systems we have introduced so far are only capable
of limited domain-specific conversations. This is because the semantic interpretation
and generation processes in frame-based dialogue systems are based only on what is
needed to fill slots. In order to be usable for more than just form-filling applications,
a conversational agent needs to be able to do things like decide when the user has
asked a question, made a proposal, or rejected a suggestion,and needs to be able to
ground a users utterance, ask clarification questions, and suggest plans. This suggests
that a conversational agent needs sophisticated models of interpretation and generation
in terms of speech acts and grounding, and a more sophisticated representation of the
dialogue context than just a list of slots.

DRAFT

Section 24.5. Information-state & Dialogue Acts 853

In this section we sketch a more advanced architecture for dialogue management
which allows for these more sophisticated components. Thismodel is generally called
theinformation-state architecture (Traum and Larsson, 2003, 2000), although we willInformation-state

use the term loosely to include architectures such as Allen et al. (2001). A probabilis-
tic architecture which can be seen as an extension of the information-state approach,
theMarkov decision processmodel, will be described in the next section. The term
information-state architecture is really a cover term for a number of quite different
efforts toward more sophisticated agents; we’ll assume here a structure consisting of 5
components:

• the information state (the ‘discourse context’ or ‘mental model’)

• a dialogue act interpreter (or “interpretation engine”)

• a dialogue act generator (or “generation engine”)

• a set of update rules, which update the information state as dialogue acts are
interpreted, and which include rules to generate dialogue acts.

• a control structure to select which update rules to apply

The terminformation state is intended to be very abstract, and might include
things like the discourse context and the common ground of the two speakers, the be-
liefs or intentions of the speakers, user models, and so on. Crucially, information state
is intended to be a more complex notion than the static statesin a finite-state dialogue
manager; the current state includes the values of many variables, the discourse context,
and other elements that are not easily modeled by a state-number in a finite network.

Dialogue acts are an extension of speech acts which integrate ideas from grounding
theory, and will be defined more fully in the next subsection.The interpretation engine
takes speech as input and figures out sentential semantics and an appropriate dialogue
act. The dialogue act generator takes dialogue acts and sentential semantics as input
and produces text/speech as output.

Finally, the update rules modify the information state withthe information from the
dialogue acts. These update rules are a generalization of the production rules used in
frame-based dialogue systems described above (Seneff and Polifroni, 2000,inter alia).
A subset of update rules, calledselection rules, are used to generate dialogue acts.
For example, an update rule might say that when the interpretation engine recognizes
an assertion, that the information state should be updated with the information in the
assertion, and an obligation to perform a grounding act needs to be added to the infor-
mation state. When a question is recognized, an update rule might specify the need to
answer the question. We can refer to the combination of the update rules and control
structure as theBehavioral Agent(Allen et al., 2001), as suggested in Fig. 24.16.

While the intuition of the information-state model is quitesimple, the details can
be quite complex. The information state might involve rich discourse models such as
Discourse Representation Theory or sophisticated models of the user’s belief, desire,
and intention (which we will return to in Sec. 24.7). Insteadof describing a particular
implementation here, we will focus in the next few sections on the dialogue act inter-
pretation and generation engines, and a probabilistic information-state architecture via
Markov decision processes.

DRAFT

854 Chapter 24. Dialogue and Conversational Agents

Natural Language Understanding

Dialogue Act Interpreter

Natural Language Generation

Behavioral Agent
 -update rules
 -control

Dialogue Act Generator

Speech

Information State

 -discourse context
 -beliefs
 -goals
 -user model
 -task context

Speech

Figure 24.16 A version of the information-state approach to dialogue architecture.

24.5.1 Dialogue Acts

As we implied above, the speech acts as originally defined by Austin don’t model key
features of conversation such as grounding, contributions, adjacency pairs and so on.
In order to capture these conversational phenomena, we use an extension of speech
acts calleddialogue acts(Bunt, 1994) (ordialogue movesor conversational movesdialogue act

Conversational
move (Power, 1979; Carletta et al., 1997b). A dialogue act extends speech acts with internal

structure related specifically to these other conversational functions (Allen and Core,
1997; Bunt, 2000).

A wide variety of dialogue act tagsets have been proposed. Fig. 24.17 shows a
very domain-specific tagset for the Verbmobil two-party scheduling domain, in which
speakers were asked to plan a meeting at some future date. Notice that it has many very
domain-specific tags, such as SUGGEST, used for when someone proposes a particular
date to meet, and ACCEPTand REJECT, used to accept or reject a proposal for a date.
Thus it has elements both from the presentation and acceptance phases of the Clark
contributions discussed on page 830.

There are a number of more general and domain-independent dialogue act tagsets.
In the DAMSL (Dialogue Act Markup in Several Layers) architecture inspired by the
work of Clark and Schaefer (1989), Allwood et al. (1992), and(Allwood, 1995) each
utterance is tagged for two types of functions,forward looking functions like speech
act functions, andbackward looking functions, like grounding and answering, which
‘look back’ to the interlocutor’s previous utterance (Allen and Core, 1997; Walker
et al., 1996; Carletta et al., 1997a; Core et al., 1999).

Traum and Hinkelman (1992) proposed that the core speech acts and grounding
acts that constitute dialogue acts could fit into an even richer hierarchy ofconversa-
tion acts. Fig. 24.5.1 shows the four levels of act types they propose,with the two mid-Conversation act

dle levels corresponding to DAMSL dialogue acts (groundingand core speech acts).
The two new levels include turn-taking acts and a type of coherence relations called
argumentationrelations.

The acts form a hierarchy, in that performance of an act at a higher level (for exam-
ple a core speech act) entails performance of a lower level act (taking a turn). We will
see the use of conversational acts in generation later on in this section, and will return

DRAFT

Section 24.5. Information-state & Dialogue Acts 855

Tag Example
THANK Thanks
GREET Hello Dan
INTRODUCE It’s me again
BYE Allright bye
REQUEST-COMMENT How does that look?
SUGGEST from thirteenth through seventeenth June
REJECT No Friday I’m booked all day
ACCEPT Saturday sounds fine,
REQUEST-SUGGEST What is a good day of the week for you?
INIT I wanted to make an appointment with you
GIVE REASON Because I have meetings all afternoon
FEEDBACK Okay
DELIBERATE Let me check my calendar here
CONFIRM Okay, that would be wonderful
CLARIFY Okay, do you mean Tuesday the 23rd?
DIGRESS [we could meet for lunch] and eat lots of ice cream
MOTIVATE We should go to visit our subsidiary in Munich
GARBAGE Oops, I-

Figure 24.17 The 18 high-level dialogue acts used in Verbmobil-1, abstracted over a total of
43 more specific dialogue acts. Examples are from Jekat et al.(1995).

Act type Sample Acts
turn-taking take-turn, keep-turn, release-turn, assign-turn
grounding acknowledge, repair, continue
core speech acts inform, wh-question, accept, request, offer
argumentation elaborate, summarize, question-answer, clarify

Figure 24.18 Conversation act types, from Traum and Hinkelman (1992).

to the question of coherence and dialogue structure in Sec. 24.7.

24.5.2 Interpreting Dialogue Acts

How can we do dialogue act interpretation, deciding whethera given input is aQUES-
TION, a STATEMENT, a SUGGEST(directive), or anACKNOWLEDGEMENT? Perhaps
we can just rely on surface syntax? We saw in Ch. 12 that yes-no-questions in English
haveaux-inversion (the auxiliary verb precedes the subject) statements have declara-
tive syntax (no aux-inversion), and commands have no syntactic subject:

(24.19) YES-NO-QUESTION Will breakfast be served on USAir 1557?
STATEMENT I don’t care about lunch
COMMAND Show me flights from Milwaukee to Orlando.

Alas, as is clear from Abbott and Costello’s famousWho’s on Firstroutine at the be-
ginning of the chapter, the mapping from surface form to illocutionary act is complex.
For example, the following ATIS utterance looks like aYES-NO-QUESTION meaning
something likeAre you capable of giving me a list of. . . ?:

(24.20) Can you give me a list of the flights from Atlanta to Boston?

In fact, however, this person was not interested in whether the system wascapable
of giving a list; this utterance was a polite form of aREQUEST, meaning something

DRAFT

856 Chapter 24. Dialogue and Conversational Agents

more likePlease give me a list of. . .. Thus what looks on the surface like aQUESTION

can really be aREQUEST.
Similarly, what looks on the surface like aSTATEMENT can really be aQUESTION.

The very commonCHECK question (Carletta et al., 1997b; Labov and Fanshel, 1977),
is used to ask an interlocutor to confirm something that she has privileged knowledge
about.CHECKShave declarative surface form:

A OPEN-OPTION I was wanting to make some arrangements for a trip that I’m going
to be taking uh to LA uh beginning of the week after next.

B HOLD OK uh let me pull up your profile and I’ll be right with you here.
[pause]

B CHECK And you said you wanted to travel next week?
A ACCEPT Uh yes.

Utterances that use a surface statement to ask a question, ora surface question to
issue a request, are calledindirect speech acts.Indirect speech

act
In order to resolve these dialogue act ambiguities we can model dialogue act inter-

pretation as a supervised classification task, with dialogue act labels as hidden classes
to be detected. We train classifiers on a corpus in which each utterance is hand-labeled
for dialogue acts. The features used for dialogue act interpretation derive from the
conversational context and from the act’smicrogrammar (Goodwin, 1996) (its char-microgrammar

acteristic lexical, grammatical, and prosodic properties):

1. Words and Collocations:Pleaseor would youis a good cue for aREQUEST, are
youfor YES-NO-QUESTIONS, detected viadialogue-specificN-gram grammars.

2. Prosody: Rising pitch is a good cue for aYES-NO-QUESTION, while declarative
utterances (likeSTATEMENTS) havefinal lowering: a drop in F0 at the end ofFinal lowering

the utterance. Loudness or stress can help distinguish theyeahthat is anAGREE-
MENT from theyeahthat is aBACKCHANNEL. We can extract acoustic correlates
of prosodic features like F0, duration, and energy.

3. Conversational Structure: A yeahfollowing a proposal is probably anAGREE-
MENT; ayeahafter anINFORM is likely a BACKCHANNEL. Drawing on the idea
of adjacency pairs (Schegloff, 1968; Sacks et al., 1974), wecan model conversa-
tional structure as a bigram of dialogue acts.

Formally our goal is to find the dialogue actd∗ that has the highest posterior prob-
ability P(d|o) given the observation of a sentence,

d∗ = argmax
d

P(d|o)

= argmax
d

P(d)P(o|d)

P(o)

= argmax
d

P(d)P(o|d)(24.21)

Making some simplifying assumptions (that the prosody of the sentencef and the
word sequenceW are independent, and that the prior of a dialogue act can be modeled
by the conditional given the previous dialogue act) we can estimate the observation
likelihood for a dialogue actd as in (24.22):

DRAFT

Section 24.5. Information-state & Dialogue Acts 857

P(o|d) = P(f |d)P(W|d)(24.22)

d∗ = argmax
d

P(d|dt−1)P(f |d)P(W|d)(24.23)

where

P(W|d) =
N

∏
i=2

P(wi |wi−1...wi−N+1,d)(24.24)

Training the prosodic predictor to computeP(f |d) has often been done with a deci-
sion tree. Shriberg et al. (1998), for example, built a CART tree to distinguish the four
dialogue actsSTATEMENT (S), YES-NO QUESTION (QY), DECLARATIVE-QUESTION

like CHECK (QD) andWH-QUESTION (QW) based on acoustic features such as the
slope of F0 at the end of the utterance, the average energy at different places in the
utterance, and various normalized duration measures. Fig.24.19 shows the decision
tree which gives the posterior probabilityP(d| f) of a dialogue actd type given a set of
acoustic featuresf . Note that the difference between S and QY toward the right ofthe
tree is based on the featurenorm f0 diff (normalized difference between mean F0
of end and penultimate regions), while the difference between QW and QD at the bot-
tom left is based onutt grad , which measures F0 slope across the whole utterance.

Since decision trees produce a posterior probabilityP(d| f), and equation (24.23)
requires a likelihoodP(f |d), we need to massage the output of the decision tree by
Bayesian inversion (dividing by the priorP(di) to turn it into a likelihood); we saw this
same process with the use of SVMs and MLPs instead of Gaussianclassifiers in speech
recognition in Sec. 10.4.2. After all our simplifying assumptions the resulting equation
for choosing a dialogue act tag would be:

d∗ = argmax
d

P(d)P(f |d)P(W|d)

= argmax
d

P(d|dt−1)
P(d| f)
P(d)

N

∏
i=2

P(wi |wi−1...wi−N+1,d)(24.25)

24.5.3 Detecting Correction Acts

In addition to general-purpose dialogue act interpretation, we may want to build special-
purpose detectors for particular acts. Let’s consider one such detector, for the recog-
nition of usercorrection of system errors. If a dialogue system misrecognizes anCorrection

utterance (usually as a result of ASR errors) the user will generally correct the error by
repeating themselves, or rephrasing the utterance. Dialogue systems need to recognize
that users are doing a correction, and then figure out what theuser is trying to correct,
perhaps by interacting with the user further.

Unfortunately, corrections are actuallyharderto recognize than normal sentences.
Swerts et al. (2000) found that corrections in the TOOT dialogue system were misrec-
ognized about twice as often (in terms of WER) as non-corrections. One reason for this

DRAFT

858 Chapter 24. Dialogue and Conversational Agents

QD S QY QW
 0.25 0.25 0.25 0.25

QW
 0.2561 0.1642 0.2732 0.3065

cont_speech_frames < 196.5

S
 0.2357 0.4508 0.1957 0.1178

cont_speech_frames >= 196.5

QW
 0.2327 0.2018 0.1919 0.3735

end_grad < 32.345

QY
 0.2978 0.09721 0.4181 0.1869

end_grad >= 32.345

S
 0.276 0.2811 0.1747 0.2683

f0_mean_zcv < 0.76806

QW
 0.1859 0.116 0.2106 0.4875

f0_mean_zcv >= 0.76806

QW
 0.2935 0.1768 0.2017 0.328

cont_speech_frames_n < 98.388

S
 0.2438 0.4729 0.125 0.1583

cont_speech_frames_n >= 98.388

QW
 0.2044 0.1135 0.1362 0.5459

utt_grad < -36.113

QD
 0.3316 0.2038 0.2297 0.2349

utt_grad >= -36.113

QW
 0.3069 0.08995 0.1799 0.4233

stdev_enr_utt < 0.02903

S
 0.2283 0.5668 0.1115 0.09339

stdev_enr_utt >= 0.02903

S
 0.2581 0.2984 0.2796 0.164

cont_speech_frames_n < 98.334

S
 0.2191 0.5637 0.1335 0.08367

cont_speech_frames_n >= 98.334

S
 0.3089 0.3387 0.1419 0.2105

norm_f0_diff < 0.064562

QY
 0.1857 0.241 0.4756 0.09772

norm_f0_diff >= 0.064562

S
 0.3253 0.4315 0.1062 0.137

f0_mean_zcv < 0.76197

QW
 0.2759 0.1517 0.2138 0.3586

f0_mean_zcv >= 0.76197

Figure 24.19 Decision tree for classifyingDECLARATIVE QUESTIONS (QD), STATEMENT (S), YES-NO QUES-
TIONS (QY), andWH-QUESTIONS(QW), after Shriberg et al. (1998). Each node in the tree shows four probabilities,
one for each of the four dialogue acts in the order QD, S, QY, QW; the most likely of the four is shown as the label for
the node. Note that questions are shorter than statements (cont speechframes), that QY’s rise at the end (endgrad),
and that QD’s rise throughout the utterance (uttgrad).

is that speakers use a very different prosodic style calledhyperarticulation for correc-Hyperarticulation

tions. In hyperarticulated speech, some part of the utterance has exaggerated energy,
duration, or F0 contours, such asI said BAL-TI-MORE, not Boston(Wade et al., 1992;
Oviatt et al., 1998; Levow, 1998; Hirschberg et al., 2001).

Speakers use various strategies to make corrections; Swerts et al. (2000) catego-
rize these as repetition (REP), paraphrase (PAR), adding content (ADD), and omitting
content (OMIT), as shown in Fig. 24.5.3. They found that mostcorrections were repe-
titions and omissions rather than paraphrases.

Various machine learning classifiers have been applied to the problem of detecting
correction acts. Useful features include lexical information (words like “no”, “correc-
tion”, “I don’t”, swear words), prosodic and hyperarticulation features (increases in
F0 range, pause duration, and word duration, generally normalized by the values for
previous sentences), features indicating utterance length, ASR features (confidence,
language model probability), and various dialogue features (Levow, 1998; Hirschberg
et al., 2001; Bulyko et al., 2005).

In addition to correction detection, a conversational agent also needs appropriate
control or update rules in the dialogue manager (Bulyko et al., 2005).

24.5.4 Generating Dialogue Acts: Confirmation and Rejection

Deciding which dialogue acts to generate has received much less attention than dia-
logue act interpretation. Stent (2002) is one recent model of dialogue act generation

DRAFT

Section 24.5. Information-state & Dialogue Acts 859

Turn Corr
Type

S On which day of the week do you want to leave?
S Sorry, I didn’t hear anything from you. Please tell me your departure date
U Um tomorrow NA
S You can say the departure date. For example, you can say ’today’ or ’tomorrow’.

Or you can say ’Monday’, ’Tuesday’, ’Wednesday’...
U Tomorrow REP
S You can say the departure date. For example, you can say ’today’ or ’tomorrow’.

Or you can say ’Monday’, ’Tuesday’, ’Wednesday’...
U Saturday PAR
S Do you want to leave on Saturday?
U Yes
S What time do you want to leave?
U Eight o’clock A M
S Do you want to leave around ten oclock p-m
U Eight o’clock OMIT
S Do you want to leave around ten oclock p-m
U No OMIT
S What time do you want to leave?
U Eight o’clock A M ADD

Figure 24.20 Dialogue fragment from the TOOT system labeled for correction type, from
Swerts et al. (2000).

Cue Turn-taking acts signaled
um KEEP-TURN, TAKE-TURN, RELEASE-TURN
<lipsmack>, <click>, so, uh KEEP-TURN, TAKE-TURN
you know, isn’t that so ASSIGN-TURN

Figure 24.21 Language used to perform turn-taking acts, from Stent (2002).

in the TRIPS system (Allen et al., 2001), based on Conversation Acts (page 855) and
the BDI model to be described in Sec. 24.7. Stent uses a set of update rules for content
planning. One such rule says that if a user has just released the turn, the system can
perform a TAKE-TURN act. Another rule says that if the systemhas a problem-solving
need to summarize some information for the user, then it should use the ASSERT con-
versation act with that information as the semantic content. The content is then mapped
into words using the standard techniques of natural language generation systems (see
e.g., Reiter and Dale (2000)). After an utterance is generated, the information state
(discourse context) is updated with its words, syntactic structure, semantic form, and
semantic and conversation act structure. We will sketch in Sec. 24.7 some of the issues
in modeling and planning that make generation a tough ongoing research effort.

Stent showed that a crucial issue in dialogue generation that doesn’t occur in mono-
logue text generation is turn-taking acts. Fig. 24.5.4 shows some example of the turn-
taking function of various linguistic forms, from her labeling of conversation acts in
the Monroe corpus.

A focus of much work on dialogue act generation is the task of generating the
confirmation andrejection acts discussed in Sec. 24.2.5. Because this task is often
solved by probabilistic methods, we’ll begin this discussion here, but continue it in the

DRAFT

860 Chapter 24. Dialogue and Conversational Agents

following section.
For example, while early dialogue systems tended to fix the choice ofexplicit ver-

susimplicit confirmation, recent systems treat the question of how to confirm more like
a dialogue act generation task, in which the confirmation strategy is adaptive, changing
from sentence to sentence.

Various factors can be included in the information-state and then used as features to
a classifier in making this decision. For example theconfidencethat the ASR system
assigns to an utterance can be used by explicitly confirming low-confidence sentences
(Bouwman et al., 1999; San-Segundo et al., 2001; Litman et al., 1999; Litman and Pan,
2002). Recall from page 10.1 that confidence is a metric that the speech recognizer can
assign to its transcription of a sentence to indicate how confident it is in that transcrip-
tion. Confidence is often computed from the acoustic log-likelihood of the utterance
(greater probability means higher confidence), but prosodic features can also be used
in confidence prediction. For example utterances preceded by longer pauses, or with
large F0 excursions, or longer durations are likely to be misrecognized (Litman et al.,
2000).

Another common feature in confirmation is thecostof making an error. Thus for
example explicit confirmation is common before actually booking a flight or moving
money in an account (Kamm, 1994; Cohen et al., 2004).

A system can also choose toreject an utterance when the ASR confidence is so
low, or the best interpretation is so semantically ill-formed, that the system can be
relatively sure that the user’s input was not recognized at all. Systems thus might have
a three-tiered level of confidence; below a certain confidence threshold, an utterance
is rejected. Above the threshold, it is explicitly confirmed. If the confidence is even
higher, the utterance is implicitly confirmed.

Instead of rejecting or confirming entire utterances, it would be nice to be able to
clarify only the parts of the utterance that the system didn’t understand. If a system can
assign confidence at a more fine-grained level than the utterance, it can clarify such
individual elements viaclarification subdialogues.Clarification

Much of the recent work on generating dialogue acts has been within the Markov
Decision Process framework, which we therefore turn to next.

24.6 Markov Decision Process Architecture

One of the fundamental insights of the information-state approach to dialogue architec-
ture is that the choice of conversational actions is dynamically dependent on the current
information state. The previous section discussed how dialogue systems could change
confirmation and rejection strategies based on context. Forexample if the ASR or NLU
confidence is low, we might choose to do explicit confirmation. If confidence is high,
we might chose implicit confirmation, or even decide not to confirm at all. Using a
dynamic strategy lets us choose the action which maximizes dialogue success, while
minimizing costs. This idea of changing the actions of a dialogue system based on
optimizing some kinds of rewards or costs is the fundamentalintuition behind model-
ing dialogue as aMarkov decision process. This model extends the information-stateMarkov decision

process

DRAFT
Section 24.6. Markov Decision Process Architecture 861

model by adding a probabilistic way of deciding on the properactions given the current
state.

A Markov decision process orMDP is characterized by a set ofstatesSan agentMDP

can be in, a set ofactions A the agent can take, and areward r(a,s) that the agent
receives for taking an action in a state. Given these factors, we can compute apolicy
π which specifies which actiona the agent should take when in a given states, so as to
receive the best reward. To understand each of these components, we’ll need to look
at a tutorial example in which the state space is extremely reduced. Thus we’ll return
to the simple frame-and-slot world, looking at a pedagogical MDP implementation
taken from Levin et al. (2000). Their tutorial example is a “Day-and-Month” dialogue
system, whose goal is to get correct values of day and month for a two-slot frame via
the shortest possible interaction with the user.

In principle, a state of an MDP could include any possible information about the
dialogue, such as the complete dialogue history so far. Using such a rich model of
state would make the number of possible states extraordinarily large. So a model of
state is usually chosen which encodes a much more limited setof information, such as
the values of the slots in the current frame, the most recent question asked to the user,
the users most recent answer, the ASR confidence, and so on. For the Day-and-Month
example let’s represent the state of the system as the valuesof the two slotsdayand
month. There are a total of 411 states (366 states with a day and month (counting leap
year), 12 states with a month but no day (d=0, m= 1,2,...12), 31 states with a day but
no month (m=0, d=1,2,...31), and a special initial statesi and final statesf .

Actions of a MDP dialogue system might include generating particular speech acts,
or performing a database query to find out information. For the Day-and-Month exam-
ple, Levin et al. (2000) propose the following actions:

• ad: a question asking for the day
• am: a question asking for the month
• adm: a question asking for both the day and the month
• af : a final action submitting the form and terminating the dialogue

Since the goal of the system is to get the correct answer with the shortest interaction,
one possible reward function for the system would integratethree terms:

R=−(wini +wene+wf nf)(24.26)

The termni is the number of interactions with the user,ne is the number of errors,
nf is the number of slots which are filled (0, 1, or 2), and thews are weights.

Finally, a dialogue policyπ specifies which actions to apply in which state. Con-
sider two possible policies: (1) asking for day and month separately, and (2) asking for
them together. These might generate the two dialogues shownin Fig. 24.22.

In policy 1, the action specified for the no-date/no-month state is to ask for a day,
while the action specified for any of the 31 states where we have a day but not a month
is to ask for a month. In policy 2, the action specified for the no-date/no-month state
is to ask an open-ended question (Which date) to get both a day and a month. The two
policies have different advantages; an open prompt can leadto shorter dialogues but
is likely to cause more errors, while a directive prompt is slower but less error-prone.
Thus the optimal policy depends on the values of the weightsw, and also on the error

DRAFT

862 Chapter 24. Dialogue and Conversational Agents���
m

d=D
m=0

d=D
m=M

d=-1
m=-1

d=D
m=M

d=-1
m=-1

d=0
m=0

Which day? Which month?

What date? Goodbye.

Goodbye.

Policy 1 (directive)

Policy 2 (open)

c1 = -3wi + 2pdwe

c2 = -2wi + 2powe

Figure 24.22 Two policies for getting a month and a day. After Levin et al. (2000).

rates of the ASR component. Let’s callpd the probability of the recognizer making
an error interpreting a month or a day value after a directiveprompt. The (presumably
higher) probability of error interpreting a month or day value after an open prompt
we’ll call po. The reward for the first dialogue in Fig. 24.22 is thus−3×wi +2× pd×
we. The reward for the second dialogue in Fig. 24.22 is−2×wi + 2× po×we. The
directive prompt policy, policy 1, is thus better than policy 2 when the improved error
rate justifies the longer interaction, i.e., whenpd− po > wi

2we
.

In the example we’ve seen so far, there were only two possibleactions, and hence
only a tiny number of possible policies. In general, the number of possible actions,
states, and policies is quite large, and so the problem of finding the optimal policyπ∗
is much harder.

Markov decision theory together with classical reinforcement learning gives us a
way to think about this problem. First, generalizing from Fig. 24.22, we can think of
any particular dialogue as a trajectory in state space:

s1→a1,r1 s2→a2,r2 s3→a3,r3 · · ·(24.27)

The best policyπ∗ is the one with the greatest expected reward over all trajectories.
What is the expected reward for a given state sequence? The most common way to as-
sign utilities or rewards to sequences is to usediscounted rewards. Here we computeDiscounted

reward
the expected cumulative rewardQ of a sequence as a discounted sum of the utilities of
the individual states:

Q([s0,a0,s1,a1,s2,a2 · · ·]) = R(s0,a0)+ γR(s1,a1)+ γ2R(s2,a2)+ · · · ,(24.28)

The discount factorγ is a number between 0 and 1. This makes the agent care
more about current rewards than future rewards; the more future a reward, the more
discounted its value.

Given this model, it is possible to show that the expected cumulative rewardQ(s,a)
for taking a particular action from a particular state is thefollowing recursive equation
called theBellman equation:Bellman equation

Q(s,a) = R(s,a)+ γ ∑
s′

P(s′|s,a)max
a′

Q(s′,a′)(24.29)

DRAFT
Section 24.6. Markov Decision Process Architecture 863

What the Bellman equation says is that the expected cumulative reward for a given
state/action pair is the immediate reward for the current state plus the expected dis-
counted utility of all possible next statess′, weighted by the probability of moving to
that states′, and assuming once there we take the optimal actiona′.

Eq. 24.29 makes use of two parameters. We need a model ofP(s′|s,a), i.e. how
likely a given state/action pair(s,a) is to lead to a new states′. And we also need
a good estimate ofR(s,a). If we had lots of labeled training data, we could simply
compute both of these from labeled counts. For example, withlabeled dialogues, we
could simply count how many times we were in a given states, and out of that how
many times we took actiona to get to states′, to estimateP(s′|s,a). Similarly, if we
had a hand-labeled reward for each dialogue, we could build amodel ofR(s,a).

Given these parameters, it turns out that there is an iterative algorithm for solving
the Bellman equation and determining proper Q values, thevalue iteration algorithmValue iteration

(Sutton and Barto, 1998; Bellman, 1957). We won’t present this here, but see Chapter
17 of Russell and Norvig (2002) for the details of the algorithm as well as further
information on Markov Decision Processes.

How do we get enough labeled training data to set these parameters? This is espe-
cially worrisome in any real problem, where the number of statess is extremely large.
Two methods have been applied in the past. The first is to carefully hand-tune the states
and policies so that there are a very small number of states and policies that need to
be set automatically. In this case we can build a dialogue system which explore the
state space by generating random conversations. Probabilities can then be set from this
corpus of conversations. The second is to build a simulated user. The user interacts
with the system millions of times, and the system learns the state transition and reward
probabilities from this corpus.

The first approach, using real users to set parameters in a small state space, was
taken by Singh et al. (2002). They used reinforcement learning to make a small set of
optimal policy decisions. Their NJFun system learned to choose actions which varied
the initiative (system, user, or mixed) and the confirmationstrategy (explicit or none).
The state of the system was specified by values of 7 features including which slot in
the frame is being worked on (1-4), the ASR confidence value (0-5), how many times
a current slot question had been asked, whether a restrictive or non-restrictive gram-
mar was used, and so on. The result of using only 7 features with a small number of
attributes resulted in a small state space (62 states). Eachstate had only 2 possible
actions (system versus user initiative when asking questions, explicit versus no con-
firmation when receiving answers). They ran the system with real users, creating 311
conversations. Each conversation had a very simple binary reward function; 1 if the
user completed the task (finding specified museums, theater,winetasting in the New
Jersey area), 0 if the user did not. The system successful learned a good dialogue pol-
icy (roughly, start with user initiative, then back of to either mixed or system initiative
when reasking for an attribute; confirm only at lower confidence values; both initiative
and confirmation policies, however, are different for different attributes). They showed
that their policy actually was more successful based on various objective measures than
many hand-designed policies reported in the literature.

The simulated user strategy was taken by Levin et al. (2000),in their MDP model
with reinforcement learning in the ATIS task. Their simulated user was a generative

DRAFT

864 Chapter 24. Dialogue and Conversational Agents

stochastic model that given the system’s current state and actions, produces a frame-slot
representation of a user response. The parameters of the simulated user were estimated
from a corpus of ATIS dialogues. The simulated user was then used to interact with the
system for tens of thousands of conversations, leading to anoptimal dialogue policy.

While the MDP architecture offers a powerful new way of modeling dialogue be-
havior, it relies on the problematic assumption that the system actually knows what
state it is in. This is of course not true in a number of ways; the system never knows
the true internal state of the user, and even the state in the dialogue may be obscured
by speech recognition errors. Recent attempts to relax thisassumption have relied on
Partially Observable Markov Decision Processes, or POMDPs(sometimes pronounced
‘pom-deepeez’). In a POMDP, we model the user output as an observed signal gen-
erated from yet another hidden variable. There are also problems with MDPs and
POMDPs related to computational complexity and simulations which aren’t reflective
of true user behavior; See the end notes for references.

24.7 Advanced: Plan-based Dialogue Agents

One of the earliest models of conversational agent behavior, and also one of the most
sophisticated, is based on the use of AI planning techniques. For example, the Rochester
TRIPS agent (Allen et al., 2001) simulates helping with emergency management, plan-
ning where and how to supply ambulances or personnel in a simulated emergency sit-
uation. The same planning algorithms that reason how to get an ambulance from point
A to point B can be applied to conversation as well. Since communication and conver-
sation are just special cases of rational action in the world, these actions can be planned
like any other. So an agent seeking to find out some information can come up with the
plan of asking the interlocutor for the information. An agent hearing an utterance can
interpret a speech act by running the planner ‘in reverse’, using inference rules to infer
what plan the interlocutor might have had to cause them to saywhat they said.

Using plans to generate and interpret sentences in this way require that the planner
have good models of itsbeliefs, desires, andintentions (BDI), as well as those of the
interlocutor. Plan-based models of dialogue are thus oftenreferred to asBDI models.BDI

BDI models of dialogue were first introduced by Allen, Cohen,Perrault, and their col-
leagues and students in a number of influential papers showing how speech acts could
be generated (Cohen and Perrault, 1979), and interpreted (Perrault and Allen, 1980;
Allen and Perrault, 1980). At the same time, Wilensky (1983)introduced plan-based
models of understanding as part of the task of interpreting stories. In another related
line of research, Grosz and her colleagues and students showed how using similar no-
tions of intention and plans allowed ideas of discourse structure and coherence to be
applied to dialogue.

24.7.1 Plan-Inferential Interpretation and Production

Let’s first sketch out the ideas of plan-based comprehensionand production. How
might a plan-based agent act as the human travel agent to understand sentence C2 in

DRAFT

Section 24.7. Advanced: Plan-based Dialogue Agents 865

the dialogue repeated below?

C1: I need to travel in May.

A1: And, what day in May did you want to travel?

C2: OK uh I need to be there for a meeting that’s from the 12th to the 15th.

The Gricean principle of Relevance can be used to infer that the client’s meeting is
relevant to the flight booking. The system may know that one precondition for having
a meeting (at least before web conferencing) is being at the place where the meeting is
in. One way of being at a place is flying there, and booking a flight is a precondition for
flying there. The system can follow this chain of inference, abducing that user wants
to fly on a date before the 12th.

Next, consider how our plan-based agent could act as the human travel agent to
produce sentence A1 in the dialogue above. The planning agent would reason that in
order to help a client book a flight it must know enough information about the flight to
book it. It reasons that knowing the month (May) is insufficient information to specify
a departure or return date. The simplest way to find out the needed date information is
to ask the client.

In the rest of this section, we’ll flesh out the sketchy outlines of planning for un-
derstanding and generation using Perrault and Allen’s formal definitions of belief and
desire in the predicate calculus. Reasoning about belief isdone with a number of axiom
schemas inspired by Hintikka (1969). We’ll represent “S believes the propositionP”
as the two-place predicateB(S,P), with axiom schemas such asB(A,P)∧B(A,Q)⇒
B(A,P∧Q). Knowledge is defined as “true belief”;S knows that Pwill be represented
asKNOW(S,P), defined as KNOW(S,P)≡ P∧B(S,P).

The theory of desire relies on the predicate WANT. If an agentSwantsP to be true,
we sayWANT(S,P), or W(S,P) for short. P can be a state or the execution of some
action. Thus if ACT is the name of an action,W(S,ACT(H)) means thatSwantsH to
do ACT. The logic of WANT relies on its own set of axiom schemasjust like the logic
of belief.

The BDI models also require an axiomatization of actions andplanning; the sim-
plest of these is based on a set ofaction schemas based on the simple AI planningAction schema

model STRIPS (Fikes and Nilsson, 1971). Each action schema has a set of parameters
with constraintsabout the type of each variable, and three parts:

• Preconditions:Conditions that must already be true to perform the action.

• Effects:Conditions that become true as a result of performing the action.

• Body:A set of partially ordered goal states that must be achieved in performing
the action.

In the travel domain, for example, the action of agentA booking flightF1 for clientC
might have the following simplified definition:

DRAFT

866 Chapter 24. Dialogue and Conversational Agents

BOOK-FLIGHT(A,C,F) :
Constraints: Agent(A)∧ Flight(F)∧ Client(C)
Precondition: Know(A,depart-date(F)) ∧ Know(A,depart-time(F))

∧ Know(A,origin(F)) ∧ Know(A,flight-type(F))
∧ Know(A,destination(F)) ∧ Has-Seats(F) ∧
W(C,(BOOK(A,C,F)))∧ . . .

Effect: Flight-Booked(A,C,F)
Body: Make-Reservation(A,F,C)

This same kind of STRIPS action specification can be used for speech acts. IN-
FORM is the speech act of informing the hearer of some proposition, based on Grice’s
(1957) idea that a speaker informs the hearer of something merely by causing the hearer
to believe that the speaker wants them to know something:

INFORM(S,H,P):
Constraints: Speaker(S)∧ Hearer(H)∧ Proposition(P)
Precondition: Know(S,P)∧W(S, INFORM(S, H, P))
Effect: Know(H,P)
Body: B(H,W(S,Know(H,P)))

REQUEST is the directive speech act for requesting the hearer to perform some
action:

REQUEST(S,H,ACT):
Constraints: Speaker(S)∧ Hearer(H)∧ ACT(A) ∧ H is agent of ACT
Precondition: W(S,ACT(H))
Effect: W(H,ACT(H))
Body: B(H,W(S,ACT(H)))

Let’s now see how a plan-based dialogue system might interpret the sentence:

C2: I need to be there for a meeting that’s from the 12th to the 15th.

We’ll assume the system has the BOOK-FLIGHT plan mentioned above. In ad-
dition, we’ll need knowledge about meetings and getting to them, in the form of the
MEETING, FLY-TO, and TAKE-FLIGHT plans, sketched broadly below:

MEETING(P,L,T1,T2):
Constraints: Person(P)∧ Location (L)∧ Time (T1)∧ Time (T2)∧ Time (TA)
Precondition: At (P, L, TA)

Before (TA, T1)
Body: ...

FLY-TO(P, L, T):
Constraints: Person(P)∧ Location (L)∧ Time (T)
Effect: At (P, L, T)
Body: TAKE-FLIGHT(P, L, T)

DRAFT

Section 24.7. Advanced: Plan-based Dialogue Agents 867

TAKE-FLIGHT(P, L, T):
Constraints: Person(P)∧ Location (L)∧ Time (T)∧ Flight (F)∧ Agent (A)
Precondition: BOOK-FLIGHT (A, P, F)

Destination-Time(F) = T
Destination-Location(F) = L

Body: ...

Now let’s assume that an NLU module returns a semantics for the client’s utterance
which (among other things) includes the following semanticcontent:

MEETING (P, ?L, T1, T2)
Constraints: P = Client∧ T1 = May 12∧ T2 = May 15

Our plan-based system now has two plans established, one MEETING plan from
this utterance, and one BOOK-FLIGHT plan from the previous utterance. The system
implicitly uses the Gricean Relevance intuition to try to connect them. Since BOOK-
FLIGHT is a precondition for TAKE-FLIGHT, the system may hypothesize (infer) that
the user is planning a TAKE-FLIGHT. Since TAKE-FLIGHT is in the body of FLY-
TO, the system further infers a FLY-TO plan. Finally, since the effect of FLY-TO is
a precondition of the MEETING, the system can unify each of the people, locations,
and times of all of these plans. The result will be that the system knows that the client
wants to arrive at the destination before May 12th.

Let’s turn to the details of our second example:

C1: I need to travel in May.

A1: And, what day in May did you want to travel?

How does a plan-based agent know to ask question A1? This knowledge comes
from the BOOK-FLIGHT plan, whose preconditions were that the agent know a vari-
ety of flight parameters including the departure date and time, origin and destination
cities, and so forth. Utterance C1 contains the origin city and partial information about
the departure date; the agent has to request the rest. A plan-based agent would use an
action schema like REQUEST-INFO to represent a plan for asking information ques-
tions (simplified from Cohen and Perrault (1979)):

REQUEST-INFO(A,C,I) :
Constraints: Agent(A)∧ Client(C)
Precondition: Know(C,I)
Effect: Know(A,I)
Body: B(C,W(A,Know(A,I)))

Because the effects of REQUEST-INFO match each precondition of BOOK-FLIGHT,
the agent can use REQUEST-INFO to achieve the missing information.

24.7.2 The Intentional Structure of Dialogue

In Sec. 21.2 we introduced the idea that the segments of a discourse are related by
coherence relationslike Explanation or Elaboration which describe theinforma-
tional relation between discourse segments. The BDI approach to utterance interpreta-
tion gives rise to another view of coherence which is particularly relevant for dialogue,

DRAFT

868 Chapter 24. Dialogue and Conversational Agents

the intentional approach (Grosz and Sidner, 1986). According to this approach, what
makes a dialogue coherent is itsintentional structure , the plan-based intentions of theIntentional

structure
speaker underlying each utterance.

These intentions are instantiated in the model by assuming that each discourse has
an underlying purpose held by the person who initiates it, called thediscourse pur-
pose(DP). Each discourse segment within the discourse has a corresponding purpose,Discourse

purpose

a discourse segment purpose(DSP), which has a role in achieving the overall DP.Discourse
segment purpose

Possible DPs/DSPs include intending that some agent intendto perform some physical
task, or that some agent believe some fact.

As opposed to the larger sets of coherence relations used in informational accounts
of coherence, Grosz and Sidner propose only two such relations: dominance and
satisfaction-precedence. DSP1 dominates DSP2 if satisfying DSP2 is intended to pro-
vide part of the satisfaction of DSP1. DSP1 satisfaction-precedes DSP2 if DSP1 must
be satisfied before DSP2.

C1: I need to travel in May.
A1: And, what day in May did you want to travel?
C2: OK uh I need to be there for a meeting that’s from the 12th to the 15th.
A2: And you’re flying into what city?
C3: Seattle.
A3: And what time would you like to leave Pittsburgh?
C4: Uh hmm I don’t think there’s many options for non-stop.
A4: Right. There’s three non-stops today.
C5: What are they?
A5: The first one departs PGH at 10:00am arrives Seattle at 12:05their time. The

second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last
flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

C6: OK I’ll take the 5ish flight on the night before on the 11th.
A6: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm,U.S. Air flight

115.
C7: OK.

Figure 24.23 A fragment from a telephone conversation between a client (C) and a travel
agent (A) (repeated from Fig. 24.4).

Consider the dialogue between a client (C) and a travel agent(A) that we saw
earlier, repeated here in Fig. 24.23. Collaboratively, thecaller and agent successfully
identify a flight that suits the caller’s needs. Achieving this joint goal requires that
a top-level discourse intention be satisfied, listed as I1 below, in addition to several
intermediate intentions that contributed to the satisfaction of I1, listed as I2-I5:

I1: (Intend C (Intend A (A find a flight for C)))

I2: (Intend A (Intend C (Tell C A departure date)))

I3: (Intend A (Intend C (Tell C A destination city)))

I4: (Intend A (Intend C (Tell C A departure time)))

I5: (Intend C (Intend A (A find a nonstop flight for C)))

DRAFT

Section 24.8. Summary 869

Intentions I2–I5 are all subordinate to intention I1, as they were all adopted to meet pre-
conditions for achieving intention I1. This is reflected in the dominance relationships
below:

I1 dominates I2∧ I1 dominates I3∧ I1 dominates I4∧ I1 dominates I5

Furthermore, intentions I2 and I3 needed to be satisfied before intention I5, since the
agent needed to know the departure date and destination in order to start listing nonstop
flights. This is reflected in the satisfaction-precedence relationships below:

I2 satisfaction-precedes I5∧ I3 satisfaction-precedes I5

The dominance relations give rise to the discourse structure depicted in Fig. 24.24.
Each discourse segment is numbered in correspondence with the intention number that
serves as its DP/DSP.

DS1

C1 DS2 DS3 DS4 DS5

A1–C2 A2–C3 A3 C4–C7

Figure 24.24 Discourse Structure of the Flight Reservation Dialogue

Intentions and their relationships give rise to a coherent discourse based on their
role in the overallplan that the caller is inferred to have. We assume that the caller
and agent have the plan BOOK-FLIGHT described on page 866. This plan requires
that the agent know the departure time and date and so on. As wediscussed above, the
agent can use the REQUEST-INFO action scheme from page 867 toask the user for
this information.

Subsidiary discourse segments are also calledsubdialogues; DS2 and DS3 in par-Subdialogue

ticular areinformation-sharing (Chu-Carroll and Carberry, 1998)knowledge precon-
dition subdialogues (Lochbaum et al., 1990; Lochbaum, 1998), since they are initiated
by the agent to help satisfy preconditions of a higher-levelgoal.

Algorithms for inferring intentional structure in dialogue work similarly to algo-
rithms for inferring dialogue acts, either employing the BDI model (e.g., Litman, 1985;
Grosz and Sidner, 1986; Litman and Allen, 1987; Carberry, 1990; Passonneau and Lit-
man, 1993; Chu-Carroll and Carberry, 1998), or machine learning architectures based
on cue phrases (Reichman, 1985; Grosz and Sidner, 1986; Hirschberg and Litman,
1993), prosody (Hirschberg and Pierrehumbert, 1986; Groszand Hirschberg, 1992;
Pierrehumbert and Hirschberg, 1990; Hirschberg and Nakatani, 1996), and other cues.

24.8 Summary

Conversational agentsare a crucial speech and language processing application that
are already widely used commercially. Research on these agents relies crucially on an
understanding of human dialogue or conversational practices.

DRAFT

870 Chapter 24. Dialogue and Conversational Agents

• Dialogue systems generally have 5 components: speech recognition, natural lan-
guage understanding, dialogue management, natural language generation, and
speech synthesis. They may also have a task manager specific to the task do-
main.
• Dialogue architectures for conversational agents includefinite-state systems,frame-

basedproduction systems, and advanced systems such as information-state, Markov
Decision Processes, andBDI (belief-desire-intention) models.
• Turn-taking, grounding, conversational structure, implicature, and initiative are

crucial human dialogue phenomena that must also be dealt with in conversational
agents.
• Speaking in dialogue is a kind of action; these acts are referred to as speech acts

or dialogue acts. Models exist for generating and interpreting these acts.

Bibliographical and Historical Notes
Early work on speech and language processing had very littleemphasis on the study
of dialogue. The dialogue manager for the simulation of the paranoid agent PARRY
(Colby et al., 1971), was a little more complex. Like ELIZA, it was based on a pro-
duction system, but where ELIZA’s rules were based only on the words in the user’s
previous sentence, PARRY’s rules also rely on global variables indicating its emotional
state. Furthermore, PARRY’s output sometimes makes use of script-like sequences of
statements when the conversation turns to its delusions. For example, if PARRY’s
angervariable is high, he will choose from a set of “hostile” outputs. If the input men-
tions his delusion topic, he will increase the value of hisfear variable and then begin
to express the sequence of statements related to his delusion.

The appearance of more sophisticated dialogue managers awaited the better un-
derstanding of human-human dialogue. Studies of the properties of human-human
dialogue began to accumulate in the 1970’s and 1980’s. The Conversation Analy-
sis community (Sacks et al., 1974; Jefferson, 1984; Schegloff, 1982) began to study
the interactional properties of conversation. Grosz’s (1977b) dissertation significantly
influenced the computational study of dialogue with its introduction of the study of
dialogue structure, with its finding that “task-oriented dialogues have a structure that
closely parallels the structure of the task being performed” (p. 27), which led to her
work on intentional and attentional structure with Sidner.Lochbaum et al. (2000) is a
good recent summary of the role of intentional structure in dialogue. The BDI model
integrating earlier AI planning work (Fikes and Nilsson, 1971) with speech act theory
(Austin, 1962; Gordon and Lakoff, 1971; Searle, 1975a) was first worked out by Co-
hen and Perrault (1979), showing how speech acts could be generated, and Perrault and
Allen (1980) and Allen and Perrault (1980), applying the approach to speech-act inter-
pretation. Simultaneous work on a plan-based model of understanding was developed
by Wilensky (1983) in the Schankian tradition.

Probabilistic models of dialogue act interpretation were informed by linguistic
work which focused on the discourse meaning of prosody (Sag and Liberman, 1975;

DRAFT

Section 24.8. Summary 871

Pierrehumbert, 1980), by Conversation Analysis work on microgrammar (e.g. Good-
win, 1996), by work such as Hinkelman and Allen (1989), who showed how lexical and
phrasal cues could be integrated into the BDI model, and thenworked out at a number
of speech and dialogue labs in the 1990’s (Waibel, 1988; Dalyand Zue, 1992; Kompe
et al., 1993; Nagata and Morimoto, 1994; Woszczyna and Waibel, 1994; Reithinger
et al., 1996; Kita et al., 1996; Warnke et al., 1997; Chu-Carroll, 1998; Stolcke et al.,
1998; Taylor et al., 1998; Stolcke et al., 2000).

Modern dialogue systems drew on research at many different labs in the 1980’s
and 1990’s. Models of dialogue as collaborative behavior were introduced in the late
1980’s and 1990’s, including the ideas of common ground (Clark and Marshall, 1981),
reference as a collaborative process (Clark and Wilkes-Gibbs, 1986), and models of
joint intentions (Levesque et al., 1990), andshared plans(Grosz and Sidner, 1980).
Related to this area is the study ofinitiative in dialogue, studying how the dialogue
control shifts between participants (Walker and Whittaker, 1990; Smith and Gordon,
1997; Chu-Carroll and Brown, 1997).

A wide body of dialogue research came out of AT&T and Bell Laboratories around
the turn of the century, including much of the early work on MDP dialogue systems
as well as fundamental work on cue-phrases, prosody, and rejection and confirmation.
Work on dialogue acts and dialogue moves drew from a number ofsources, including
HCRC’s Map Task (Carletta et al., 1997b), and the work of James Allen and his col-
leagues and students, for example Hinkelman and Allen (1989), showing how lexical
and phrasal cues could be integrated into the BDI model of speech acts, and Traum
(2000), Traum and Hinkelman (1992), and from Sadek (1991).

Much recent academic work in dialogue focuses on multimodalapplications (John-
ston et al., 2007; Niekrasz and Purver, 2006, inter alia), onthe information-state model
(Traum and Larsson, 2003, 2000) or on reinforcement learning architectures including
POMDPs (Roy et al., 2000; Young, 2002; Lemon et al., 2006; Williams and Young,
2005, 2000). Work in progress on MDPs and POMDPs focuses on computational com-
plexity (they currently can only be run on quite small domains with limited numbers of
slots), and on improving simulations to make them more reflective of true user behav-
ior. Alternative algorithms include SMDPs (Cuayáhuitl etal., 2007). See Russell and
Norvig (2002) and Sutton and Barto (1998) for a general introduction to reinforcement
learning.

Recent years have seen the widespread commercial use of dialogue systems, often
based on VoiceXML. Some more sophisticated systems have also seen deployment. For
exampleClarissa, the first spoken dialogue system used in space, is a speech-enabledClarissa

procedure navigator that was used by astronauts on the International Space Station
(Rayner and Hockey, 2004; Aist et al., 2002). Much research focuses on more mundane
in-vehicle applications in cars Weng et al. (2006,inter alia). Among the important
technical challenges in embedding these dialogue systems in real applications are good
techniques for endpointing (deciding if the speaker is donetalking) (Ferrer et al., 2003)
and for noise robustness.

Good surveys on dialogue systems include Harris (2005), Cohen et al. (2004),
McTear (2002, 2004), Sadek and De Mori (1998), Delgado and Araki (2005), and
the dialogue chapter in Allen (1995).

DRAFT

872 Chapter 24. Dialogue and Conversational Agents

Exercises
24.1 List the dialogue act misinterpretations in theWho’s On Firstroutine at the be-

ginning of the chapter.

24.2 Write a finite-state automaton for a dialogue manager for checking your bank
balance and withdrawing money at an automated teller machine.

24.3 Dispreferred responses (for example turning down a request) are usually signaled
by surface cues, such as significant silence. Try to notice the next time you or
someone else utters a dispreferred response, and write downthe utterance. What
are some other cues in the response that a system might use to detect a dispre-
ferred response? Consider non-verbal cues like eye-gaze and body gestures.

24.4 When asked a question to which they aren’t sure they know the answer, peo-
ple display their lack of confidence via cues that resemble other dispreferred
responses. Try to notice some unsure answers to questions. What are some of
the cues? If you have trouble doing this, read Smith and Clark(1993) and listen
specifically for the cues they mention.

24.5 Build a VoiceXML dialogue system for giving the current timearound the world.
The system should ask the user for a city and a time format (24 hour, etc) and
should return the current time, properly dealing with time zones.

24.6 Implement a small air-travel help system based on text input. Your system should
get constraints from the user about a particular flight that they want to take,
expressed in natural language, and display possible flightson a screen. Make
simplifying assumptions. You may build in a simple flight database or you may
use a flight information system on the web as your backend.

24.7 Augment your previous system to work with speech input via VoiceXML. (or
alternatively, describe the user interface changes you would have to make for it
to work via speech over the phone). What were the major differences?

24.8 Design a simple dialogue system for checking your email overthe telephone.
Implement in VoiceXML.

24.9 Test your email-reading system on some potential users. Choose some of the
metrics described in Sec. 24.4.2 and evaluate your system.

	PART V: Applications
	24 Dialogue and Conversational Agents

