PRELIMINARY PROOFS.

Unpublished Work  ©2008 by Pearson Education, Inc. To be published by Pearson Pr entice Hall,
Pearson Education, Inc., Upper Saddle River, New Jersey. Al | rights reserved. Permission to use
this unpublished Work is granted to individuals registerin g through Melinda_Haggerty@prenhall.com
for the instructional purposes not exceeding one academic t erm or semester.

Chapter 9 N
Automatic Speech Recognition

ASR

When Frederic was a little lad he proved so brave and daring,
His father thought he'd 'prentice him to some career seadgari
I was, alas! his nurs’rymaid, and so it fell to my lot
To take and bind the promising boy apprentice fulat —
A life not bad for a hardy lad, though surely not a high lot,
Though I'm a nurse, you might do worse than make your boy a.pilo
I was a stupid nurs’rymaid, on breakers always steering,
And | did not catch the word aright, through being hard of rear
Mistaking my instructions, which within my brain did gyrate
I took and bound this promising boy apprentice toiiate.

The Pirates of Penzanc&ilbert and Sullivan, 1877

Alas, this mistake by nurserymaid Ruth led to Frederic'glomdenture as a pirate and,
due to a slight complication involving 21st birthdays anapeears, nearly led to 63
extra years of apprenticeship. The mistake was quite Hatura Gilbert-and-Sullivan
sort of way; as Ruth later noted, “The two words were so muike8l True, true;
spoken language understanding is a difficult task, and @nsarkable that humans do
as well at it as we do. The goal afitomatic speech recognitio{ASR) research is to
address this problem computationally by building systemas tmap from an acoustic
signal to a string of wordsAutomatic speech understanding ASU) extends this goal
to producing some sort of understanding of the sentendesrrtitan just the words.

The general problem of automatic transcription of speecinyyspeaker in any en-
vironment is still far from solved. But recent years havens@8R technology mature
to the point where it is viable in certain limited domains. éOnajor application area
is in human-computer interaction. While many tasks areebetblved with visual or
pointing interfaces, speech has the potential to be a hiatexface than the keyboard
for tasks where full natural language communication isuisef for which keyboards
are not appropriate. This includes hands-busy or eyesdqusications, such as where
the user has objects to manipulate or equipment to controlotifer important ap-
plication area is telephony, where speech recognitionresadly used for example in
spoken dialogue systems for entering digits, recognizyms™ to accept collect calls,
finding out airplane or train information, and call-routifi§ccounting, please”, “Prof.
Regier, please”). In some applications, a multimodal fatsr combining speech and
pointing can be more efficient than a graphical user interfaithout speech (Cohen
et al.,, 1998). Finally, ASR is applied to dictation, thattignscription of extended
monologue by a single specific speaker. Dictation is commdields such as law and
is also important as part of augmentative communicatide@ction between comput-
ers and humans with some disability resulting in the inghiib type, or the inability to
speak). The blind Milton famously dictat&aradise Losto his daughters, and Henry
James dictated his later novels after a repetitive strgssyin

Before turning to architectural details, let's discuss easfithe parameters of the
speech recognition task. One dimension of variation in cpeecognition tasks is



288 Chapter 9. Automatic Speech Recognition

the vocabulary size. Speech recognition is easier if thebmurof distinct words we
need to recognize is smaller. So tasks with a two word voeaipuike yesversusno
detection, or an eleven word vocabulary, like recognizieguences of digits, in what
Digitrecognition s called thedigits task task, are relatively easy. On the other end, tasks with large
vocabularies, like transcribing human-human telephome@eations, or transcribing
broadcast news, tasks with vocabularies of 64,000 wordsooe nare much harder.
A second dimension of variation is how fluent, natural, onereational the speech
Isolated word  iS. Isolated word recognition, in which each word is surrounded by some sqraofe,
Conggggg is much easier than recognizingntinuous speechin which words run into each other
and have to be segmented. Continuous speech tasks thesgatyegreatly in diffi-
culty. For example, human-to-machine speech turns out farheasier to recognize
than human-to-human speech. That is, recognizing speelchrofns talking to ma-
Read speech  chines, either reading out loud irad speech(which simulates the dictation task), or
conversing with speech dialogue systems, is relatively.eBgcognizing the speech
CO”VEVSS‘}}LOE”C?{ of two humans talking to each other,donversational speechecognition, for exam-
ple for transcribing a business meeting or a telephone ¢eatien, is much harder.
It seems that when humans talk to machines, they simplifiy 8peech quite a bit,
talking more slowly and more clearly.

A third dimension of variation is channel and noise. Tietation task (and much
laboratory research in speech recognition) is done witln lojgality, head mounted
microphones. Head mounted microphones eliminate therti@mtothat occurs in a
table microphone as the speaker’'s head moves around. Naigwy &ind also makes
recognition harder. Thus recognizing a speaker dictatirsgguiet office is much easier
than recognizing a speaker in a noisy car on the highway Wwitwtindow open.

A final dimension of variation is accent or speaker-classattaristics. Speech is
easier to recognize if the speaker is speaking a standdetdiar in general one that
matches the data the system was trained on. Recognitiomisshiérder on foreign-
accented speech, or speech of children (unless the systerapeaifically trained on
exactly these kinds of speech).

Table 9.1 shows the rough percentage of incorrect wordsi{tnd error rate , or
WER, defined on page 330) from state-of-the-art systemsftereit ASR tasks.

Task Vocabulary Error Rate %

TI Digits 11 (zero-nine, oh) 5
Wall Street Journal read speech 5,000 3
Wall Street Journal read speech 20,000 3
Broadcast News 64,000+ 10
Conversational Telephone Speech (CTS) 64,000+ 20

Rough word error rates (% of words misrecognized) repomedral 2006 for ASR
on various tasks; the error rates for Broadcast News and @¥1%aaed on particular training and
test scenarios and should be taken as ballpark numbers;rates for differently defined tasks
may range up to a factor of two.

Variation due to noise and accent increases the error rateesacpit. The word error
rate on strongly Japanese-accented or Spanish accentishihas been reported to be
about 3 to 4 times higher than for native speakers on the saskg Tomokiyo, 2001).



Section 9.1. Speech Recognition Architecture 289

LVCSR

Speaker
independent

And adding automobile noise with a 10dB SNR (signal-to-eo#&tio) can cause error
rates to go up by 2 to 4 times.

In general, these error rates go down every year, as spesmirigon performance
has improved quite steadily. One estimate is that perfoom&ias improved roughly
10 percent a year over the last decade (Deng and Huang, 203 a combination
of algorithmic improvements and Moore’s law.

While the algorithms we describe in this chapter are appleacross a wide va-
riety of these speech tasks, we chose to focus this chaptiedondamentals of one
crucial area:Large-Vocabulary Continuous Speech RecognitioliLVCSR). Large-
vocabulary generally means that the systems have a vocghaflaoughly 20,000
to 60,000 words. We saw above ttaintinuous means that the words are run to-
gether naturally. Furthermore, the algorithms we will dss are generallgpeaker-
independent that is, they are able to recognize speech from people wépesech the
system has never been exposed to before.

The dominant paradigm for LVCSR is the HMM, and we will focus this ap-
proach in this chapter. Previous chapters have introduaest of the core algorithms
used in HMM-based speech recognition. Ch. 7 introducedeligokonetic and phono-
logical notions ofphone, syllable, and intonation. Ch. 5 and Ch. 6 introduced the use
of the Bayes rule the Hidden Markov Model (HMM ), the Viterbi algorithm, and
the Baum-Welch training algorithm. Ch. 4 introduced fiiggram language model
and theperplexity metric. In this chapter we begin with an overview of the atety
ture for HMM speech recognition, offer an all-too-brief oview of signal processing
for feature extraction and the extraction of the importamQC features, and then in-
troduce Gaussian acoustic models. We then continue withViterbi decoding works
in the ASR context, and give a complete summary of the trgipiocedure for ASR,
calledembedded training Finally, we introduce word error rate, the standard evalua
tion metric. The next chapter will continue with some adwthASR topics.

9.1 Speech Recognition Architecture

Noisy channel

The task of speech recognition is to take as input an acowstieform and produce
as output a string of words. HMM-based speech recognitiatesys view this task
using the metaphor of the noisy channel. The intuition ofrtbesy channelmodel
(see Fig. 9.2) is to treat the acoustic waveform as an “noigy8ion of the string of
words, i.e.. a version that has been passed through a naissnanications channel.
This channel introduces “noise” which makes it hard to redogthe “true” string of
words. Our goal is then to build a model of the channel so thletan figure out how
it modified this “true” sentence and hence recover it.

The insight of the noisy channel model is that if we know hoa/¢hannel distorts
the source, we could find the correct source sentence for afersm by taking every
possible sentence in the language, running each sentemoeaykhour noisy channel
model, and seeing if it matches the output. We then seledbéise matching source
sentence as our desired source sentence.

Implementing the noisy-channel model as we have expresse#ig. 9.2 requires



290 Chapter

9. Automatic Speech Recognition

Bayesian

source sentence

If music be
the food of love...

decoder

Every happy family

In a hole in the ground W 2
If music be the food of love E\Mh_ N

guess at source:

If music be
the food of love...

The noisy channel model. We search through a huge space eftj@dt‘source”
sentences and choose the one which has the highest probabijjenerating the “noisy” sen-
tence. We need models of the prior probability of a sourcéesee N-grams), the probability of
words being realized as certain strings of phones (HMM %3, and the probability of phones
being realized as acoustic or spectral features (Gaussiemnré Models).

solutions to two problems. First, in order to pick the sengethat best matches the
noisy input we will need a complete metric for a “best matcB&cause speech is so
variable, an acoustic input sentence will never exactlyctnainy model we have for
this sentence. As we have suggested in previous chaptevd|lwse probability as our
metric. This makes the speech recognition problem a speasad ofBayesian infer-
ence a method known since the work of Bayes (1763). Bayesiaménfee or Bayesian
classification was applied successfully by the 1950s todagg problems like optical
character recognition (Bledsoe and Browning, 1959) andtiocaship attribution tasks
like the seminal work of Mosteller and Wallace (1964) on d®iaing the authorship of
the Federalist papers. Our goal will be to combine varioobabilistic models to get a
complete estimate for the probability of a noisy acoustisesation-sequence given a
candidate source sentence. We can then search througtetteeamall sentences, and
choose the source sentence with the highest probability.

Second, since the set of all English sentences is huge, wieamezfficient algorithm
that will not search through all possible sentences, buy onks that have a good
chance of matching the input. This is ttlecodingor searchproblem, which we have
already explored with the Viterbi decoding algorithm for W in Ch. 5 and Ch. 6.
Since the search space is so large in speech recognitiaeeffsearch is an important
part of the task, and we will focus on a number of areas in earc

In the rest of this introduction we will review the probabfic or Bayesian model
for speech recognition that we introduced for part-of-gbdagging in Ch. 5. We then
introduce the various components of a modern HMM-based ASEB.

Recall that the goal of the probabilistic noisy channel gedture for speech recog-
nition can be summarized as follows:

“What is the most likely sentence out of all sentences indhguage?
given some acoustic input O?”



Section 9.1. Speech Recognition Architecture 291

We can treat the acoustic inpOtas a sequence of individual “symbols” or “obser-
vations” (for example by slicing up the input every 10 mélt®nds, and representing
each slice by floating-point values of the energy or freqiemnof that slice). Each
index then represents some time interval, and succeesivglicate temporally con-
secutive slices of the input (note that capital letters stdind for sequences of symbols
and lower-case letters for individual symbols):

(91) 02013027037"'50t
Similarly, we treat a sentence as if it were composed of agtf words:

(9.2) W =Wy, Wo, W3, ..., Wn

Both of these are simplifying assumptions; for examplediing sentences into
words is sometimes too fine a division (we'd like to model$eatbout groups of words
rather than individual words) and sometimes too gross aidri(we need to deal with
morphology). Usually in speech recognition a word is defibgdrthography (after
mapping every word to lower-case)akis treated as a different word thaaks but
the auxiliarycan(“can you tell me...") is treated as the same word as the cau'i
need acanof...”).

The probabilistic implementation of our intuition aboveen, can be expressed as:

(9.3) W = argmaP(W|0)
Wez
Recall that the function argmgak(x) means “the x such that f(x) is largest”. Eq. 9.3
is guaranteed to give us the optimal senteviewe now need to make the equation
operational. That is, for a given sentendeand acoustic sequenc® we need to
computeP(W|O). Recall that given any probabilify(x|y), we can use Bayes' rule to
break it down as follows:

PYIXPX)
9.4 P(xly) = ————
©4) ) = =5
We saw in Ch. 5 that we can substitute (9.4) into (9.3) asvadlo
- P(O|W)P(W)
9.5 W = argmax————~
©-5) \Ngei” P(O)

The probabilities on the right-hand side of (9.5) are for thest part easier to
compute tharP(W|O). For exampleP(W), the prior probability of the word string
itself is what is estimated by thé-gram language models of Ch. 4. And we will see
below thatP(O|W) turns out to be easy to estimate as well. B(®D), the probability of
the acoustic observation sequence, is harder to estimatkily, we can ignord®(O)
just as we saw in Ch. 5. Why? Since we are maximizing over asixte sentences,
we will be computingw for each sentence in the language. B(®) doesn’t
change for each sentence! For each potential sentence \wtllaggamining the same
observation®, which must have the same probabilRyO). Thus:

(9.6) W= argmaxw = argmax°(O|W) P(W)
WeZ P(O) WeZ



292 Chapter

9. Automatic Speech Recognition

Language model

Acoustic model

To summarize, the most probable senteWégiven some observation sequence
O can be computed by taking the product of two probabilitigssiach sentence, and
choosing the sentence for which this product is greatesé gémeral components of
the speech recognizer which compute these two terms haves)BW), the prior
probability , is computed by théanguage model while P(O|W), the observation
likelihood, is computed by thacoustic model

likelihood prior

~ —N— =
(9.7) W = argmaxP(O|W) P(W)
WeZ
The language model (LM) prid?(W) expresses how likely a given string of words
is to be a source sentence of English. We have already sedmn i l@w to compute
such a language model priBfW) by usingN-gram grammars. Recall that &hgram
grammar lets us assign a probability to a sentence by conguti

n
(9.8) P(wW]) ~ [ POk} ,1)
k=1

This chapter will show how the HMM we covered in Ch. 6 can bedusebuild
an Acoustic Model (AM) which computes the likelihoBdO|W). Given the AM and
LM probabilities, the probabilistic model can be operatitired in a search algorithm
S0 as to compute the maximum probability word string for @&giacoustic waveform.
Fig. 9.3 shows the components of an HMM speech recognizeépasdesses a single
utterance, indicating the computation of the prior andliiieod. The figure shows
the recognition process in three stages. Infé@ure extraction or signal processing
stage, the acoustic waveform is sampled ifteones (usually of 10, 15, or 20 mil-
liseconds) which are transformed inépectral features Each time window is thus
represented by a vector of around 39 features represehtmggectral information as
well as information about energy and spectral change. Segi@s an (unfortunately
brief) overview of the feature extraction process.

In the acoustic modelingor phone recognitionstage, we compute the likelihood
of the observed spectral feature vectors given linguistitsywords, phones, subparts
of phones). For example, we use Gaussian Mixture Model (GIdlsBsifiers to com-
pute for each HMM state, corresponding to a phone or subphone, the likelihood of
a given feature vector given this phopéo|qg). A (simplified) way of thinking of the
output of this stage is as a sequence of probability vectors,for each time frame,
each vector at each time frame containing the likelihoodseach phone or subphone
unit generated the acoustic feature vector observatidraatime.

Finally, in thedecodingphase, we take the acoustic model (AM), which consists of
this sequence of acoustic likelihoods, plus an HMM dictigraf word pronunciations,
combined with the language model (LM) (generallyMugram grammar), and output
the most likely sequence of words. An HMM dictionary, as w# sée in Sec. 9.2, is a
list of word pronunciations, each pronunciation represeidy a string of phones. Each
word can then be thought of as an HMM, where the phones (ortsme®subphones)
are states in the HMM, and the Gaussian likelihood estinsatiopply the HMM output
likelihood function for each state. Most ASR systems useMiterbi algorithm for



Section 9.2.

Applying the Hidden Markov Model to Speech 293

decoding, speeding up the decoding with wide variety of &tjglated augmentations
such as pruning, fast-match, and tree-structured lexicons

W--..

cepstral
feature
extraction

---if music be the food of love...

_.-PW)

N-gram
language
model

Viterbi Decoder

EEPICEE Schematic architecture for a (simplified) speech recogrieeoding a single sen-
tence. A real recognizer is more complex since various kofdsruning and fast matches are
needed for efficiency. This architecture is only for decgglime also need a separate architecture

for training parameters.

9.2 Applying the Hidden Markov Model to Speech

Let’s turn now to how the HMM model is applied to speech redtign. We saw in
Ch. 6 that a Hidden Markov Model is characterized by the oty components:

Q=0102...0n
A =2a91802...8n1...ann

O =0107...0yN

B =bj(o)

do, Qend

a set ofstates

atransition probability matrix A, eachajj rep-
resenting the probability of moving from state
to statej, s.t. 31 &j =1 Vi

a set ofobservations each one drawn from a vo-
cabularyy = vy, Vo, ..., W.

A set of observation likelihoods; also called
emission probabilities each expressing the
probability of an observation; being generated
from a state.

a speciaktart and end statewhich are not asso-
ciated with observations.



294 Chapter

9. Automatic Speech Recognition

Furthermore, the chapter introduced Wigerbi algorithm for decoding HMMs,
and theBaum-Welch or Forward-Backward algorithm for training HMMs.

All of these facets of the HMM paradigm play a crucial role iISR. We begin
here by discussing how the states, transitions, and oldgarsanap into the speech
recognition task. We will return to the ASR applications dEvbi decodingin Sec. 9.6.
The extensions to the Baum-Welch algorithms needed to déaspoken language are
covered in Sec. 9.4 and Sec. 9.7.

Recall the examples of HMMs we saw earlier in the book. In Ghthg hid-
den states of the HMM were parts-of-speech, the obsensti@re words, and the
HMM decoding task mapped a sequence of words to a sequenegtsfgi-speech. In
Ch. 6, the hidden states of the HMM were weather, the obsenstvere ‘ice-cream
consumptions’, and the decoding task was to determine tla¢he@esequence from a
sequence of ice-cream consumption. For speech, the hidats sire phones, parts
of phones, or words, each observation is information allmeispectrum and energy
of the waveform at a point in time, and the decoding procegssitiais sequence of
acoustic information to phones and words.

The observation sequence for speech recognition is a segoéacoustic feature
vectors. Each acoustic feature vector represents information asthe amount of en-
ergy in different frequency bands at a particular pointrimeti We will return in Sec. 9.3
to the nature of these observations, but for now we’ll simmpte that each observation
consists of a vector of 39 real-valued features indicatperal information. Obser-
vations are generally drawn every 10 milliseconds, so 1rsdobspeech requires 100
spectral feature vectors, each vector of length 39.

The hidden states of Hidden Markov Models can be used to nemksich in a
number of different ways. For small tasks, lidgit recognition, (the recognition of
the 10 digit wordgzerothroughnine), or for yes-norecognition (recognition of the two
wordsyesandno), we could build an HMM whose states correspond to entiredaor
For most larger tasks, however, the hidden states of the Hlkéspond to phone-like
units, and words are sequences of these phone-like units.

Let's begin by describing an HMM model in which each state &M corre-
sponds to a single phone (if you've forgotten what a phongadyack and look again
at the definition in Ch. 7). In such a model, a word HMM thus ¢stisof a sequence
of HMM states concatenated together. Fig. 9.4 shows a sdieafdhe structure of a
basic phone-state HMM for the wosik.

Ay ay, ag; A
Ay ) asp () Ap3 L) Az ) A5

IRV CERCIRCORRS

An HMM for the word six, consisting of four emitting states, two non-emitting
states, and the transition probabilities A. The the obsiemvagrobabilitiesB are not shown.

Note that only certain connections between phones exisgiroH. In the HMMs
described in Ch. 6, there were arbitrary transitions betwstates; any state could
transition to any other. This was also in principle true & HiMMs for part-of-speech
tagging in Ch. 5; although the probability of some tag traoss was low, any tag



Section 9.2. Applying the Hidden Markov Model to Speech 295

Bakis network

could in principle follow any other tag. Unlike other HMM dpations, HMM models
for speech recognition do not allow arbitrary transitiorisstead, they place strong
constraints on transitions based on the sequential natseech. Except in unusual
cases, HMMs for speech don't allow transitions from stategotto earlier states in the
word; in other words, states can transition to themselvés successive states. As we
saw in Ch. 6, this kind ofeft-to-right HMM structure is called 8akis network.

The most common model used for speech, illustrated in a giegbform in Fig. 9.4
is even more constrained, allowing a state to transitiog tmitself (self-loop) or to a
single succeeding state. The use of self-loops allows despigne to repeat so as to
cover a variable amount of the acoustic input. Phone duratiary hugely, dependent
on the phone identify, the speaker’s rate of speech, thegilworontext, and the level
of prosodic prominence of the word. Looking at the Switchidozorpus, the phone
[aa] varies in length from 7 to 387 milliseconds (1 to 40 frahnevhile the phone [z]
varies in duration from 7 milliseconds to more than 1.3 séedi130 frames) in some
utterances! Self-loops thus allow a single state to be tedenany times.

For very simple speech tasks (recognizing small numbersastisvsuch as the
10 digits), using an HMM state to represent a phone is suffici;n general LVCSR
tasks, however, a more fine-grained representation is s&ged his is because phones
can last over 1 second, i.e., over 100 frames, but the 100=Bare not acoustically
identical. The spectral characteristics of a phone, andrheunt of energy, vary dra-
matically across a phone. For example, recall from Ch. 7 dtegi consonants have
a closure portion, which has very little acoustic energilpfeed by a release burst.
Similarly, diphthongs are vowels whose F1 and F2 changéf&igntly. Fig. 9.5 shows
these large changes in spectral characteristics over tmeaich of the two phones in
the word “lke”, ARPAbet [ay K].

5000

Frequency (Hz)

"'

0
0.48152 ay k 0.937203
Time (s)

The two phones of the word "lke”, pronounced [ay k]. Note thentinuous
changes in the [ay] vowel on the left, as F2 rises and F1 faid,the sharp differences between
the silence and release parts of the [K] stop.

To capture this fact about the non-homogeneous nature aigshover time, in



296 Chapter

9. Automatic Speech Recognition

Phone model
HMM state

LVCSR we generally model a phone with more than one HMM stéte most com-
mon configuration is to use three HMM states, a beginningdiaicaind end state. Each
phone thus consists of 3 emitting HMM states instead of ohes(fvo hon-emitting
states at either end), as shown in Fig. 9.6. It is common &rveshe wordnodel or
phone modelto refer to the entire 5-state phone HMM, and use the wvtM state
(or juststatefor short) to refer to each of the 3 individual subphone HMIskas.

a11 a22 a33
&0 S
|

SEIIGERS A standard 5-state HMM model for a phone, consisting of theestting states
(corresponding to the transition-in, steady state, antsttian-out regions of the phone) and two
non-emitting states.

To build a HMM for an entire word using these more complex ghorodels, we
can simply replace each phone of the word model in Fig. 9.4 wiB-state phone
HMM. We replace the non-emitting start and end states foh gdmne model with
transitions directly to the emitting state of the precedind following phone, leaving
only two non-emitting states for the entire word. Fig. 9.@wh the expanded word.

SEOICER] A composite word model for “six”, [s ih k s], formed by concaging four phone
models, each with three emitting states.

In summary, an HMM model of speech recognition is paramaterby:

Q=0102...0n a set ofstatescorresponding tsubphones

A=agjagz...an1...ann  atransition probability matrix A, eacha;j rep-
resenting the probability for each subphone of
taking aself-loopor going to the next subphone.

B =hi(o) A set of observation likelihoods; also called
emission probabilities each expressing the
probability of a cepstral feature vector (observa-
tion o;) being generated from subphone siate

Another way of looking at thé probabilities and the stat€3is that together they
represent dexicon: a set of pronunciations for words, each pronunciation isting
of a set of subphones, with the order of the subphones sgkbifithe transition prob-
abilitiesA.

We have now covered the basic structure of HMM states foresapting phones
and words in speech recognition. Later in this chapter weseié further augmenta-
tions of the HMM word model shown in Fig. 9.7, such as the usgiphone models
which make use of phone context, and the use of special phonssdel silence. First,



Section 9.3. Feature Extraction: MFCC vectors 297

though, we need to turn to the next component of HMMs for spe&ecognition: the
observation likelihoods. And in order to discuss obseovalikelihoods, we first need
to introduce the actual acoustic observations: featurtovecAfter discussing these in
Sec. 9.3, we turn in Sec. 9.4 the acoustic model and detadbsdrvation likelihood
computation. We then re-introduce Viterbi decoding andshow the acoustic model
and language model are combined to choose the best sentence.

9.3 Feature Extraction: MFCC vectors

Feature vector

MFCC
Cepstrum

Sampling
Sampling rate

Nyquist frequency

Telephone-
bandwidth
Wideband

Quantization

Our goal in this section is to describe how we transform tipeiinvaveform into a se-
quence of acoustieature vectors each vector representing the information in a small
time window of the signal. While there are many possible daekure representations,
by far the most common in speech recognition istMeCC, themel frequency cep-
stral coefficients These are based on the important idea ofaestrum. We will
give a relatively high-level description of the process xif&ction of MFCCs from a
waveform; we strongly encourage students interested irermetail to follow up with

a speech signal processing course.

We begin by repeating from Sec. 7.4.2 the process of digdiaind quantizing an
analog speech waveform. Recall that the first step in proggspeech is to convert
the analog representations (first air pressure, and thdagaakectric signals in a mi-
crophone), into a digital signal. This processaoflog-to-digital conversionhas two
steps:sampling and quantization. A signal is sampled by measuring its amplitude
at a particular time; theampling rate is the number of samples taken per second. In
order to accurately measure a wave, it is necessary to héa@satwo samples in each
cycle: one measuring the positive part of the wave and onsunieg the negative part.
More than two samples per cycle increases the amplitudeaygbut less than two
samples will cause the frequency of the wave to be completadged. Thus the maxi-
mum frequency wave that can be measured is one whose fregisemalf the sample
rate (since every cycle needs two samples). This maximugouénecy for a given sam-
pling rate is called théyquist frequency. Most information in human speech is in
frequencies below 10,000 Hz; thus a 20,000 Hz sampling ratddabe necessary for
complete accuracy. But telephone speech is filtered by titetsng network, and only
frequencies less than 4,000 Hz are transmitted by teleghdreis an 8,000 Hz sam-
pling rate is sufficient fotelephone-bandwidthspeech like the Switchboard corpus.
A 16,000 Hz sampling rate (sometimes caleideband) is often used for microphone
speech.

Even an 8,000 Hz sampling rate requires 8000 amplitude memsunts for each
second of speech, and so it is important to store the amplinehsurement efficiently.
They are usually stored as integers, either 8-bit (valuma f128—127) or 16 bit (values
from -32768-32767). This process of representing realechhumbers as integers is
calledquantization because there is a minimum granularity (the quantum siztafn
values which are closer together than this quantum sizesgresented identically.

We refer to each sample in the digitized quantized wavefaxjrd, wheren is
an index over time. Now that we have a digitized, quantizgaegentation of the



298 Chapter

9. Automatic Speech Recognition

speech

MFCC 12 12 MFCC

signal pre-

emphasis

Mel filt coefficients 12 AMFCC
- window | DFT p| MeMEr Ly | IDFT »| deltas |— 122AMFCC _y,
B2t 1 energy

1 A energy

f 1 AA energy
1 energy feature

SEOIGER:. Extracting a sequence of 39-dimensional MFCC feature vedtom a quantized digitized waveform

Spectral tilt

Non-stationary

waveform, we are ready to extract MFCC features. The seegs sif this process are
shown in Fig. 9.8 and individually described in each of théfeing sections.

9.3.1 Preemphasis

The first stage in MFCC feature extraction is to boost the arhoti energy in the
high frequencies. It turns out that if we look at the spectfanmvoiced segments like
vowels, there is more energy at the lower frequencies thahitther frequencies. This
drop in energy across frequencies (which is cadlpéctral tilt) is caused by the nature
of the glottal pulse. Boosting the high frequency energy@sakformation from these
higher formants more available to the acoustic model anddrgs phone detection
accuracy.

This preemphasis is done by using a fittEig. 9.9 shows an example of a spectral
slice from the first author’'s pronunciation of the single ebJaa] before and after
preemphasis.

204 20

°

essure level (dB/ Hz)

-20 5 -20

Sound pressure level (dB/ Hz)
ound

-0 —40-

Frequency (Hz) Frequency (Hz)

() (b)
A spectral slice from the vowel [aa] before (a) and after ({i@gmphasis.

9.3.2 Windowing

Recall that the goal of feature extraction is to provide saédeatures that can help
us build phone or subphone classifiers. We therefore domit Weextract our spectral
features from an entire utterance or conversation, bedhesgpectrum changes very
quickly. Technically, we say that speech is@n-stationary signal, meaning that its
statistical properties are not constant across time. ddstee want to extract spectral

1 For students who have had signal processing: this preernsgiites is a first-order high-pass filter. In the
time domain, with inpuk[n] and 09 < a < 1.0, the filter equation ig[n] = x[n] — ax[n—1].



Section 9.3. Feature Extraction: MFCC vectors 299

Stationary

Frame
Frame size
Frame shift

Rectangular

Hamming

features from a smalvindow of speech that characterizes a particular subphone and
for which we can make the (rough) assumption that the signsthtionary (i.e. its
statistical properties are constant within this region).

We'll do this by using a window which is non-zero inside soragion and zero
elsewhere, running this window across the speech signdiesmnacting the waveform
inside this window.

We can characterize such a windowing process by three ptgenéowwide is
the window (in milliseconds), what is tleéfsetbetween successive windows, and what
is theshapeof the window. We call the speech extracted from each windérarae,
and we call the number of milliseconds in the framefitaene sizeand the number of
milliseconds between the left edges of successive windoafsame shift.

}““ /M ,”\ | | \ fy\ *\w f | l“ n‘; | h ', ,ﬂ ,{h M ’J \m

IRIRIRIAY 1#“ ‘“M
MWM | O

l\\
1 J
J

FRAME
SHIFT
10 ms

FRAME SIZE
25 ms

EEPICEEDR The windowing process, showing the frame shift and frame, sissuming a
frame shift of 10ms, a frame size of 25 ms, and a rectanguladew. After a figure by Bryan
Pellom.

The extraction of the signal takes place by multiplying tladue of the signal at
time n, g[n], with the value of the window at time, wn|:

(9.9) yIn = winjsin

Fig. 9.10 suggests that these window shapes are rectanginee the extracted
windowed signal looks just like the original signal. Indekd simplest window is the
rectangular window. The rectangular window can cause problems, howbeeeause
it abruptly cuts of the signal at its boundaries. These disnaities create problems
when we do Fourier analysis. For this reason, a more commdiomi used in MFCC
extraction is theHamming window, which shrinks the values of the signal toward
zero at the window boundaries, avoiding discontinuitieg. .11 shows both of these
windows; the equations are as follows (assuming a windotishaframes long):



300 Chapter 9. Automatic Speech Recognition
1 0<n<L-1
(9.10) rectangular wn| = { 0 otherwise
: _ [ 054-046c0¢2™) 0<n<L-1
(1) hamming ] = { 0 otherwise
0490
0
-0.5 -
o /// o D 0.0475896
Rectangular window /’// \\\\ﬁamming window
el T

Discrete Fourier
Transform

DFT

Euler’s formula

0.4999-

0.4999

=)
=)

-0. —0.4826-
0.00455938 0.0256563 0.00455938 0.0256563

Time (s) Time (s)

SEOICENE \Windowing a portion of a pure sine wave with the rectangulza Blamming
windows.

9.3.3 Discrete Fourier Transform

The next step is to extract spectral information for our wavdd signal; we need to
know how much energy the signal contains at different fregydands. The tool for
extracting spectral information for discrete frequencpdsafor a discrete-time (sam-
pled) signal is th®iscrete Fourier Transform or DFT.

The input to the DFT is a windowed signdh]...x[m|, and the output, for each of
N discrete frequency bands, is a complex numXjéf representing the magnitude and
phase of that frequency component in the original signalwdfplot the magnitude
against the frequency, we can visualize spectrumthat we introduced in Ch. 7. For
example, Fig. 9.12 shows a 25 ms Hamming-windowed portioa sfgnal and its
spectrum as computed by a DFT (with some additional smog}hin

We will not introduce the mathematical details of the DFTehexcept to note that
Fourier analysis in general relies &uler’s formula:

(9.12) el® = cosf + jsind



Section 9.3. Feature Extraction: MFCC vectors 301

Fast Fourier
Transform

FFT

Mel

0.04414-

OMWVM WMWW

0.0141752 0.039295 0 8000
Time (s) Frequency (Hz)

(@) (b)
SEOICERY. (a) A 25 ms Hamming-windowed portion of a signal from the vbfiyd and (b)
its spectrum computed by a DFT.

20

Sound pressure level (dB/ Hz)
=)

As a brief reminder for those students who have already lggmébprocessing, the DFT
is defined as follows:

N-1
(9.13) X[K = § x[nje 128kn
(K] nZo n]

A commonly used algorithm for computing the DFT is thast Fourier Trans-
form or FFT. This implementation of the DFT is very efficient, but only ke for
values of N which are powers of two.

9.3.4 Melfilter bank and log

The results of the FFT will be information about the amountpérgy at each fre-
guency band. Human hearing, however, is not equally seesitiall frequency bands.
It is less sensitive at higher frequencies, roughly abov@i@ertz. It turns out that
modeling this property of human hearing during featureastion improves speech
recognition performance. The form of the model used in MF@&ds warp the fre-
quencies output by the DFT onto thael scale mentioned in Ch. 7. &el (Stevens
et al., 1937; Stevens and Volkmann, 1940) is a unit of pitdindd so that pairs of
sounds which are perceptually equidistant in pitch arers¢pd by an equal number of
mels. The mapping between frequency in Hertz and the med sséhear below 1000
Hz and the logarithmic above 1000 Hz. The mel frequemayan be computed from
the raw acoustic frequency as follows:

f
700)

During MFCC computation, this intuition is implemented rgating a bank of fil-
ters which collect energy from each frequency band, with 1€r§i spaced linearly be-
low 1000 Hz, and the remaining filters spread logarithmycatiove 1000 Hz. Fig. 9.13
shows the bank of triangular filters that implement this idea

Finally, we take the log of each of the mel spectrum valuegeineral the human
response to signal level is logarithmic; humans are lessitsemto slight differences
in amplitude at high amplitudes than at low amplitudes. Idith, using a log makes

(9.14) mel(f) =1127In1+



302 Chapter

9. Automatic Speech Recognition

Cepstrum

Amplitude

0 \‘\\ 1000 3000 _--" 4000

2000
Frequency (Hz)

X A «
Mel Spectrum l my I m2 l I M l

EEPICENE The Mel filter bank, after Davis and Mermelstein (1980). Ea@mngular filter
collects energy from a given frequency range. Filters aeeap linearly below 1000 Hz, and
logarithmically above 1000 Hz.

the feature estimates less sensitive to variations in iffpuexample power variations
due to the speaker’s mouth moving closer or further from ti@aophone).

9.3.5 The Cepstrum: Inverse Discrete Fourier Transform

While it would be possible to use the mel spectrum by itsel sature representation
for phone detection, the spectrum also has some problems a4l see. For this rea-
son, the next step in MFCC feature extraction is the comjmntaf thecepstrum. The
cepstrum has a number of useful processing advantagessarsigtificantly improves
phone recognition performance.

One way to think about the cepstrum is as a useful way of sépgréne source
andfilter. Recall from Sec. 7.4.6 that the speech waveform is createshva glottal
source waveform of a particular fundamental frequency ssed through the vocal
tract, which because of its shape has a particular filterlmyacteristic. But many
characteristics of the glottaburce(its fundamental frequency, the details of the glottal
pulse, etc) are not important for distinguishing differphibnes. Instead, the most
useful information for phone detection is tfiker, i.e. the exact position of the vocal
tract. If we knew the shape of the vocal tract, we would knoviciviphone was being
produced. This suggests that useful features for phoneta®tievould find a way to
deconvolve (separate) the source and filter and show us balydcal tract filter. It
turns out that the cepstrum is one way to do this.

o B 85 3 BB

14

o0

so0

[
| =

10

®

Tm |
Y M 00
N AN Y =00

amplude
amplids

T 100

i

]

n

o iy et e ]
| -100

¥ -=00

an e

O 1000 2000 3000 4000 5000 G000 7000 5000 @ 100D 2000 5000 4000 S000 G000 YODD 8000 =00 g
normalize frequency  nommaise trequency

(@) (b) (©)

PLACEHOLDER FIGURE. The magnitude spectrum (a), the log mitage spectrum (b), and the
cepstrum (c). From Taylor (2008). The two spectra have a tmedospectral enveloped laid on top of them to help
visualize the spectrum.



Section 9.3. Feature Extraction: MFCC vectors 303

For simplicity, let's ignore the pre-emphasis and mel-irghat are part of the
definition of MFCCs, and look just at the basic definition of #tepstrum. The cep-
strum can be thought of as tispectrum of the log of the spectrurhhis may sound
confusing. But let's begin with the easy part: thg of the spectrumThat is, the cep-
strum begins with a standard magnitude spectrum, such amsthéor a vowel shown
in Fig. 9.14(a) from Taylor (2008). We then take the log, replace each amplitude
value in the magnitude spectrum with its log, as shown in Gifj4(b).

The next step is to visualize the log spectragif itself were a wavefornin other
words, consider the log spectrum in Fig. 9.14(b). Let's imagemoving the axis
labels that tell us that this is a spectrum (frequency on thgig) and imagine that we
are dealing with just a normal speech signal with time on ta&is. Now what can we
say about the spectrum of this ‘pseudo-signal’? Notice tihate is a high-frequency
repetitive component in this wave: small waves that repleatis8 times in each 1000
along the x-axis, for a frequency of about 120 Hz. This higdgfiency component is
caused by the fundamental frequency of the signal, andseptgthe little peaks in the
spectrum at each harmonic of the signal. In addition, thexesame lower frequency
components in this ‘pseudo-signal’; for example the erpelor formant structure has
about four large peaks in the window, for a much lower freqyen

Fig. 9.14(c) shows theepstrum: the spectrum that we have been describing of
the log spectrum. This cepstrum (the warepstrum is formed by reversing the first
letters ofspectrum) is shown withsamplesalong the x-axis. This is because by taking
the spectrum of the log spectrum, we have left the frequenayaih of the spectrum,
and gone back to the time domain. It turns out that the comeitbf a cepstrum is the
sample.

Examining this cepstrum, we see that there is indeed a laegk pround 120,
corresponding to the FO and representing the glottal pulseere are other various
components at lower values on the x-axis. These representoital tract filter (the
position of the tongue and the other articulators). Thuseifare interested in detecting
phones, we can make use of just the lower cepstral values.e lang interested in
detecting pitch, we can use the higher cepstral values.

For the purposes of MFCC extraction, we generally just taleefirst 12 cepstral
values. These 12 coefficients will represent informatiolelgcabout the vocal tract
filter, cleanly separated from information about the glattaurce.

It turns out that cepstral coefficients have the extremebfulgproperty that the
variance of the different coefficients tends to be uncoredlaThis is not true for the
spectrum, where spectral coefficients at different frequdrands are correlated. The
fact that cepstral features are uncorrelated means, aslie®in the next section, that
the Gaussian acoustic model (the Gaussian Mixture Mod&b\k) doesn’t have to
represent the covariance between all the MFCC features;hwinigely reduces the
number of parameters.

For those who have had signal processing, the cepstrum isfaonally defined as
theinverse DFT of the log magnitude of the DFT of a signglhence for a windowed
frame of speech(n:



304 Chapter

9. Automatic Speech Recognition

Energy

Delta feature
Double delta

e JWkn

) J%{fkn

The extraction of the cepstrum via the Inverse DFT from thevipus section results
in 12 cepstral coefficients for each frame. We next add aetiirth feature: the energy
from the frame. Energy correlates with phone identity ant souseful cue for phone
detection (vowels and sibilants have more energy than stips Theenergyin a
frame is the sum over time of the power of the samples in thadrdhus for a signat

in a window from time samplg to time sampléy, the energy is:

N-1
(9.15) cln) = Z)Iog (

9.3.6 Deltas and Energy

)

(9.16) Energy= Y X[t
)% tgl [t]

Another important fact about the speech signal is that ibtsconstant from frame
to frame. This change, such as the slope of a formant at itsitians, or the nature
of the change from a stop closure to stop burst, can provideeéulicue for phone
identity. For this reason we also add features related tahhege in cepstral features
over time.

We do this by adding for each of the 13 features (12 cepstedlifes plus en-
ergy) adelta or velocity feature, and a@ouble deltaor accelerationfeature. Each of
the 13 delta features represents the change between frarttess ¢orresponding cep-
stral/energy feature, while each of the 13 double deltaufeatrepresents the change
between frames in the corresponding delta features.

A simple way to compute deltas would be just to compute thiedihce between
frames; thus the delta valuit) for a particular cepstral valugt) at timet can be
estimated as:

ct+1)—c(t—1)
2
Instead of this simple estimate, however, it is more commanake more sophis-
ticated estimates of the slope, using a wider context of éiam

(9.17) d(t) =

9.3.7 Summary: MFCC

After adding energy, and then delta and double-delta featiorthe 12 cepstral features,
we end up with 39 MFCC features:

12 cepstral coefficients
12 delta cepstral coefficients
12 double delta cepstral coefficients
1 energy coefficient
1 delta energy coefficient
1 double delta energy coefficient
39 MFCC features




Section 9.4. Computing Acoustic Likelihoods 305

Again, one of the most useful facts about MFCC features isttieacepstral coef-
ficients tend to be uncorrelated, which will turn out to make acoustic model much
simpler.

9.4 Computing Acoustic Likelihoods

\ector
quantization

vQ

Codebook
Prototype vector

Codeword

The last section showed how we can extract MFCC featuressepting spectral infor-
mation from a wavefile, and produce a 39-dimensional veateryel0 milliseconds.
We are now ready to see how to compute the likelihood of thegeife vectors given
an HMM state. Recall from Ch. 6 that this output likelihoodcmputed by thé3
probability function of the HMM. Given an individual statg and an observatiog,
the observation likelihoods iB matrix gave up(ct|q;), which we calledy (i).

For part-of-speech tagging in Ch. 5, each observatiois a discrete symbol (a
word) and we can compute the likelihood of an observatiorm# part-of-speech tag
just by counting the number of times a given tag generategemgibservation in the
training set. But for speech recognition, MFCC vectors add-valued numbers; we
can’t compute the likelihood of a given state (phone) getiregaan MFCC vector by
counting the number of times each such vector occurs (siacke ene is likely to be
unique).

In both decoding and training, we need an observation hikeld function that can
computep(o|gi) on real-valued observations. In decoding, we are given aarghtion
o; and we need to produce the probabiligo; |g;) for each possible HMM state, so we
can choose the most likely sequence of states. Once we hawb#ervation likelihood
B function, we need to figure out how to modify the Baum-Weldjoaithm of Ch. 6
to train it as part of training HMMs.

9.4.1 \ector Quantization

One way to make MFCC vectors look like symbols that we coulgntas to build a
mapping function that maps each input vector into one of dismaenber of symbols.
Then we could just compute probabilities on these symbolsdunting, just as we
did for words in part-of-speech tagging. This idea of magpnput vectors to discrete
quantized symbols is callagctor quantization or VQ (Gray, 1984). Although vector
quantization is too simple to act as the acoustic model inanodVCSR systems, it is
a useful pedagogical step, and plays an important role ilowsiareas of ASR, so we
use it to begin our discussion of acoustic modeling.

In vector quantization, we create the small symbol set bypimgpeach training
feature vector into a small number of classes, and then wesept each class by a
discrete symbol. More formally, a vector quantization sgstis characterized by a
codebook aclustering algorithm, and adistance metric

A codebookis a list of possible classes, a set of symbols constitutivacabulary

V ={vi,Vz,...,vn}. For each symboly in the codebook we list arototype vector,

also known as aodeword, which is a specific feature vector. For example if we choose
to use 256 codewords we could represent each vector by afvalued to 255; (this



306 Chapter

9. Automatic Speech Recognition

Clustering

K-means
clustering

Distance metric

Euclidean
distance

is referred to as 8-bit VQ, since we can represent each vbygtarsingle 8-bit value).
Each of these 256 values would be associated with a protédgbere vector.

The codebook is created by usinglastering algorithm to cluster all the feature
vectors in the training set into the 256 classes. Then weechwospresentative feature
vector from the cluster, and make it the prototype vectoraatesvord for that cluster.
K-means clusteringis often used, but we won't define clustering here; see Hutalg e
(2001) or Duda et al. (2000) for detailed descriptions.

Once we've built the codebook, for each incoming featurdoreee compare it to
each of the 256 prototype vectors, select the one which sestaby somelistance
metric), and replace the input vector by the index of this prototygetor. A schematic
of this process is shown in Fig. 9.15.

The advantage of VQ is that since there are a finite numbease$ek, for each class
Vi, We can compute the probability that it is generated by agfiielM state/sub-phone
by simply counting the number of times it occurs in some frajrset when labeled by
that state, and normalizing.

Codebook of 256

(MM 1

2

[T 3

4

A

(MMM ..

A A

A

(NI 144 - 1 44
A
A
(T

Schematic architecture of the (trained) vector quantraVQ) process for
choosing a symboalg for each input feature vector. The vector is compared to eadbword in
the codebook, the closest entry (by some distance metse)ésted, and the index of the closest
codeword is output.

Input Feature Vector

Compare to Codebook Output index

of best vector

Both the clustering process and the decoding process eequiistance metric
or distortion metric, that specifies how similar two acoustic feature @ectre. The
distance metric is used to build clusters, to find a prototygtor for each cluster, and
to compare incoming vectors to the prototypes.

The simplest distance metric for acoustic feature vecwEuclidean distance
Euclidean distance is the distance in N-dimensional spateden the two points de-
fined by the two vectors. In practice we use the phrase ‘Eeahdlistance’ even though
we actually often use the square of the Euclidean distankas given a vectox and
a vectory of length D, the (square of the) Euclidean distance betwleemtis defined
as:

D
deuclidea®y) = _;(Xi -w)?

(9.18)



Section 9.4. Computing Acoustic Likelihoods 307

Mahalanobis
distance

The (squared) Euclidean distance described in (9.18) (aodrs for two dimen-
sionsin Fig. 9.16) is also referred to as the sum-squared arrd can also be expressed
using the vector transpose operator as:

(9-19) deuc"dea[ﬁxa Y) = (X_y)T (X_y)
A
y
Y,
d(x.y)
X
X

2

X, Y i

EEPICERE Euclidean distance in two dimensions; by the Pythagoreaorém, the distance
between two points in a plane= (x1,y1) andy = (x2,y2) d(x,y) = /(X1 —%2)2 + (Y1 — Y2)2.

The Euclidean distance metric assumes that each of the diomenof a feature
vector are equally important. But actually each of the disi@ms have very different
variances. If a dimension tends to have a lot of variance) the'd like it to count
less in the distance metric; a large difference in a dimemsith low variance should
count more than a large difference in a dimension with higiange. A slightly more
complex distance metric, tHdahalanobis distance takes into account the different
variances of each of the dimensions.

If we assume that each dimensibaf the acoustic feature vectors has a variance
a?, then the Mahalanobis distance is:

D
(9.20) dmahalanobigtY) = Zi

(X —Vi)?
O-iz

For those readers with more background in linear algebraih#re general form
of Mahalanobis distance, which includes a full covarianeérin (covariance matrices
will be defined below):

(9.21) dmahalanobigsy) = (X—y)'Z(x-y)

In summary, when decoding a speech signal, to compute arstictkelihood of
a feature vecton; given an HMM statey; using VQ, we compute the Euclidean or
Mahalanobis distance between the feature vector and edbb df codewords, choose
the closest codeword, getting the codeword indexVe then look up the likelihood of
the codeword index, given the HMM statg in the pre-computeB likelihood matrix
defined by the HMM:



308 Chapter

9. Automatic Speech Recognition

Probability
density function
Gaussian Mix(tjure
Model

GMM

Gaussian

. Normal
distribution

Mean
Variance

(9.22) 6,- (ot) = bj(v) s.t. v is codeword of closest vector tp

Since VQ is so rarely used, we don’t use up space here giviegduations for
modifying the EM algorithm to deal with VQ data; instead, wefat discussion of
EM training of continuous input parameters to the next sectivhen we introduce
Gaussians.

9.4.2 Gaussian PDFs

Vector quantization has the advantage of being extremslytsecompute and requires
very little storage. Despite these advantages, vectortpadion turns out not to be a
good model of speech. A small number of codewords is insaffidb capture the wide
variability in the speech signal. Speech is simply not agmteal, symbolic process.

Modern speech recognition algorithms therefore do not estov quantization to
compute acoustic likelihoods. Instead, they are based mpuating observation prob-
abilities directly on the real-valued, continuous inpudtfee vector. These acoustic
models are based on computingmbability density function or pdf over a contin-
uous space. By far the most common method for computing &icdikzlihoods is
the Gaussian Mixture Model (GMM ) pdfs, although neural networks, support vector
machines (SVMs) and conditional random fields (CRFs) arew@ed.

Let's begin with the simplest use of Gaussian probabilitinestors, slowly build-
ing up the more sophisticated models that are used.

Univariate Gaussians

The Gaussiandistribution, also known as theormal distribution , is the bell-curve
function familiar from basic statistics. A Gaussian disfition is a function parame-
terized by anean or average value, andvariance, which characterizes the average
spread or dispersal from the mean. We will yséo indicate the mean, and? to
indicate the variance, giving the following formula for au@aian function:

2

1 _
(9.23) f(Xu,0) = \/ﬁexd— (chle) )

Recall from basic statistics that the mean of a random vigridlis the expected
value ofX. For a discrete variabl¥, this is the weighted sum over the values<offor
a continuous variable, it is the integral):

N
(9.24) H=EX)= ; P(X)X

The variance of a random variab¥is the weigthed squared average deviation
from the mean:

N
(9.25) 0" =B~ B0 =5 PO~ EX))*

When a Gaussian function is used as a probability densitstim, the area under
the curve is constrained to be equal to one. Then the pratyahiht a random variable



Section 9.4. Computing Acoustic Likelihoods 309

1.6 T T
= m=0,s=.5
= = =m=1s=1
o - RYSTRES m=-1,s=0.2
N m=0,5=0.3
1.2} R i

0.8

0.6

0.4

SLOICENN, Gaussian functions with different means and variances.

takes on any particular range of values can be computed byngwgrthe area under
the curve for that range of values. Fig. 9.18 shows the piitityedxpressed by the area
under an interval of a Gaussian.

0.4

~ P(shaded region) = .341

=}
o w
w @

I
N}
a

Probability Density
o

e =}

(& N

o
o

0.05-

SEIICEEE A Gaussian probability density function, showing a regiamf O to 1 with a total
probability of .341. Thus for this sample Gaussian, the abiliity that a value on the X axis lies
between 0 and 1 is .341.

We can use a univariate Gaussian pdf to estimate the pritpahat a particular
HMM state j generates the value of a single dimension of a feature vbgtassuming
that the possible values of (this one dimension of the) alasien feature vectos; are



310 Chapter

9. Automatic Speech Recognition

normally distributed. In other words we represent the oleen likelihood function
bj (o) for one dimension of the acoustic vector as a Gaussian. akinthe moment,
our observation as a single real valued number (a singléregfsature), and assuming
that each HMM statg has associated with it a mean valupand variances?, we
compute the likelihooth;(o) via the equation for a Gaussian pdf:

(9.26) bj(ar) =

\2
1 exp<— (o ﬁzij) >
\ /27TUJ-2 20

Eq. 9.26 shows us how to compuig o), the likelihood of an individual acoustic
observation given a single univariate Gaussian from gtatigh its mean and variance.
We can now use this probability in HMM decoding.

But first we need to solve the training problem; how do we cot@ahis mean and
variance of the Gaussian for each HMM stgte Let'’s start by imagining the simpler
situation of a completely labeled training set, in whichleacoustic observation was
labeled with the HMM state that produced it. In such a tragrset, we could compute
the mean of each state by just taking the average of the viduescho; that corre-
sponded to state as show in (9.27). The variance could just be computed fiwn t
sum-squared error between each observation and the medmwas in (9.28).

(9.27) ui = 0 S.t. ¢ is state

—|E|\/|—|

(9.28) 6% = (o — 1i)? s.t.q is statel

=l Hlr

t=

But since states are hidden in an HMM, we don’t know exactlycWwlobservation
vectoro; was produced by which state. What we would like to do is assaph ob-
servation vectoo, to every possible staie prorated by the probability that the HMM
was in state at timet. Luckily, we already know how to do this prorating; the prob-
ability of being in state at timet was defined in Ch. 6 a&§(i), and we saw how to
computeé; (i) as part of the Baum-Welch algorithm using the forward andbacd
probabilities. Baum-Welch is an iterative algorithm, anel will need to do the prob-
ability computation o (i) iteratively since getting a better observation probapbit
will also help us be more sure of the probabiktyf being in a state at a certain time.

Thus we give equations for computing an updated mean anangsji andg?:

Y&
9.29 RIS 0L
i S AT

~2 Si &) (o — pi)?
950 S AT

Eq.9.29 and Eq. 9.30 are then used in the forward-backwaar{BWelch)training
of the HMM. As we will see, the values pf andg; are first set to some initial estimate,
which is then re-estimated until the numbers converge.



Section 9.4. Computing Acoustic Likelihoods 311

Diagonal

Multivariate Gaussians

Eq. 9.26 shows how to use a Gaussian to compute an acouslibdi&d for a single
cepstral feature. Since an acoustic observation is a ve€t8® features, we’ll need
to use a multivariate Gaussian, which allows us to assigmobatrility to a 39-valued
vector. Where a univariate Gaussian is defined by a neand a variance?, a mul-
tivariate Gaussian is defined by a mean vegtaf dimensionality D and a covariance
matrix 2, defined below. As we discussed in the previous section, figpiaal cepstral
feature vector in LVCSR, D is 39:

(9.31) f(Ri,3) = ~50- T ) )

1 exp(
(2m)3 |22
The covariance matriX captures the variance of each dimension as well as the
covariance between any two dimensions.
Recall again from basic statistics that the covariance of tmndom variableX
andyY is the expected value of the product of their average dewviatirom the mean:

N
(932) Z=E[X-EMX)(Y-E(Y)])= ; PXY) (X —E(X)) (Y —E(Y))

Thus for a given HMM state with mean vectpy and covariance matriX;, and a
given observation vectay, the multivariate Gaussian probability estimate is:
(9.33) bj(or) = -

(22|

The covariance matriXj expresses the variance between each pair of feature di-
mensions. Suppose we made the simplifying assumption ¢atdifes in different di-
mensions did not covary, i.e., that there was no correldietveen the variances of
different dimensions of the feature vector. In this casecaeld simply keep a dis-
tinct variance for each feature dimension. It turns out Ke@ping a separate variance
for each dimension is equivalent to having a covarianceimttat is diagonal, i.e.
non-zero elements only appear along the main diagonal ofndteéx. The main di-
agonal of such a diagonal covariance matrix contains thawvegs of each dimension,
0Z,02,...05;

Let's look at some illustrations of multivariate Gaussiaiogusing on the role of
the full versus diagonal covariance matrix. We'll explorsimple multivariate Gaus-
sian with only 2 dimensions, rather than the 39 that are &}jiicASR. Fig. 9.19 shows
three different multivariate Gaussians in two dimensionke leftmost figure shows
a Gaussian with a diagonal covariance matrix, in which thieamaes of the two di-
mensions are equal. Fig. 9.20 shows 3 contour plots comelspgto the Gaussians in
Fig. 9.19; each is a slice through the Gaussian. The leftgragth in Fig. 9.20 shows
a slice through the diagonal equal-variance Gaussian. [ideeis circular, since the
variances are equal in both the X and Y directions.

The middle figure in Fig. 9.19 shows a Gaussian with a diagomadriance matrix,
but where the variances are not equal. It is clear from thigdigand especially from

exp<—%(0r — )" E o - uj>>



312 Chapter

9. Automatic Speech Recognition

(@) (b) (©)

SEOICEEE Three different multivariate Gaussians in two dimensiofiie first two have

. . . . . y . . 10
diagonal covariance matrices, one with equal variancesitvio dlmensmn{ , the second

]

with different variances in the two dimensior{s cl , and the third with non-zero elements

0 2]

8 1

2
|
o O
1
2

o

(a) (b) (©)
The same three multivariate Gaussians as in the previousefigerom left to
right, a diagonal covariance matrix with equal varianceggdinal with unequal variance, and
nondiagonal covariance. With non-diagonal covariancewkng the value on dimension X tells
you something about the value on dimension Y.

in the off-diagonal of the covariance matri[cl 8 } .

the contour slice show in Fig. 9.20, that the variance is riftaa 3 times greater in one
dimension than the other.

The rightmost graph in Fig. 9.19 and Fig. 9.20 shows a Gaussith a non-
diagonal covariance matrix. Notice in the contour plot ig.M.20 that the contour
is not lined up with the two axes, as it is in the other two pl&scause of this, know-
ing the value in one dimension can help in predicting thee#aithe other dimension.
Thus having a non-diagonal covariance matrix allows us tdehoorrelations between
the values of the features in multiple dimensions.

A Gaussian with a full covariance matrix is thus a more poulerfodel of acoustic
likelihood than one with a diagonal covariance matrix. Andeed, speech recognition
performance is better using full-covariance Gaussians dieegonal-covariance Gaus-
sians. But there are two problems with full-covariance Gaus that makes them
difficult to use in practice. First, they are slow to compugefull covariance matrix
hasD? parameters, where a diagonal covariance matrix has@niyhis turns out to
make a large difference in speed in real ASR systems. Seadnl covariance matrix
has many more parameters and hence requires much more tfaia than a diagonal
covariance matrix. Using a diagonal covariance model meansan save room for



Section 9.4. Computing Acoustic Likelihoods 313

Gaussian Mixture
Model

GMM

using our parameters for other things like triphones (cardependent phones) to be
introduced in Sec. 10.3.

For this reason, in practice most ASR systems use diagonalience. We will
assume diagonal covariance for the remainder of this sectio

Eq. 9.33 can thus be simplified to the version in (9.34) in Wiistead of a covari-
ance matrix, we simply keep a mean and variance for each dioenEq. 9.34 thus
describes how to estimate the likelihobgd o) of a D-dimensional feature vectak
given HMM statej, using a diagonal-covariance multivariate Gaussian.

(Otd — Hja)? ]>

J_l 1/27102 exp<—— Tjg?

Training a diagonal-covariance multivariate Gaussiansergple generalization of
training univariate Gaussians. We’'ll do the same Baum-Waiining, where we use
the value ofé& (i) to tell us the likelihood of being in staieat timet. Indeed, we’ll
use exactly the same equation as in (9.30), except that ncavendealing with vectors
instead of scalars; the observatians a vector of cepstral features, the mean vector

[l is a vector of cepstral means, and the variance vegfois a vector of cepstral
variances.

(9.34)

- S &()o
9.35 .= 2a=16tio
o ! S1 &)
(9.36) 5 — S & (i) (0 — i) (o — )"
| S &)

Gaussian Mixture Models

The previous subsection showed that we can use a multiedBatissian model to as-
sign a likelihood score to an acoustic feature vector oladEm. This models each
dimension of the feature vector as a normal distributiont ®8particular cepstral fea-
ture might have a very non-normal distribution; the assummpdf a normal distribu-
tion may be too strong an assumption. For this reason, wa oftelel the observation
likelihood not with a single multivariate Gaussian, butwétweighted mixture of mul-
tivariate Gaussians. Such a model is calle@aussian Mixture Model or GMM .
Eqg. 9.37 shows the equation for the GMM function; the resglfunction is the sum
of M Gaussians. Fig. 9.21 shows an intuition of how a mixture af$S&ns can model
arbitrary functions.

(9.37) f(x|u, %) = Z e expl(x— ) "= (x— )]

EQq. 9.38 shows the definition of the output likelihood funatd; (o)

M

1 _
(938) bj(o) = H cjmmexd(X— Him) " Zjn (0 — Hjm)]

m=1



314 Chapter

9. Automatic Speech Recognition

EEPICENRE  An arbitrary function approximated by a mixture of 3 gaussia

Let’s turn to training the GMM likelihood function. This ma&gem hard to do; how
can we train a GMM model if we don’t know in advance which mietis supposed to
account for which part of each distribution? Recall thatrgkd multivariate Gaussian
could be trained even if we didn’t know which state accourfitee@ach output, simply
by using the Baum-Welch algorithm to tell us the likelihoddeing in each stat¢ at
timet. It turns out the same trick will work for GMMs; we can use Bainelch to tell
us the probability of a certain mixture accounting for the@lvation, and iteratively
update this probability.

We used thé& function above to help us compute the state probability. E3l@gy
with this function, let’s definé;m(j) to mean the probability of being in staat time
t with the mth mixture component accounting for the output observatioriWe can
computeéim(j) as follows:

(9.39) En(j) = ZilNatl(j;?ii((;J;ijm(ot)Bt(j)

Now if we had the values of from a previous iteration of Baum-Welch, we can
useéim(j) to recompute the mean, mixture weight, and covariance ukmfpllowing
equations:

- Y1 &m(i)on
9.40 o 2mem()o
v 3 Si1Ym1&m(i)
A 31 &m(i)
9.41 o 2eabmll)
. ‘ St Yheq &)
(9.42) S — St 1& ) (0 — Him)(0r — pim) T

S—1 ke &ml(i)



Section 9.4. Computing Acoustic Likelihoods 315

Logprob

9.4.3 Probabilities, log probabilities and distance fundbns

Up to now, all the equations we have given for acoustic modédtiave used probabil-
ities. It turns out, however, thatlag probability (or logprob) is much easier to work
with than a probability. Thus in practice throughout spersdognition (and related
fields) we compute log-probabilities rather than probtbsi

One major reason that we can’t use probabilities is numerdetflow. To com-
pute a likelihood for a whole sentence, say, we are multigjyinany small prob-
ability values, one for each 10ms frame. Multiplying mangkmbilities results in
smaller and smaller numbers, leading to underflow. The log sinall number like
.0000000%= 108, on the other hand, is a nice easy-to-work-with-numberdilge A
second reason to use log probabilities is computation&dsplstead of multiplying
probabilities, we add log-probabilities, and adding istdagshan multiplying. Log-
probabilities are particularly efficient when we are usingu&sian models, since we
can avoid exponentiating.

Thus for example for a single multivariate diagonal-coaace Gaussian model,
instead of computing:

D TR YA
(9.43) bj(ar) = L exp(—}L s ’d)>

we would compute

10 (0 — Hja)?
(9.44) logbj (o) = ~3 ch llog(Zn) + ojzd + de
= i
With some rearrangement of terms, we can rewrite this egu#di pull out a constant
C:

12 (og—pja)?
(9.45) logbj(o)) =C—= § ————
! 2 [gl o3
where C can be precomputed:
2 2
(9.46) C=—3 > (log(2m) + gjg)

In summary, computing acoustic models in log domain meanscarsimpler com-
putation, much of which can be precomputed for speed.

The perceptive reader may have noticed that equation (f0dk3 very much like
the equation for Mahalanobis distance (9.20). Indeed, ayetavthink about Gaussian
logprobs is as just a weighted distance metric.

A further point about Gaussian pdfs, for those readers vatbutus. Although the
equations for observation likelihood such as (9.26) aravatatd by the use of Gaus-
sian probability density functions, the values they reforthe observation likelihood,
bj(at), are not technically probabilities; they may in fact be ¢geeshan one. This is
because we are computing the valudq(io) at a single point, rather than integrating
over a region. While the total area under the Gaussian PDFgsiconstrained to one,



316 Chapter

9. Automatic Speech Recognition

the actual value at any point could be greater than one. (heagvery tall skinny
Gaussian; the value could be greater than one at the celtherygh the area under the
curve is still 1.0). If we were integrating over a region, weul be multiplying each
point by its widthdx, which would bring the value down below one. The fact that the
Gaussian estimate is not a true probability doesn’t mattectioosing the most likely
HMM state, since we are comparing different Gaussians, ekathich is missing this

dx factor.

In summary, the last few subsections introduced Gaussiaelsfor acoustic train-
ing in speech recognition. Beginning with simple univagi@aussian, we extended
first to multivariate Gaussians to deal with the multidinienality acoustic feature
vectors. We then introduced the diagonal covariance sfivgion of Gaussians, and
then introduced Gaussians mixtures (GMMs).

9.5 The Lexicon and Language Model

Since previous chapters had extensive discussions dbfgram language model (Ch. 4)
and the pronunciation lexicon (Ch. 7), in this section we prgefly recall them to the
reader.

Language models for LVCSR tend to be trigrams or even foangrgood toolkits
are available to build and manipulate them (Stolcke, 200219 et al., 2005). Bigrams
and unigram grammars are rarely used for large-vocabulaplications. Since tri-
grams require huge amounts of space, however, languagdsfiodmemory-constrained
applications like cell phones tend to use smaller contexttsige compression tech-
niques). As we will discuss in Ch. 24, some simple dialogugliegtions take ad-
vantage of their limited domain to use very simple finitetestar weighted finite-state
grammars.

Lexicons are simply lists of words, with a pronunciation é&arch word expressed
as a phone sequence. Publicly available lexicons like théJGhttionary (CMU,
1993) can be used to extract the 64,000 word vocabulariemooty used for LVCSR.
Most words have a single pronunciation, although some wsuwdl as homonyms and
frequent function words may have more; the average numbprasfunciations per
word in most LVCSR systems seems to range from 1 to 2.5. Seb.3Lih Ch. 10
discusses the issue of pronunciation modeling.

9.6 Search and Decoding

We are now very close to having described all the parts of apbete speech recog-
nizer. We have shown how to extract cepstral features farad; and how to compute
the acoustic likelihood; (o) for that frame. We also know how to represent lexical
knowledge, that each word HMM is composed of a sequence afehwodels, and
each phone model of a set of subphone states. Finally, in @Gle.ghowed how to use
N-grams to build a model of word predictability.



Section 9.6. Search and Decoding 317

Decoding

LMSF

Word insertion
penalty

In this section we show how to combine all of this knowledgedtve the problem
of decoding combining all these probability estimators to producertteest probable
string of words. We can phrase the decoding question asefGivstring of acoustic
observations, how should we choose the string of words whastthe highest posterior
probability?’

Recall from the beginning of the chapter the noisy channelehfor speech recog-
nition. In this model, we use Bayes rule, with the result thatbest sequence of words
is the one that maximizes the product of two factors, a lagguaodel prior and an
acoustic likelihood:

likelihood prior
~ =

~ ——
(9.47) W = argmaxP(O|W) P(W)
WeZ

Now that we have defined both the acoustic model and languagielmve are
ready to see how to find this maximum probability sequenceatia: First, though,
it turns out that we’ll need to make a modification to Eq. 9.8&cause it relies on
some incorrect independence assumptions. Recall thatwmetra multivariate Gaus-
sian mixture classifier to compute the likelihood of a paitic acoustic observation
(a frame) given a particular state (subphone). By compwigarate classifiers for
each acoustic frame and multiplying these probabilitiegegbthe probability of the
whole word, we are severely underestimating the probglmfieach subphone. This
is because there is a lot of continuity across frames; if weevte take into account
the acoustic context, we would have a greater expectatiom diven frame and hence
could assign it a higher probability. We must therefore iigivethe two probabilities.
We do this by adding in &anguage model scaling factoior LMSF, also called the
language weight This factor is an exponent on the language model probgBi{V).
Becausé’(W) is less than one and the LMSF is greater than one (between B
many systems), this has the effect of decreasing the valtieedfM probability:

(9.48) W = argmaxP(O|W)P(W)-MSF
We&

Reweighting the language model probabifV) in this way requires us to make
one more change. This is becal®®V) has a side-effect as a penalty for inserting
words. It's simplest to see this in the case of a uniform laggumodel, where every
word in a vocabulary of sizf/| has an equal probabilit?%. In this case, a sentence

with N words will have a language model probability‘éf for each of theéN words, for
a total penalty of%. The large is (the more words in the sentence), the more times

this\% penalty multiplier is taken, and the less probable the seetsvill be. Thus if
(on average) the language model probability decreasesifmpa larger penalty), the
decoder will prefer fewer, longer words. If the language elqutobability increases
(larger penalty), the decoder will prefer more shorter vgoithus our use of a LMSF to
balance the acoustic model has the side-effect of decigptmnword insertion penalty.
To offset this, we need to add back in a sepavaied insertion penalty:



318 Chapter 9. Automatic Speech Recognition
(9.49) W = argmaP(OW)P(W)-MSFy PN
WeZ

Since in practice we use logprobs, the goal of our decoder is:

(9.50) W = argmadogP(O|W) + LMSFx logP(W) + N x logWIP
WeZ

Now that we have an equation to maximize, let's look at howaoadle. It's the job
of a decoder to simultaneously segment the utterance intdsasnd identify each of
these words. This task is made difficult by variation, botleirms of how words are
pronounced in terms of phones, and how phones are artidulatgcoustic features.
Just to give an intuition of the difficulty of the problem imag a massively simplified
version of the speech recognition task, in which the decisdgven a series of discrete
phones. In such a case, we would know what each phone was eviigcpaccuracy,
and yet decoding is still difficult. For example, try to deedtie following sentence
from the (hand-labeled) sequence of phones from the Swatnttbcorpus (don’t peek
ahead!):

[aydihshherdsahmthihngaxbawmuhvihngrihsenlih]

The answer is in the footnofe The task is hard partly because of coarticulation
and fast speech (e.qg., [d] for the first phonéust). But it’s also hard because speech,
unlike English writing, has no spaces indicating word bautes. The true decoding
task, in which we have to identify the phones at the same timea identify and
segment the words, is of course much harder.

For decoding, we will start with the Viterbi algorithm thaewntroduced in Ch. 6,
in the domain ofdigit recognition, a simple task with a vocabulary size of 11 (the
numbersonethroughnine pluszeroandoh).

Recall the basic components of an HMM model for speech ratiogn

Q=0102...0On a set ofstatescorresponding tesubphones

A=agjagy...an1...ann  atransition probability matrix A, eacha;j rep-
resenting the probability for each subphone of
taking aself-loopor going to the next subphone.
Together,Q and A implement apronunciation
lexicon, an HMM state graph structure for each
word that the system is capable of recognizing.

B =nhi(o) A set of observation likelihoods; also called
emission probabilities each expressing the
probability of a cepstral feature vector (observa-
tion o¢) being generated from subphone state

The HMM structure for each word comes from a lexicon of wordrmumciations.
Generally we use an off-the-shelf pronunciation dictigreurch as the free CMUdict
dictionary described in Ch. 7. Recall from page 295 that tMMHstructure for words

2 | just heard something about moving recently.



Section 9.6. Search and Decoding 319

in speech recognition is a simple concatenation of phone KdMdach phone consist-
ing of 3 subphone states, where every state has exactly ansitions: a self-loop and
aloop to the next phones. Thus the HMM structure for each digiid in our digit rec-
ognizer is computed simply by taking the phone string fromdittionary, expanding
each phone into 3 subphones, and concatenating togethaddition, we generally
add an optional silence phone at the end of each word, alipthie possibility of paus-
ing between words. We usually define the set of st@ideom some version of the
ARPAbet, augmented with silence phones, and expandeddtedtaee subphones for
each phone.

The A andB matrices for the HMM are trained by the Baum-Welch algoritinm
the embedded training procedure that we will describe in Sec. 9.7. For now we’'ll
assume that these probabilities have been trained.

Fig. 9.22 shows the resulting HMM for digit recognition. Kdhat we've added
non-emitting start and end states, with transitions froengthd of each word to the end
state, and a transition from the end state back to the stde &t allow for sequences
of digits. Note also the optional silence phones at the erehof word.

Digit recognizers often don’t use word probabilities, sriec many digit situations
(phone numbers or credit card numbers) each digit may hawesjaal probability of
appearing. But we've included transition probabilitietireach word in Fig. 9.22,
mainly to show where such probabilities would be for othadksi of recognition tasks.
As it happens, there are cases where digit probabilitiesattem such as in addresses
(which are often likely to end in 0 or 00) or in cultures wheoen® numbers are lucky
and hence more frequent, such as the lucky number ‘8’ in Ghine

Now that we have an HMM, we can use the same forward and Vigdgoirithms
that we introduced in Ch. 6. Let's see how to use the forwagdrithm to generate
P(O|W), the likelihood of an observation sequer@eiven a sequence of wordl¥;
we’ll use the single word “five”. In order to compute this likeod, we need to sum
over all possible sequences of states; assurimedhas the states [f], [ay], and [v], a
10-observation sequence includes many sequences suchfafidtving:

fayayayayv v v v v
ayayayayv v V V
f f ayayayayv v

ay ay ay ay ay ay v Vv
ay ay ay ay ay ay ay Vv
ay ay ay ay ay v. Vv Vv

— —h —h —h —h

The forward algorithm efficiently sums over this large numbg sequences in
O(N?T) time.

Let's quickly review the forward algorithm. It is a dynamicogramming algo-
rithm, i.e. an algorithm that uses a table to store interatedialues as it builds up the
probability of the observation sequence. The forward dtigor computes the obser-
vation probability by summing over the probabilities of ptissible paths that could
generate the observation sequence.

Each cell of the forward algorithm trellig (j) or forward(t, j] represents the proba-
bility of being in statej after seeing the firgtobservations, given the automatbonThe



320 Chapter

9. Automatic Speech Recognition

Lexicon

one wahn
two tuw

three thriy

four faor

five fayv Phone HMM
Six sihks

seven sehvaxn

eight eyt O O O
o0 2iyrow OG-0

oh ow mmm

An HMM for the digit recognition task. A lexicon specifies theone sequence,
and each phone HMM is composed of three subphones each wibsstan emission likelihood
model. Combining these and adding an optional silence aémldeof each word, results in a
single HMM for the whole task. Note the transition from thedEstate to the Start state to allow
digit sequences of arbitrary length.

value of each celix; (j) is computed by summing over the probabilities of every path
that could lead us to this cell. Formally, each cell expresise following probability:

(9.51) ar(j) =P(01,02...0,0 = j|A)

Hereq; = j means “the probability that thi¢h state in the sequence of states is state
i”. We compute this probability by summing over the extensiofall the paths that
lead to the current cell. For a given stafeat timet, the valuen; () is computed as:

N

(9.52) o(j) = Zat—l(i)aijbj (o)

The three factors that are multiplied in Eq” 9.52 in extegdhre previous paths to
compute the forward probability at tinteare:



Section 9.6. Search and Decoding 321

a;—1(i) theprevious forward path probability from the previous time step
aij thetransition probability from previous state; to current state;

bj(or) the state observation likelihoodof the observation symbak given
the current stat¢

The algorithm is described in Fig. 9.23.

function FORwWARD(observation®f len T, state-graphof len N) returns forward-prob

create a probability matriforward[N+2,T]

for each statsfrom 1to N do ;initialization step
forward[s,1]«—ags * bs(01)
for each time stepfrom 2to T do ;recursion step

for each statsfrom 1to N dﬁ
forward[s, t] « Z forwards,t — 1] « ag s * bs(or)
=1

N
forward gr,T] Z forward(s, T| * asgqe ; termination step

s=1
return forwardgg,T]

The forward algorithm for computing likelihood of obserigat sequence given a
word model.afs, ] is the transition probability from current stat¢o next states’, andb[s, o]

is the observation likelihood af giveno;. The observation likelihood[s', o] is computed by
theacoustic model

Let's see a trace of the forward algorithm running on a sifiggiHMM for the
single wordfive given 10 observations; assuming a frame shift of 10ms, thises to
100ms. The HMM structure is shown vertically along the Iéffiy. 9.24, followed by
the first 3 time-steps of the forward trellis. The comple#dlis is shown in Fig. 9.6,
together withB values giving a vector of observation likelihoods for eawmfe. These
likelihoods could be computed by any acoustic model (GMMstber); in this exam-
ple we've hand-created simple values for pedagogical mapo

Let's now turn to the question of decoding. Recall the Viteldcoding algorithm
from our description of HMMs in Ch. 6. The Viterbi algorithraturns the most likely
state sequence (which is not the same as the most likely veonaesice, but is often a
good enough approximation) in tin@(N>T).

Each cell of the Viterbi trellisy:(j) represents the probability that the HMM is in
state| after seeing the firgt observations and passing through the most likely state
sequencey;...0t—1, given the automatoA. The value of each celk(j) is computed
by recursively taking the most probable path that could lesitb this cell. Formally,
each cell expresses the following probability:

(9.53) vt (j) = P(Qo,01...Ck—1,01,02... 0,0 = j|A)

Like other dynamic programming algorithms, Viterbi fillsabacell recursively.
Given that we had already computed the probability of bemguery state at time
t—1, We compute the Viterbi probability by taking the most @ble of the extensions



322 Chapter 9. Automatic Speech Recognition

SEOICERZ  The first 3 time-steps of the forward trellis computation ttee wordfive TheA
transition probabilities are shown along the left edge Blebservation likelihoods are shown in

Fig. 9.6.
\Y 0 0 0.008 0.0093 0.0114 0.00703 0.00345 0.00306 0.00206 1D/00
AY 0 0.04 0054 0.0664 0.0355 0.016 0.00676 0.00208 0.00053Z00D09
F 0.8 0.32 0.112 0.0224 0.00448 0.000896 0.000179 4.48e-052eN5 2.8e-06
Time 1 2 3 4 5 6 7 8 9 10

f o8 f 08 f 07 f 04 ff 04 f 0.4 f 0.4 f 0.5 f 0.5 f 0.5

ay 0.1 ay 0.1 ay 03 ay 08 ay 0.8 ay 08 ay 0.8 ay 0.6 ay 05 ay 04
B v 06 v 06 v 04 v 03 v 03 v 03 v 0.3 v 0.6 v 0.8 v 0.9

p 04 p 04 p 02 p 01 p 01 p 012 p 0.1 p 0.1 p 03 p 03

iy 0.1 iy 01 iy 03 iy 06 iy 0.6 iy 0.6 iy 0.6 iy 056 iy 05 iy 0.4
The forward trellis for 10 frames of the wofive, consisting of 3 emitting state§ @y, v), plus non-
emitting start and end states (not shown). The bottom half@ftable gives part of thB observation likelihood
vector for the observation at each framep(o|q) for each phone). B values are created by hand for pedagogical
purposes. This table assumes the HMM structuréyesshown in Fig. 9.24, each emitting state having a .5 loopback
probability.

of the paths that lead to the current cell. For a given s timet, the valuex(j) is
computed as:

(9.54) w(j) = ri%Wt—l(i) aij bj(or)

The three factors that are multiplied in Eq. 9.54 for extagdhe previous paths to
compute the Viterbi probability at timteare:

vi—1(i) theprevious Viterbi path probability from the previous time step
ajj thetransition probability from previous state; to current statej;

bj(o) thestate observation likelihoodof the observation symbak given
the current stat¢

Fig. 9.26 shows the Viterbi algorithm, repeated from Ch. 6.
Recall that the goal of the Viterbi algorithm is to find the tetate sequenog=
(010203 - -gr) given the set of observatiomms= (010,03...07). It needs to also find



Section 9.6. Search and Decoding 323

function VITERBI(observationof len T,state-graptof len N) returns best-path

create a path probability matrisiterbi[N+2,T]
for each statsfrom 1to N do ;initialization step
viterbi[s,1]«ags * bs(01)
backpointefs, 1]« 0
for each time stepfrom 2to T do ;recursion step
for each statsfrom 1to N do

viterbi[s,t]<—rrj\éx viterbil/t — 1] « ag g * bs(cy)
=1
backpointe[s,t]Harg’F'nax viterbi[s,t — 1] * ag g
d=1
viterbi[gg,T] max viterbi[s, T] * agq: ; termination step
s=1

backpointefgr,T] « arg’?‘nax viterbi[s, T] * asge ; termination step

s=1
return the backtrace path by following backpointers to states bacttme from
backpointefgr, T]

Viterbi algorithm for finding optimal sequence of hiddenteta Given an ob-
servation sequence of words and an HMM (as defined byAtaed B matrices), the algorithm
returns the state-path through the HMM which assigns maxitikelihood to the observation
sequenceals, g is the transition probability from previous stateto current state, andbs(o)

is the observation likelihood afgiveno;. Note that states 0 and F are non-emitting start and end
states.

the probability of this state sequence. Note that the Mit@idorithm is identical to the
forward algorithm except that it takes the MAX over the poaid path probabilities
where forward takes the SUM.

Fig. 9.27 shows the computation of the first three time-sbefke Viterbi trellis
corresponding to the forward trellis in Fig. 9.24. We havaiagised the made-up
probabilities for the cepstral observations; here we a#low common convention in
not showing the zero cells in the upper left corner. Note ¢iméy the middle cell in the
third column differs from Viterbi to forward. Fig. 9.6 showse complete trellis.

Note the difference between the final values from the Vitartd forward algo-
rithms for this (made-up) example. The forward algorithmegi the probability of
the observation sequence as .00128, which we get by sumiérfgnal column. The
Viterbi algorithm gives the probability of the observatsequence given the best path,
which we get from the Viterbi matrix as .000493. The Viterbolpability is much
smaller than the forward probability, as we should expeutesiviterbi comes from a
single path, where the forward probability is the sum oviepaths.

The real usefulness of the Viterbi decoder, of course, hessiability to decode
a string of words. In order to do cross-word decoding, we rfeegugment theA
matrix, which only has intra-word state transitions, witle inter-word probability of
transitioning from the end of one word to the beginning oftaeo word. The digit
HMM model in Fig. 9.22 showed that we could just treat eachdnas independent,
and use only the unigram probability. Higher-ortkegrams are much more common.
Fig. 9.29, for example, shows an augmentation of the digitMiiith bigram proba-



324 Chapter

9. Automatic Speech Recognition

The first 3 time-steps of the viterbi trellis computation fbe wordfive The A
transition probabilities are shown along the left edge Blebservation likelihoods are shown in
Fig. 9.6. In this computation we make the simplifying asstiampthat the probability of starting
in state 1 (phone [f]) is 1.0

\% 0 0 0.008 0.0072 0.00672 0.00403 0.00188 0.00161 0.00066000493
AY 0 0.04 0.048 0.0448 0.0269 0.0125 0.00538 0.00167 0.0004288e-®5
F 0.8 0.32 0.112 0.0224 0.00448 0.000896 0.000179 4.48e-052eD5 2.8e-06
Time 1 2 3 4 5 6 7 8 9 10
f o8 fo08 f 07 f 04 f 04 f 04 f 04 f 0.5 f 05 f 05
ay 0.1 ay 0.1 ay 0.3 ay 08 ay 0.8 ay 0.8 ay 088 ay 06 ay 05 ay 04
B v 06 v 06 v 04 v 03 v 03 v 0.3 v 0.3 v 0.6 v 0.8 v 09
p 04 p 04 p 02 p 01 p 01 p 01 p 0.1 p 0.1 p 0.3 p 0.3
iy 0.1 iy 0.1 iy 03 iy 06 iy 0.6 iy 0.6 iy 0.6 iy 0.5 iy 05 iy 0.4

The Viterbi trellis for 10 frames of the worfive, consisting of 3 emitting state§ @y, v), plus non-
emitting start and end states (not shown). The bottom half@ftable gives part of thB observation likelihood
vector for the observation at each framep(o|q) for each phone). B values are created by hand for pedagogical
purposes. This table assumes the HMM structuréyesshown in Fig. 9.24, each emitting state having a .5 loopback

probability.

bilities.

A schematic of the HMM trellis for such a multi-word decoditask is shown
in Fig. 9.30. The intraword transitions are exactly as shawRig. 9.27. But now
between words we've added a transition. The transitiongddity on this arc, rather
than coming from theA matrix inside each word, comes from the language model
P(W).

Once the entire Viterbi trellis has been computed for theratice, we can start
from the most-probable state at the final time step and fotlmvbacktrace pointers
backwards to get the most probable string of states, ancettbranost probable string
of words. Fig. 9.31 shows the backtrace pointers beingvatbback from the best
state, which happens to bewa, eventually throughvy andw;, resulting in the final
word stringwiwy - - - Wo.

The Viterbi algorithm is much more efficient than exponédhtieunning the for-
ward algorithm for each possible word string. Nonetheliss,still slow, and much
modern research in speech recognition has focused on sgagulithe decoding pro-



Section 9.6. Search and Decoding

Pruning

Beam search

p(one | one)

p(one | two) p(two | one)

p( one | zero )

p( zero | zero )

325

probability of transitioning from the end of one word to thegnning of the next.

FEIIGERA A bigram grammar network for the digit recognition task. Tigrams give th

e

& O o o o o 1)
Q
wy Q Q
Q ¢}
/
. Pwyn [wq)
Q o
w, ©
Q
P(w, [wy)
Q ¢}
Y Py 1wy)
w wW.
Q o g
Y%
0, 0, 0y o, or

t

SRR A schematic of the HMM Viterbi trellis for a bigram languageodel. The in-
traword transitions are the same as in Fig. 9.27. Betweedsyer potential transition is added
(shown just fromw, as a dark dashed line) from the end state of each word to therideg state

of every word, labeled with the bigram probability of the wqrair.

cess. For example in practice in large-vocabulary recagnite do not consider all
possible words when the algorithm is extending paths from state-column to the
next. Instead, low-probability paths goeuned at each time step and not extended to

the next state column.

This pruning is usually implemented vieeam search(Lowerre, 1968). In beam
search, at each time we first compute the probability of the best (most-probpble
state/pathD. We then prune away any state which is worse tBahy some fixed



326 Chapter 9. Automatic Speech Recognition

N

8 8 8

Wa

Wy

88& & 88 8

o
&

o, 0, 0, 04 014 or

t

SEOIGEEH  Viterbi backtrace in the HMM trellis. The backtrace startghe final state, and
results in a best phone string from which a word string isveeti

Beamwidth  threshold Heam width) 6. We can talk about beam-search in both the probability
and negative log probability domain. In the probability dimany path/state whose
probability is less tha x D is pruned away; in the negative log domain, any path
whose cost is greater thént D is pruned. Beam search is implemented by keeping for

Activelist ~ each time step aactive list of states. Only transitions from these words are extended
when moving to the next time step.

Making this beam search approximation allows a significaees-up at the cost
of a degradation to the decoding performance. Huang et @D1(Psuggest that em-
pirically a beam size of 5-10% of the search space is suflic#n95% of the states
are thus not considered. Because in practice most impleriemns of Viterbi use beam
search, some of the literature uses the tbeam searchor time-synchronous beam
searchinstead of Viterbi.

9.7 Embedded Training

We turn now to see how an HMM-based speech recognition syistérained. We've
already seen some aspects of training. In Ch. 4 we showed d¢raih a language
model. In Sec. 9.4, we saw how GMM acoustic models are traiyealigmenting the
EM algorithm to deal with training the means, variances, aeijhts. We also saw
how posterior AM classifiers like SVMs or neural nets couldtaéned, although for
neural nets we haven't yet seen how we get training data inlwdech frame is labeled
with a phone identity.

In this section we complete the picture of HMM training by siirog how this aug-
mented EM training algorithm fits into the whole process airing acoustic models.
For review, here are the three components ofat®ustic model



Section 9.7. Embedded Training 327

Q=0102..-0On thesubphonesrepresented as a setsifites

A=ap1ap2..-an1---8nn @ subphone transition probability matrix A,
eacha;; representing the probability for each
subphone of taking aelf-loop or going to the
next subphone. Togethe@ and A implement
a pronunciation lexicon, an HMM state graph
structure for each word that the system is capa-
ble of recognizing.

B =nhi(o) A set of observation likelihoods; also called
emission probabilities each expressing the
probability of a cepstral feature vector (observa-
tion o) being generated from subphone state

We will assume that the pronunciation lexicon, and thus HedHMM state graph
structure for each word, is pre-specified as the simple fitdM structures with
loopbacks on each state that we saw in Fig. 9.7 and Fig. 9.8%yeheral, speech
recognition systems do not attempt to learn the structutteeahdividual word HMMs.
Thus we only need to train thB matrix, and we need to train the probabilities of
the non-zero (self-loop and next-subphone) transitiorthéA matrix. All the other
probabilities in theA matrix are set to zero and never change.

The simplest possible training method,hand-labeled isolated wordtraining,
in which we train separate tH@ andA matrices for the HMMs for each word based
on hand-aligned training data. We are given a training cogfudigits, where each
instance of a spoken digitis stored in a wavefile, and wittsthg and end of each word
and phone hand-segmented. Given such a hand-labeled siatalgecan compute tige
Gaussians observation likelihoods andAtteansition probabilities by merely counting
in the training data! Thé\ transition probability are specific to each word, but Bie
Gaussians would be shared across words if the same phomeestzumultiple words.

Unfortunately, hand-segmented training data is rarely iséraining systems for
continuous speech. One reason is that it is very expensiveggtdumans to hand-label
phonetic boundaries; it can take up to 400 times real timee (400 labeling hours
to label each 1 hour of speech). Another reason is that human's do phonetic
labeling very well for units smaller than the phone; peopie lbad at consistently
finding the boundaries of subphones. ASR systems arendriibtin humans at finding
boundaries, but their errors are at least consistent battheetraining and test sets.

For this reason, speech recognition systems train eaclegtigiM embedded in an
entire sentence, and the segmentation and phone alignneedbae automatically as
part of the training procedure. This entire acoustic modéhing process is therefore

Empgdded  calledembedded training Hand phone segmentation do still play some role, however,
for example for bootstrapping initial systems for discriative (SVM; non-Gaussian)
likelihood estimators, or for tasks like phone recognition

In order to train a simple digits system, we’ll need a tragndorpus of spoken digit
sequences. For simplicity assume that the training corpegparated into separate
wavefiles, each containing a sequence of spoken digits. &&br wavefile, we'll need
to know the correct sequence of digit words. We'll thus aisgeavith each wavefile a



328 Chapter 9. Automatic Speech Recognition

transcription (a string of words). We’'ll also need a pronation lexicon and a phone-
set, defining a set of (untrained) phone HMMs. From the tnapt$on, lexicon, and
phone HMMs, we can build a “whole sentence” HMM for each secég as shown in
Fig. 9.32.

Transorpion | Nine four oh two two Wavefle JWW%W

wahn
two tuw
three thriy

Lexicon

eight eyt
nne nayn
ze10  ziyrow
oh ow

Feature Extraction

 naynfaorowtuwtuw rrrvrvvany

o $5345444%- 580888 T prEEERIEEEEED

SEICEEY. The input to the embedded training algorithm; a wavefile okep digits with a corresponding tran-
scription. The transcription is converted into a raw HMMadlg to be aligned and trained against the cepstral features
extracted from the wavefile.

We are now ready to train the transition matrix A and outpkgllhood estimator B
for the HMMs. The beauty of the Baum-Welch-based paradigrefiebedded training
of HMMs is that this is all the training data we need. In pariz, we don’t need
phonetically transcribed data. We don’t even need to knoereleach word starts and
ends. The Baum-Welch algorithm will sum over all possiblgnsentations of words
and phones, using; (t), the probability of being in statpat timet and generating the
observation sequence O.

We will, however, need an initial estimate for the transitand observation prob-

Flat start abilities a;j andbj(o;). The simplest way to do this is withftat start. In flat start,
we first set to zero any HMM transitions that we want to be &ally zero’, such as
transitions from later phones back to earlier phones. fipmbability computation in
Baum-Welch includes the previous valuesgf, so those zero values will never change.
Then we make all the rest of the (non-zero) HMM transitiongigigpbable. Thus the
two transitions out of each state (the self-loop and thestti@m to the following sub-
phone) each would have a probability of 0.5. For the Gaussefiat start initializes
the mean and variance for each Gaussian identically, tolttmbmean and variance
for the entire training data.

Now we have initial estimates for th®andB probabilities. For a standard Gaus-
sian HMM system, we now run multiple iterations of the Baureldti algorithm on



Section 9.7. Embedded Training 329

Viterbi training

Forced alignment

the entire training set. Each iteration modifies the HMM paeters, and we stop when
the system converges. During each iteration, as discuss€t.i6, we compute the
forward and backward probabilities for each sentence diverinitial A andB proba-
bilities, and use them to re-estimate thandB probabilities. We also apply the various
modifications to EM discussed in the previous section toemly update the Gaussian
means and variances for multivariate Gaussians. We wildisin Sec. 10.3in Ch. 10
how to modify the embedded training algorithm to handle omgtGaussians.

In summary, the basiembedded training procedureis as follows:

Given: phoneset, pronunciation lexicon, and the tranedriiavefiles
1. Build a“whole sentence” HMM for each sentence, as showAign9.32.

2. Initialize A probabilities to 0.5 (for loop-backs or for the correct next
subphone) or to zero (for all other transitions).

3. Initialize B probabilities by setting the mean and variance for each
Gaussian to the global mean and variance for the entirdrigpget.

4. Run multiple iterations of the Baum-Welch algorithm.

The Baum-Welch algorithm is used repeatedly as a comporighecembedded
training process. Baum-Welch compui&$i), the probability of being in stateat
timet, by using forward-backward to sum over all possible patla$ tere in state
i emitting symbolo; at timet. This lets us accumulate counts for re-estimating the
emission probabilitj(or) from all the paths that pass through statat timet. But
Baum-Welch itself can be time-consuming.

There is an efficient approximation to Baum-Welch trainingttmakes use of the
Viterbi algorithm. InViterbi training , instead of accumulating counts by a sum over
all paths that pass through a statat timet, we approximate this by only choosing
the Viterbi (most-probable) path. Thus instead of runnind & every step of the
embedded training, we repeatedly run Viterbi.

Running the Viterbi algorithm over the training data in thiay is calledforced
Viterbi alignment or justforced alignment In Viterbi training (unlike in Viterbi
decoding on the test set) we know which word string to assigeatch observation
sequence, So we can ‘force’ the Viterbi algorithm to passubh certain words, by
setting theaj;s appropriately. A forced Viterbi is thus a simplificationtbe regular
Viterbi decoding algorithm, since it only has to figure o ttorrect state (subphone)
sequence, but doesn't have to discover the word sequenegeslt is dorced align-
ment: the single best state path corresponding to the trainisgreiation sequence. We
can now use this alignment of HMM states to observationst¢amalate counts for re-
estimating the HMM parameters. We saw earlier that forgghatient can also be used
in other speech applications like text-to-speech, whewednave a word transcript and
a wavefile in which we want to find boundaries.

The equations for retraining a (non-mixture) Gaussian feoviiterbi alignment are
as follows:

—

(9.55) Ui

=l =

0 S.t. ¢ is state
t=



330 Chapter 9. Automatic Speech Recognition

1 T
,\.2 _ = o 2 . .
(9.56) 0 T tZ (0t — 1i)“ s.t.q is statei

We saw these equations already, as (9.27) and (9.28) on dégevBen we were
‘imagining the simpler situation of a completely labelegining set'.

It turns out that this forced Viterbi algorithm is also usedhe embedded training
of hybrid models like HMM/MLP or HMM/SVM systems. We begintivian untrained
MLP, and using its noisy outputs as tBealues for the HMM, perform a forced Viterbi
alignment of the training data. This alignment will be queteorful, since the MLP
was random. Now this (quite errorful) Viterbi alignment gius a labeling of feature
vectors with phone labels. We use this labeling to retragnMt.P. The counts of the
transitions which are taken in the forced alignments cansieel to estimate the HMM
transition probabilities. We continue this hill-climbiqgocess of neural-net training
and Viterbi alignment until the HMM parameters begin to cenge.

9.8 Evaluation: Word Error Rate

worderror  The standard evaluation metric for speech recognitioresysts thavord error rate.
The word error rate is based on how much the word string retlihy the recognizer
(often called theéhypothesizedword string) differs from a correct aeferencetran-
scription. Given such a correct transcription, the firspstecomputing word error is
to compute thaninimum edit distance in words between the hypothesized and cor-
rect strings, as described in Ch. 3. The result of this coatfmrt will be the minimum
number of wordsubstitutions, wordinsertions, and worddeletionsnecessary to map
between the correct and hypothesized strings. The word ext® (WER) is then de-
fined as follows (note that because the equation includestioss, the error rate can
be greater than 100%):

Insertionst Substitutions- Deletions
Total Words in Correct Transcript

We sometimes also talk about the SER (Sentence Error Rat@hwells us how
many sentences had at least one error:

Word Error Rate= 100x

# of sentences with at least one word error

Sentence Error Rate= 100x
total # of sentences

Alignment Here is an example of thalignments between a reference and a hypothesized
utterance from the CALLHOME corpus, showing the counts usexmpute the word
error rate:

REF: i** * UM the PHONE IS i LEFT THE portable *** PHONE UPSTRAIRS last night
HYP: i GOT IT TO the ***** FULLEST i LOVE TO portable FORM OF STRES last night
Eval: | I S D S S S | S S

This utterance has six substitutions, three insertiors ome deletion:

Word Error Rate= 100%;1 =76.9%



Section 9.8. Evaluation: Word Error Rate 331

Sentence error
rate

McNemar test

The standard method forimplementing minimum edit distammkcomputing word
error rates is a free script callestlite , available from the National Institute of
Standards and Technologies (NIST) (NIST, 200&lite  is given a series of ref-
erence (hand-transcribed, gold-standard) sentences aralching set of hypothesis
sentences. Besides performing alignments, and computing @rror rate, sclite per-
forms a number of other useful tasks. For example, it givesulisnformation for
error analysis, such as confusion matrices showing which words are oftanetdg-
nized for others, and gives summary statistics of words Wwhie often inserted or
deletedsclite  also gives error rates by speaker (if sentences are labtmisgéaker
id), as well as useful statistics like tsentence error rate the percentage of sentences
with at least one word error.

Finally, sclite  can be used to compute significance tests. Suppose we make
some changes to our ASR system and find that our word errohestelecreased by
1%. In order to know if our changes really improved things,need a statistical test
to make sure that the 1% difference is not just due to chanke.sfandard statistical
test for determining if two word error rates are differentie Matched-Pair Sentence
Segment Word Error (MAPSSWE) test, which is also availablsclite  (although
theMcNemar testis sometimes used as well).

The MAPSSWE test is a parametric test that looks at the diffee between the
number of word errors the two systems produce, averagedsanmumber of segments.
The segments may be quite short or as long as an entire weiargeneral we want to
have the largest number of (short) segments in order tdyuk# normality assumption
and for maximum power. The test requires that the errorsérsegment be statistically
independent of the errors in another segment. Since ASRragdend to use trigram
LMs, this can be approximated by defining a segment as a rdgianded on both
sides by words that both recognizers get correct (or tuer@nce boundaries).

Here’s an example from NIST (2007b) with four regions:

| 1l 11l v
REF: |[it was|the best|of|times itlwas the worst|of times| | it was
I I [ I [
SYS A:|ITS |[the best|ofitimes it|IS the worst |of times|OR| it was
I
SYS B:|it was|the best| [times it|WON the TEST |of times| |it was

In region |, system A has 2 errors (a deletion and an insérton system B has
0; in region Il system A has 1 (substitution) error and sgst& has 2. Let’s define
a sequence of variablésrepresenting the difference between the errors in the two
systems as follows:

N,k the number of errors made on segmieloy systemA
NiB the number of errors made on segmieloy systenB
z Ny —N&,i = 1,2,---,nwheren is the number of segments

For example in the example above the sequencéé\@flues is{2,—1,—1,1}. In-
tuitively, if the two systems are identical, we would expihe average difference, i.e.
the average of th& values, to be zero. If we call the true average of the diffeesn
mu,, we would thus like to know whethenu, = 0. Following closely the original pro-



332 Chapter

9. Automatic Speech Recognition

posal and notation of Gillick and Cox (1989), we can estinthéetrue average from
our limited sample ag, = S, Zi/n.
The estimate of the variance of tBgs is:

=}

(9.57) 02 = — (Zi — t)?
i=
Let .
Hz
9.58 W=
(9.58) o/ /i

For a large enough (> 50) W will approximately have a normal distribution with tini
variance. The null hypothesis b : 1z = 0, and it can thus be rejected ik®P(Z >
|w]) < 0.05 (two-tailed) ofP(Z > |w|) < 0.05 (one-tailed). wherg is standard normal
andw is the realized valugV; these probabilities can be looked up in the standard
tables of the normal distribution.

Could we improve on word error rate as a metric? It would be rficr example, to
have something which didn’t give equal weight to every wpethaps valuing content
words likeTuesdaymore than function words like or of. While researchers generally
agree that this would be a good idea, it has proved difficuitgmee on a metric that
works in every application of ASR. For dialogue systems, &y, where the desired
semantic output is more clear, a metric calbehcept error ratéhas proved extremely
useful, and will be discussed in Ch. 24 on page 851.

9.9 Summary

Together with Ch. 4 and Ch. 6, this chapter introduced thddmmental algorithms for
addressing the problem barge Vocabulary Continuous Speech Recognition

e The input to a speech recognizer is a series of acoustic waleswaveform,
spectrogramandspectrumare among the visualization tools used to understand
the information in the signal.

¢ In the first step in speech recognition, sound wavessarepled quantized,
and converted to some sortgfectral representation A commonly used spec-
tral representation is theel cepstrum or MFCC which provides a vector of
features for each frame of the input.

¢ GMM acoustic models are used to estimateghenetic likelihoods(also called
observation likelihoodg of thesefeature vectorsfor each frame.

e Decodingor searchor inferenceis the process of finding the optimal sequence
of model states which matches a sequence of input obsangatf@he fact that
there are three terms for this process is a hint that speeobméion is inherently
inter-disciplinary, and draws its metaphors from more tbaa field;decoding
comes from information theory, arsarchandinferencefrom artificial intelli-
gence).



Section 9.9. Summary 333

e We introduced two decoding algorithms: time-synchronWiterbi decoding
(whichis usually implemented with pruning and can then Bleddeam search
andstackor A* decoding. Both algorithms take as input a sequence of @pstr
feature vectors, a GMM acoustic model, andNugram language model, and
produce a string of words.

e Theembedded trainingparadigm is the normal method for training speech rec-
ognizers. Given an initial lexicon with hand-built proniatton structures, it will
train the HMM transition probabilities and the HMM obseteatprobabilities.

Bibliographical and Historical Notes

Warping

Dynamic time
warping

The first machine which recognized speech was probably a esoiah toy named
“Radio Rex” which was sold in the 1920s. Rex was a celluloid tltat moved (via
a spring) when the spring was released by 500 Hz acoustiggn8ince 500 Hz is
roughly the first formant of the vowel [eh] in “Rex”, the dogeseed to come when he
was called (David and Selfridge, 1962).

By the late 1940s and early 1950s, a number of machine speeanition systems
had been built. An early Bell Labs system could recognizedartie 10 digits from
a single speaker (Davis et al., 1952). This system had 1kepeapendent stored
patterns, one for each digit, each of which roughly represkthe first two vowel
formants in the digit. They achieved 97—99% accuracy by simgothe pattern which
had the highest relative correlation coefficient with thpunh Fry (1959) and Denes
(1959) built a phoneme recognizer at University Collegendan, which recognized
four vowels and nine consonants based on a similar patemwgnition principle. Fry
and Denes’s system was the first to use phoneme transitidralpitities to constrain
the recognizer.

The late 1960s and early 1970s produced a number of impgréaatligm shifts.
First were a number of feature-extraction algorithms,udelthe efficient Fast Fourier
Transform (FFT) (Cooley and Tukey, 1965), the applicatiboapstral processing to
speech (Oppenheim et al., 1968), and the development of bP€péech coding (Atal
and Hanauer, 1971). Second were a number of ways of handinging; stretching
or shrinking the input signal to handle differences in sjregkate and segment length
when matching against stored patterns. The natural ahgoffior solving this problem
was dynamic programming, and, as we saw in Ch. 6, the algontlas reinvented
multiple times to address this problem. The first applicatmspeech processing was
by Vintsyuk (1968), although his result was not picked up kyeo researchers, and
was reinvented by Velichko and Zagoruyko (1970) and SakdeCiriba (1971) (and
(1984)). Soon afterward, Itakura (1975) combined this dyicgprogramming idea
with the LPC coefficients that had previously been used omiyspeech coding. The
resulting system extracted LPC features for incoming wamls used dynamic pro-
gramming to match them against stored LPC templates. Thepraivabistic use of
dynamic programming to match a template against incomiegdapis calledlynamic
time warping.



334 Chapter

9. Automatic Speech Recognition

The third innovation of this period was the rise of the HMMdHéen Markov Mod-
els seem to have been applied to speech independently altenatories around 1972.
One application arose from the work of statisticians, irtipatar Baum and colleagues
at the Institute for Defense Analyses in Princeton on HMMd dreir application to
various prediction problems (Baum and Petrie, 1966; BaudnEagon, 1967). James
Baker learned of this work and applied the algorithm to sheg@ocessing (Baker,
1975) during his graduate work at CMU. Independently, FrielelJelinek, Robert
Mercer, and Lalit Bahl (drawing from their research in infation-theoretical mod-
els influenced by the work of Shannon (1948)) applied HMMspeesh at the IBM
Thomas J. Watson Research Center (Jelinek et al., 1975).’sIBMI Baker's sys-
tems were very similar, particularly in their use of the Bsige framework described
in this chapter. One early difference was the decoding dlgur Baker's DRAGON
system used Viterbi (dynamic programming) decoding, wihieeIBM system applied
Jelinek’s stack decoding algorithm (Jelinek, 1969). Baken joined the IBM group
for a brief time before founding the speech-recognition pany Dragon Systems. The
HMM approach to speech recognition would turn out to comgiyeiominate the field
by the end of the century; indeed the IBM lab was the drivingdédn extending sta-
tistical models to natural language processing as welludiag the development of
class-basedll-grams, HMM-based part-of-speech tagging, statisticahimee transla-
tion, and the use of entropy/perplexity as an evaluationimet

The use of the HMM slowly spread through the speech commuititye cause
was a humber of research and development programs sporsotieel Advanced Re-
search Projects Agency of the U.S. Department of DefensdPfARThe first five-
year program starting in 1971, and is reviewed in Klatt ()97he goal of this first
program was to build speech understanding systems basedeanspeakers, a con-
strained grammar and lexicon (1000 words), and less than séi%@antic error rate.
Four systems were funded and compared against each otleeSydiem Develop-
ment Corporation (SDC) system, Bolt, Beranek & Newman (BBMWIM system,
Carnegie-Mellon University’s Hearsay-Il system, and @aie-Mellon’s Harpy sys-
tem (Lowerre, 1968). The Harpy system used a simplified warsf Baker's HMM-
based DRAGON system and was the best of the tested systetdrscenrding to Klatt
the only one to meet the original goals of the ARPA projectifvai semantic accuracy
rate of 94% on a simple task).

Beginning in the mid-1980s, ARPA funded a number of new speesearch pro-
grams. The first was the “Resource Management” (RM) taskéRtial., 1988), which
like the earlier ARPA task involved transcription (recatipn) of read-speech (speakers
reading sentences constructed from a 1000-word vocabBudatryhich now included a
component that involved speaker-independent recognitiater tasks included recog-
nition of sentences read from the Wall Street Journal (W®4gjriming with limited
systems of 5,000 words, and finally with systems of unlimiedabulary (in prac-
tice most systems use approximately 60,000 words). Lateaprecognition tasks
moved away from read-speech to more natural domains; thed8est News domain
(LDC, 1998; Graff, 1997) (transcription of actual news licasts, including quite
difficult passages such as on-the-street interviews) am@thitchboardCALLHOME,
CALLFRIEND, and Fisher domains (Godfrey et al., 1992; Cieri et al., 2{84tural
telephone conversations between friends or strangersk. AlihTraffic Information



Section 9.9. Summary 335

Bake-off

__ Speaker
deniigatpe
verification

Language
idenntification

System (ATIS) task (Hemphill et al., 1990) was an earlieregbeunderstanding task
whose goal was to simulate helping a user book a flight, by arieg/questions about
potential airlines, times, dates, and so forth.

Each of the ARPA tasks involved an approximately anrhale-off at which all
ARPA-funded systems, and many other ‘volunteer’ systems florth American and
Europe, were evaluated against each other in terms of woodrate or semantic error
rate. In the early evaluations, for-profit corporations dat generally compete, but
eventually many (especially IBM and ATT) competed regylaflhe ARPA competi-
tions resulted in widescale borrowing of techniques amaig,l since it was easy to
see which ideas had provided an error-reduction the prewear, and were proba-
bly an important factor in the eventual spread of the HMM pagan to virtual every
major speech recognition lab. The ARPA program also resuitea number of use-
ful databases, originally designed for training and tesfiystems for each evaluation
(TIMIT, RM, WSJ, ATIS, BN, CALLHOME, Switchboard, Fisher) ub then made
available for general research use.

Speech research includes a number of areas besides speaghition; we already
saw computational phonology in Ch. 7, speech synthesis i8Cimd we will discuss
spoken dialogue systems in Ch. 24. Another important arspdaker identification
and speaker verification in which we identify a speaker (for example for security
when accessing personal information over the telephornejr(®ds and Rose, 1995;
Shriberg et al., 2005; Doddington, 2001). This task is eglablanguage identifica-
tion, in which we are given a wavefile and have to identify whichglaage is being
spoken; this is useful for automatically directing callerfiuman operators that speak
appropriate languages.

There are a number of textbooks and reference books on spEmxgnition that are
good choices for readers who seek a more in-depth undenstpofthe material in this
chapter: Huang et al. (2001) is by far the most compreheiasidaip-to-date reference
volume and is highly recommended. Jelinek (1997), Gold andysin (1999), and Ra-
biner and Juang (1993) are good comprehensive textbookdagtitwo textbooks also
have discussions of the history of the field, and togethdr thi¢ survey paper of Levin-
son (1995) have influenced our short history discussionigctmapter. Our description
of the forward-backward algorithm was modeled after Rab{t889), and we were
also influenced by another useful tutorial paper, Knill ardiivg (1997). Research in
the speech recognition field often appears in the procesdifithe annual INTER-
SPEECH conference, (which is called ICSLP and EUROSPEECHkténnate years)
as well as the annual IEEE International Conference on Aas)$Speech, and Signal
Processing (ICASSP). Journals inclugigeech Communicatipgomputer Speech and
Language the IEEE Transactions on Audio, Speech, and Language Proagssidl
the ACM Transactions on Speech and Language Processing



336 Chapter

9.

Automatic Speech Recognition

Exercises

Logprob

9.1

9.2

9.3

9.4

9.5

9.6

Analyze each of the errors in the incorrectly recognizedscaiption of “um the
phone is | left the...” on page 330. For each one, give your fesss as to
whether you think it is caused by a problem in signal proceggironunciation
modeling, lexicon size, language model, or pruning in theodeng search.

In practice, speech recognizers do all their probabilitynpatation using the
log probability (or logprob) rather than actual probabilities. This helps avoid
underflow for very small probabilities, but also makes thieeili algorithm very
efficient, since all probability multiplications can be itemented by adding log
probabilities. Rewrite the pseudocode for the Viterbi ailipon in Fig. 9.26 on
page 323 to make use of logprobs instead of probabilities.

Now modify the Viterbi algorithm in Fig. 9.26 on page 323 toplament the
beam search described on page 325. Hint: You will probaldygine add in code
to check whether a given state is at the end of a word or not.

Finally, modify the Viterbi algorithm in Fig. 9.26 on page3®&ith more detailed
pseudocode implementing the array of backtrace pointers.

Using the tutorials available as part of a publicly avaiatdcognizer like HTK
or Sonic, build a digit recognizer.

Take the digit recognizer above and dump the phone liketisdor a sentence.
Now take your implementation of the Viterbi algorithm andshthat you can
successfully decode these likelihoods.



	PART II: Speech
	9 Automatic Speech Recognition


