
DRAFT

P R E L I M I N A R Y P R O O F S .
Unpublished Work c©2008 by Pearson Education, Inc. To be published by Pearson Pr entice Hall,
Pearson Education, Inc., Upper Saddle River, New Jersey. Al l rights reserved. Permission to use
this unpublished Work is granted to individuals registerin g through Melinda_Haggerty@prenhall.com
for the instructional purposes not exceeding one academic t erm or semester.

Chapter 9
Automatic Speech Recognition

When Frederic was a little lad he proved so brave and daring,
His father thought he’d ’prentice him to some career seafaring.
I was, alas! his nurs’rymaid, and so it fell to my lot
To take and bind the promising boy apprentice to apilot —
A life not bad for a hardy lad, though surely not a high lot,
Though I’m a nurse, you might do worse than make your boy a pilot.
I was a stupid nurs’rymaid, on breakers always steering,
And I did not catch the word aright, through being hard of hearing;
Mistaking my instructions, which within my brain did gyrate,
I took and bound this promising boy apprentice to apirate.

The Pirates of Penzance, Gilbert and Sullivan, 1877

Alas, this mistake by nurserymaid Ruth led to Frederic’s long indenture as a pirate and,
due to a slight complication involving 21st birthdays and leap years, nearly led to 63
extra years of apprenticeship. The mistake was quite natural, in a Gilbert-and-Sullivan
sort of way; as Ruth later noted, “The two words were so much alike!” True, true;
spoken language understanding is a difficult task, and it is remarkable that humans do
as well at it as we do. The goal ofautomatic speech recognition(ASR) research is toASR

address this problem computationally by building systems that map from an acoustic
signal to a string of words.Automatic speech understanding(ASU) extends this goal
to producing some sort of understanding of the sentence, rather than just the words.

The general problem of automatic transcription of speech byany speaker in any en-
vironment is still far from solved. But recent years have seen ASR technology mature
to the point where it is viable in certain limited domains. One major application area
is in human-computer interaction. While many tasks are better solved with visual or
pointing interfaces, speech has the potential to be a betterinterface than the keyboard
for tasks where full natural language communication is useful, or for which keyboards
are not appropriate. This includes hands-busy or eyes-busyapplications, such as where
the user has objects to manipulate or equipment to control. Another important ap-
plication area is telephony, where speech recognition is already used for example in
spoken dialogue systems for entering digits, recognizing “yes” to accept collect calls,
finding out airplane or train information, and call-routing(“Accounting, please”, “Prof.
Regier, please”). In some applications, a multimodal interface combining speech and
pointing can be more efficient than a graphical user interface without speech (Cohen
et al., 1998). Finally, ASR is applied to dictation, that is,transcription of extended
monologue by a single specific speaker. Dictation is common in fields such as law and
is also important as part of augmentative communication (interaction between comput-
ers and humans with some disability resulting in the inability to type, or the inability to
speak). The blind Milton famously dictatedParadise Lostto his daughters, and Henry
James dictated his later novels after a repetitive stress injury.

Before turning to architectural details, let’s discuss some of the parameters of the
speech recognition task. One dimension of variation in speech recognition tasks is

DRAFT

288 Chapter 9. Automatic Speech Recognition

the vocabulary size. Speech recognition is easier if the number of distinct words we
need to recognize is smaller. So tasks with a two word vocabulary, like yesversusno
detection, or an eleven word vocabulary, like recognizing sequences of digits, in what
is called thedigits task task, are relatively easy. On the other end, tasks with largeDigit recognition

vocabularies, like transcribing human-human telephone conversations, or transcribing
broadcast news, tasks with vocabularies of 64,000 words or more, are much harder.

A second dimension of variation is how fluent, natural, or conversational the speech
is. Isolated word recognition, in which each word is surrounded by some sort ofpause,Isolated word

is much easier than recognizingcontinuous speech, in which words run into each otherContinuous
speech

and have to be segmented. Continuous speech tasks themselves vary greatly in diffi-
culty. For example, human-to-machine speech turns out to befar easier to recognize
than human-to-human speech. That is, recognizing speech ofhumans talking to ma-
chines, either reading out loud inread speech(which simulates the dictation task), orRead speech

conversing with speech dialogue systems, is relatively easy. Recognizing the speech
of two humans talking to each other, inconversational speechrecognition, for exam-Conversational

speech

ple for transcribing a business meeting or a telephone conversation, is much harder.
It seems that when humans talk to machines, they simplify their speech quite a bit,
talking more slowly and more clearly.

A third dimension of variation is channel and noise. Thedictation task (and much
laboratory research in speech recognition) is done with high quality, head mounted
microphones. Head mounted microphones eliminate the distortion that occurs in a
table microphone as the speaker’s head moves around. Noise of any kind also makes
recognition harder. Thus recognizing a speaker dictating in a quiet office is much easier
than recognizing a speaker in a noisy car on the highway with the window open.

A final dimension of variation is accent or speaker-class characteristics. Speech is
easier to recognize if the speaker is speaking a standard dialect, or in general one that
matches the data the system was trained on. Recognition is thus harder on foreign-
accented speech, or speech of children (unless the system was specifically trained on
exactly these kinds of speech).

Table 9.1 shows the rough percentage of incorrect words (theword error rate , or
WER, defined on page 330) from state-of-the-art systems on different ASR tasks.

Task Vocabulary Error Rate %
TI Digits 11 (zero-nine, oh) .5
Wall Street Journal read speech 5,000 3
Wall Street Journal read speech 20,000 3
Broadcast News 64,000+ 10
Conversational Telephone Speech (CTS) 64,000+ 20

Figure 9.1 Rough word error rates (% of words misrecognized) reported around 2006 for ASR
on various tasks; the error rates for Broadcast News and CTS are based on particular training and
test scenarios and should be taken as ballpark numbers; error rates for differently defined tasks
may range up to a factor of two.

Variation due to noise and accent increases the error rates quite a bit. The word error
rate on strongly Japanese-accented or Spanish accented English has been reported to be
about 3 to 4 times higher than for native speakers on the same task (Tomokiyo, 2001).

DRAFT

Section 9.1. Speech Recognition Architecture 289

And adding automobile noise with a 10dB SNR (signal-to-noise ratio) can cause error
rates to go up by 2 to 4 times.

In general, these error rates go down every year, as speech recognition performance
has improved quite steadily. One estimate is that performance has improved roughly
10 percent a year over the last decade (Deng and Huang, 2004),due to a combination
of algorithmic improvements and Moore’s law.

While the algorithms we describe in this chapter are applicable across a wide va-
riety of these speech tasks, we chose to focus this chapter onthe fundamentals of one
crucial area:Large-Vocabulary Continuous Speech Recognition(LVCSR). Large-LVCSR

vocabulary generally means that the systems have a vocabulary of roughly 20,000
to 60,000 words. We saw above thatcontinuous means that the words are run to-
gether naturally. Furthermore, the algorithms we will discuss are generallyspeaker-
independent; that is, they are able to recognize speech from people whosespeech theSpeaker

independent
system has never been exposed to before.

The dominant paradigm for LVCSR is the HMM, and we will focus on this ap-
proach in this chapter. Previous chapters have introduced most of the core algorithms
used in HMM-based speech recognition. Ch. 7 introduced the key phonetic and phono-
logical notions ofphone, syllable, and intonation. Ch. 5 and Ch. 6 introduced the use
of the Bayes rule, theHidden Markov Model (HMM), theViterbi algorithm, and
the Baum-Welch training algorithm. Ch. 4 introduced theN-gram language model
and theperplexity metric. In this chapter we begin with an overview of the architec-
ture for HMM speech recognition, offer an all-too-brief overview of signal processing
for feature extraction and the extraction of the important MFCC features, and then in-
troduce Gaussian acoustic models. We then continue with howViterbi decoding works
in the ASR context, and give a complete summary of the training procedure for ASR,
calledembedded training. Finally, we introduce word error rate, the standard evalua-
tion metric. The next chapter will continue with some advanced ASR topics.

9.1 Speech Recognition Architecture

The task of speech recognition is to take as input an acousticwaveform and produce
as output a string of words. HMM-based speech recognition systems view this task
using the metaphor of the noisy channel. The intuition of thenoisy channelmodelNoisy channel

(see Fig. 9.2) is to treat the acoustic waveform as an “noisy”version of the string of
words, i.e.. a version that has been passed through a noisy communications channel.
This channel introduces “noise” which makes it hard to recognize the “true” string of
words. Our goal is then to build a model of the channel so that we can figure out how
it modified this “true” sentence and hence recover it.

The insight of the noisy channel model is that if we know how the channel distorts
the source, we could find the correct source sentence for a waveform by taking every
possible sentence in the language, running each sentence through our noisy channel
model, and seeing if it matches the output. We then select thebest matching source
sentence as our desired source sentence.

Implementing the noisy-channel model as we have expressed it in Fig. 9.2 requires

DRAFT

290 Chapter 9. Automatic Speech Recognition

noisy sentence

source sentence

noisy channel

decoder
Every happy family

In a hole in the ground

...

If music be the food of love

guess at source:
noisy 1

noisy 2
noisy N

If music be

the food of love...

If music be

the food of love...

Figure 9.2 The noisy channel model. We search through a huge space of potential “source”
sentences and choose the one which has the highest probability of generating the “noisy” sen-
tence. We need models of the prior probability of a source sentence (N-grams), the probability of
words being realized as certain strings of phones (HMM lexicons), and the probability of phones
being realized as acoustic or spectral features (Gaussian Mixture Models).

solutions to two problems. First, in order to pick the sentence that best matches the
noisy input we will need a complete metric for a “best match”.Because speech is so
variable, an acoustic input sentence will never exactly match any model we have for
this sentence. As we have suggested in previous chapters, wewill use probability as our
metric. This makes the speech recognition problem a specialcase ofBayesian infer-Bayesian

ence, a method known since the work of Bayes (1763). Bayesian inference or Bayesian
classification was applied successfully by the 1950s to language problems like optical
character recognition (Bledsoe and Browning, 1959) and to authorship attribution tasks
like the seminal work of Mosteller and Wallace (1964) on determining the authorship of
the Federalist papers. Our goal will be to combine various probabilistic models to get a
complete estimate for the probability of a noisy acoustic observation-sequence given a
candidate source sentence. We can then search through the space of all sentences, and
choose the source sentence with the highest probability.

Second, since the set of all English sentences is huge, we need an efficient algorithm
that will not search through all possible sentences, but only ones that have a good
chance of matching the input. This is thedecodingor searchproblem, which we have
already explored with the Viterbi decoding algorithm for HMMs in Ch. 5 and Ch. 6.
Since the search space is so large in speech recognition, efficient search is an important
part of the task, and we will focus on a number of areas in search.

In the rest of this introduction we will review the probabilistic or Bayesian model
for speech recognition that we introduced for part-of-speech tagging in Ch. 5. We then
introduce the various components of a modern HMM-based ASR system.

Recall that the goal of the probabilistic noisy channel architecture for speech recog-
nition can be summarized as follows:

“What is the most likely sentence out of all sentences in the languageL
given some acoustic input O?”

DRAFT

Section 9.1. Speech Recognition Architecture 291

We can treat the acoustic inputO as a sequence of individual “symbols” or “obser-
vations” (for example by slicing up the input every 10 milliseconds, and representing
each slice by floating-point values of the energy or frequencies of that slice). Each
index then represents some time interval, and successiveoi indicate temporally con-
secutive slices of the input (note that capital letters willstand for sequences of symbols
and lower-case letters for individual symbols):

O = o1,o2,o3, . . . ,ot(9.1)

Similarly, we treat a sentence as if it were composed of a string of words:

W = w1,w2,w3, . . . ,wn(9.2)

Both of these are simplifying assumptions; for example dividing sentences into
words is sometimes too fine a division (we’d like to model facts about groups of words
rather than individual words) and sometimes too gross a division (we need to deal with
morphology). Usually in speech recognition a word is definedby orthography (after
mapping every word to lower-case):oak is treated as a different word thanoaks, but
the auxiliarycan(“can you tell me. . . ”) is treated as the same word as the nouncan(“i
need a can of. . . ”).

The probabilistic implementation of our intuition above, then, can be expressed as:

Ŵ = argmax
W∈L

P(W|O)(9.3)

Recall that the function argmaxx f (x) means “the x such that f(x) is largest”. Eq. 9.3
is guaranteed to give us the optimal sentenceW; we now need to make the equation
operational. That is, for a given sentenceW and acoustic sequenceO we need to
computeP(W|O). Recall that given any probabilityP(x|y), we can use Bayes’ rule to
break it down as follows:

P(x|y) =
P(y|x)P(x)

P(y)
(9.4)

We saw in Ch. 5 that we can substitute (9.4) into (9.3) as follows:

Ŵ = argmax
W∈L

P(O|W)P(W)

P(O)
(9.5)

The probabilities on the right-hand side of (9.5) are for themost part easier to
compute thanP(W|O). For example,P(W), the prior probability of the word string
itself is what is estimated by theN-gram language models of Ch. 4. And we will see
below thatP(O|W) turns out to be easy to estimate as well. ButP(O), the probability of
the acoustic observation sequence, is harder to estimate. Luckily, we can ignoreP(O)
just as we saw in Ch. 5. Why? Since we are maximizing over all possible sentences,
we will be computingP(O|W)P(W)

P(O) for each sentence in the language. ButP(O) doesn’t
change for each sentence! For each potential sentence we arestill examining the same
observationsO, which must have the same probabilityP(O). Thus:

Ŵ = argmax
W∈L

P(O|W)P(W)

P(O)
= argmax

W∈L

P(O|W)P(W)(9.6)

DRAFT

292 Chapter 9. Automatic Speech Recognition

To summarize, the most probable sentenceW given some observation sequence
O can be computed by taking the product of two probabilities for each sentence, and
choosing the sentence for which this product is greatest. The general components of
the speech recognizer which compute these two terms have names;P(W), theprior
probability , is computed by thelanguage model. while P(O|W), the observationLanguage model

likelihood, is computed by theacoustic model.Acoustic model

Ŵ = argmax
W∈L

likelihood
︷ ︸︸ ︷

P(O|W)

prior
︷ ︸︸ ︷

P(W)(9.7)

The language model (LM) priorP(W) expresses how likely a given string of words
is to be a source sentence of English. We have already seen in Ch. 4 how to compute
such a language model priorP(W) by usingN-gram grammars. Recall that anN-gram
grammar lets us assign a probability to a sentence by computing:

P(wn
1)≈

n

∏
k=1

P(wk|wk−1
k−N+1)(9.8)

This chapter will show how the HMM we covered in Ch. 6 can be used to build
an Acoustic Model (AM) which computes the likelihoodP(O|W). Given the AM and
LM probabilities, the probabilistic model can be operationalized in a search algorithm
so as to compute the maximum probability word string for a given acoustic waveform.
Fig. 9.3 shows the components of an HMM speech recognizer as it processes a single
utterance, indicating the computation of the prior and likelihood. The figure shows
the recognition process in three stages. In thefeature extraction or signal processing
stage, the acoustic waveform is sampled intoframes (usually of 10, 15, or 20 mil-
liseconds) which are transformed intospectral features. Each time window is thus
represented by a vector of around 39 features representing this spectral information as
well as information about energy and spectral change. Sec. 9.3 gives an (unfortunately
brief) overview of the feature extraction process.

In theacoustic modelingor phone recognitionstage, we compute the likelihood
of the observed spectral feature vectors given linguistic units (words, phones, subparts
of phones). For example, we use Gaussian Mixture Model (GMM)classifiers to com-
pute for each HMM stateq, corresponding to a phone or subphone, the likelihood of
a given feature vector given this phonep(o|q). A (simplified) way of thinking of the
output of this stage is as a sequence of probability vectors,one for each time frame,
each vector at each time frame containing the likelihoods that each phone or subphone
unit generated the acoustic feature vector observation at that time.

Finally, in thedecodingphase, we take the acoustic model (AM), which consists of
this sequence of acoustic likelihoods, plus an HMM dictionary of word pronunciations,
combined with the language model (LM) (generally anN-gram grammar), and output
the most likely sequence of words. An HMM dictionary, as we will see in Sec. 9.2, is a
list of word pronunciations, each pronunciation represented by a string of phones. Each
word can then be thought of as an HMM, where the phones (or sometimes subphones)
are states in the HMM, and the Gaussian likelihood estimators supply the HMM output
likelihood function for each state. Most ASR systems use theViterbi algorithm for

DRAFT

Section 9.2. Applying the Hidden Markov Model to Speech 293

decoding, speeding up the decoding with wide variety of sophisticated augmentations
such as pruning, fast-match, and tree-structured lexicons.

cepstral
feature
extraction

Gaussian
Acoustic Model

MFCC features

phone
likelihoods

HMM lexicon

N-gram
language
model

Viterbi Decoder

if music be the food of love...

F
W

P(W)
P(O|W)

Figure 9.3 Schematic architecture for a (simplified) speech recognizer decoding a single sen-
tence. A real recognizer is more complex since various kindsof pruning and fast matches are
needed for efficiency. This architecture is only for decoding; we also need a separate architecture
for training parameters.

9.2 Applying the Hidden Markov Model to Speech

Let’s turn now to how the HMM model is applied to speech recognition. We saw in
Ch. 6 that a Hidden Markov Model is characterized by the following components:

Q = q1q2 . . .qN a set ofstates

A = a01a02. . .an1 . . .ann a transition probability matrix A, eachai j rep-
resenting the probability of moving from statei
to statej, s.t.∑n

j=1ai j = 1 ∀i
O = o1o2 . . .oN a set ofobservations, each one drawn from a vo-

cabularyV = v1,v2, ...,vV .

B = bi(ot) A set of observation likelihoods:, also called
emission probabilities, each expressing the
probability of an observationot being generated
from a statei.

q0,qend a specialstart and end statewhich are not asso-
ciated with observations.

DRAFT

294 Chapter 9. Automatic Speech Recognition

Furthermore, the chapter introduced theViterbi algorithm for decoding HMMs,
and theBaum-Welchor Forward-Backward algorithm for training HMMs.

All of these facets of the HMM paradigm play a crucial role in ASR. We begin
here by discussing how the states, transitions, and observations map into the speech
recognition task. We will return to the ASR applications of Viterbi decoding in Sec. 9.6.
The extensions to the Baum-Welch algorithms needed to deal with spoken language are
covered in Sec. 9.4 and Sec. 9.7.

Recall the examples of HMMs we saw earlier in the book. In Ch. 5, the hid-
den states of the HMM were parts-of-speech, the observations were words, and the
HMM decoding task mapped a sequence of words to a sequence of parts-of-speech. In
Ch. 6, the hidden states of the HMM were weather, the observations were ‘ice-cream
consumptions’, and the decoding task was to determine the weather sequence from a
sequence of ice-cream consumption. For speech, the hidden states are phones, parts
of phones, or words, each observation is information about the spectrum and energy
of the waveform at a point in time, and the decoding process maps this sequence of
acoustic information to phones and words.

The observation sequence for speech recognition is a sequence ofacoustic feature
vectors. Each acoustic feature vector represents information suchas the amount of en-
ergy in different frequency bands at a particular point in time. We will return in Sec. 9.3
to the nature of these observations, but for now we’ll simplynote that each observation
consists of a vector of 39 real-valued features indicating spectral information. Obser-
vations are generally drawn every 10 milliseconds, so 1 second of speech requires 100
spectral feature vectors, each vector of length 39.

The hidden states of Hidden Markov Models can be used to modelspeech in a
number of different ways. For small tasks, likedigit recognition, (the recognition of
the 10 digit wordszerothroughnine), or foryes-norecognition (recognition of the two
wordsyesandno), we could build an HMM whose states correspond to entire words.
For most larger tasks, however, the hidden states of the HMM correspond to phone-like
units, and words are sequences of these phone-like units.

Let’s begin by describing an HMM model in which each state of an HMM corre-
sponds to a single phone (if you’ve forgotten what a phone is,go back and look again
at the definition in Ch. 7). In such a model, a word HMM thus consists of a sequence
of HMM states concatenated together. Fig. 9.4 shows a schematic of the structure of a
basic phone-state HMM for the wordsix.

3

aGGH IStart
0

End
5s

4

a
22

a
33

a
44

a
01

a
12

a
23

a
34

a
45

Figure 9.4 An HMM for the word six, consisting of four emitting states, two non-emitting
states, and the transition probabilities A. The the observation probabilitiesB are not shown.

Note that only certain connections between phones exist in Fig. 9.4. In the HMMs
described in Ch. 6, there were arbitrary transitions between states; any state could
transition to any other. This was also in principle true of the HMMs for part-of-speech
tagging in Ch. 5; although the probability of some tag transitions was low, any tag

DRAFT

Section 9.2. Applying the Hidden Markov Model to Speech 295

could in principle follow any other tag. Unlike other HMM applications, HMM models
for speech recognition do not allow arbitrary transitions.Instead, they place strong
constraints on transitions based on the sequential nature of speech. Except in unusual
cases, HMMs for speech don’t allow transitions from states to go to earlier states in the
word; in other words, states can transition to themselves orto successive states. As we
saw in Ch. 6, this kind ofleft-to-right HMM structure is called aBakis network.Bakis network

The most common model used for speech, illustrated in a simplified form in Fig. 9.4
is even more constrained, allowing a state to transition only to itself (self-loop) or to a
single succeeding state. The use of self-loops allows a single phone to repeat so as to
cover a variable amount of the acoustic input. Phone durations vary hugely, dependent
on the phone identify, the speaker’s rate of speech, the phonetic context, and the level
of prosodic prominence of the word. Looking at the Switchboard corpus, the phone
[aa] varies in length from 7 to 387 milliseconds (1 to 40 frames), while the phone [z]
varies in duration from 7 milliseconds to more than 1.3 seconds (130 frames) in some
utterances! Self-loops thus allow a single state to be repeated many times.

For very simple speech tasks (recognizing small numbers of words such as the
10 digits), using an HMM state to represent a phone is sufficient. In general LVCSR
tasks, however, a more fine-grained representation is necessary. This is because phones
can last over 1 second, i.e., over 100 frames, but the 100 frames are not acoustically
identical. The spectral characteristics of a phone, and theamount of energy, vary dra-
matically across a phone. For example, recall from Ch. 7 thatstop consonants have
a closure portion, which has very little acoustic energy, followed by a release burst.
Similarly, diphthongs are vowels whose F1 and F2 change significantly. Fig. 9.5 shows
these large changes in spectral characteristics over time for each of the two phones in
the word “Ike”, ARPAbet [ay k].

Time (s)
0.48152 0.937203

0

5000

F
re

qu
en

cy
 (

H
z)

ay k

Figure 9.5 The two phones of the word ”Ike”, pronounced [ay k]. Note the continuous
changes in the [ay] vowel on the left, as F2 rises and F1 falls,and the sharp differences between
the silence and release parts of the [k] stop.

To capture this fact about the non-homogeneous nature of phones over time, in

DRAFT

296 Chapter 9. Automatic Speech Recognition

LVCSR we generally model a phone with more than one HMM state.The most com-
mon configuration is to use three HMM states, a beginning, middle, and end state. Each
phone thus consists of 3 emitting HMM states instead of one (plus two non-emitting
states at either end), as shown in Fig. 9.6. It is common to reserve the wordmodel or
phone modelto refer to the entire 5-state phone HMM, and use the wordHMM statePhone model

HMM state (or juststatefor short) to refer to each of the 3 individual subphone HMM states.

fi 3

11

beg1 mid2Start0
End4

a22 a33

a01 a12 a23 a34

Figure 9.6 A standard 5-state HMM model for a phone, consisting of threeemitting states
(corresponding to the transition-in, steady state, and transition-out regions of the phone) and two
non-emitting states.

To build a HMM for an entire word using these more complex phone models, we
can simply replace each phone of the word model in Fig. 9.4 with a 3-state phone
HMM. We replace the non-emitting start and end states for each phone model with
transitions directly to the emitting state of the precedingand following phone, leaving
only two non-emitting states for the entire word. Fig. 9.7 shows the expanded word.

ih
2

ih
0

ih
1

Start Ends
2

s
0

s
1

k
2

k
0

k
1

s
2

s
0

s
1

Figure 9.7 A composite word model for “six”, [s ih k s], formed by concatenating four phone
models, each with three emitting states.

In summary, an HMM model of speech recognition is parameterized by:

Q = q1q2 . . .qN a set ofstatescorresponding tosubphones

A = a01a02. . .an1 . . .ann a transition probability matrix A, eachai j rep-
resenting the probability for each subphone of
taking aself-loopor going to the next subphone.

B = bi(ot) A set of observation likelihoods:, also called
emission probabilities, each expressing the
probability of a cepstral feature vector (observa-
tion ot) being generated from subphone statei.

Another way of looking at theA probabilities and the statesQ is that together they
represent alexicon: a set of pronunciations for words, each pronunciation consisting
of a set of subphones, with the order of the subphones specified by the transition prob-
abilitiesA.

We have now covered the basic structure of HMM states for representing phones
and words in speech recognition. Later in this chapter we will see further augmenta-
tions of the HMM word model shown in Fig. 9.7, such as the use oftriphone models
which make use of phone context, and the use of special phonesto model silence. First,

DRAFT
Section 9.3. Feature Extraction: MFCC vectors 297

though, we need to turn to the next component of HMMs for speech recognition: the
observation likelihoods. And in order to discuss observation likelihoods, we first need
to introduce the actual acoustic observations: feature vectors. After discussing these in
Sec. 9.3, we turn in Sec. 9.4 the acoustic model and details ofobservation likelihood
computation. We then re-introduce Viterbi decoding and show how the acoustic model
and language model are combined to choose the best sentence.

9.3 Feature Extraction: MFCC vectors

Our goal in this section is to describe how we transform the input waveform into a se-
quence of acousticfeature vectors, each vector representing the information in a smallFeature vector

time window of the signal. While there are many possible suchfeature representations,
by far the most common in speech recognition is theMFCC , themel frequency cep-MFCC

stral coefficients. These are based on the important idea of thecepstrum. We willCepstrum

give a relatively high-level description of the process of extraction of MFCCs from a
waveform; we strongly encourage students interested in more detail to follow up with
a speech signal processing course.

We begin by repeating from Sec. 7.4.2 the process of digitizing and quantizing an
analog speech waveform. Recall that the first step in processing speech is to convert
the analog representations (first air pressure, and then analog electric signals in a mi-
crophone), into a digital signal. This process ofanalog-to-digital conversionhas two
steps:sampling andquantization. A signal is sampled by measuring its amplitudeSampling

at a particular time; thesampling rate is the number of samples taken per second. InSampling rate

order to accurately measure a wave, it is necessary to have atleast two samples in each
cycle: one measuring the positive part of the wave and one measuring the negative part.
More than two samples per cycle increases the amplitude accuracy, but less than two
samples will cause the frequency of the wave to be completelymissed. Thus the maxi-
mum frequency wave that can be measured is one whose frequency is half the sample
rate (since every cycle needs two samples). This maximum frequency for a given sam-
pling rate is called theNyquist frequency. Most information in human speech is inNyquist frequency

frequencies below 10,000 Hz; thus a 20,000 Hz sampling rate would be necessary for
complete accuracy. But telephone speech is filtered by the switching network, and only
frequencies less than 4,000 Hz are transmitted by telephones. Thus an 8,000 Hz sam-
pling rate is sufficient fortelephone-bandwidthspeech like the Switchboard corpus.Telephone-

bandwidth
A 16,000 Hz sampling rate (sometimes calledwideband) is often used for microphoneWideband

speech.
Even an 8,000 Hz sampling rate requires 8000 amplitude measurements for each

second of speech, and so it is important to store the amplitude measurement efficiently.
They are usually stored as integers, either 8-bit (values from -128–127) or 16 bit (values
from -32768–32767). This process of representing real-valued numbers as integers is
calledquantization because there is a minimum granularity (the quantum size) and allQuantization

values which are closer together than this quantum size are represented identically.
We refer to each sample in the digitized quantized waveform as x[n], wheren is

an index over time. Now that we have a digitized, quantized representation of the

DRAFT

298 Chapter 9. Automatic Speech Recognition

speech
signal

MFCC 12
coefficients

pre-
emphasis

DFTwindow
Mel filter-

bank
log IDFT deltas

energy 1 energy feature

12 MFCC
12 ∆ MFCC
12 ∆∆ MFCC

1 energy
1 ∆ energy

 1 ∆∆ energy

Figure 9.8 Extracting a sequence of 39-dimensional MFCC feature vectors from a quantized digitized waveform

waveform, we are ready to extract MFCC features. The seven steps of this process are
shown in Fig. 9.8 and individually described in each of the following sections.

9.3.1 Preemphasis

The first stage in MFCC feature extraction is to boost the amount of energy in the
high frequencies. It turns out that if we look at the spectrumfor voiced segments like
vowels, there is more energy at the lower frequencies than the higher frequencies. This
drop in energy across frequencies (which is calledspectral tilt) is caused by the natureSpectral tilt

of the glottal pulse. Boosting the high frequency energy makes information from these
higher formants more available to the acoustic model and improves phone detection
accuracy.

This preemphasis is done by using a filter1 Fig. 9.9 shows an example of a spectral
slice from the first author’s pronunciation of the single vowel [aa] before and after
preemphasis.

Frequency (Hz)
0 22050

S
ou

nd
 p

re
ss

ur
e

le
ve

l (
dB

/
H

z)

–40

–20

0

20

Frequency (Hz)
0 22050

S
ou

nd
 p

re
ss

ur
e

le
ve

l (
dB

/
H

z)

–40

–20

0

20

(a) (b)
Figure 9.9 A spectral slice from the vowel [aa] before (a) and after (b) preemphasis.

9.3.2 Windowing

Recall that the goal of feature extraction is to provide spectral features that can help
us build phone or subphone classifiers. We therefore don’t want to extract our spectral
features from an entire utterance or conversation, becausethe spectrum changes very
quickly. Technically, we say that speech is anon-stationary signal, meaning that itsNon-stationary

statistical properties are not constant across time. Instead, we want to extract spectral

1 For students who have had signal processing: this preemphasis filter is a first-order high-pass filter. In the
time domain, with inputx[n] and 0.9≤ α ≤ 1.0, the filter equation isy[n] = x[n]−αx[n−1].

DRAFT
Section 9.3. Feature Extraction: MFCC vectors 299

features from a smallwindow of speech that characterizes a particular subphone and
for which we can make the (rough) assumption that the signal is stationary (i.e. itsStationary

statistical properties are constant within this region).
We’ll do this by using a window which is non-zero inside some region and zero

elsewhere, running this window across the speech signal, and extracting the waveform
inside this window.

We can characterize such a windowing process by three parameters: howwide is
the window (in milliseconds), what is theoffsetbetween successive windows, and what
is theshapeof the window. We call the speech extracted from each window aframe,Frame

and we call the number of milliseconds in the frame theframe sizeand the number ofFrame size

milliseconds between the left edges of successive windows theframe shift.Frame shift

FRAME SIZE

25 ms

FRAME

 SHIFT

10 ms

Figure 9.10 The windowing process, showing the frame shift and frame size, assuming a
frame shift of 10ms, a frame size of 25 ms, and a rectangular window. After a figure by Bryan
Pellom.

The extraction of the signal takes place by multiplying the value of the signal at
timen, s[n], with the value of the window at timen, w[n]:

y[n] = w[n]s[n](9.9)

Fig. 9.10 suggests that these window shapes are rectangular, since the extracted
windowed signal looks just like the original signal. Indeedthe simplest window is the
rectangular window. The rectangular window can cause problems, however, becauseRectangular

it abruptly cuts of the signal at its boundaries. These discontinuities create problems
when we do Fourier analysis. For this reason, a more common window used in MFCC
extraction is theHamming window, which shrinks the values of the signal towardHamming

zero at the window boundaries, avoiding discontinuities. Fig. 9.11 shows both of these
windows; the equations are as follows (assuming a window that is L frames long):

DRAFT

300 Chapter 9. Automatic Speech Recognition

rectangular w[n] =

{
1 0≤ n≤ L−1
0 otherwise

(9.10)

hamming w[n] =

{
0.54−0.46cos(2πn

L) 0≤ n≤ L−1
0 otherwise

(9.11)

Time (s)
0 0.0475896

–0.5

0.4999

0

Rectangular window Hamming window

Time (s)
0.00455938 0.0256563

–0.4826

0.4999

0

Time (s)
0.00455938 0.0256563

–0.5

0.4999

0

Figure 9.11 Windowing a portion of a pure sine wave with the rectangular and Hamming
windows.

9.3.3 Discrete Fourier Transform

The next step is to extract spectral information for our windowed signal; we need to
know how much energy the signal contains at different frequency bands. The tool for
extracting spectral information for discrete frequency bands for a discrete-time (sam-
pled) signal is theDiscrete Fourier Transform or DFT.Discrete Fourier

Transform

DFT The input to the DFT is a windowed signalx[n]...x[m], and the output, for each of
N discrete frequency bands, is a complex numberX[k] representing the magnitude and
phase of that frequency component in the original signal. Ifwe plot the magnitude
against the frequency, we can visualize thespectrum that we introduced in Ch. 7. For
example, Fig. 9.12 shows a 25 ms Hamming-windowed portion ofa signal and its
spectrum as computed by a DFT (with some additional smoothing).

We will not introduce the mathematical details of the DFT here, except to note that
Fourier analysis in general relies onEuler’s formula :Euler’s formula

ejθ = cosθ + j sinθ(9.12)

DRAFT
Section 9.3. Feature Extraction: MFCC vectors 301

Time (s)
0.0141752 0.039295

–0.04121

0.04414

0

Frequency (Hz)
0 8000

S
ou

nd
 p

re
ss

ur
e

le
ve

l (
dB

/
H

z)

–20

0

20

(a) (b)
Figure 9.12 (a) A 25 ms Hamming-windowed portion of a signal from the vowel [iy] and (b)
its spectrum computed by a DFT.

As a brief reminder for those students who have already had signal processing, the DFT
is defined as follows:

X[k] =
N−1

∑
n=0

x[n]e− j2 π
N kn(9.13)

A commonly used algorithm for computing the DFT is theFast Fourier Trans-
form or FFT. This implementation of the DFT is very efficient, but only works forFast Fourier

Transform
FFT values of N which are powers of two.

9.3.4 Mel filter bank and log

The results of the FFT will be information about the amount ofenergy at each fre-
quency band. Human hearing, however, is not equally sensitive at all frequency bands.
It is less sensitive at higher frequencies, roughly above 1000 Hertz. It turns out that
modeling this property of human hearing during feature extraction improves speech
recognition performance. The form of the model used in MFCCsis to warp the fre-
quencies output by the DFT onto themel scale mentioned in Ch. 7. Amel (StevensMel

et al., 1937; Stevens and Volkmann, 1940) is a unit of pitch defined so that pairs of
sounds which are perceptually equidistant in pitch are separated by an equal number of
mels. The mapping between frequency in Hertz and the mel scale is linear below 1000
Hz and the logarithmic above 1000 Hz. The mel frequencym can be computed from
the raw acoustic frequency as follows:

mel(f) = 1127ln(1+
f

700
)(9.14)

During MFCC computation, this intuition is implemented by creating a bank of fil-
ters which collect energy from each frequency band, with 10 filters spaced linearly be-
low 1000 Hz, and the remaining filters spread logarithmically above 1000 Hz. Fig. 9.13
shows the bank of triangular filters that implement this idea.

Finally, we take the log of each of the mel spectrum values. Ingeneral the human
response to signal level is logarithmic; humans are less sensitive to slight differences
in amplitude at high amplitudes than at low amplitudes. In addition, using a log makes

DRAFT

302 Chapter 9. Automatic Speech Recognition

J
1

JK JL...Mel Spectrum

0
MNNNN

O
A
m
p
lit
u
d
e

Frequency (Hz)
0 1000 2000 3000 4000

Figure 9.13 The Mel filter bank, after Davis and Mermelstein (1980). Eachtriangular filter
collects energy from a given frequency range. Filters are spaced linearly below 1000 Hz, and
logarithmically above 1000 Hz.

the feature estimates less sensitive to variations in input(for example power variations
due to the speaker’s mouth moving closer or further from the microphone).

9.3.5 The Cepstrum: Inverse Discrete Fourier Transform

While it would be possible to use the mel spectrum by itself asa feature representation
for phone detection, the spectrum also has some problems, aswe will see. For this rea-
son, the next step in MFCC feature extraction is the computation of thecepstrum. TheCepstrum

cepstrum has a number of useful processing advantages and also significantly improves
phone recognition performance.

One way to think about the cepstrum is as a useful way of separating thesource
andfilter . Recall from Sec. 7.4.6 that the speech waveform is created when a glottal
source waveform of a particular fundamental frequency is passed through the vocal
tract, which because of its shape has a particular filtering characteristic. But many
characteristics of the glottalsource(its fundamental frequency, the details of the glottal
pulse, etc) are not important for distinguishing differentphones. Instead, the most
useful information for phone detection is thefilter , i.e. the exact position of the vocal
tract. If we knew the shape of the vocal tract, we would know which phone was being
produced. This suggests that useful features for phone detection would find a way to
deconvolve (separate) the source and filter and show us only the vocal tract filter. It
turns out that the cepstrum is one way to do this.

(a) (b) (c)
Figure 9.14 PLACEHOLDER FIGURE. The magnitude spectrum (a), the log magnitude spectrum (b), and the
cepstrum (c). From Taylor (2008). The two spectra have a smoothed spectral enveloped laid on top of them to help
visualize the spectrum.

DRAFT
Section 9.3. Feature Extraction: MFCC vectors 303

For simplicity, let’s ignore the pre-emphasis and mel-warping that are part of the
definition of MFCCs, and look just at the basic definition of the cepstrum. The cep-
strum can be thought of as thespectrum of the log of the spectrum. This may sound
confusing. But let’s begin with the easy part: thelog of the spectrum. That is, the cep-
strum begins with a standard magnitude spectrum, such as theone for a vowel shown
in Fig. 9.14(a) from Taylor (2008). We then take the log, i.e.replace each amplitude
value in the magnitude spectrum with its log, as shown in Fig.9.14(b).

The next step is to visualize the log spectrumas if itself were a waveform. In other
words, consider the log spectrum in Fig. 9.14(b). Let’s imagine removing the axis
labels that tell us that this is a spectrum (frequency on the x-axis) and imagine that we
are dealing with just a normal speech signal with time on the x-axis. Now what can we
say about the spectrum of this ‘pseudo-signal’? Notice thatthere is a high-frequency
repetitive component in this wave: small waves that repeat about 8 times in each 1000
along the x-axis, for a frequency of about 120 Hz. This high-frequency component is
caused by the fundamental frequency of the signal, and represents the little peaks in the
spectrum at each harmonic of the signal. In addition, there are some lower frequency
components in this ‘pseudo-signal’; for example the envelope or formant structure has
about four large peaks in the window, for a much lower frequency.

Fig. 9.14(c) shows thecepstrum: the spectrum that we have been describing of
the log spectrum. This cepstrum (the wordcepstrum is formed by reversing the first
letters ofspectrum) is shown withsamplesalong the x-axis. This is because by taking
the spectrum of the log spectrum, we have left the frequency domain of the spectrum,
and gone back to the time domain. It turns out that the correctunit of a cepstrum is the
sample.

Examining this cepstrum, we see that there is indeed a large peak around 120,
corresponding to the F0 and representing the glottal pulse.There are other various
components at lower values on the x-axis. These represent the vocal tract filter (the
position of the tongue and the other articulators). Thus if we are interested in detecting
phones, we can make use of just the lower cepstral values. If we are interested in
detecting pitch, we can use the higher cepstral values.

For the purposes of MFCC extraction, we generally just take the first 12 cepstral
values. These 12 coefficients will represent information solely about the vocal tract
filter, cleanly separated from information about the glottal source.

It turns out that cepstral coefficients have the extremely useful property that the
variance of the different coefficients tends to be uncorrelated. This is not true for the
spectrum, where spectral coefficients at different frequency bands are correlated. The
fact that cepstral features are uncorrelated means, as we will see in the next section, that
the Gaussian acoustic model (the Gaussian Mixture Model, orGMM) doesn’t have to
represent the covariance between all the MFCC features, which hugely reduces the
number of parameters.

For those who have had signal processing, the cepstrum is more formally defined as
the inverse DFT of the log magnitude of the DFT of a signal, hence for a windowed
frame of speechx[n]:

DRAFT

304 Chapter 9. Automatic Speech Recognition

c[n] =
N−1

∑
n=0

log

(∣
∣
∣
∣
∣

N−1

∑
n=0

x[n]e− j 2π
N kn

∣
∣
∣
∣
∣

)

ej 2π
N kn(9.15)

9.3.6 Deltas and Energy

The extraction of the cepstrum via the Inverse DFT from the previous section results
in 12 cepstral coefficients for each frame. We next add a thirteenth feature: the energy
from the frame. Energy correlates with phone identity and sois a useful cue for phone
detection (vowels and sibilants have more energy than stops, etc). Theenergy in aEnergy

frame is the sum over time of the power of the samples in the frame; thus for a signalx
in a window from time samplet1 to time samplet2, the energy is:

Energy=
t2

∑
t=t1

x2[t](9.16)

Another important fact about the speech signal is that it is not constant from frame
to frame. This change, such as the slope of a formant at its transitions, or the nature
of the change from a stop closure to stop burst, can provide a useful cue for phone
identity. For this reason we also add features related to thechange in cepstral features
over time.

We do this by adding for each of the 13 features (12 cepstral features plus en-
ergy) adelta or velocity feature, and adouble deltaor accelerationfeature. Each ofDelta feature

Double delta the 13 delta features represents the change between frames in the corresponding cep-
stral/energy feature, while each of the 13 double delta features represents the change
between frames in the corresponding delta features.

A simple way to compute deltas would be just to compute the difference between
frames; thus the delta valued(t) for a particular cepstral valuec(t) at timet can be
estimated as:

d(t) =
c(t +1)−c(t−1)

2
(9.17)

Instead of this simple estimate, however, it is more common to make more sophis-
ticated estimates of the slope, using a wider context of frames.

9.3.7 Summary: MFCC

After adding energy, and then delta and double-delta features to the 12 cepstral features,
we end up with 39 MFCC features:

12 cepstral coefficients
12 delta cepstral coefficients
12 double delta cepstral coefficients
1 energy coefficient
1 delta energy coefficient
1 double delta energy coefficient

39 MFCC features

DRAFT

Section 9.4. Computing Acoustic Likelihoods 305

Again, one of the most useful facts about MFCC features is that the cepstral coef-
ficients tend to be uncorrelated, which will turn out to make our acoustic model much
simpler.

9.4 Computing Acoustic Likelihoods

The last section showed how we can extract MFCC features representing spectral infor-
mation from a wavefile, and produce a 39-dimensional vector every 10 milliseconds.
We are now ready to see how to compute the likelihood of these feature vectors given
an HMM state. Recall from Ch. 6 that this output likelihood iscomputed by theB
probability function of the HMM. Given an individual stateqi and an observationot ,
the observation likelihoods inB matrix gave usp(ot |qi), which we calledbt(i).

For part-of-speech tagging in Ch. 5, each observationot is a discrete symbol (a
word) and we can compute the likelihood of an observation given a part-of-speech tag
just by counting the number of times a given tag generates a given observation in the
training set. But for speech recognition, MFCC vectors are real-valued numbers; we
can’t compute the likelihood of a given state (phone) generating an MFCC vector by
counting the number of times each such vector occurs (since each one is likely to be
unique).

In both decoding and training, we need an observation likelihood function that can
computep(ot |qi) on real-valued observations. In decoding, we are given an observation
ot and we need to produce the probabilityp(ot |qi) for each possible HMM state, so we
can choose the most likely sequence of states. Once we have this observation likelihood
B function, we need to figure out how to modify the Baum-Welch algorithm of Ch. 6
to train it as part of training HMMs.

9.4.1 Vector Quantization

One way to make MFCC vectors look like symbols that we could count is to build a
mapping function that maps each input vector into one of a small number of symbols.
Then we could just compute probabilities on these symbols bycounting, just as we
did for words in part-of-speech tagging. This idea of mapping input vectors to discrete
quantized symbols is calledvector quantization or VQ (Gray, 1984). Although vectorVector

quantization
VQ quantization is too simple to act as the acoustic model in modern LVCSR systems, it is

a useful pedagogical step, and plays an important role in various areas of ASR, so we
use it to begin our discussion of acoustic modeling.

In vector quantization, we create the small symbol set by mapping each training
feature vector into a small number of classes, and then we represent each class by a
discrete symbol. More formally, a vector quantization system is characterized by a
codebook, aclustering algorithm, and adistance metric.

A codebookis a list of possible classes, a set of symbols constituting avocabularyCodebook

V = {v1,v2, ...,vn}. For each symbolvk in the codebook we list aprototype vector,Prototype vector

also known as acodeword, which is a specific feature vector. For example if we chooseCodeword

to use 256 codewords we could represent each vector by a valuefrom 0 to 255; (this

DRAFT

306 Chapter 9. Automatic Speech Recognition

is referred to as 8-bit VQ, since we can represent each vectorby a single 8-bit value).
Each of these 256 values would be associated with a prototypefeature vector.

The codebook is created by using aclustering algorithm to cluster all the featureClustering

vectors in the training set into the 256 classes. Then we chose a representative feature
vector from the cluster, and make it the prototype vector or codeword for that cluster.
K-means clusteringis often used, but we won’t define clustering here; see Huang et al.K-means

clustering

(2001) or Duda et al. (2000) for detailed descriptions.
Once we’ve built the codebook, for each incoming feature vector, we compare it to

each of the 256 prototype vectors, select the one which is closest (by somedistance
metric), and replace the input vector by the index of this prototypevector. A schematic
of this process is shown in Fig. 9.15.

The advantage of VQ is that since there are a finite number of classes, for each class
vk, we can compute the probability that it is generated by a given HMM state/sub-phone
by simply counting the number of times it occurs in some training set when labeled by
that state, and normalizing.

Figure 9.15 Schematic architecture of the (trained) vector quantization (VQ) process for
choosing a symbolvq for each input feature vector. The vector is compared to eachcodeword in
the codebook, the closest entry (by some distance metric) isselected, and the index of the closest
codeword is output.

Both the clustering process and the decoding process require adistance metricDistance metric

or distortion metric, that specifies how similar two acoustic feature vectors are. The
distance metric is used to build clusters, to find a prototypevector for each cluster, and
to compare incoming vectors to the prototypes.

The simplest distance metric for acoustic feature vectors is Euclidean distance.Euclidean
distance

Euclidean distance is the distance in N-dimensional space between the two points de-
fined by the two vectors. In practice we use the phrase ‘Euclidean distance’ even though
we actually often use the square of the Euclidean distance. Thus given a vectorx and
a vectory of length D, the (square of the) Euclidean distance between them is defined
as:

deuclidean(x,y) =
D

∑
i=1

(xi−yi)
2(9.18)

DRAFT

Section 9.4. Computing Acoustic Likelihoods 307

The (squared) Euclidean distance described in (9.18) (and shown for two dimen-
sions in Fig. 9.16) is also referred to as the sum-squared error, and can also be expressed
using the vector transpose operator as:

deuclidean(x,y) = (x−y)T(x−y)(9.19)

Figure 9.16 Euclidean distance in two dimensions; by the Pythagorean theorem, the distance
between two points in a planex = (x1,y1) andy = (x2,y2) d(x,y) =

√

(x1−x2)2 +(y1−y2)2.

The Euclidean distance metric assumes that each of the dimensions of a feature
vector are equally important. But actually each of the dimensions have very different
variances. If a dimension tends to have a lot of variance, then we’d like it to count
less in the distance metric; a large difference in a dimension with low variance should
count more than a large difference in a dimension with high variance. A slightly more
complex distance metric, theMahalanobis distance, takes into account the differentMahalanobis

distance
variances of each of the dimensions.

If we assume that each dimensioni of the acoustic feature vectors has a variance
σ2

i , then the Mahalanobis distance is:

dmahalanobis(x,y) =
D

∑
i=1

(xi−yi)
2

σ2
i

(9.20)

For those readers with more background in linear algebra here’s the general form
of Mahalanobis distance, which includes a full covariance matrix (covariance matrices
will be defined below):

dmahalanobis(x,y) = (x−y)TΣ−1(x−y)(9.21)

In summary, when decoding a speech signal, to compute an acoustic likelihood of
a feature vectorot given an HMM stateq j using VQ, we compute the Euclidean or
Mahalanobis distance between the feature vector and each ofthe N codewords, choose
the closest codeword, getting the codeword indexvk. We then look up the likelihood of
the codeword indexvk given the HMM statej in the pre-computedB likelihood matrix
defined by the HMM:

DRAFT

308 Chapter 9. Automatic Speech Recognition

b̂ j(ot) = b j(vk) s.t. vk is codeword of closest vector toot(9.22)

Since VQ is so rarely used, we don’t use up space here giving the equations for
modifying the EM algorithm to deal with VQ data; instead, we defer discussion of
EM training of continuous input parameters to the next section, when we introduce
Gaussians.

9.4.2 Gaussian PDFs

Vector quantization has the advantage of being extremely easy to compute and requires
very little storage. Despite these advantages, vector quantization turns out not to be a
good model of speech. A small number of codewords is insufficient to capture the wide
variability in the speech signal. Speech is simply not a categorical, symbolic process.

Modern speech recognition algorithms therefore do not use vector quantization to
compute acoustic likelihoods. Instead, they are based on computing observation prob-
abilities directly on the real-valued, continuous input feature vector. These acoustic
models are based on computing aprobability density function or pdf over a contin-Probability

density function
uous space. By far the most common method for computing acoustic likelihoods is
theGaussian Mixture Model (GMM) pdfs, although neural networks, support vectorGaussian Mixture

Model
GMM machines (SVMs) and conditional random fields (CRFs) are also used.

Let’s begin with the simplest use of Gaussian probability estimators, slowly build-
ing up the more sophisticated models that are used.

Univariate Gaussians

TheGaussiandistribution, also known as thenormal distribution , is the bell-curveGaussian
Normal

distribution function familiar from basic statistics. A Gaussian distribution is a function parame-
terized by amean, or average value, and avariance, which characterizes the averageMean

Variance spread or dispersal from the mean. We will useµ to indicate the mean, andσ2 to
indicate the variance, giving the following formula for a Gaussian function:

f (x|µ ,σ) =
1√

2πσ2
exp(− (x− µ)2

2σ2)(9.23)

Recall from basic statistics that the mean of a random variable X is the expected
value ofX. For a discrete variableX, this is the weighted sum over the values ofX (for
a continuous variable, it is the integral):

µ = E(X) =
N

∑
i=1

p(Xi)Xi(9.24)

The variance of a random variableX is the weigthed squared average deviation
from the mean:

σ2 = E(Xi−E(X))2 =
N

∑
i=1

p(Xi)(Xi−E(X))2(9.25)

When a Gaussian function is used as a probability density function, the area under
the curve is constrained to be equal to one. Then the probability that a random variable

DRAFT

Section 9.4. Computing Acoustic Likelihoods 309

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
m=0,s=.5
m=1,s=1
m=−1,s=0.2
m=0,s=0.3

Figure 9.17 Gaussian functions with different means and variances.

takes on any particular range of values can be computed by summing the area under
the curve for that range of values. Fig. 9.18 shows the probability expressed by the area
under an interval of a Gaussian.

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
ro

ba
bi

lit
y

D
en

si
ty

← P(shaded region) = .341

Figure 9.18 A Gaussian probability density function, showing a region from 0 to 1 with a total
probability of .341. Thus for this sample Gaussian, the probability that a value on the X axis lies
between 0 and 1 is .341.

We can use a univariate Gaussian pdf to estimate the probability that a particular
HMM state j generates the value of a single dimension of a feature vectorby assuming
that the possible values of (this one dimension of the) observation feature vectorot are

DRAFT

310 Chapter 9. Automatic Speech Recognition

normally distributed. In other words we represent the observation likelihood function
b j(ot) for one dimension of the acoustic vector as a Gaussian. Taking, for the moment,
our observation as a single real valued number (a single cepstral feature), and assuming
that each HMM statej has associated with it a mean valueµ j and varianceσ2

j , we
compute the likelihoodb j(ot) via the equation for a Gaussian pdf:

b j(ot) =
1

√

2πσ2
j

exp

(

− (ot − µ j)
2

2σ2
j

)

(9.26)

Eq. 9.26 shows us how to computeb j(ot), the likelihood of an individual acoustic
observation given a single univariate Gaussian from statej with its mean and variance.
We can now use this probability in HMM decoding.

But first we need to solve the training problem; how do we compute this mean and
variance of the Gaussian for each HMM stateqi? Let’s start by imagining the simpler
situation of a completely labeled training set, in which each acoustic observation was
labeled with the HMM state that produced it. In such a training set, we could compute
the mean of each state by just taking the average of the valuesfor eachot that corre-
sponded to statei, as show in (9.27). The variance could just be computed from the
sum-squared error between each observation and the mean, asshown in (9.28).

µ̂i =
1
T

T

∑
t=1

ot s.t. qt is statei(9.27)

σ̂2
j =

1
T

T

∑
t=1

(ot − µi)
2 s.t.qt is statei(9.28)

But since states are hidden in an HMM, we don’t know exactly which observation
vectorot was produced by which state. What we would like to do is assigneach ob-
servation vectorot to every possible statei, prorated by the probability that the HMM
was in statei at timet. Luckily, we already know how to do this prorating; the prob-
ability of being in statei at timet was defined in Ch. 6 asξt(i), and we saw how to
computeξt(i) as part of the Baum-Welch algorithm using the forward and backward
probabilities. Baum-Welch is an iterative algorithm, and we will need to do the prob-
ability computation ofξt(i) iteratively since getting a better observation probability b
will also help us be more sure of the probabilityξ of being in a state at a certain time.
Thus we give equations for computing an updated mean and varianceµ̂ andσ̂2:

µ̂i =
∑T

t=1 ξt(i)ot

∑T
t=1 ξt(i)

(9.29)

σ̂2
i =

∑T
t=1 ξt(i)(ot − µi)

2

∑T
t=1 ξt(i)

(9.30)

Eq. 9.29 and Eq. 9.30 are then used in the forward-backward (Baum-Welch)training
of the HMM. As we will see, the values ofµi andσi are first set to some initial estimate,
which is then re-estimated until the numbers converge.

DRAFT

Section 9.4. Computing Acoustic Likelihoods 311

Multivariate Gaussians

Eq. 9.26 shows how to use a Gaussian to compute an acoustic likelihood for a single
cepstral feature. Since an acoustic observation is a vectorof 39 features, we’ll need
to use a multivariate Gaussian, which allows us to assign a probability to a 39-valued
vector. Where a univariate Gaussian is defined by a meanµ and a varianceσ2, a mul-
tivariate Gaussian is defined by a mean vector~µ of dimensionality D and a covariance
matrixΣ, defined below. As we discussed in the previous section, for atypical cepstral
feature vector in LVCSR, D is 39:

f (~x|~µ ,Σ) =
1

(2π)
D
2 |Σ| 12

exp

(

−1
2
(x− µ)TΣ−1(x− µ)

)

(9.31)

The covariance matrixΣ captures the variance of each dimension as well as the
covariance between any two dimensions.

Recall again from basic statistics that the covariance of two random variablesX
andY is the expected value of the product of their average deviations from the mean:

Σ = E[(X−E(X))(Y−E(Y)]) =
N

∑
i=1

p(XiYi)(Xi−E(X))(Yi−E(Y))(9.32)

Thus for a given HMM state with mean vectorµ j and covariance matrixΣ j , and a
given observation vectorot , the multivariate Gaussian probability estimate is:

b j(ot) =
1

(2π)
D
2 |Σ| 12

exp

(

−1
2
(ot − µ j)

TΣ−1
j (ot − µ j)

)

(9.33)

The covariance matrixΣ j expresses the variance between each pair of feature di-
mensions. Suppose we made the simplifying assumption that features in different di-
mensions did not covary, i.e., that there was no correlationbetween the variances of
different dimensions of the feature vector. In this case, wecould simply keep a dis-
tinct variance for each feature dimension. It turns out thatkeeping a separate variance
for each dimension is equivalent to having a covariance matrix that is diagonal, i.e.Diagonal

non-zero elements only appear along the main diagonal of thematrix. The main di-
agonal of such a diagonal covariance matrix contains the variances of each dimension,
σ2

1 ,σ2
2 , ...σ2

D;
Let’s look at some illustrations of multivariate Gaussians, focusing on the role of

the full versus diagonal covariance matrix. We’ll explore asimple multivariate Gaus-
sian with only 2 dimensions, rather than the 39 that are typical in ASR. Fig. 9.19 shows
three different multivariate Gaussians in two dimensions.The leftmost figure shows
a Gaussian with a diagonal covariance matrix, in which the variances of the two di-
mensions are equal. Fig. 9.20 shows 3 contour plots corresponding to the Gaussians in
Fig. 9.19; each is a slice through the Gaussian. The leftmostgraph in Fig. 9.20 shows
a slice through the diagonal equal-variance Gaussian. The slice is circular, since the
variances are equal in both the X and Y directions.

The middle figure in Fig. 9.19 shows a Gaussian with a diagonalcovariance matrix,
but where the variances are not equal. It is clear from this figure, and especially from

DRAFT

312 Chapter 9. Automatic Speech Recognition

−4
−2

0
2

4

−4

−2

0

2

4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

−4
−2

0
2

4

−4

−2

0

2

4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

−4
−2

0
2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

(a) (b) (c)
Figure 9.19 Three different multivariate Gaussians in two dimensions.The first two have

diagonal covariance matrices, one with equal variance in the two dimensions

[
1 0
0 1

]

, the second

with different variances in the two dimensions,

[
.6 0
0 2

]

, and the third with non-zero elements

in the off-diagonal of the covariance matrix:

[
1 .8
.8 1

]

.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(a) (b) (c)
Figure 9.20 The same three multivariate Gaussians as in the previous figure. From left to
right, a diagonal covariance matrix with equal variance, diagonal with unequal variance, and
nondiagonal covariance. With non-diagonal covariance, knowing the value on dimension X tells
you something about the value on dimension Y.

the contour slice show in Fig. 9.20, that the variance is morethan 3 times greater in one
dimension than the other.

The rightmost graph in Fig. 9.19 and Fig. 9.20 shows a Gaussian with a non-
diagonal covariance matrix. Notice in the contour plot in Fig. 9.20 that the contour
is not lined up with the two axes, as it is in the other two plots. Because of this, know-
ing the value in one dimension can help in predicting the value in the other dimension.
Thus having a non-diagonal covariance matrix allows us to model correlations between
the values of the features in multiple dimensions.

A Gaussian with a full covariance matrix is thus a more powerful model of acoustic
likelihood than one with a diagonal covariance matrix. And indeed, speech recognition
performance is better using full-covariance Gaussians than diagonal-covariance Gaus-
sians. But there are two problems with full-covariance Gaussians that makes them
difficult to use in practice. First, they are slow to compute.A full covariance matrix
hasD2 parameters, where a diagonal covariance matrix has onlyD. This turns out to
make a large difference in speed in real ASR systems. Second,a full covariance matrix
has many more parameters and hence requires much more data totrain than a diagonal
covariance matrix. Using a diagonal covariance model meanswe can save room for

DRAFT

Section 9.4. Computing Acoustic Likelihoods 313

using our parameters for other things like triphones (context-dependent phones) to be
introduced in Sec. 10.3.

For this reason, in practice most ASR systems use diagonal covariance. We will
assume diagonal covariance for the remainder of this section.

Eq. 9.33 can thus be simplified to the version in (9.34) in which instead of a covari-
ance matrix, we simply keep a mean and variance for each dimension. Eq. 9.34 thus
describes how to estimate the likelihoodb j(ot) of a D-dimensional feature vectorot

given HMM statej, using a diagonal-covariance multivariate Gaussian.

b j(ot) =
D

∏
d=1

1
√

2πσ2
jd

exp

(

−1
2
[
(otd− µ jd)2

σ jd
2]

)

(9.34)

Training a diagonal-covariance multivariate Gaussian is asimple generalization of
training univariate Gaussians. We’ll do the same Baum-Welch training, where we use
the value ofξt(i) to tell us the likelihood of being in statei at timet. Indeed, we’ll
use exactly the same equation as in (9.30), except that now weare dealing with vectors
instead of scalars; the observationot is a vector of cepstral features, the mean vector
~µ is a vector of cepstral means, and the variance vector~σ2

i is a vector of cepstral
variances.

µ̂i =
∑T

t=1 ξt(i)ot

∑T
t=1 ξt(i)

(9.35)

σ̂2
i =

∑T
t=1 ξt(i)(ot − µi)(ot − µi)

T

∑T
t=1 ξt(i)

(9.36)

Gaussian Mixture Models

The previous subsection showed that we can use a multivariate Gaussian model to as-
sign a likelihood score to an acoustic feature vector observation. This models each
dimension of the feature vector as a normal distribution. But a particular cepstral fea-
ture might have a very non-normal distribution; the assumption of a normal distribu-
tion may be too strong an assumption. For this reason, we often model the observation
likelihood not with a single multivariate Gaussian, but with a weighted mixture of mul-
tivariate Gaussians. Such a model is called aGaussian Mixture Model or GMM .Gaussian Mixture

Model
GMM Eq. 9.37 shows the equation for the GMM function; the resulting function is the sum

of M Gaussians. Fig. 9.21 shows an intuition of how a mixture of Gaussians can model
arbitrary functions.

f (x|µ ,Σ) =
M

∑
k=1

ck
1

√

2π |Σk|
exp[(x− µk)

TΣ−1(x− µk)](9.37)

Eq. 9.38 shows the definition of the output likelihood functionb j(ot)

b j(ot) =
M

∑
m=1

c jm
1

√
2π |Σ jm|

exp[(x− µ jm)TΣ−1
jm(ot − µ jm)](9.38)

DRAFT

314 Chapter 9. Automatic Speech Recognition

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 9.21 An arbitrary function approximated by a mixture of 3 gaussians.

Let’s turn to training the GMM likelihood function. This mayseem hard to do; how
can we train a GMM model if we don’t know in advance which mixture is supposed to
account for which part of each distribution? Recall that a single multivariate Gaussian
could be trained even if we didn’t know which state accountedfor each output, simply
by using the Baum-Welch algorithm to tell us the likelihood of being in each statej at
time t. It turns out the same trick will work for GMMs; we can use Baum-Welch to tell
us the probability of a certain mixture accounting for the observation, and iteratively
update this probability.

We used theξ function above to help us compute the state probability. By analogy
with this function, let’s defineξtm(j) to mean the probability of being in statej at time
t with the mth mixture component accounting for the output observationot . We can
computeξtm(j) as follows:

ξtm(j) =
∑i=1Nαt−1(j)ai j c jmb jm(ot)βt(j)

αT(F)
(9.39)

Now if we had the values ofξ from a previous iteration of Baum-Welch, we can
useξtm(j) to recompute the mean, mixture weight, and covariance usingthe following
equations:

µ̂im =
∑T

t=1 ξtm(i)ot

∑T
t=1 ∑M

m=1 ξtm(i)
(9.40)

ĉim =
∑T

t=1 ξtm(i)

∑T
t=1 ∑M

k=1 ξtk(i)
(9.41)

Σ̂im =
∑T

t=1 ξt(i)(ot − µim)(ot − µim)T

∑T
t=1 ∑M

k=1 ξtm(i)
(9.42)

DRAFT

Section 9.4. Computing Acoustic Likelihoods 315

9.4.3 Probabilities, log probabilities and distance functions

Up to now, all the equations we have given for acoustic modeling have used probabil-
ities. It turns out, however, that alog probability (or logprob) is much easier to workLogprob

with than a probability. Thus in practice throughout speechrecognition (and related
fields) we compute log-probabilities rather than probabilities.

One major reason that we can’t use probabilities is numeric underflow. To com-
pute a likelihood for a whole sentence, say, we are multiplying many small prob-
ability values, one for each 10ms frame. Multiplying many probabilities results in
smaller and smaller numbers, leading to underflow. The log ofa small number like
.00000001= 10−8, on the other hand, is a nice easy-to-work-with-number like−8. A
second reason to use log probabilities is computational speed. Instead of multiplying
probabilities, we add log-probabilities, and adding is faster than multiplying. Log-
probabilities are particularly efficient when we are using Gaussian models, since we
can avoid exponentiating.

Thus for example for a single multivariate diagonal-covariance Gaussian model,
instead of computing:

b j(ot) =
D

∏
d=1

1
√

2πσ2
jd

exp

(

−1
2

(otd− µ jd)2

σ2
jd

)

(9.43)

we would compute

logb j(ot) =−1
2

D

∑
d=1

[

log(2π)+ σ2
jd +

(otd− µ jd)2

σ2
jd

]

(9.44)

With some rearrangement of terms, we can rewrite this equation to pull out a constant
C:

logb j(ot) = C− 1
2

D

∑
d=1

(otd− µ jd)2

σ2
jd

(9.45)

where C can be precomputed:

C =−1
2

D

∑
d=1

(
log(2π)+ σ2

jd

)
(9.46)

In summary, computing acoustic models in log domain means a much simpler com-
putation, much of which can be precomputed for speed.

The perceptive reader may have noticed that equation (9.45)looks very much like
the equation for Mahalanobis distance (9.20). Indeed, one way to think about Gaussian
logprobs is as just a weighted distance metric.

A further point about Gaussian pdfs, for those readers with calculus. Although the
equations for observation likelihood such as (9.26) are motivated by the use of Gaus-
sian probability density functions, the values they returnfor the observation likelihood,
b j(ot), are not technically probabilities; they may in fact be greater than one. This is
because we are computing the value ofb j(ot) at a single point, rather than integrating
over a region. While the total area under the Gaussian PDF curve is constrained to one,

DRAFT

316 Chapter 9. Automatic Speech Recognition

the actual value at any point could be greater than one. (Imagine a very tall skinny
Gaussian; the value could be greater than one at the center, although the area under the
curve is still 1.0). If we were integrating over a region, we would be multiplying each
point by its widthdx, which would bring the value down below one. The fact that the
Gaussian estimate is not a true probability doesn’t matter for choosing the most likely
HMM state, since we are comparing different Gaussians, eachof which is missing this
dx factor.

In summary, the last few subsections introduced Gaussian models for acoustic train-
ing in speech recognition. Beginning with simple univariate Gaussian, we extended
first to multivariate Gaussians to deal with the multidimensionality acoustic feature
vectors. We then introduced the diagonal covariance simplification of Gaussians, and
then introduced Gaussians mixtures (GMMs).

9.5 The Lexicon and Language Model

Since previous chapters had extensive discussions of theN-gram language model (Ch. 4)
and the pronunciation lexicon (Ch. 7), in this section we just briefly recall them to the
reader.

Language models for LVCSR tend to be trigrams or even fourgrams; good toolkits
are available to build and manipulate them (Stolcke, 2002; Young et al., 2005). Bigrams
and unigram grammars are rarely used for large-vocabulary applications. Since tri-
grams require huge amounts of space, however, language models for memory-constrained
applications like cell phones tend to use smaller contexts (or use compression tech-
niques). As we will discuss in Ch. 24, some simple dialogue applications take ad-
vantage of their limited domain to use very simple finite-state or weighted finite-state
grammars.

Lexicons are simply lists of words, with a pronunciation foreach word expressed
as a phone sequence. Publicly available lexicons like the CMU dictionary (CMU,
1993) can be used to extract the 64,000 word vocabularies commonly used for LVCSR.
Most words have a single pronunciation, although some wordssuch as homonyms and
frequent function words may have more; the average number ofpronunciations per
word in most LVCSR systems seems to range from 1 to 2.5. Sec. 10.5.3 in Ch. 10
discusses the issue of pronunciation modeling.

9.6 Search and Decoding

We are now very close to having described all the parts of a complete speech recog-
nizer. We have shown how to extract cepstral features for a frame, and how to compute
the acoustic likelihoodb j(ot) for that frame. We also know how to represent lexical
knowledge, that each word HMM is composed of a sequence of phone models, and
each phone model of a set of subphone states. Finally, in Ch. 4we showed how to use
N-grams to build a model of word predictability.

DRAFT

Section 9.6. Search and Decoding 317

In this section we show how to combine all of this knowledge tosolve the problem
of decoding: combining all these probability estimators to produce themost probableDecoding

string of words. We can phrase the decoding question as: ‘Given a string of acoustic
observations, how should we choose the string of words whichhas the highest posterior
probability?’

Recall from the beginning of the chapter the noisy channel model for speech recog-
nition. In this model, we use Bayes rule, with the result thatthe best sequence of words
is the one that maximizes the product of two factors, a language model prior and an
acoustic likelihood:

Ŵ = argmax
W∈L

likelihood
︷ ︸︸ ︷

P(O|W)

prior
︷ ︸︸ ︷

P(W)(9.47)

Now that we have defined both the acoustic model and language model we are
ready to see how to find this maximum probability sequence of words. First, though,
it turns out that we’ll need to make a modification to Eq. 9.47,because it relies on
some incorrect independence assumptions. Recall that we trained a multivariate Gaus-
sian mixture classifier to compute the likelihood of a particular acoustic observation
(a frame) given a particular state (subphone). By computingseparate classifiers for
each acoustic frame and multiplying these probabilities toget the probability of the
whole word, we are severely underestimating the probability of each subphone. This
is because there is a lot of continuity across frames; if we were to take into account
the acoustic context, we would have a greater expectation for a given frame and hence
could assign it a higher probability. We must therefore reweight the two probabilities.
We do this by adding in alanguage model scaling factoror LMSF , also called theLMSF

language weight. This factor is an exponent on the language model probability P(W).
BecauseP(W) is less than one and the LMSF is greater than one (between 5 and15, in
many systems), this has the effect of decreasing the value ofthe LM probability:

Ŵ = argmax
W∈L

P(O|W)P(W)LMSF(9.48)

Reweighting the language model probabilityP(W) in this way requires us to make
one more change. This is becauseP(W) has a side-effect as a penalty for inserting
words. It’s simplest to see this in the case of a uniform language model, where every
word in a vocabulary of size|V| has an equal probability1|V| . In this case, a sentence

with N words will have a language model probability of1
|V| for each of theN words, for

a total penalty ofN
|V| . The largerN is (the more words in the sentence), the more times

this 1
V penalty multiplier is taken, and the less probable the sentence will be. Thus if

(on average) the language model probability decreases (causing a larger penalty), the
decoder will prefer fewer, longer words. If the language model probability increases
(larger penalty), the decoder will prefer more shorter words. Thus our use of a LMSF to
balance the acoustic model has the side-effect of decreasing the word insertion penalty.
To offset this, we need to add back in a separateword insertion penalty:Word insertion

penalty

DRAFT

318 Chapter 9. Automatic Speech Recognition

Ŵ = argmax
W∈L

P(O|W)P(W)LMSFWIPN(9.49)

Since in practice we use logprobs, the goal of our decoder is:

Ŵ = argmax
W∈L

logP(O|W)+LMSF× logP(W)+N× logWIP(9.50)

Now that we have an equation to maximize, let’s look at how to decode. It’s the job
of a decoder to simultaneously segment the utterance into words and identify each of
these words. This task is made difficult by variation, both interms of how words are
pronounced in terms of phones, and how phones are articulated in acoustic features.
Just to give an intuition of the difficulty of the problem imagine a massively simplified
version of the speech recognition task, in which the decoderis given a series of discrete
phones. In such a case, we would know what each phone was with perfect accuracy,
and yet decoding is still difficult. For example, try to decode the following sentence
from the (hand-labeled) sequence of phones from the Switchboard corpus (don’t peek
ahead!):

[ay d ih s hh er d s ah m th ih ng ax b aw m uh v ih ng r ih s en l ih]

The answer is in the footnote.2 The task is hard partly because of coarticulation
and fast speech (e.g., [d] for the first phone ofjust!). But it’s also hard because speech,
unlike English writing, has no spaces indicating word boundaries. The true decoding
task, in which we have to identify the phones at the same time as we identify and
segment the words, is of course much harder.

For decoding, we will start with the Viterbi algorithm that we introduced in Ch. 6,
in the domain ofdigit recognition, a simple task with a vocabulary size of 11 (the
numbersonethroughninepluszeroandoh).

Recall the basic components of an HMM model for speech recognition:

Q = q1q2 . . .qN a set ofstatescorresponding tosubphones

A = a01a02. . .an1 . . .ann a transition probability matrix A, eachai j rep-
resenting the probability for each subphone of
taking aself-loopor going to the next subphone.
Together,Q andA implement apronunciation
lexicon, an HMM state graph structure for each
word that the system is capable of recognizing.

B = bi(ot) A set of observation likelihoods:, also called
emission probabilities, each expressing the
probability of a cepstral feature vector (observa-
tion ot) being generated from subphone statei.

The HMM structure for each word comes from a lexicon of word pronunciations.
Generally we use an off-the-shelf pronunciation dictionary such as the free CMUdict
dictionary described in Ch. 7. Recall from page 295 that the HMM structure for words

2 I just heard something about moving recently.

DRAFT

Section 9.6. Search and Decoding 319

in speech recognition is a simple concatenation of phone HMMs, each phone consist-
ing of 3 subphone states, where every state has exactly two transitions: a self-loop and
a loop to the next phones. Thus the HMM structure for each digit word in our digit rec-
ognizer is computed simply by taking the phone string from the dictionary, expanding
each phone into 3 subphones, and concatenating together. Inaddition, we generally
add an optional silence phone at the end of each word, allowing the possibility of paus-
ing between words. We usually define the set of statesQ from some version of the
ARPAbet, augmented with silence phones, and expanded to create three subphones for
each phone.

TheA andB matrices for the HMM are trained by the Baum-Welch algorithmin
the embedded training procedure that we will describe in Sec. 9.7. For now we’ll
assume that these probabilities have been trained.

Fig. 9.22 shows the resulting HMM for digit recognition. Note that we’ve added
non-emitting start and end states, with transitions from the end of each word to the end
state, and a transition from the end state back to the start state to allow for sequences
of digits. Note also the optional silence phones at the end ofeach word.

Digit recognizers often don’t use word probabilities, since in many digit situations
(phone numbers or credit card numbers) each digit may have anequal probability of
appearing. But we’ve included transition probabilities into each word in Fig. 9.22,
mainly to show where such probabilities would be for other kinds of recognition tasks.
As it happens, there are cases where digit probabilities do matter, such as in addresses
(which are often likely to end in 0 or 00) or in cultures where some numbers are lucky
and hence more frequent, such as the lucky number ‘8’ in Chinese.

Now that we have an HMM, we can use the same forward and Viterbialgorithms
that we introduced in Ch. 6. Let’s see how to use the forward algorithm to generate
P(O|W), the likelihood of an observation sequenceO given a sequence of wordsW;
we’ll use the single word “five”. In order to compute this likelihood, we need to sum
over all possible sequences of states; assumingfivehas the states [f], [ay], and [v], a
10-observation sequence includes many sequences such as the following:

f ay ay ay ay v v v v v
f f ay ay ay ay v v v v
f f f f ay ay ay ay v v
f f ay ay ay ay ay ay v v
f f ay ay ay ay ay ay ay v
f f ay ay ay ay ay v v v
...

The forward algorithm efficiently sums over this large number of sequences in
O(N2T) time.

Let’s quickly review the forward algorithm. It is a dynamic programming algo-
rithm, i.e. an algorithm that uses a table to store intermediate values as it builds up the
probability of the observation sequence. The forward algorithm computes the obser-
vation probability by summing over the probabilities of allpossible paths that could
generate the observation sequence.

Each cell of the forward algorithm trellisαt(j) or forward[t, j] represents the proba-
bility of being in statej after seeing the firstt observations, given the automatonλ . The

DRAFT

320 Chapter 9. Automatic Speech Recognition

Figure 9.22 An HMM for the digit recognition task. A lexicon specifies thephone sequence,
and each phone HMM is composed of three subphones each with a Gaussian emission likelihood
model. Combining these and adding an optional silence at theend of each word, results in a
single HMM for the whole task. Note the transition from the End state to the Start state to allow
digit sequences of arbitrary length.

value of each cellαt (j) is computed by summing over the probabilities of every path
that could lead us to this cell. Formally, each cell expresses the following probability:

αt(j) = P(o1,o2 . . .ot ,qt = j|λ)(9.51)

Hereqt = j means “the probability that thetth state in the sequence of states is state
j”. We compute this probability by summing over the extensions of all the paths that
lead to the current cell. For a given stateq j at timet, the valueαt (j) is computed as:

αt(j) =
N

∑
i=1

αt−1(i)ai j b j(ot)(9.52)

The three factors that are multiplied in Eq˙ 9.52 in extending the previous paths to
compute the forward probability at timet are:

DRAFT

Section 9.6. Search and Decoding 321

αt−1(i) theprevious forward path probability from the previous time step

ai j thetransition probability from previous stateqi to current stateq j

b j(ot) thestate observation likelihoodof the observation symbolot given
the current statej

The algorithm is described in Fig. 9.23.

function FORWARD(observationsof lenT, state-graphof lenN) returns forward-prob

create a probability matrixforward[N+2,T]
for each states from 1 to N do ;initialization step

forward[s,1]←a0,s ∗ bs(o1)
for each time stept from 2 to T do ;recursion step

for each states from 1 to N do

forward[s,t]←
N

∑
s′=1

forward[s′,t−1] ∗ as′,s ∗ bs(ot)

forward[qF ,T]←
N

∑
s=1

forward[s,T] ∗ as,qF ; termination step

return forward[qF ,T]

Figure 9.23 The forward algorithm for computing likelihood of observation sequence given a
word model.a[s,s′] is the transition probability from current states to next states′, andb[s′,ot]
is the observation likelihood ofs’ givenot . The observation likelihoodb[s′,ot] is computed by
theacoustic model.

Let’s see a trace of the forward algorithm running on a simplified HMM for the
single wordfivegiven 10 observations; assuming a frame shift of 10ms, this comes to
100ms. The HMM structure is shown vertically along the left of Fig. 9.24, followed by
the first 3 time-steps of the forward trellis. The complete trellis is shown in Fig. 9.6,
together withB values giving a vector of observation likelihoods for each frame. These
likelihoods could be computed by any acoustic model (GMMs orother); in this exam-
ple we’ve hand-created simple values for pedagogical purposes.

Let’s now turn to the question of decoding. Recall the Viterbi decoding algorithm
from our description of HMMs in Ch. 6. The Viterbi algorithm returns the most likely
state sequence (which is not the same as the most likely word sequence, but is often a
good enough approximation) in timeO(N2T).

Each cell of the Viterbi trellis,vt(j) represents the probability that the HMM is in
state j after seeing the firstt observations and passing through the most likely state
sequenceq1...qt−1, given the automatonλ . The value of each cellvt(j) is computed
by recursively taking the most probable path that could leadus to this cell. Formally,
each cell expresses the following probability:

vt(j) = P(q0,q1...qt−1,o1,o2 . . .ot ,qt = j|λ)(9.53)

Like other dynamic programming algorithms, Viterbi fills each cell recursively.
Given that we had already computed the probability of being in every state at time
t−1, We compute the Viterbi probability by taking the most probable of the extensions

DRAFT

322 Chapter 9. Automatic Speech Recognition

Figure 9.24 The first 3 time-steps of the forward trellis computation forthe wordfive. TheA
transition probabilities are shown along the left edge; theB observation likelihoods are shown in
Fig. 9.6.

V 0 0 0.008 0.0093 0.0114 0.00703 0.00345 0.00306 0.00206 0.00117
AY 0 0.04 0.054 0.0664 0.0355 0.016 0.00676 0.00208 0.000532 0.000109
F 0.8 0.32 0.112 0.0224 0.00448 0.000896 0.000179 4.48e-05 1.12e-05 2.8e-06
Time 1 2 3 4 5 6 7 8 9 10

f 0.8 f 0.8 f 0.7 f 0.4 f 0.4 f 0.4 f 0.4 f 0.5 f 0.5 f 0.5
ay 0.1 ay 0.1 ay 0.3 ay 0.8 ay 0.8 ay 0.8 ay 0.8 ay 0.6 ay 0.5 ay 0.4

B v 0.6 v 0.6 v 0.4 v 0.3 v 0.3 v 0.3 v 0.3 v 0.6 v 0.8 v 0.9
p 0.4 p 0.4 p 0.2 p 0.1 p 0.1 p 0.1 p 0.1 p 0.1 p 0.3 p 0.3
iy 0.1 iy 0.1 iy 0.3 iy 0.6 iy 0.6 iy 0.6 iy 0.6 iy 0.5 iy 0.5 iy 0.4

Figure 9.25 The forward trellis for 10 frames of the wordfive, consisting of 3 emitting states (f, ay, v), plus non-
emitting start and end states (not shown). The bottom half ofthe table gives part of theB observation likelihood
vector for the observationo at each frame,p(o|q) for each phoneq. B values are created by hand for pedagogical
purposes. This table assumes the HMM structure forfiveshown in Fig. 9.24, each emitting state having a .5 loopback
probability.

of the paths that lead to the current cell. For a given stateq j at timet, the valuevt(j) is
computed as:

vt(j) =
N

max
i=1

vt−1(i) ai j b j(ot)(9.54)

The three factors that are multiplied in Eq. 9.54 for extending the previous paths to
compute the Viterbi probability at timet are:

vt−1(i) theprevious Viterbi path probability from the previous time step

ai j thetransition probability from previous stateqi to current stateq j

b j(ot) thestate observation likelihoodof the observation symbolot given
the current statej

Fig. 9.26 shows the Viterbi algorithm, repeated from Ch. 6.
Recall that the goal of the Viterbi algorithm is to find the best state sequenceq =

(q1q2q3 . . .qT) given the set of observationso = (o1o2o3 . . .oT). It needs to also find

DRAFT

Section 9.6. Search and Decoding 323

function V ITERBI(observationsof lenT,state-graphof lenN) returns best-path

create a path probability matrixviterbi[N+2,T]
for each states from 1 to N do ;initialization step

viterbi[s,1]←a0,s ∗ bs(o1)
backpointer[s,1]←0

for each time stept from 2 to T do ;recursion step
for each states from 1 to N do

viterbi[s,t]← N
max

s′=1
viterbi[s′,t−1] ∗ as′,s ∗ bs(ot)

backpointer[s,t]← N
argmax

s′=1

viterbi[s′,t−1] ∗ as′,s

viterbi[qF ,T]← N
max

s=1
viterbi[s,T] ∗ as,qF ; termination step

backpointer[qF ,T]← N
argmax

s=1

viterbi[s,T] ∗ as,qF ; termination step

return the backtrace path by following backpointers to states backin time from
backpointer[qF ,T]

Figure 9.26 Viterbi algorithm for finding optimal sequence of hidden states. Given an ob-
servation sequence of words and an HMM (as defined by theA andB matrices), the algorithm
returns the state-path through the HMM which assigns maximum likelihood to the observation
sequence.a[s′,s] is the transition probability from previous states′ to current states, andbs(ot)
is the observation likelihood ofsgivenot . Note that states 0 and F are non-emitting start and end
states.

the probability of this state sequence. Note that the Viterbi algorithm is identical to the
forward algorithm except that it takes the MAX over the previous path probabilities
where forward takes the SUM.

Fig. 9.27 shows the computation of the first three time-stepsin the Viterbi trellis
corresponding to the forward trellis in Fig. 9.24. We have again used the made-up
probabilities for the cepstral observations; here we also follow common convention in
not showing the zero cells in the upper left corner. Note thatonly the middle cell in the
third column differs from Viterbi to forward. Fig. 9.6 showsthe complete trellis.

Note the difference between the final values from the Viterbiand forward algo-
rithms for this (made-up) example. The forward algorithm gives the probability of
the observation sequence as .00128, which we get by summing the final column. The
Viterbi algorithm gives the probability of the observationsequence given the best path,
which we get from the Viterbi matrix as .000493. The Viterbi probability is much
smaller than the forward probability, as we should expect since Viterbi comes from a
single path, where the forward probability is the sum over all paths.

The real usefulness of the Viterbi decoder, of course, lies in its ability to decode
a string of words. In order to do cross-word decoding, we needto augment theA
matrix, which only has intra-word state transitions, with the inter-word probability of
transitioning from the end of one word to the beginning of another word. The digit
HMM model in Fig. 9.22 showed that we could just treat each word as independent,
and use only the unigram probability. Higher-orderN-grams are much more common.
Fig. 9.29, for example, shows an augmentation of the digit HMM with bigram proba-

DRAFT

324 Chapter 9. Automatic Speech Recognition

Figure 9.27 The first 3 time-steps of the viterbi trellis computation forthe wordfive. TheA
transition probabilities are shown along the left edge; theB observation likelihoods are shown in
Fig. 9.6. In this computation we make the simplifying assumption that the probability of starting
in state 1 (phone [f]) is 1.0

V 0 0 0.008 0.0072 0.00672 0.00403 0.00188 0.00161 0.000667 0.000493
AY 0 0.04 0.048 0.0448 0.0269 0.0125 0.00538 0.00167 0.000428 8.78e-05
F 0.8 0.32 0.112 0.0224 0.00448 0.000896 0.000179 4.48e-05 1.12e-05 2.8e-06
Time 1 2 3 4 5 6 7 8 9 10

f 0.8 f 0.8 f 0.7 f 0.4 f 0.4 f 0.4 f 0.4 f 0.5 f 0.5 f 0.5
ay 0.1 ay 0.1 ay 0.3 ay 0.8 ay 0.8 ay 0.8 ay 0.8 ay 0.6 ay 0.5 ay 0.4

B v 0.6 v 0.6 v 0.4 v 0.3 v 0.3 v 0.3 v 0.3 v 0.6 v 0.8 v 0.9
p 0.4 p 0.4 p 0.2 p 0.1 p 0.1 p 0.1 p 0.1 p 0.1 p 0.3 p 0.3
iy 0.1 iy 0.1 iy 0.3 iy 0.6 iy 0.6 iy 0.6 iy 0.6 iy 0.5 iy 0.5 iy 0.4

Figure 9.28 The Viterbi trellis for 10 frames of the wordfive, consisting of 3 emitting states (f, ay, v), plus non-
emitting start and end states (not shown). The bottom half ofthe table gives part of theB observation likelihood
vector for the observationo at each frame,p(o|q) for each phoneq. B values are created by hand for pedagogical
purposes. This table assumes the HMM structure forfiveshown in Fig. 9.24, each emitting state having a .5 loopback
probability.

bilities.
A schematic of the HMM trellis for such a multi-word decodingtask is shown

in Fig. 9.30. The intraword transitions are exactly as shownin Fig. 9.27. But now
between words we’ve added a transition. The transition probability on this arc, rather
than coming from theA matrix inside each word, comes from the language model
P(W).

Once the entire Viterbi trellis has been computed for the utterance, we can start
from the most-probable state at the final time step and followthe backtrace pointers
backwards to get the most probable string of states, and hence the most probable string
of words. Fig. 9.31 shows the backtrace pointers being followed back from the best
state, which happens to be atw2, eventually throughwN andw1, resulting in the final
word stringw1wN · · ·w2.

The Viterbi algorithm is much more efficient than exponentially running the for-
ward algorithm for each possible word string. Nonetheless,it is still slow, and much
modern research in speech recognition has focused on speeding up the decoding pro-

DRAFT

Section 9.6. Search and Decoding 325

iyiy iyzz z rr r owow ow

ahah ahww w nn n

uwuw uwtt t

...

p(one | two) p(two | one)

p(one | one)

p(two | two)

p(one | zero)

p(zero | zero)

p(zero | one)

p(two | zero)

p(zero | two)

Figure 9.29 A bigram grammar network for the digit recognition task. Thebigrams give the
probability of transitioning from the end of one word to the beginning of the next.

P

QR

ST U
1

V
2

VW VXVY
w
1

wZ
w2

P(wN | w1)

P(w2 | w1)

P(w1 | w1)

Figure 9.30 A schematic of the HMM Viterbi trellis for a bigram language model. The in-
traword transitions are the same as in Fig. 9.27. Between words, a potential transition is added
(shown just fromw1 as a dark dashed line) from the end state of each word to the beginning state
of every word, labeled with the bigram probability of the word pair.

cess. For example in practice in large-vocabulary recognition we do not consider all
possible words when the algorithm is extending paths from one state-column to the
next. Instead, low-probability paths arepruned at each time step and not extended toPruning

the next state column.
This pruning is usually implemented viabeam search(Lowerre, 1968). In beamBeam search

search, at each timet, we first compute the probability of the best (most-probable)
state/pathD. We then prune away any state which is worse thanD by some fixed

DRAFT

326 Chapter 9. Automatic Speech Recognition

[

\]

^_ `
1

a
2

ab ac
ddd ddd

ae
w
1

wf
w2

acgh
Figure 9.31 Viterbi backtrace in the HMM trellis. The backtrace starts in the final state, and
results in a best phone string from which a word string is derived.

threshold (beam width) θ . We can talk about beam-search in both the probabilityBeam width

and negative log probability domain. In the probability domain any path/state whose
probability is less thanθ ∗D is pruned away; in the negative log domain, any path
whose cost is greater thenθ +D is pruned. Beam search is implemented by keeping for
each time step anactive list of states. Only transitions from these words are extendedActive list

when moving to the next time step.
Making this beam search approximation allows a significant speed-up at the cost

of a degradation to the decoding performance. Huang et al. (2001) suggest that em-
pirically a beam size of 5-10% of the search space is sufficient; 90-95% of the states
are thus not considered. Because in practice most implementations of Viterbi use beam
search, some of the literature uses the termbeam searchor time-synchronous beam
searchinstead of Viterbi.

9.7 Embedded Training

We turn now to see how an HMM-based speech recognition systemis trained. We’ve
already seen some aspects of training. In Ch. 4 we showed how to train a language
model. In Sec. 9.4, we saw how GMM acoustic models are trainedby augmenting the
EM algorithm to deal with training the means, variances, andweights. We also saw
how posterior AM classifiers like SVMs or neural nets could betrained, although for
neural nets we haven’t yet seen how we get training data in which each frame is labeled
with a phone identity.

In this section we complete the picture of HMM training by showing how this aug-
mented EM training algorithm fits into the whole process of training acoustic models.
For review, here are the three components of theacoustic model:

DRAFT

Section 9.7. Embedded Training 327

Q = q1q2 . . .qN thesubphonesrepresented as a set ofstates

A = a01a02. . .an1 . . .ann a subphone transition probability matrix A,
each ai j representing the probability for each
subphone of taking aself-loop or going to the
next subphone. Together,Q and A implement
a pronunciation lexicon, an HMM state graph
structure for each word that the system is capa-
ble of recognizing.

B = bi(ot) A set of observation likelihoods:, also called
emission probabilities, each expressing the
probability of a cepstral feature vector (observa-
tion ot) being generated from subphone statei.

We will assume that the pronunciation lexicon, and thus the basic HMM state graph
structure for each word, is pre-specified as the simple linear HMM structures with
loopbacks on each state that we saw in Fig. 9.7 and Fig. 9.22. In general, speech
recognition systems do not attempt to learn the structure ofthe individual word HMMs.
Thus we only need to train theB matrix, and we need to train the probabilities of
the non-zero (self-loop and next-subphone) transitions inthe A matrix. All the other
probabilities in theA matrix are set to zero and never change.

The simplest possible training method, ishand-labeled isolated wordtraining,
in which we train separate theB andA matrices for the HMMs for each word based
on hand-aligned training data. We are given a training corpus of digits, where each
instance of a spoken digit is stored in a wavefile, and with thestart and end of each word
and phone hand-segmented. Given such a hand-labeled database, we can compute theB
Gaussians observation likelihoods and theA transition probabilities by merely counting
in the training data! TheA transition probability are specific to each word, but theB
Gaussians would be shared across words if the same phone occurred in multiple words.

Unfortunately, hand-segmented training data is rarely used in training systems for
continuous speech. One reason is that it is very expensive touse humans to hand-label
phonetic boundaries; it can take up to 400 times real time (i.e. 400 labeling hours
to label each 1 hour of speech). Another reason is that humansdon’t do phonetic
labeling very well for units smaller than the phone; people are bad at consistently
finding the boundaries of subphones. ASR systems aren’t better than humans at finding
boundaries, but their errors are at least consistent between the training and test sets.

For this reason, speech recognition systems train each phone HMM embedded in an
entire sentence, and the segmentation and phone alignment are done automatically as
part of the training procedure. This entire acoustic model training process is therefore
calledembedded training. Hand phone segmentation do still play some role, however,Embedded

training

for example for bootstrapping initial systems for discriminative (SVM; non-Gaussian)
likelihood estimators, or for tasks like phone recognition.

In order to train a simple digits system, we’ll need a training corpus of spoken digit
sequences. For simplicity assume that the training corpus is separated into separate
wavefiles, each containing a sequence of spoken digits. For each wavefile, we’ll need
to know the correct sequence of digit words. We’ll thus associate with each wavefile a

DRAFT

328 Chapter 9. Automatic Speech Recognition

transcription (a string of words). We’ll also need a pronunciation lexicon and a phone-
set, defining a set of (untrained) phone HMMs. From the transcription, lexicon, and
phone HMMs, we can build a “whole sentence” HMM for each sentence, as shown in
Fig. 9.32.

Figure 9.32 The input to the embedded training algorithm; a wavefile of spoken digits with a corresponding tran-
scription. The transcription is converted into a raw HMM, ready to be aligned and trained against the cepstral features
extracted from the wavefile.

We are now ready to train the transition matrix A and output likelihood estimator B
for the HMMs. The beauty of the Baum-Welch-based paradigm for embedded training
of HMMs is that this is all the training data we need. In particular, we don’t need
phonetically transcribed data. We don’t even need to know where each word starts and
ends. The Baum-Welch algorithm will sum over all possible segmentations of words
and phones, usingξ j(t), the probability of being in statej at timet and generating the
observation sequence O.

We will, however, need an initial estimate for the transition and observation prob-
abilities ai j andb j(ot). The simplest way to do this is with aflat start . In flat start,Flat start

we first set to zero any HMM transitions that we want to be ‘structurally zero’, such as
transitions from later phones back to earlier phones. Theγ probability computation in
Baum-Welch includes the previous value ofai j , so those zero values will never change.
Then we make all the rest of the (non-zero) HMM transitions equiprobable. Thus the
two transitions out of each state (the self-loop and the transition to the following sub-
phone) each would have a probability of 0.5. For the Gaussians, a flat start initializes
the mean and variance for each Gaussian identically, to the global mean and variance
for the entire training data.

Now we have initial estimates for theA andB probabilities. For a standard Gaus-
sian HMM system, we now run multiple iterations of the Baum-Welch algorithm on

DRAFT

Section 9.7. Embedded Training 329

the entire training set. Each iteration modifies the HMM parameters, and we stop when
the system converges. During each iteration, as discussed in Ch. 6, we compute the
forward and backward probabilities for each sentence giventhe initial A andB proba-
bilities, and use them to re-estimate theA andB probabilities. We also apply the various
modifications to EM discussed in the previous section to correctly update the Gaussian
means and variances for multivariate Gaussians. We will discuss in Sec. 10.3 in Ch. 10
how to modify the embedded training algorithm to handle mixture Gaussians.

In summary, the basicembedded training procedureis as follows:

Given: phoneset, pronunciation lexicon, and the transcribed wavefiles

1. Build a “whole sentence” HMM for each sentence, as shown inFig. 9.32.

2. InitializeA probabilities to 0.5 (for loop-backs or for the correct next
subphone) or to zero (for all other transitions).

3. Initialize B probabilities by setting the mean and variance for each
Gaussian to the global mean and variance for the entire training set.

4. Run multiple iterations of the Baum-Welch algorithm.

The Baum-Welch algorithm is used repeatedly as a component of the embedded
training process. Baum-Welch computesξt(i), the probability of being in statei at
time t, by using forward-backward to sum over all possible paths that were in state
i emitting symbolot at time t. This lets us accumulate counts for re-estimating the
emission probabilityb j(ot) from all the paths that pass through statej at timet. But
Baum-Welch itself can be time-consuming.

There is an efficient approximation to Baum-Welch training that makes use of the
Viterbi algorithm. InViterbi training , instead of accumulating counts by a sum overViterbi training

all paths that pass through a statej at timet, we approximate this by only choosing
the Viterbi (most-probable) path. Thus instead of running EM at every step of the
embedded training, we repeatedly run Viterbi.

Running the Viterbi algorithm over the training data in thisway is calledforced
Viterbi alignment or just forced alignment. In Viterbi training (unlike in ViterbiForced alignment

decoding on the test set) we know which word string to assign to each observation
sequence, So we can ‘force’ the Viterbi algorithm to pass through certain words, by
setting theai j s appropriately. A forced Viterbi is thus a simplification ofthe regular
Viterbi decoding algorithm, since it only has to figure out the correct state (subphone)
sequence, but doesn’t have to discover the word sequence. The result is aforced align-
ment: the single best state path corresponding to the training observation sequence. We
can now use this alignment of HMM states to observations to accumulate counts for re-
estimating the HMM parameters. We saw earlier that forcd alignment can also be used
in other speech applications like text-to-speech, whenverwe have a word transcript and
a wavefile in which we want to find boundaries.

The equations for retraining a (non-mixture) Gaussian froma Viterbi alignment are
as follows:

µ̂i =
1
T

T

∑
t=1

ot s.t. qt is statei(9.55)

DRAFT

330 Chapter 9. Automatic Speech Recognition

σ̂2
j =

1
T

T

∑
t=1

(ot − µi)
2 s.t.qt is statei(9.56)

We saw these equations already, as (9.27) and (9.28) on page 310, when we were
‘imagining the simpler situation of a completely labeled training set’.

It turns out that this forced Viterbi algorithm is also used in the embedded training
of hybrid models like HMM/MLP or HMM/SVM systems. We begin with an untrained
MLP, and using its noisy outputs as theB values for the HMM, perform a forced Viterbi
alignment of the training data. This alignment will be quiteerrorful, since the MLP
was random. Now this (quite errorful) Viterbi alignment give us a labeling of feature
vectors with phone labels. We use this labeling to retrain the MLP. The counts of the
transitions which are taken in the forced alignments can be used to estimate the HMM
transition probabilities. We continue this hill-climbingprocess of neural-net training
and Viterbi alignment until the HMM parameters begin to converge.

9.8 Evaluation: Word Error Rate

The standard evaluation metric for speech recognition systems is theword error rate.Word error

The word error rate is based on how much the word string returned by the recognizer
(often called thehypothesizedword string) differs from a correct orreferencetran-
scription. Given such a correct transcription, the first step in computing word error is
to compute theminimum edit distance in words between the hypothesized and cor-
rect strings, as described in Ch. 3. The result of this computation will be the minimum
number of wordsubstitutions, word insertions, and worddeletionsnecessary to map
between the correct and hypothesized strings. The word error rate (WER) is then de-
fined as follows (note that because the equation includes insertions, the error rate can
be greater than 100%):

Word Error Rate= 100× Insertions+Substitutions+Deletions
Total Words in Correct Transcript

We sometimes also talk about the SER (Sentence Error Rate), which tells us how
many sentences had at least one error:

Sentence Error Rate= 100× # of sentences with at least one word error
total # of sentences

Here is an example of thealignments between a reference and a hypothesizedAlignment

utterance from the CALLHOME corpus, showing the counts usedto compute the word
error rate:

REF: i *** ** UM the PHONE IS i LEFT THE portable **** PHONE UPSTAIRS last night
HYP: i GOT IT TO the ***** FULLEST i LOVE TO portable FORM OF STORES last night
Eval: I I S D S S S I S S

This utterance has six substitutions, three insertions, and one deletion:

Word Error Rate= 100
6+3+1

13
= 76.9%

DRAFT
Section 9.8. Evaluation: Word Error Rate 331

The standard method for implementing minimum edit distanceand computing word
error rates is a free script calledsclite , available from the National Institute of
Standards and Technologies (NIST) (NIST, 2005).sclite is given a series of ref-
erence (hand-transcribed, gold-standard) sentences and amatching set of hypothesis
sentences. Besides performing alignments, and computing word error rate, sclite per-
forms a number of other useful tasks. For example, it gives useful information for
error analysis, such as confusion matrices showing which words are often misrecog-
nized for others, and gives summary statistics of words which are often inserted or
deleted.sclite also gives error rates by speaker (if sentences are labeled for speaker
id), as well as useful statistics like thesentence error rate, the percentage of sentencesSentence error

rate
with at least one word error.

Finally, sclite can be used to compute significance tests. Suppose we make
some changes to our ASR system and find that our word error ratehas decreased by
1%. In order to know if our changes really improved things, weneed a statistical test
to make sure that the 1% difference is not just due to chance. The standard statistical
test for determining if two word error rates are different isthe Matched-Pair Sentence
Segment Word Error (MAPSSWE) test, which is also available in sclite (although
theMcNemar test is sometimes used as well).McNemar test

The MAPSSWE test is a parametric test that looks at the difference between the
number of word errors the two systems produce, averaged across a number of segments.
The segments may be quite short or as long as an entire utterance; in general we want to
have the largest number of (short) segments in order to justify the normality assumption
and for maximum power. The test requires that the errors in one segment be statistically
independent of the errors in another segment. Since ASR systems tend to use trigram
LMs, this can be approximated by defining a segment as a regionbounded on both
sides by words that both recognizers get correct (or turn/utterance boundaries).

Here’s an example from NIST (2007b) with four regions:

I II III IV
REF: |it was|the best|of|times it|was the worst|of times| | it was

| | | | | | | |
SYS A:|ITS |the best|of|times it|IS the worst |of times|OR| it was

| | | | | | | |
SYS B:|it was|the best| |times it|WON the TEST |of times| |it was

In region I, system A has 2 errors (a deletion and an insertion) and system B has
0; in region III system A has 1 (substitution) error and system B has 2. Let’s define
a sequence of variablesZ representing the difference between the errors in the two
systems as follows:

Ni
A the number of errors made on segmenti by systemA

Ni
B the number of errors made on segmenti by systemB

Z Ni
A−Ni

B, i = 1,2, · · · ,n wheren is the number of segments

For example in the example above the sequence ofZ values is{2,−1,−1,1}. In-
tuitively, if the two systems are identical, we would expectthe average difference, i.e.
the average of theZ values, to be zero. If we call the true average of the differences
muz, we would thus like to know whethermuz = 0. Following closely the original pro-

DRAFT

332 Chapter 9. Automatic Speech Recognition

posal and notation of Gillick and Cox (1989), we can estimatethe true average from
our limited sample aŝµz = ∑n

i=1Zi/n.
The estimate of the variance of theZi ’s is:

σ2
z =

1
n−1

n

∑
i=1

(Zi− µz)
2(9.57)

Let

W =
µ̂z

σz/
√

n
(9.58)

For a large enoughn (> 50) W will approximately have a normal distribution with unit
variance. The null hypothesis isH0 : µz = 0, and it can thus be rejected if 2∗P(Z ≥
|w|)≤ 0.05 (two-tailed) orP(Z≥ |w|)≤ 0.05 (one-tailed). whereZ is standard normal
andw is the realized valueW; these probabilities can be looked up in the standard
tables of the normal distribution.

Could we improve on word error rate as a metric? It would be nice, for example, to
have something which didn’t give equal weight to every word,perhaps valuing content
words likeTuesdaymore than function words likea or of. While researchers generally
agree that this would be a good idea, it has proved difficult toagree on a metric that
works in every application of ASR. For dialogue systems, however, where the desired
semantic output is more clear, a metric calledconcept error ratehas proved extremely
useful, and will be discussed in Ch. 24 on page 851.

9.9 Summary

Together with Ch. 4 and Ch. 6, this chapter introduced the fundamental algorithms for
addressing the problem ofLarge Vocabulary Continuous Speech Recognition.

• The input to a speech recognizer is a series of acoustic waves. Thewaveform,
spectrogramandspectrumare among the visualization tools used to understand
the information in the signal.

• In the first step in speech recognition, sound waves aresampled, quantized,
and converted to some sort ofspectral representation; A commonly used spec-
tral representation is themel cepstrum or MFCC which provides a vector of
features for each frame of the input.

• GMM acoustic models are used to estimate thephonetic likelihoods(also called
observation likelihoods) of thesefeature vectorsfor each frame.

• Decodingor searchor inference is the process of finding the optimal sequence
of model states which matches a sequence of input observations. (The fact that
there are three terms for this process is a hint that speech recognition is inherently
inter-disciplinary, and draws its metaphors from more thanone field;decoding
comes from information theory, andsearchandinferencefrom artificial intelli-
gence).

DRAFT

Section 9.9. Summary 333

• We introduced two decoding algorithms: time-synchronousViterbi decoding
(which is usually implemented with pruning and can then be calledbeam search)
andstack or A∗ decoding. Both algorithms take as input a sequence of cepstral
feature vectors, a GMM acoustic model, and anN-gram language model, and
produce a string of words.

• Theembedded trainingparadigm is the normal method for training speech rec-
ognizers. Given an initial lexicon with hand-built pronunciation structures, it will
train the HMM transition probabilities and the HMM observation probabilities.

Bibliographical and Historical Notes
The first machine which recognized speech was probably a commercial toy named
“Radio Rex” which was sold in the 1920s. Rex was a celluloid dog that moved (via
a spring) when the spring was released by 500 Hz acoustic energy. Since 500 Hz is
roughly the first formant of the vowel [eh] in “Rex”, the dog seemed to come when he
was called (David and Selfridge, 1962).

By the late 1940s and early 1950s, a number of machine speech recognition systems
had been built. An early Bell Labs system could recognize anyof the 10 digits from
a single speaker (Davis et al., 1952). This system had 10 speaker-dependent stored
patterns, one for each digit, each of which roughly represented the first two vowel
formants in the digit. They achieved 97–99% accuracy by choosing the pattern which
had the highest relative correlation coefficient with the input. Fry (1959) and Denes
(1959) built a phoneme recognizer at University College, London, which recognized
four vowels and nine consonants based on a similar pattern-recognition principle. Fry
and Denes’s system was the first to use phoneme transition probabilities to constrain
the recognizer.

The late 1960s and early 1970s produced a number of importantparadigm shifts.
First were a number of feature-extraction algorithms, include the efficient Fast Fourier
Transform (FFT) (Cooley and Tukey, 1965), the application of cepstral processing to
speech (Oppenheim et al., 1968), and the development of LPC for speech coding (Atal
and Hanauer, 1971). Second were a number of ways of handlingwarping; stretchingWarping

or shrinking the input signal to handle differences in speaking rate and segment length
when matching against stored patterns. The natural algorithm for solving this problem
was dynamic programming, and, as we saw in Ch. 6, the algorithm was reinvented
multiple times to address this problem. The first application to speech processing was
by Vintsyuk (1968), although his result was not picked up by other researchers, and
was reinvented by Velichko and Zagoruyko (1970) and Sakoe and Chiba (1971) (and
(1984)). Soon afterward, Itakura (1975) combined this dynamic programming idea
with the LPC coefficients that had previously been used only for speech coding. The
resulting system extracted LPC features for incoming wordsand used dynamic pro-
gramming to match them against stored LPC templates. The non-probabistic use of
dynamic programming to match a template against incoming speech is calleddynamic
time warping.Dynamic time

warping

DRAFT

334 Chapter 9. Automatic Speech Recognition

The third innovation of this period was the rise of the HMM. Hidden Markov Mod-
els seem to have been applied to speech independently at two laboratories around 1972.
One application arose from the work of statisticians, in particular Baum and colleagues
at the Institute for Defense Analyses in Princeton on HMMs and their application to
various prediction problems (Baum and Petrie, 1966; Baum and Eagon, 1967). James
Baker learned of this work and applied the algorithm to speech processing (Baker,
1975) during his graduate work at CMU. Independently, Frederick Jelinek, Robert
Mercer, and Lalit Bahl (drawing from their research in information-theoretical mod-
els influenced by the work of Shannon (1948)) applied HMMs to speech at the IBM
Thomas J. Watson Research Center (Jelinek et al., 1975). IBM’s and Baker’s sys-
tems were very similar, particularly in their use of the Bayesian framework described
in this chapter. One early difference was the decoding algorithm; Baker’s DRAGON
system used Viterbi (dynamic programming) decoding, whilethe IBM system applied
Jelinek’s stack decoding algorithm (Jelinek, 1969). Bakerthen joined the IBM group
for a brief time before founding the speech-recognition company Dragon Systems. The
HMM approach to speech recognition would turn out to completely dominate the field
by the end of the century; indeed the IBM lab was the driving force in extending sta-
tistical models to natural language processing as well, including the development of
class-basedN-grams, HMM-based part-of-speech tagging, statistical machine transla-
tion, and the use of entropy/perplexity as an evaluation metric.

The use of the HMM slowly spread through the speech community. One cause
was a number of research and development programs sponsoredby the Advanced Re-
search Projects Agency of the U.S. Department of Defense (ARPA). The first five-
year program starting in 1971, and is reviewed in Klatt (1977). The goal of this first
program was to build speech understanding systems based on afew speakers, a con-
strained grammar and lexicon (1000 words), and less than 10%semantic error rate.
Four systems were funded and compared against each other: the System Develop-
ment Corporation (SDC) system, Bolt, Beranek & Newman (BBN)’s HWIM system,
Carnegie-Mellon University’s Hearsay-II system, and Carnegie-Mellon’s Harpy sys-
tem (Lowerre, 1968). The Harpy system used a simplified version of Baker’s HMM-
based DRAGON system and was the best of the tested systems, and according to Klatt
the only one to meet the original goals of the ARPA project (with a semantic accuracy
rate of 94% on a simple task).

Beginning in the mid-1980s, ARPA funded a number of new speech research pro-
grams. The first was the “Resource Management” (RM) task (Price et al., 1988), which
like the earlier ARPA task involved transcription (recognition) of read-speech (speakers
reading sentences constructed from a 1000-word vocabulary) but which now included a
component that involved speaker-independent recognition. Later tasks included recog-
nition of sentences read from the Wall Street Journal (WSJ) beginning with limited
systems of 5,000 words, and finally with systems of unlimitedvocabulary (in prac-
tice most systems use approximately 60,000 words). Later speech-recognition tasks
moved away from read-speech to more natural domains; the Broadcast News domain
(LDC, 1998; Graff, 1997) (transcription of actual news broadcasts, including quite
difficult passages such as on-the-street interviews) and the Switchboard,CALLHOME,
CALLFRIEND, and Fisher domains (Godfrey et al., 1992; Cieri et al., 2004) (natural
telephone conversations between friends or strangers) . The Air Traffic Information

DRAFT

Section 9.9. Summary 335

System (ATIS) task (Hemphill et al., 1990) was an earlier speech understanding task
whose goal was to simulate helping a user book a flight, by answering questions about
potential airlines, times, dates, and so forth.

Each of the ARPA tasks involved an approximately annualbake-off at which allBake-off

ARPA-funded systems, and many other ‘volunteer’ systems from North American and
Europe, were evaluated against each other in terms of word error rate or semantic error
rate. In the early evaluations, for-profit corporations didnot generally compete, but
eventually many (especially IBM and ATT) competed regularly. The ARPA competi-
tions resulted in widescale borrowing of techniques among labs, since it was easy to
see which ideas had provided an error-reduction the previous year, and were proba-
bly an important factor in the eventual spread of the HMM paradigm to virtual every
major speech recognition lab. The ARPA program also resulted in a number of use-
ful databases, originally designed for training and testing systems for each evaluation
(TIMIT, RM, WSJ, ATIS, BN, CALLHOME, Switchboard, Fisher) but then made
available for general research use.

Speech research includes a number of areas besides speech recognition; we already
saw computational phonology in Ch. 7, speech synthesis in Ch. 8, and we will discuss
spoken dialogue systems in Ch. 24. Another important area isspeaker identificationSpeaker

identification
and speaker verification, in which we identify a speaker (for example for securitySpeaker

verification
when accessing personal information over the telephone) (Reynolds and Rose, 1995;
Shriberg et al., 2005; Doddington, 2001). This task is related tolanguage identifica-
tion, in which we are given a wavefile and have to identify which language is beingLanguage

idenntification
spoken; this is useful for automatically directing callersto human operators that speak
appropriate languages.

There are a number of textbooks and reference books on speechrecognition that are
good choices for readers who seek a more in-depth understanding of the material in this
chapter: Huang et al. (2001) is by far the most comprehensiveand up-to-date reference
volume and is highly recommended. Jelinek (1997), Gold and Morgan (1999), and Ra-
biner and Juang (1993) are good comprehensive textbooks. The last two textbooks also
have discussions of the history of the field, and together with the survey paper of Levin-
son (1995) have influenced our short history discussion in this chapter. Our description
of the forward-backward algorithm was modeled after Rabiner (1989), and we were
also influenced by another useful tutorial paper, Knill and Young (1997). Research in
the speech recognition field often appears in the proceedings of the annual INTER-
SPEECH conference, (which is called ICSLP and EUROSPEECH inalternate years)
as well as the annual IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP). Journals includeSpeech Communication, Computer Speech and
Language, the IEEE Transactions on Audio, Speech, and Language Processing, and
theACM Transactions on Speech and Language Processing.

DRAFT

336 Chapter 9. Automatic Speech Recognition

Exercises
9.1 Analyze each of the errors in the incorrectly recognized transcription of “um the

phone is I left the. . . ” on page 330. For each one, give your best guess as to
whether you think it is caused by a problem in signal processing, pronunciation
modeling, lexicon size, language model, or pruning in the decoding search.

9.2 In practice, speech recognizers do all their probability computation using the
log probability (or logprob) rather than actual probabilities. This helps avoidLogprob

underflow for very small probabilities, but also makes the Viterbi algorithm very
efficient, since all probability multiplications can be implemented by adding log
probabilities. Rewrite the pseudocode for the Viterbi algorithm in Fig. 9.26 on
page 323 to make use of logprobs instead of probabilities.

9.3 Now modify the Viterbi algorithm in Fig. 9.26 on page 323 to implement the
beam search described on page 325. Hint: You will probably need to add in code
to check whether a given state is at the end of a word or not.

9.4 Finally, modify the Viterbi algorithm in Fig. 9.26 on page 323 with more detailed
pseudocode implementing the array of backtrace pointers.

9.5 Using the tutorials available as part of a publicly available recognizer like HTK
or Sonic, build a digit recognizer.

9.6 Take the digit recognizer above and dump the phone likelihoods for a sentence.
Now take your implementation of the Viterbi algorithm and show that you can
successfully decode these likelihoods.

	PART II: Speech
	9 Automatic Speech Recognition

