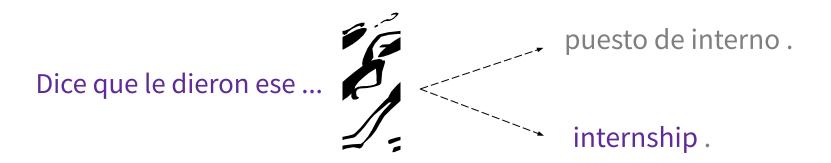
Speech Analysis for Code-Switched Settings


Debasmita Bhattacharya

Advanced Spoken Language Processing

November 25th, 2025

What is code-switching?

(= He said they gave him this internship.)

Why study code-switching? And how?

- Most of the world speaks more than one language!
 - It is important to build language technologies that are robust to diverse linguistic settings
- Draw on a variety of methods
 - Computational paralinguistics, discourse-functional analysis, acoustic-prosodic techniques, ...
- **♦ How** do speakers code-switch? → proficiency, entrainment, prosody
- **Why** do speakers code-switch? → empathy, discourse function/content

From Context to **Code-switching: Examining the** Interplay of Language **Proficiency and** Multilingualism in Speech

Debasmita Bhattacharya, Aanya Tolat, Julia Hirschberg.

Published at INTERSPEECH 2025

Motivation: language proficiency x code-switching

Language proficiency

- A speaker's competence and capability to use oral and/or written language accurately and appropriately in a variety of settings.
- ➤ Individual linguistic characteristics → years of experience
- ➤ Language exposure aspects → medium of schooling

Research Question

How is language proficiency, as encoded by demographic and linguistic factors, related to the quantity, language distribution, and syntactic complexity of code-switching in a conversational domain?

Background: quantifying code-switching

- CSW ratio: # switches / length
- Multilingual-index

$$M-Index \equiv \frac{1 - \sum p_j^2}{(k-1) \cdot \sum p_i^2}.$$

Integration-index

I-Index
$$\equiv \frac{1}{n-1} \sum_{1 \leq i = j-1 \leq n-1} S(l_i, l_j),$$

Background: strategies of code-switching

Strategy		Example Sentence
Monolingual EN		Do you have any friend who studies linguistics?
Monomiguai	SP	¿Tienes algún amigo que estudie lingüística?
Insertional $SP \xrightarrow{ins} EN$ Do you have any <i>amigo</i> who studie		Do you have any amigo who studies lingüística?
mscruonar	$EN \xrightarrow{ins} SP$	¿Tienes algún friend que estudie linguistics?
Altarnational		Do you have any friend que estudie lingüística?
Atternational	$SP \xrightarrow{alt} EN$	Tienes algún amigo that studies linguistics?
Neither		pero she is the case manager for those patients

Data: Bangor Miami corpus

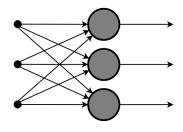
Conversational data

- > CSW quantity and frequency: CSW ratio, M-index, I-index
- > CSW language distribution: relative token counts
- CSW syntactic complexity: CSW strategy

Questionnaire data

- Linguistic: age, years of experience, self-reported ability
- Demographic: parents' primary language, medium of schooling

Method


Statistical analysis

- Chi squared tests
- ANOVA tests
- Pearson correlation
- Logistic regression

Predictive modeling

- Logistic regression and SVM
 - 3-fold CV
 - 80-20 train-test split

Results: language proficiency is significantly related to CSW quantity

Table 1: F-statistics from one-way ANOVA tests for quantity of CSW. All values are statistically significant with p < 0.001.

Factor	CSW ratio	M-index	I-index
Mother's language	304.17	35.70	281.96
Father's language	205.05	20.37	191.51
Primary school language	162.05	45.37	156.38
Secondary school language	201.17	65.24	194.54

Results: language proficiency is significantly related to predominant language in CSW

Factor	Odds Ratio
Primary school language	4.97
Secondary school language	7.32

Results: language proficiency is significantly related to predominant language in CSW

Table 2: Summary of logistic regression for Spanish-dominant (coded 1) versus English-dominant (coded 0) CSW.

Factor	coef	std err	t
Intercept	1.1875	0.993	1.196
Years of experience (es:en)	-1.5283	0.944	-1.619
Reported ability (es:en)	0.7417	0.248	2.993
Age	0.0032	0.004	0.834

Results: language proficiency is not directly related to CSW strategy

Table 3: Summary of logistic regression for alternational (coded 1) versus insertional (coded 0) CSW.

Factor	coef	std err	t
Intercept	2.7343	1.020	2.681
Years of experience (es:en)	-1.7861	0.970	-1.841
Reported ability (es:en)	-0.3678	0.255	-1.444
Age	0.0037	0.004	0.919

Results: language proficiency can predict CSW behaviour

Table 4: Evaluating model performance on predicting CSW behavior from language proficiency factors.

	Mean Accuracy (SD)		
Prediction task	Logistic regression	SVM	
High CSW ratio	0.85 (0.04)	0.88 (0.00)	
High M-index	0.71 (0.03)	0.73 (0.02)	
High I-index	0.90 (0.02)	0.90(0.02)	
Dominant CSW language	0.75 (0.12)	0.69 (0.02)	
Dominant CSW strategy	0.63 (0.06)	0.62 (0.01)	

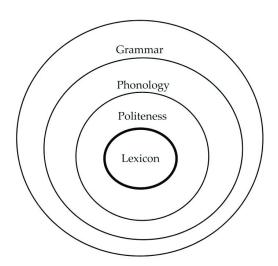
How is language proficiency, as encoded by demographic and linguistic factors, related to the quantity, language distribution, and syntactic complexity of code-switching in a conversational domain?

1. Parents' primary language → code-switching quantity and frequency

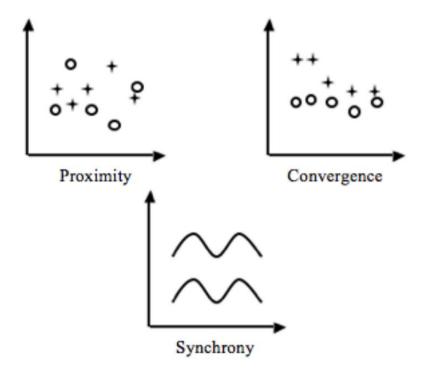
- Parents' primary language → code-switching quantity and frequency
- 2. Medium of instruction + self-reported ability → dominant code-switching language

- Parents' primary language → code-switching quantity and frequency
- 2. Medium of instruction + self-reported ability → dominant code-switching language
- **3.** Language proficiency →? code-switching strategy

- Language proficiency has notable relationships with several aspects of code-switching.
 - These relationships can even be learned and applied by simple predictive models of code-switching behaviour.


Measuring Entrainment in Spontaneous Code-switched Speech

Debasmita Bhattacharya, Siying Ding, Alayna Nguyen, Julia Hirschberg.


Published at NAACL 2024

Background: what is entrainment?

- Speakers become more like their interlocutors across various dimensions
 - (= alignment = accommodation = coordination)

Background: types of entrainment

Motivation: entrainment in new multilingual domain

- Prior work: entrainment occurs in monolingual writing and speech
 - Nenkova et al., 2008.
 - Levitan and Hirschberg, 2011.

- Prior work: entrainment occurs in code-switched human-machine communication
 - Ahn et al., 2020.
 - Parekh et al., 2020.

What about entrainment in multilingual human speech?

Research Questions

1. Do patterns of entrainment in monolingual settings generalize to code-switched settings?

2. Do patterns of entrainment on code-switching in text — some of which is produced by virtual dialogue agents — generalize to spontaneous code-switching in speech?

Data: augmenting the Bangor Miami corpus

- Bangor Talk: Miami corpus
 - Code-switching strategies: I, A, O
 - Background noise

- Features
 - Lexical
 - Acoustic-prosodic
 - Code-switching

Method: statistical analyses

- Lexical features
 - Count-based and probabilistic measures

$$entr(S_A, S_B) = -\sum_{w \in W} \left| \frac{count_{S_A}(w)}{ALL_{S_A}} - \frac{count_{S_B}(w)}{ALL_{S_B}} \right|$$

- Acoustic-prosodic // Code-switching features
 - Turn- and conversation-level
 - Proximity, convergence, synchrony

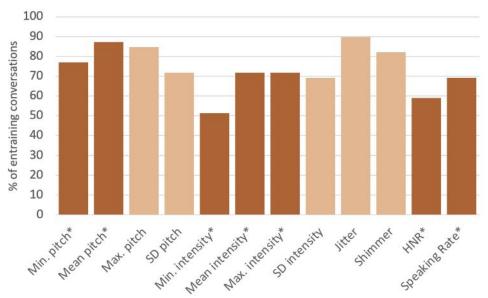
Research Questions

1. Do patterns of entrainment in monolingual settings generalize to code-switched settings?

2. Do patterns of entrainment on code-switching in text — some of which is produced by virtual dialogue agents — generalize to spontaneous code-switching in speech?

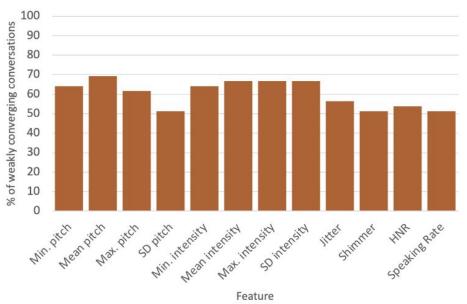
Results: interlocutors entrain on lexical features of code-switched conversations

- > / Overall language use
 - Including OOVs: 97% of conversations
 - Excluding OOVs: 74% of conversations

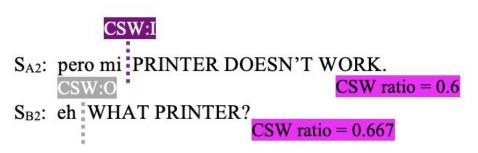

- Word sets
 - Top-100 words in corpus: 100% of conversations
 - Affirmative cue words: 100% of conversations
 - Top-25 words in corpus: 97% of conversations
 - Filler words: 97% conversations

Results: interlocutors entrain on lexical features of code-switched conversations

top-25 corpus	CSW:A
S _{A1} : pero no	la puedes hacer BECAUSE YOU
CAN'T	START CHECKING IT. CSW ratio = 0.54:
top-25 corpus	
	que HE IS SO TECHNOLOGICALLY
ADVAN	NCED. $CSW ratio = 0.625$
	CSW:A que HE IS SO TECHNOLOGICALLY ICED.


Speaker	Mean pitch (Hz)	Speaking rate (syllables/sec)
A	212	5.71
В	179	4.27

Results: interlocutors entrain on most acoustic-prosodic features of code-switched conversations



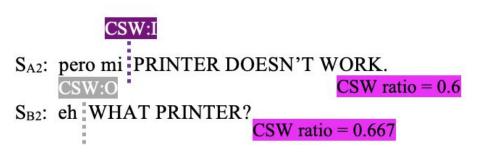
Results: interlocutors entrain on most acoustic-prosodic features of code-switched conversations

Results: interlocutors entrain on most acoustic-prosodic features of code-switched conversations

Speaker	Mean pitch (Hz)	Speaking rate (syllables/sec)
A	159	4.15
В	164	4.31

Research Questions

1. Do patterns of entrainment in monolingual settings generalize to code-switched settings?


2. Do patterns of entrainment on code-switching in text — some of which is produced by virtual dialogue agents — generalize to spontaneous code-switching in speech?

Results: interlocutors entrain on most code-switching features of code-switched conversations

- Presence of code-switching
 - Turn-level proximity: 74% of conversations
 - Conversation-level proximity: 82% of conversations
 - Turn-level synchrony: 54% of conversations

- Quantity of code-switching
 - Turn-level proximity: 85% of conversations
 - Conversation-level proximity: 87% of conversations

Results: interlocutors entrain on most code-switching features of code-switched conversations

Speaker	Mean pitch (Hz)	Speaking rate (syllables/sec)
A	159	4.15
В	164	4.31

Results: interlocutors entrain on most code-switching features of code-switched conversations

- Strategy of code-switching
 - Turn-level synchrony: 56% of conversations insertional
 - Conversation-level proximity: 74% of conversations alternational

Results: interlocutors entrain on most code-switching features of code-switched conversations

top-25 _{corpus}	CSW:A
SA1: pero no	la puedes hacer BECAUSE YOU
	START CHECKING IT. CSW ratio = 0.545
top-25 corpus	CSW:A
S _{B1} : pero es	que HE IS SO TECHNOLOGICALLY
ADVAN	NCED. $CSW ratio = 0.625$

Speaker	Mean pitch (Hz)	Speaking rate (syllables/sec)
A	212	5.71
В	179	4.27

1. Do patterns of entrainment in monolingual settings generalize to code-switched settings?

b.

1. Do patterns of entrainment in monolingual settings generalize to code-switched settings?

b. **•**

2. Do patterns of entrainment on code-switching in text — some of which is produced by virtual dialogue agents — generalize to spontaneous code-switching in speech? —

 Do patterns of entrainment in monolingual settings generalize to code-switched settings?

Paper

2. Do patterns of entrainment on code-switching in text — some of which is produced by virtual dialogue agents — generalize to spontaneous code-switching in speech?

The Sound of **Code-Switching: Prosodic** Signatures of Spanish-English Speech

Debasmita Bhattacharya*, Michela Marchini*Julia Hirschberg.

Under review at Speech Prosody 2026

Motivation: prosodic production x code-switching

- Prior work on code-switching has effectively captured its morpho-syntactic, sociolinguistic, etc. characteristics
 - But this has primarily been tied to writing!
- Prosody captures a uniquely spoken aspect of speech production
 - > What can we learn about spoken code-switching that we can't discover from studying its transcripts alone?

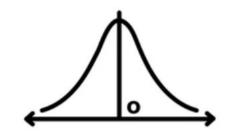
Research Questions

- Is there utterance-level variation across a suite of language-independent pitch, energy, and duration features between code-switched and monolingual spontaneous speech?
- How is this variation influenced by (a) speaker proficiency and
 (b) linguistic characteristics of multilingual speech?

Research Questions

- Is there utterance-level variation across a suite of language-independent pitch, energy, and duration features between code-switched and monolingual spontaneous speech?
- 2. How is this variation influenced by (a) speaker proficiency and(b) linguistic characteristics of multilingual speech?

Data: Bangor Miami corpus (again)


- Conversational data
 - > 103 prosodic features spanning pitch, energy, duration
 - Initial and final voiced and unvoiced segments
 - 6 functionals: mean, SD, max., min., skew, kurtosis
 - > CSW quantity and frequency: M-index, I-index
 - CSW syntactic complexity: CSW strategy
- Questionnaire data

Statistical analysis

- ➤ Independent *t*-tests
- > Cohen's d effect sizes
- \succ z-tests of proportions

Modeling

- Unsupervised analysis
 - *K*-means clustering
- Supervised analysis
 - Binary LID: Whisper-base

The Sound of Code-Switching: Prosodic Signatures of Spanish-English Speech

Research Questions

- Is there utterance-level variation across a suite of language-independent pitch, energy, and duration features between code-switched and monolingual spontaneous speech?
- 2. How is this variation influenced by (a) speaker proficiency and(b) linguistic characteristics of multilingual speech?

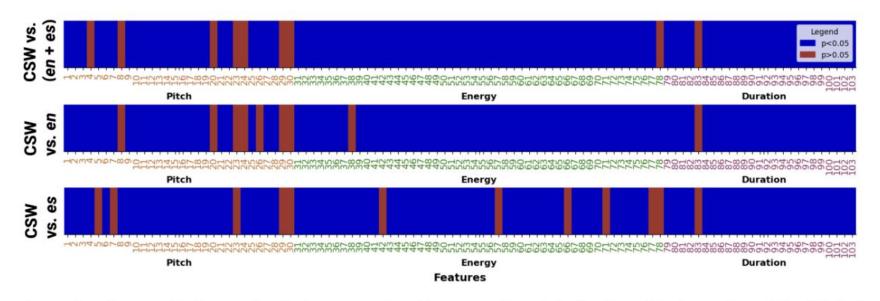


Figure 1: p-values for prosodic feature distribution comparisons between code-switched and combined monolingual English & Spanish (top), monolingual English (middle), and monolingual Spanish (bottom) utterances. Blue indicates statistical significance; red indicates insignificance. Associated Cohen's d values generally fall within 0.2 < d < 0.8 (i.e. small to medium effects) for significant features.

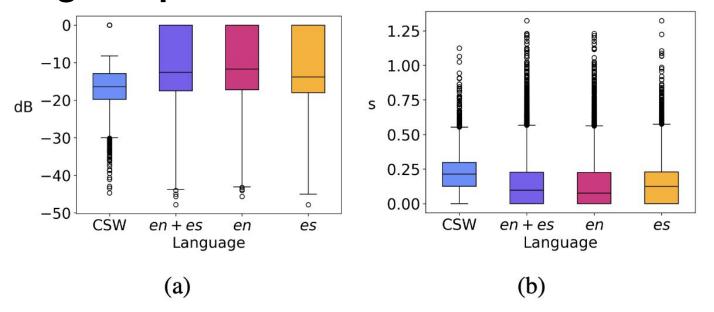


Figure 2: Visualizing trends in (a) mean energy and (b) mean duration of intial voiced segments across utterance types.

Table 1: k-means clustering performance across comparison settings. The first comparison (en vs. es) serves as a baseline.

Cluster comparison	Accuracy
Monolingual en vs. Monolingual es	0.636
All monolingual vs. code-switched	0.843
Monolingual en vs. code-switched	0.837
Monolingual es vs. code-switched	0.868

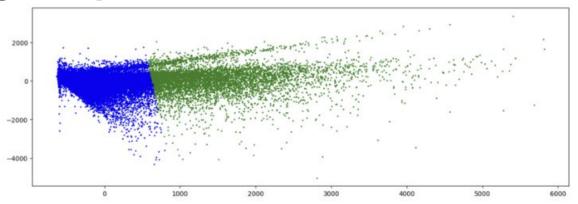


Figure 3: Clustering all monolingual (blue) vs. code-switched (green) utterances. Axes represent the relevance of selected prosodic feature groups post-PCA; the highest loadings for PC1 (x-axis) and PC2 (y-axis) correspond to greater mean, max., and SD in energy and pitch features. Visualizations for clustering English vs. CSW and Spanish vs. CSW are almost identical.

The Sound of Code-Switching: Prosodic Signatures of Spanish-English Speech

Research Questions

- Is there utterance-level variation across a suite of language-independent pitch, energy, and duration features between code-switched and monolingual spontaneous speech?
- How is this variation influenced by (a) speaker proficiency and
 (b) linguistic characteristics of multilingual speech?

Is there utterance-level variation across a suite of language-independent pitch, energy, and duration features between code-switched and monolingual spontaneous speech?

2. How is this variation **influenced** by (a) speaker **proficiency** and (b) **linguistic characteristics** of multilingual speech?

Switching Tongues, Sharing Hearts: Identifying the Relationship **Between Empathy** and **Code-Switching in** Speech

Debasmita Bhattacharya*, Eleanor Lin*, Run Chen, Julia Hirschberg.

Published at INTERSPEECH 2024

Background: why do speakers code-switch?

account for speaker competence

relate to audience identity

express (in)formality

express solidarity

express group identity

adapt to linguistic context

perform affective function

reflect shared experiences

adapt to conversation topic

Background: why do speakers code-switch?

account for speaker competence

relate to audience identity

express (in)formality

express solidarity

express group identity

adapt to linguistic context

perform affective function

reflect shared experiences

adapt to conversation topic

Motivation: empathy x code-switching

- **♦ Empathy** → the ability to...
 - understand other people's feelings as if one were having them oneself, and
 - respond accordingly

Research Questions

- 1. Is there a relationship between code-switching prevalence in speech and the lexical and/or acoustic-prosodic correlates of empathy?
- 2. Does the answer to 1. generalize across language pairs involving different language families?

Code-switched corpora

- Spanish-English: conversational
 - Bangor Miami
- Mandarin-English: conversational and interview
 - > SEAME
- Hindi-English: soap opera
 - MaSaC

Approximate ground truth empathy labels

- RoBERTa base model (text only) & multimodal model (text +speech)
- Fine tune on English empathetic utterances
- > Translate code-switched utterances to monolingual English

Compute code-switching metrics

- ➤ M-index & I-index
- Code-switched vs. monolingual

Statistical analysis

- Chi squared test
- Odds ratio
- > Pearson correlation

Approximate ground truth empathy labels

- RoBERTa base model (text only) & multimodal model (text +speech)
- Fine tune on English empathetic utterances
- Translate code-switched utterances to monolingual English

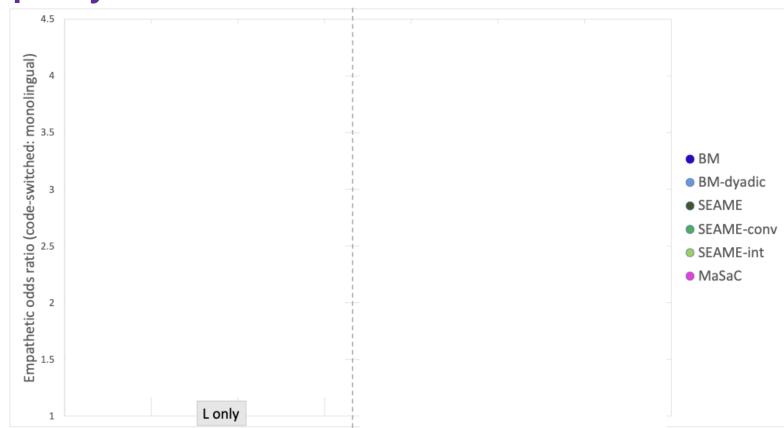
Compute code-switching metrics

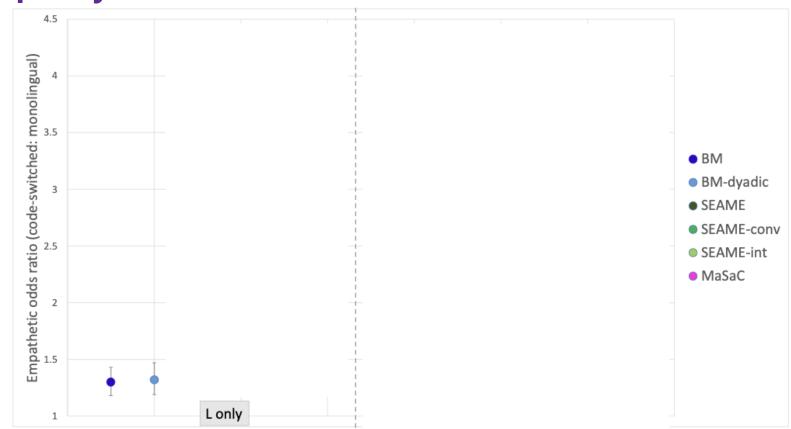
- ➤ M-index & I-index
- Code-switched vs. monolingual

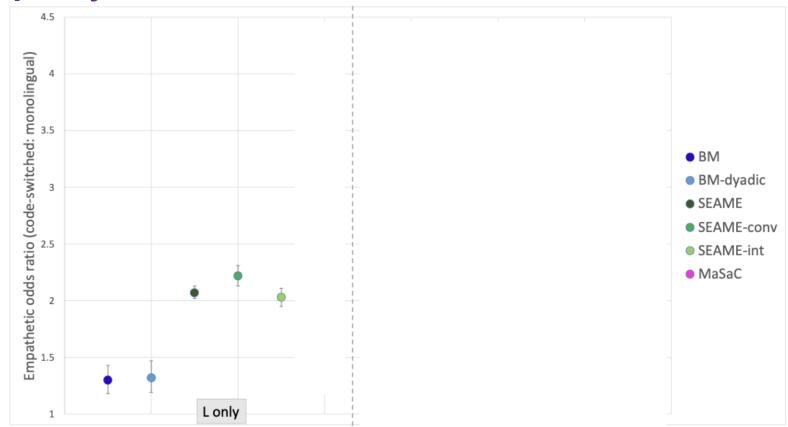
♦ Statistical analysis

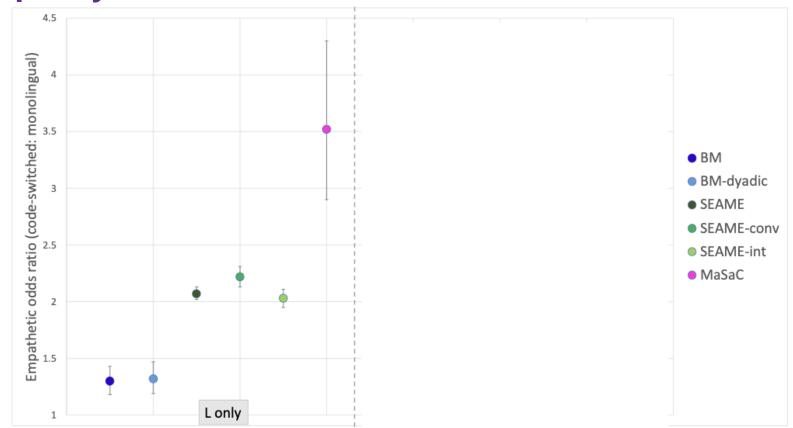
- Chi squared test
- > Odds ratio
- > Pearson correlation

Approximate ground truth empathy labels

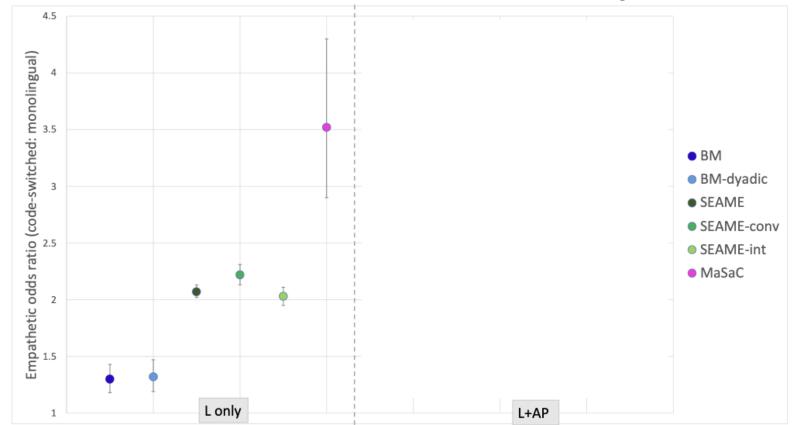

- > RoBERTa base model (text only) & multimodal model (text +speech)
- Fine tune on English empathetic utterances
- > Translate code-switched utterances to monolingual English

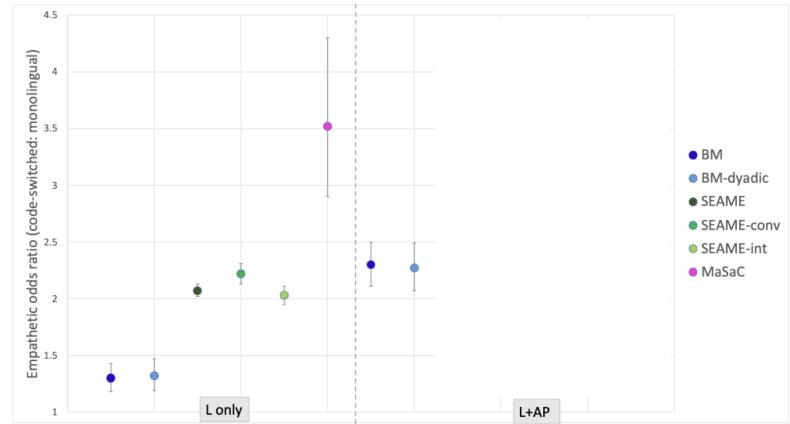

Compute code-switching metrics

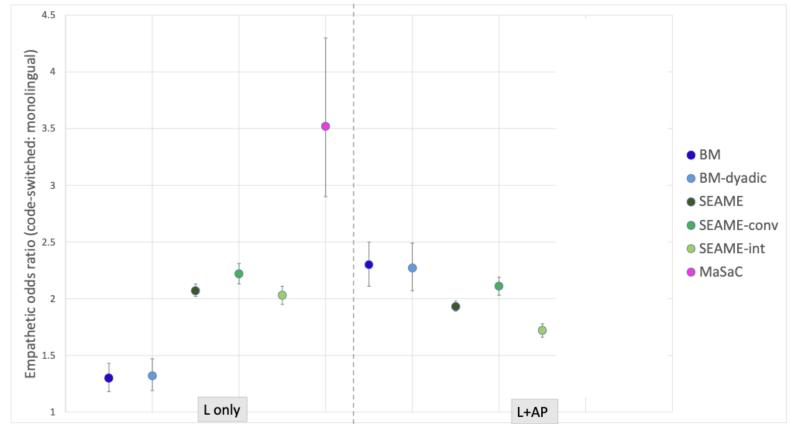

- M-index & I-index
- Code-switched vs. monolingual

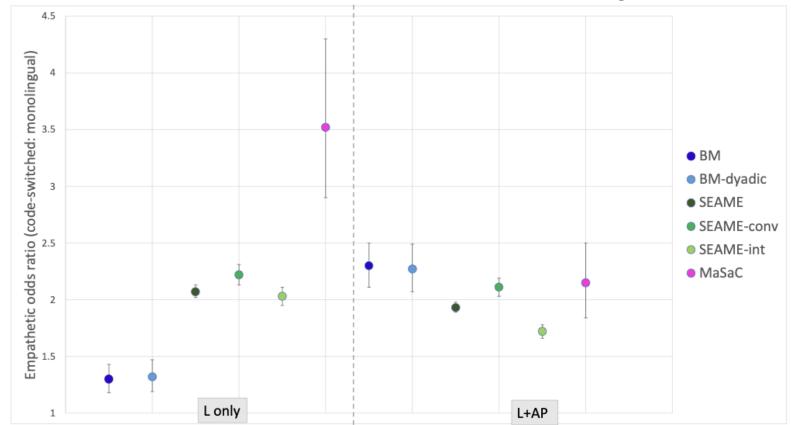

♦ Statistical analysis

- Chi squared test
- Odds ratio
- Pearson correlation


	Odds CSW:ML	CSW∝empath y
Bangor Miami	~1.3	weak -
SEAME	~2.1	weak +
MaSaC	~3.5	weak +


Pero ahora mismo tú me estabas diciendo que te gustaba y te parecía nice


= But right now <u>you</u> were telling me that <u>you like</u> it and <u>you think</u> it's nice


Results: spoken CSW aligns (somewhat) with acoustic-prosodic correlates of empathy

Results: spoken CSW aligns (somewhat) with acoustic-prosodic correlates of empathy

	Odds CSW:ML	CSW∝empath y	Odds CSW:ML	CSW∝empathy
Bangor Miami	~1.3	weak -	~2.3	weak +
SEAME	~2.1	weak+	~1.9	weak +
MaSaC	~3.5	weak+	~2.1	none

Of course mujhe pata hai, lekin ek baar tum kaho na you know 24th February ke baare mein, jab tum kehti ho na, to aur accha lagta hai

= Of course I know, but once you say that you <u>know</u> about the 24th of February, when you say it, it <u>feels</u> better

1. Is there a relationship between code-switching prevalence in speech and the lexical and/or acoustic-prosodic correlates of empathy?

- 1. Is there a relationship between code-switching prevalence in speech and the lexical and/or acoustic-prosodic correlates of empathy?
- 2. Does the answer to 1. generalize across language pairs involving different language families?

Current metrics of empathy in speech generally align with the incidence of code-switching.

Current metrics of empathy in speech generally align with the incidence of code-switching.

The relationship between acoustic-prosodic empathetic features and code-switching may be more subtle than expected.

The relationship between acoustic-prosodic empathetic features and code-switching may be more subtle than expected.

Next steps

- > Further exploration of acoustic-prosodic features
- Multilingual (≠ English) empathy models
- Determining causal relationship between empathy and code-switching

Discourse-Driven Code-Switching: Analyzing the Role of Content and Communicative **Function in** Spanish-English **Bilingual Speech**

Debasmita Bhattacharya, Juan Junco, Divya Tadimeti, Julia Hirschberg.

Published at EMNLP 2025

Background: what is discourse?

- How written or spoken language is used to produce meaning, through interactions of context and form
- Discourse content → named entities
- Discourse function → dialogue acts
 - We enjoyed going to the Heat game!

DA: Statement of opinion NE type: Organization

Motivation: discourse x code-switching?

Entonces, ella trabaja this Friday?

Utt. type: ML DA: Statement of opinion NE type: Organization NE Lang.: English

Creo que it's about 350 square feet.

Utt. type: CSW - alternational DA: Statement of non-opinion

Mi mamá dijo que she didn't know about it."

Utt. type: CSW - alternational

DA: Quotation

A ver, let's see...

Utt. type: CSW - insertional

DA: Self talk

Research Questions

- **1.** How are patterns of **CSW** influenced by the **content** of the utterance?
- 2. How is **CSW** influenced by the **function** of the utterance?
 - a. Does this **interact** with patterns stemming from the content of code-switched speech?

Research Questions

- **1.** How are patterns of **CSW** influenced by the **content** of the utterance?
- 2. How is **CSW** influenced by the **function** of the utterance?
 - a. Does this **interact** with patterns stemming from the content of code-switched speech?

Data: Augmenting the Bangor Miami corpus (again)

- Spanish-English
 - Mix of monolingual and code-switched speech
- Spontaneous and informal

Annotations

- > NEs: "N", "O", "P", "B", "T", "R", "U"
- > DAs: Switchboard Dialogue Act Set
- CSW metrics: CSW ratio, M-index, I-index, CSW strategies

Method

♦ Statistical methods → NEs and DAs

- Chi-squared tests
- Odds ratio calculations
- One-way ANOVA test
- > z-tests of proportions

♦ Unsupervised methods → DAs

➤ k-means clustering

♦ Supervised methods → NEs and DAs

- Dependency parsing (NEs only)
- Transition modeling:
 - Logistic regression
 - Hidden Markov Model

Method

♦ Statistical methods → NEs and DAs

- Chi-squared tests
- Odds ratio calculations
- One-way ANOVA test
- > z-tests of proportions

♦ Unsupervised methods → DAs

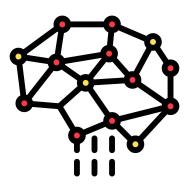
> k-means clustering

♦ Supervised methods → NEs and DAs

- Dependency parsing (NEs only)
- Transition modeling:
 - Logistic regression
 - Hidden Markov Model

Method

♦ Statistical methods → NEs and DAs


- Chi-squared tests
- Odds ratio calculations
- One-way ANOVA test
- > z-tests of proportions

♦ Unsupervised methods → DAs

> k-means clustering

Supervised methods → NEs and DAs

- Dependency parsing (NEs only)
- Transition modeling:
 - Logistic regression
 - Hidden Markov Model

Research Questions

- **1.** How are patterns of **CSW** influenced by the **content** of the utterance?
- 2. How is **CSW** influenced by the **function** of the utterance?
 - a. Does this **interact** with patterns stemming from the content of code-switched speech?

DAs appear similarly distributed acrossCSW and ML contexts

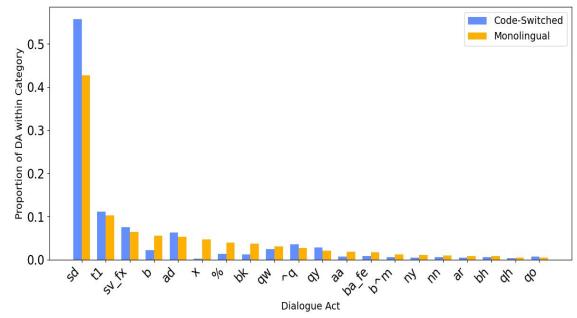


Fig. 4: Distribution of DA types across CSW and ML utterances.

Most commons DAs: statements of opinion (sv-fx; e.g. "oh no, *qué* estúpida.") and non-opinion (sd; e.g. "creo que it's about 350 square feet.") and self-talk (t1; e.g. "a ver, let's see...")

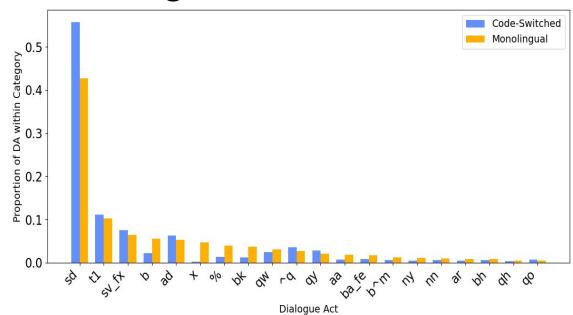


Fig. 4: Distribution of DA types across CSW and ML utterances.

- DAs conveying factual information, providing explanations, confirming understanding → CSW
- DAs advancing a conversation, supporting thematic exploration → ML

Tab. 1: χ 2 tests and odds ratios comparing DA distribution across CSW and ML utterances.

	DA type	χ2	<i>p</i> -val	OR
	sd	119.2	<0.01	1.59
	t1	1.13	_	1.08
	sv-fx	2.08	-	1.13
5	b	39.1	<0.01	0.41
d	ad	1.86	-	1.13
	x	28.3	<0.01	0.11
	%	38.7	<0.01	0.34
	bk	35.8	<0.01	0.33
	qw	4.48	<0.05	0.74
	^q	4.81	<0.05	1.30

- Clustering reinforces previousDA results
 - CSW in BM leans toward task-oriented, structured exchanges, with a focus on clarity and goal completion
 - ML speech is more varied, incorporating feedback and exploratory acts.

DA	CSW Cluster #		
	0	1	2
sd	0.52	0	0
^q	0.18	0	0
qy	0.03	0	0
qh	0	1	0
t1	0	0	1

DA	ML Cluster #		
	o	1	2
sd	0.40	О	О
^q	0.15	0	О
sv-fx	0.07	0	0
t1	0	0	1
b	0	1	О

Tab. 3: Cluster composition by proportion: CSW (left) and ML (right) utterances.

Overall: conversational functions have preferred modes of linguistic expression

DA	CSW Cluster #		
	o	1	2
sd	0.52	0	0
^q	0.18	0	0
qy	0.03	0	0
qh	0	1	0
t1	0	0	1

DA	ML Cluster #		
	o	1	2
sd	0.40	О	О
^q	0.15	0	0
sv-fx	0.07	0	0
t1	0	0	1
b	0	1	0

Tab. 3: Cluster composition by proportion: CSW (left) and ML (right) utterances.

Results: Dialogue acts vary within types of CSW

- One-way ANOVA test results on CSW richness (CSW ratio, M-index) align with our previous DA groupings
 - DAs that are more likely to be expressed in CSW speech require smaller quantities of CSW (e.g. ^q; "Mi mamá dijo que she didn't know.")
 - DAs that are more likely to be expressed in ML speech require greater quantities of CSW (e.g. ad; "Okay, ponlo ahí.")
 - It seems there is a compensatory multilingual mechanism at play.

Results: Dialogue acts vary within types of CSW

- Introspective and information-conveying DAs are more effectively expressed via shorter, simpler, insertional code-switches
 - > "Pues, what was I saying..."
 - "Para mí, es igual que cuando uno manda los checks al IRS."

- DAs expressed with distinct, connected clauses are more effectively expressed via longer, more complex, alternational CSW
 - "Cuándo vas a ver el apartamento and how many bedrooms does it have?"

Results: Dialogue acts vary within types of CSW

Overall: different discourse functions support CSW of varying quantity, syntactic structure, and complexity

Research Questions

- **1.** How are patterns of **CSW** influenced by the **content** of the utterance?
- 2. How is **CSW** influenced by the **function** of the utterance?
 - a. Does this **interact** with patterns stemming from the content of code-switched speech?

- Patterns of CSW are somewhat influenced by the discourse content of the utterance expressed via NEs
- 2. Discourse function encoded by DAs has a relatively greater influence on patterns of CSW
 - The relationships we discover are salient enough to be learned by transition models that predict CSW, which point to the two discourse aspects **interacting** in modeling scenarios

Big Picture: How & why do speakers code-switch?

❖ How?

- According to individual proficiency
- ➤ In dynamic interaction with an interlocutor
- > In distinctive prosodic styles

❖ Why?

- To convey empathy
- > To achieve specific conversational goals