Selected topics from 40 years of research on speech and speaker recognition

Sadaoki Furui Tokyo Institute of Technology Department of Computer Science furui@cs.titech.ac.jp

Generations of ASR technology

1950 1960 1970 1980 1990 2000 2010

1952 **1G** 1968 Heuristic approaches (analog filter bank + logic circuits)

> 1968 **2G** 1980 Pattern matching (LPC, FFT, DTW)

Prehistory

1980 **3G**1990 Statistical framework (HMM, n-gram, neural net)

1990 3.5G

Discriminative approaches, robust training, normalization, adaptation, spontaneous speech, rich transcription

> **4G** Extended knowledge processing

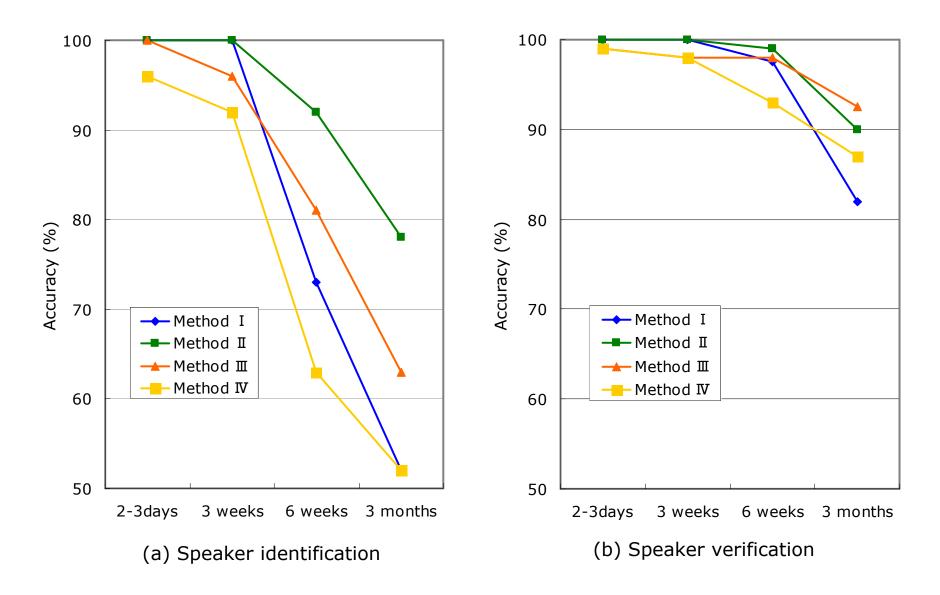
Our research NTT Labs (+Bell Labs), Tokyo Tech Collaboration with other labs

Japanese traditional cuisine "Kaiseki-ryori"

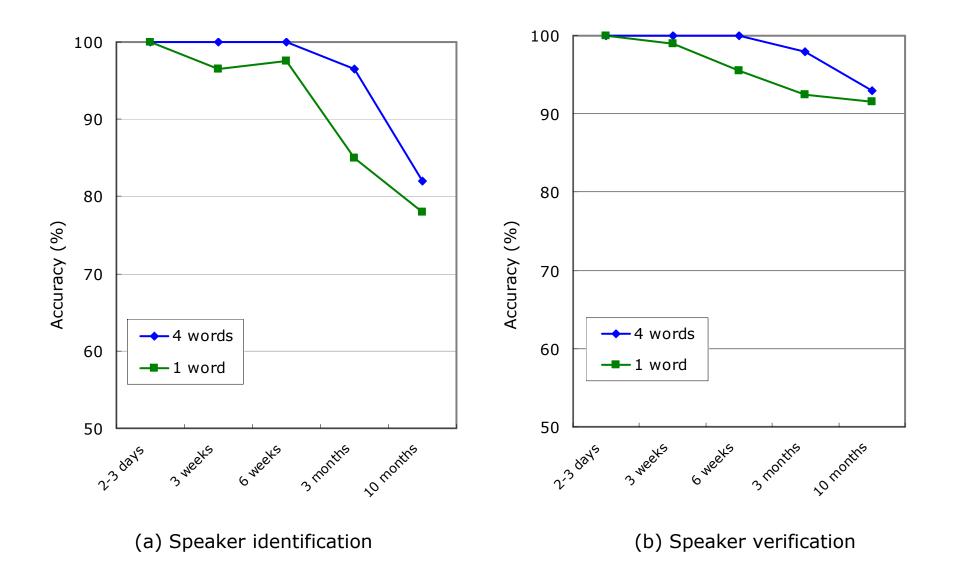
1970s

- Speaker recognition by statistical features
- Speaker recognition by cepstral features

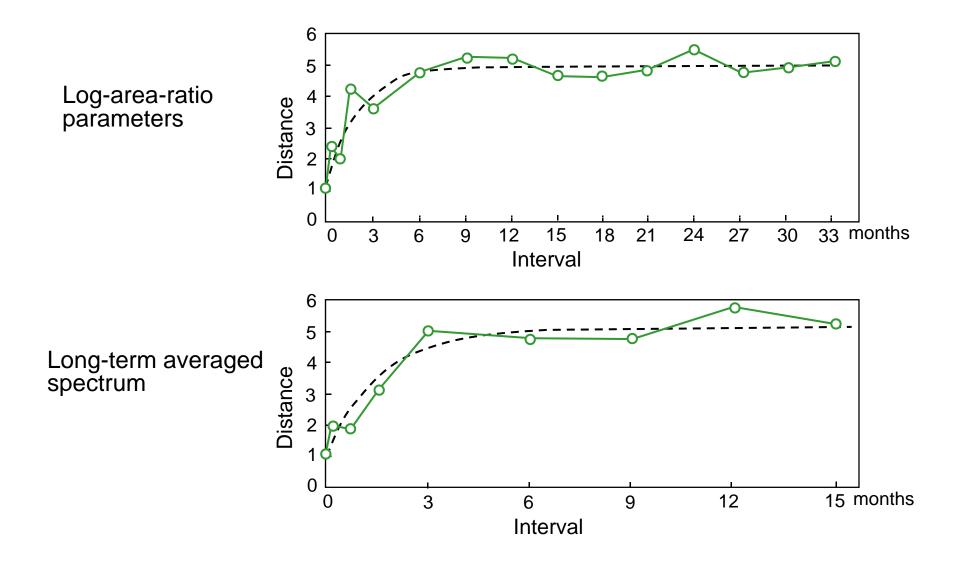
Speaker recognition by long-term averaged spectrum



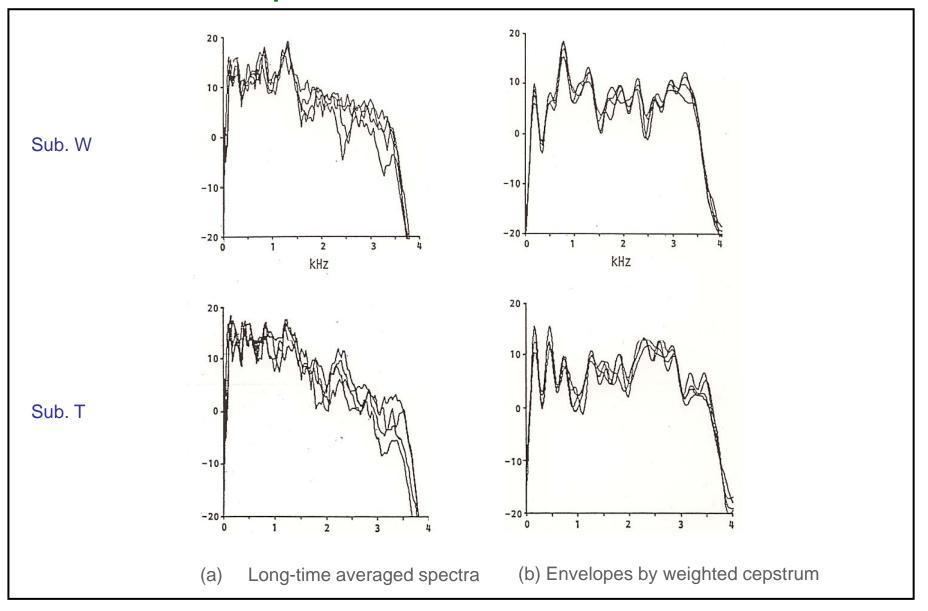
Speaker recognition by using LPC features



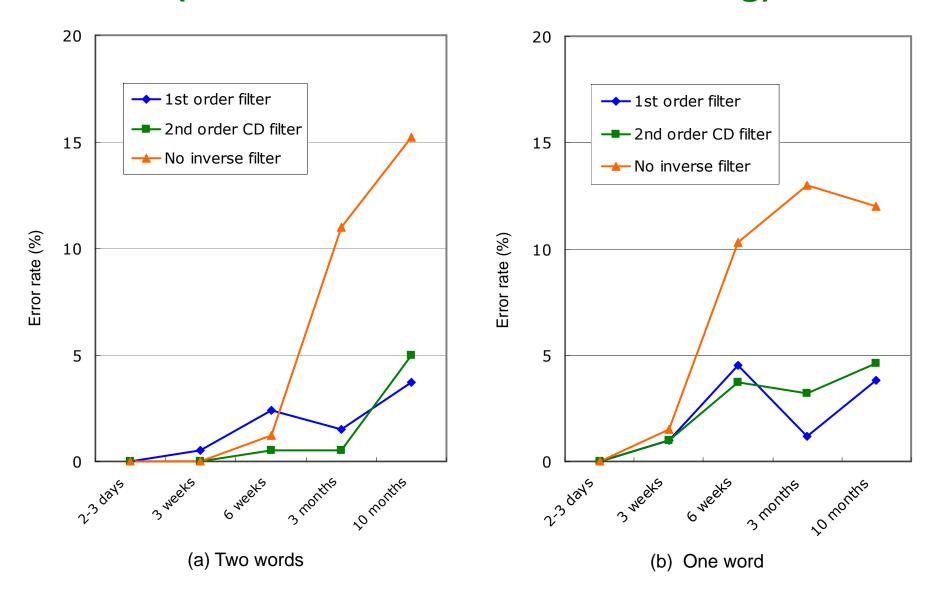
The amount of spectral variation as a function of time interval



Variation of the long-time averaged spectrum from four sessions over eight months, and corresponding spectral envelopes derived from cepstrum coefficients weighted by the square root of inverse variances

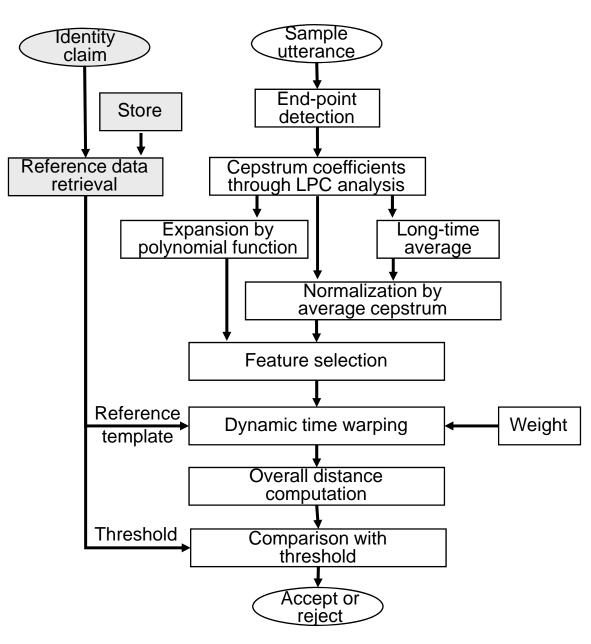


Speaker recognition by using LPC features (Effectiveness of inverse filtering)

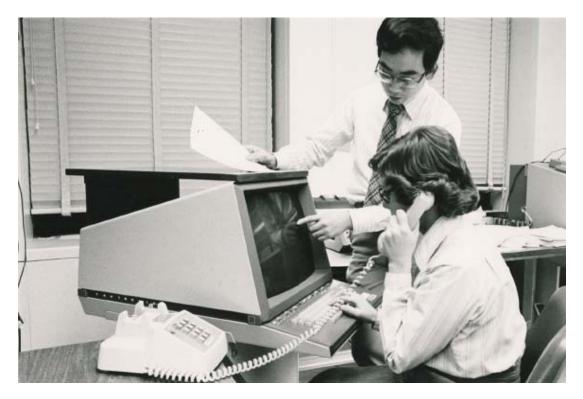


Research at Bell Laboratories, Murray Hill, from 1978 to 1979

Speaker verification using cepstrum features



On-line speaker verification experiments using 120 Bell Labs employees

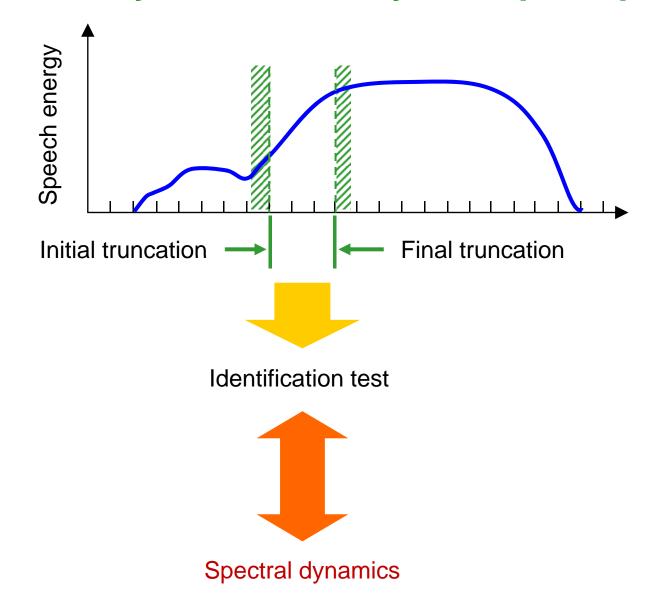


User: "We were away a year ago." System: "Stand by for analysis." System: "Your identity has been verified. Thank you."

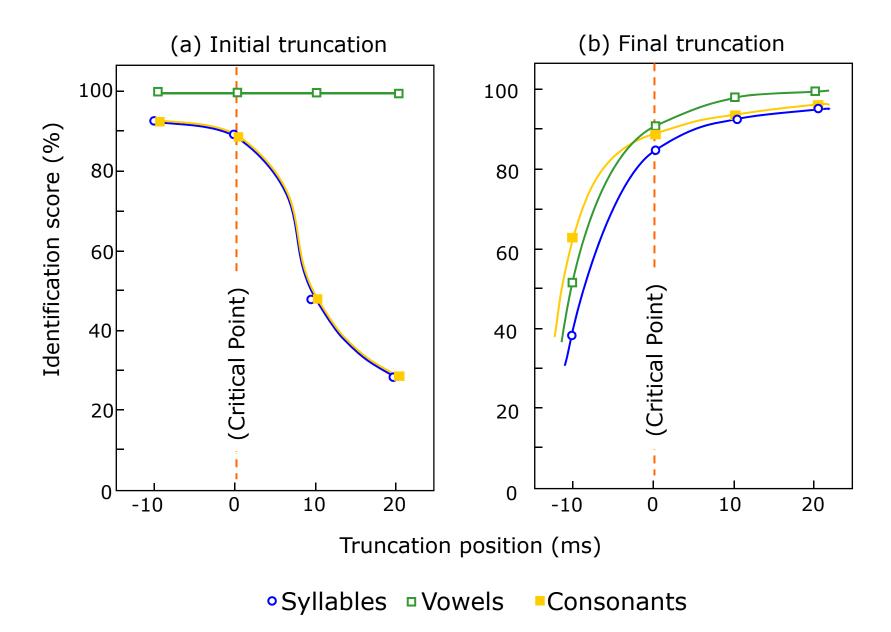
1980s

- Spectral dynamics in speech perception and recognition
- Speaker recognition by HMM/GMM

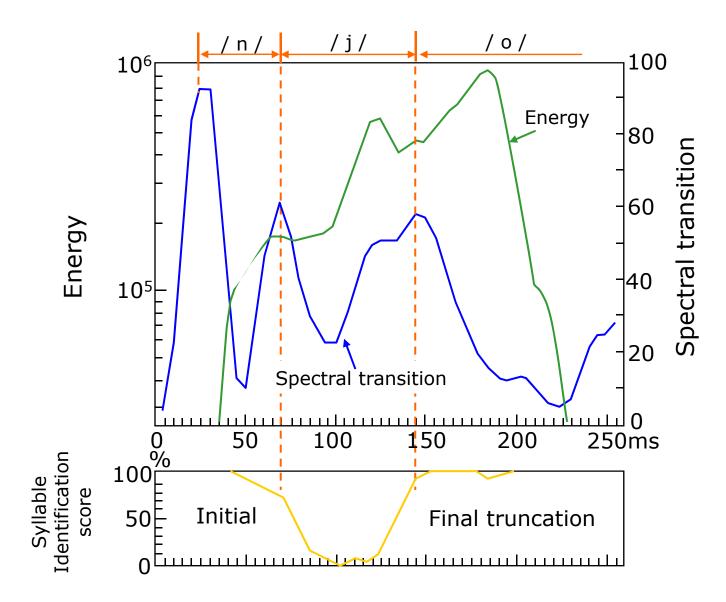
Analysis of relationships between spectral dynamics and syllable perception



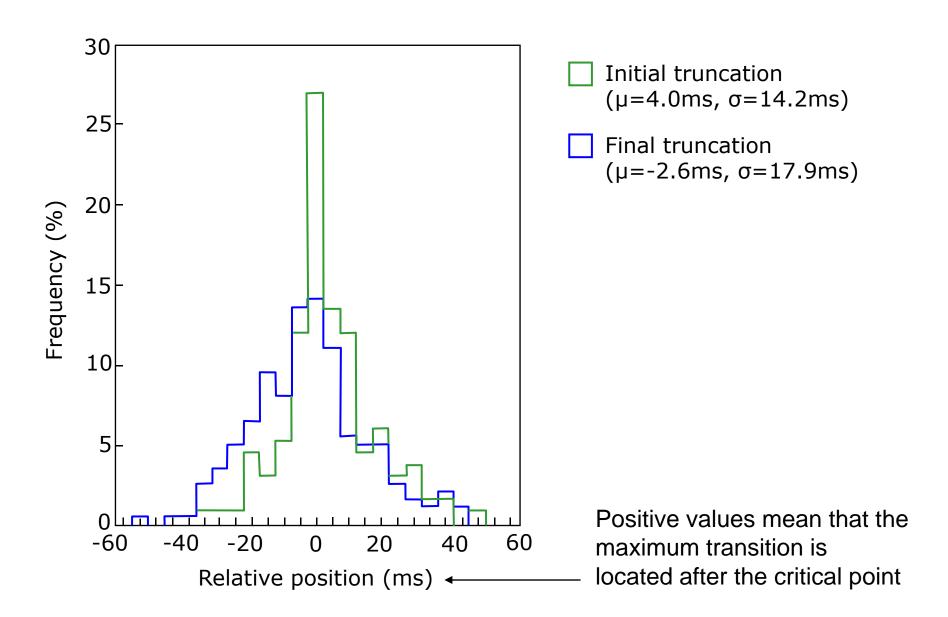
Relationship between truncated CV syllable identification scores and truncation position relative to the perceptual critical point



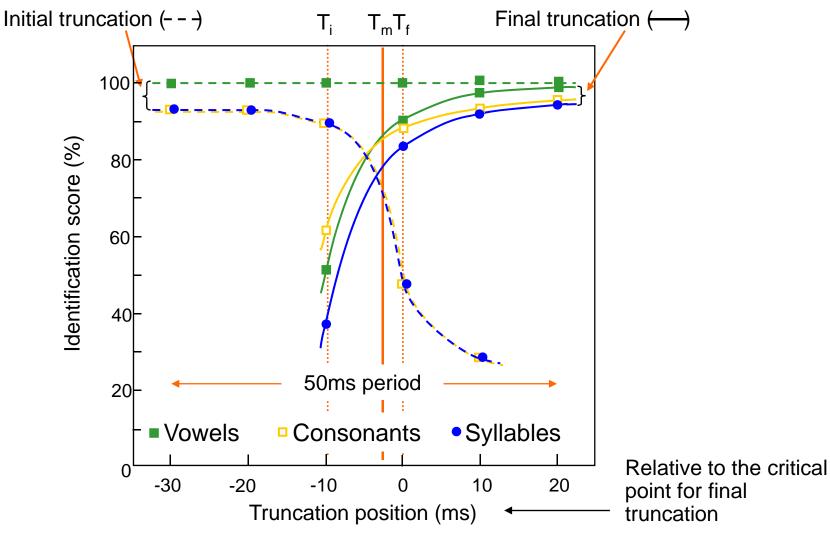
Relationship between spectral transition and syllable identification scores as a function of the truncation position for the syllable /njo/



Distribution of the difference between the perceptual critical point and the maximum spectral transition position for all 100 syllables



Relationship between truncation position and identification scores for the truncated CV syllables



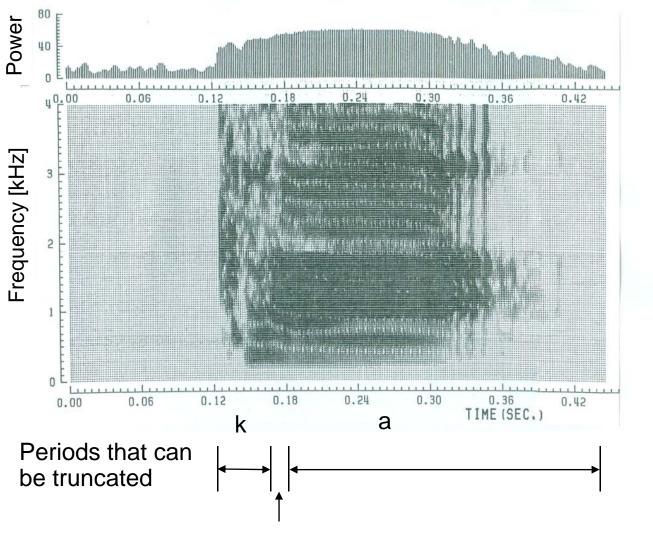
T_i, T_f : Perceptual critical point for initial & final truncation

T_m: Maximum spectral transition position

Experimental results

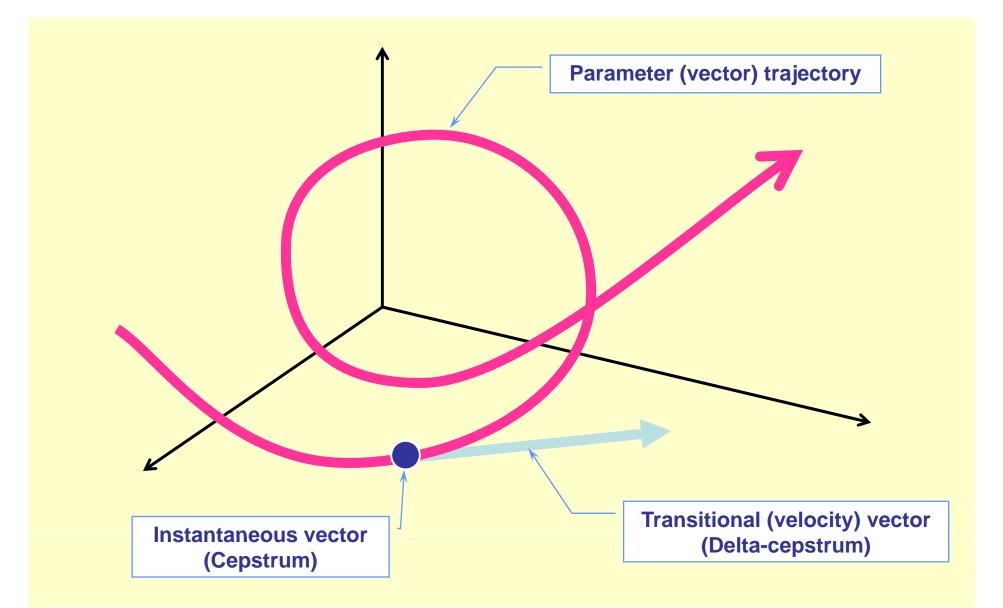
- "Perceptual critical points" (T_i, T_f) are related to maximum spectral transition positions (T_m).
- 10ms period including the T_m bears the most important information for consonant and syllable perception.
- Crucial information for both consonant and vowel identification is contained across the same transitional part of each syllable.
- The spectral transition is more crucial than unvoiced and buzz bar periods for consonant (syllable) perception.

Role of spectral transition for speech perception

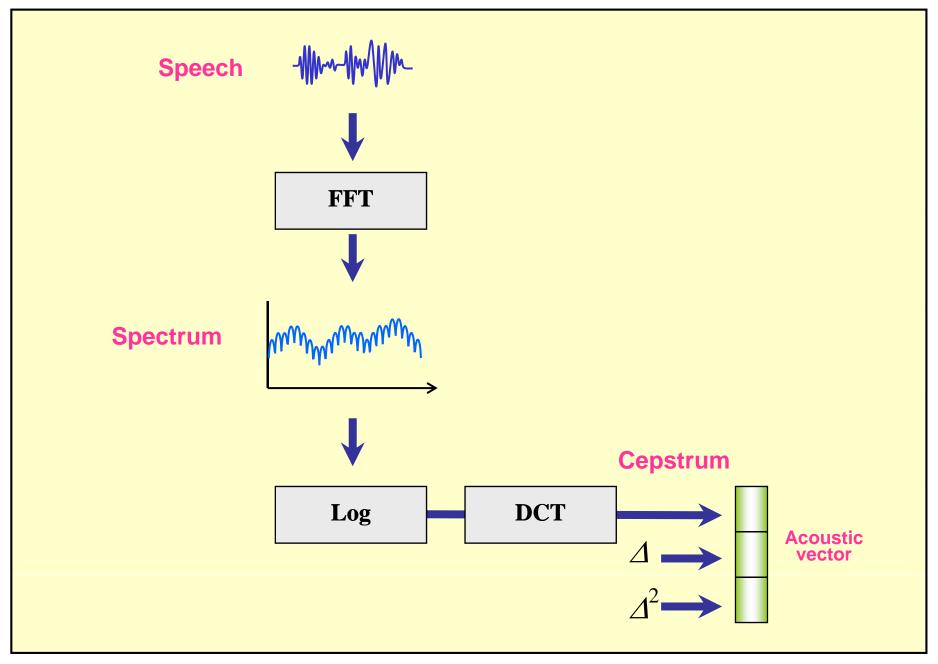


Maximum spectral change period: essential for syllable perception

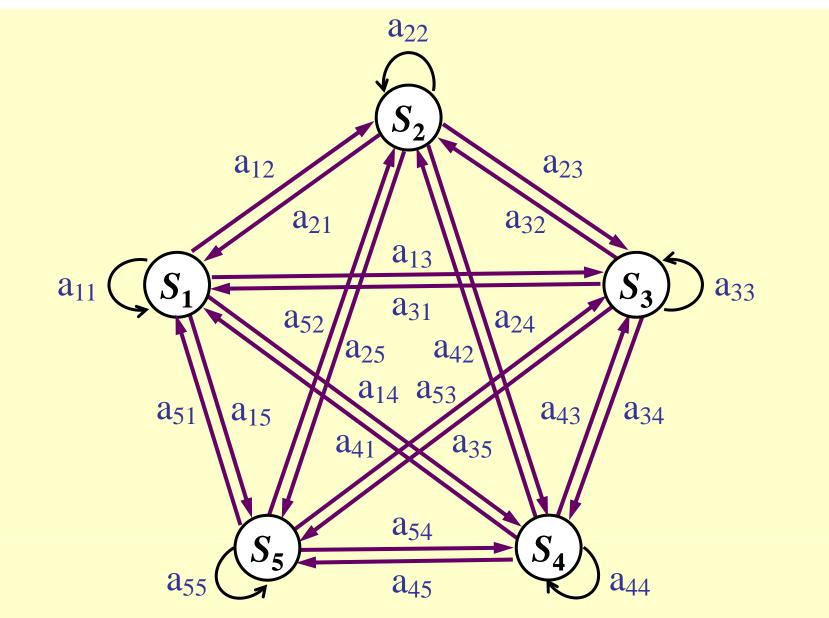
Cepstrum and delta-cepstrum coefficients



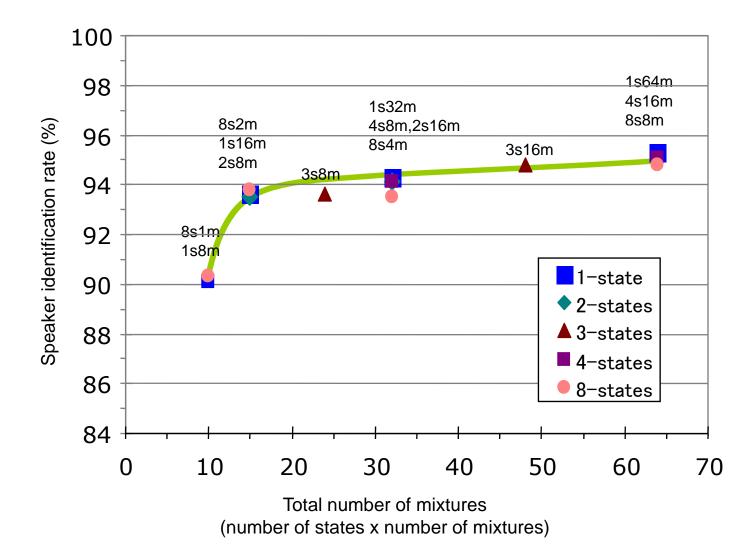
Instantaneous and dynamic cepstrum features



A five-state ergodic HMM for text-independent speaker recognition



Speaker identification rates as a function of the number of states and mixtures in ergodic HMMs



1990s

- Japanese LVCSR using a newspaper corpus and broadcast news
- Robust ASR
- Text-prompted speaker recognition

Japanese LVCSR using a newspaper corpus and broadcast news

Comparison of lexica and LM training corpora for different languages

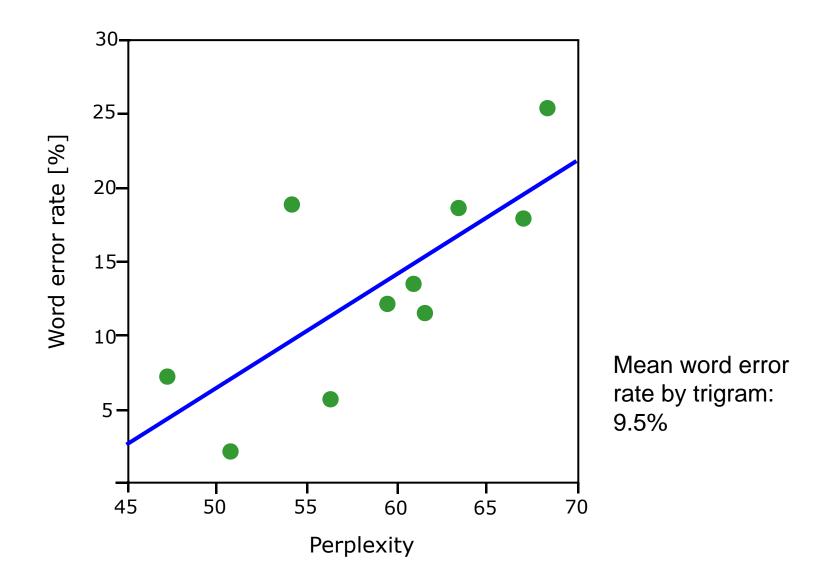
	Nikkei (Japanese)	WSJ (English)	Le Monde (<mark>French</mark>)	Frankfurter Rundschau (<mark>German</mark>)	Sole 24 (Italian)
Training test size [words]	180M	37.2M	37.7M	36M	25.7M
Distinct words	623k	165k	280k	650k	200k
5k coverage	88.0%	90.6%	85.2%	82.9%	88.3%
20k coverage	96.2%	97.5%	94.7%	90.0%	96.3%
40k coverage	98.2%	99.2%	97.6%	-	98.9%
65k coverage	99.0%	99.6%	98.3%	95.1%	99.0%
20k OOV rate	3.8%	2.5%	5.3%	10.0%	3.7%

LM units for Japanese: morphemes

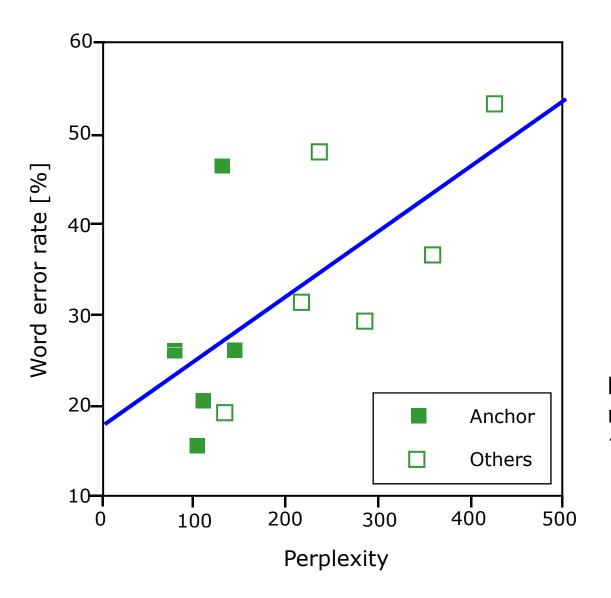
Entry items corresponding to the number of homophone classes with *k* graphemic forms in the class

Corpus	Rate in	Homophone class size (k)				
	Lexicon	1	2	3	>4	
Nikkei (30k)	20%	24.1k	2438	706	565	
BREF (10k)	35%	6686	1329	215	73	
BREF (40k)	45%	23.7k	5361	1264	1039	
WSJ (9k)	6%	8453	237	22	1	
WSJ (65k)	15%	60.4k	3689	890	291	
FR (64k)	10%	58.1k	2769	221	57	
So24 (10k)	1.7%	9872	85	3	0	

Relationship between perplexity (bigram) and word error rate for a read newspaper task



Relationship between perplexity (bigram) and word error rate for a broadcast-news task



Mean word error rate by trigram: 19.7% (Anchor)

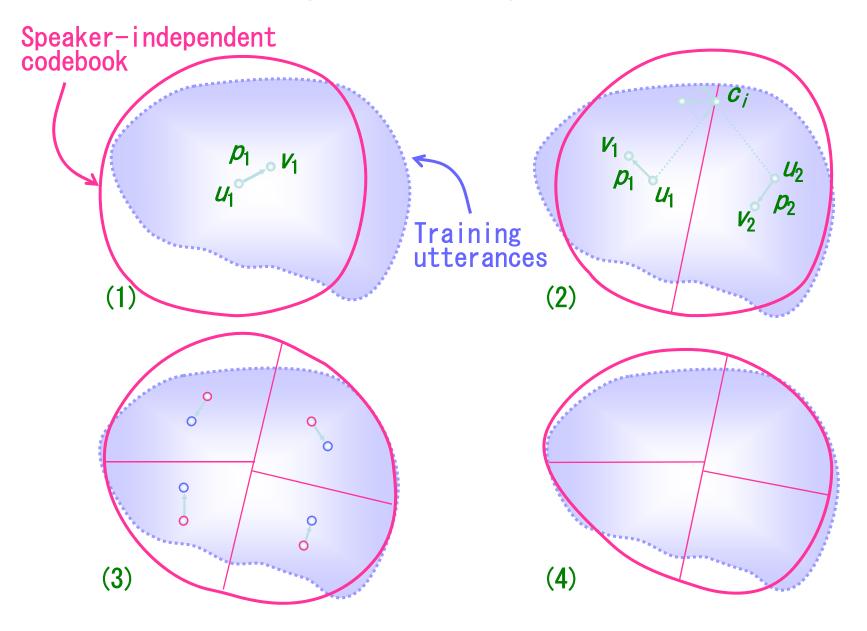
Robust ASR (Supervised/unsupervised acoustic model adaptation)

- Hierarchical spectral clustering-based unsupervised adaptation
- MAP+MCE (minimum classification error) training-based supervised adaptation
- N-best-based unsupervised adaptation

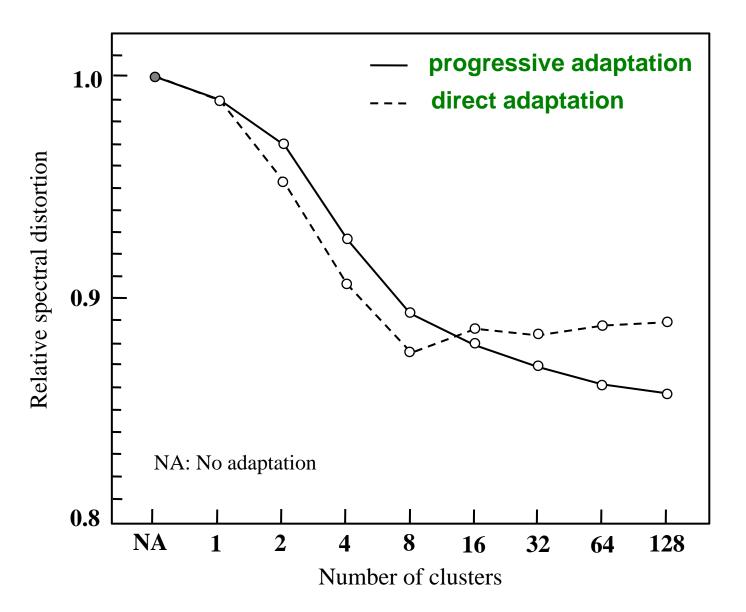
Robust ASR (Supervised/unsupervised acoustic model adaptation)

- Hierarchical spectral clustering-based unsupervised adaptation
- MAP+MCE (minimum classification error) training-based supervised adaptation
- N-best-based unsupervised adaptation

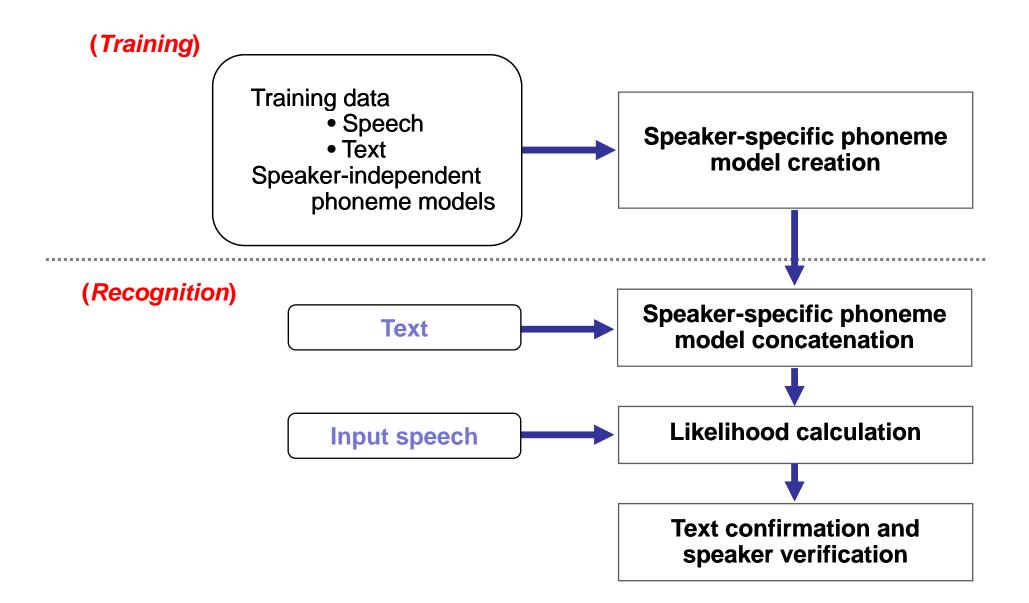
Hierarchical codebook adaptation algorithm maintaining continuity between adjacent clusters



Cepstral distortion between input speech and reference templates resulted from hierarchical codebook adaptation



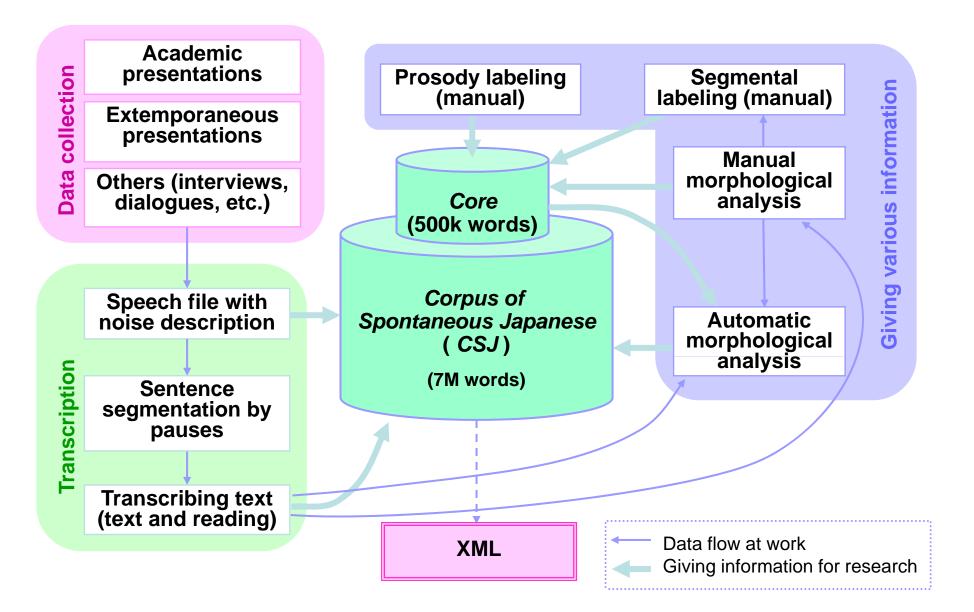
Text-prompted speaker recognition method



2000s (1)

- Spontaneous speech recognition project and CSJ corpus
- Spectral reduction in spontaneous speech
- Automatic speech summarization and evaluation

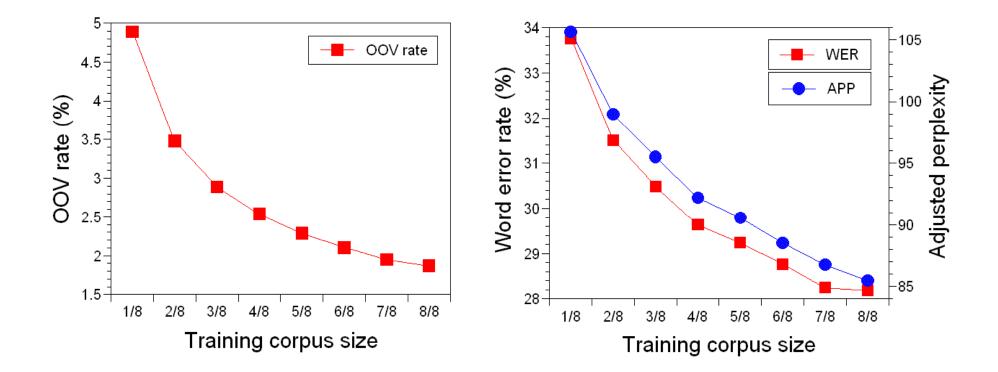
CSJ corpus construction



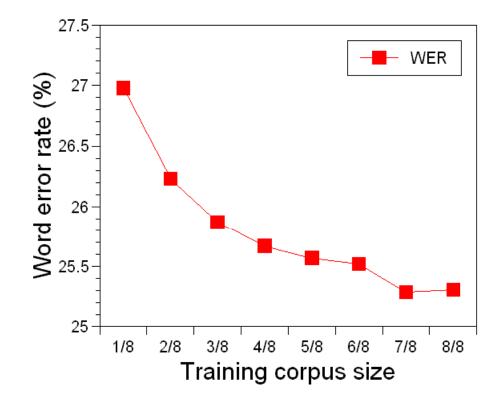
Contents of the CSJ

Type of Speech	# Speakers	# Files	Monologue/ Dialogue	Spontaneous/ Read	Hours
Academic presentations (AP)	838	1006	Monolog	Spont.	299.5
Extemporaneous presentations (EP)	580	1715	Monolog	Spont.	327.5
Interview on AP	* (10)	10	Dialog	Spont.	2.1
Interview on EP	* (16)	16	Dialog	Spont.	3.4
Task oriented dialogue	* (16)	16	Dialog	Spont.	3.1
Free dialogue	* (16)	16	Dialog	Spont.	3.6
Reading text	*(244)	491	Dialog	Read	14.1
Reading transcriptions	* (16)	16	Monolog	Read	5.5
*Counted as the speakers of AP or EP				Total hours	658.8

Out-of-vocabulary (OOV) rate, word error rate (WER) and adjusted test-set perplexity (APP) as a function of the size of language model training data (8/8 = 6.84M words)



Word error rate (WER) as a function of the size of acoustic model training data (8/8 = 510 hours)



Linear regression models of the word accuracy (%) with the six presentation attributes

Speaker-independent recognition

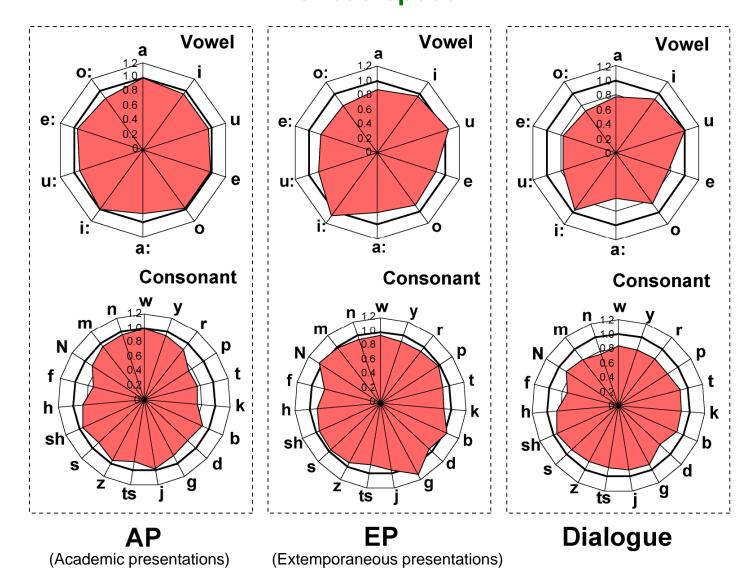
Acc=0.12AL-0.88SR-0.020PP-2.2OR+0.32FR-3.0RR+95

Speaker-adaptive recognition

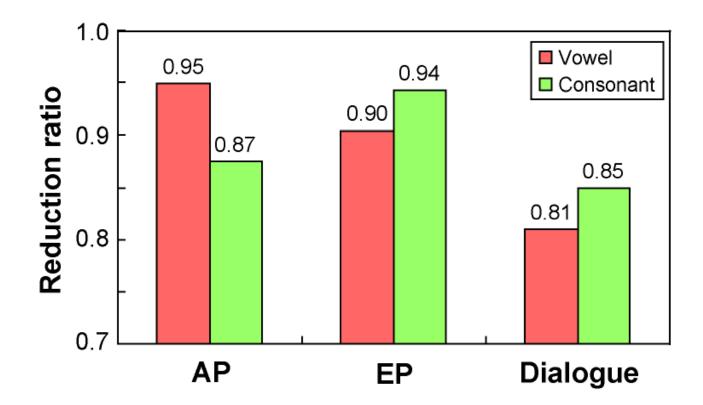
Acc=0.024AL-1.3SR-0.014PP-2.1OR+0.32FR-3.2RR+99

Acc: word accuracy, SR: speaking rate, PP: word perplexity, OR: out of vocabulary rate, FR: filled pause rate, RR: repair rate

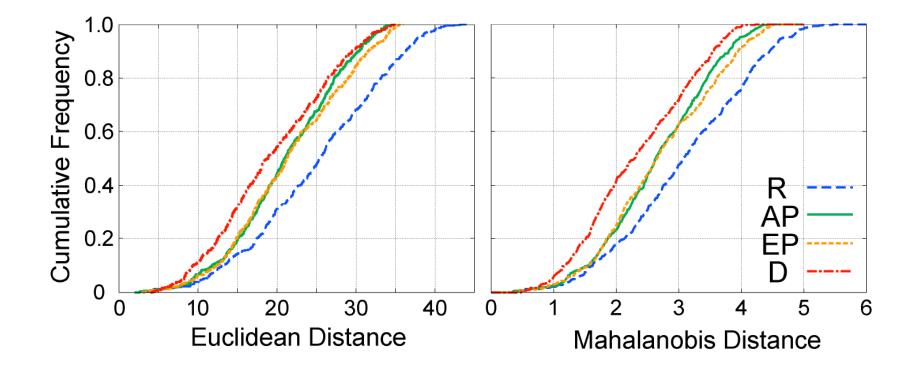
The reduction ratio of the vector norm between each phoneme and the phoneme center in the spontaneous speech to that in the read speech



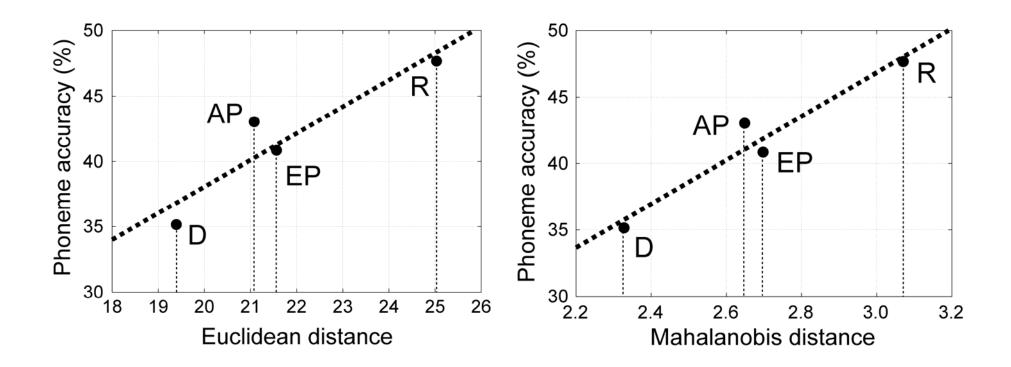
Mean reduction ratios of vowels and consonants for each speaking style



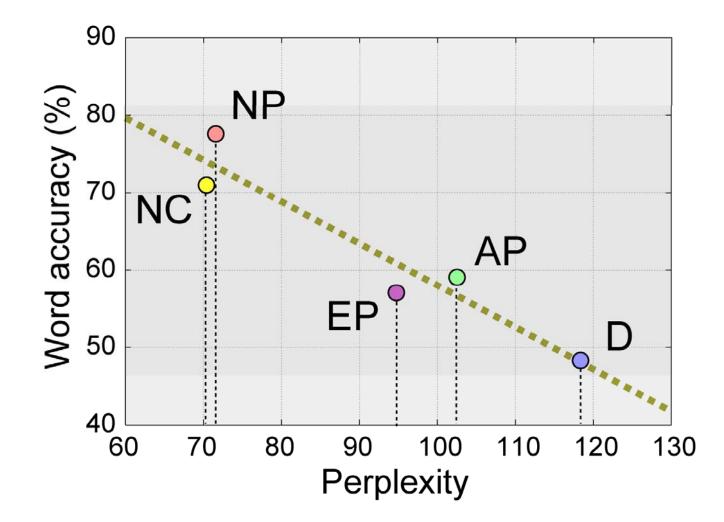
Distribution of distances between phonemes (R: read speech, D: dialogue)



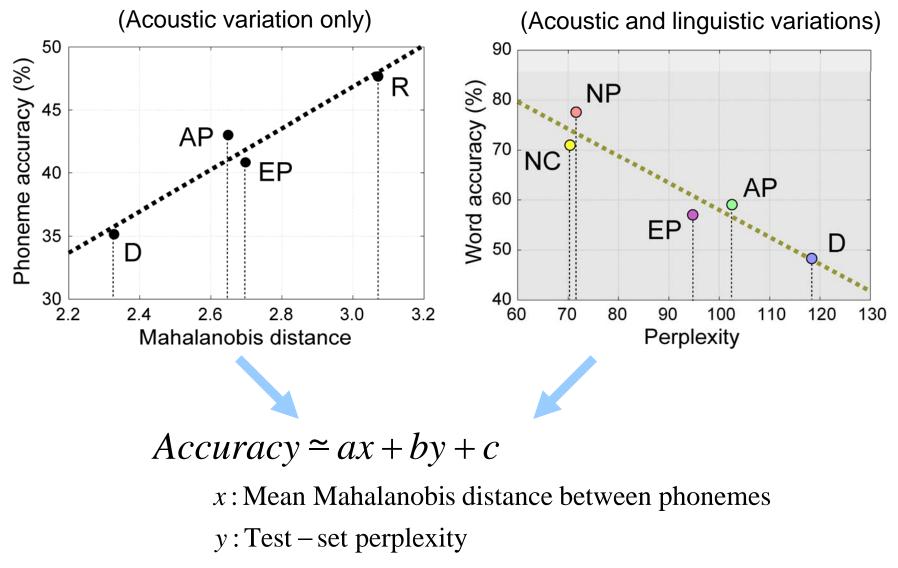
Relationship between phoneme distances and phoneme recognition accuracy



Relationship between test-set perplexity and word recognition accuracy (%) (NC: news commentary)

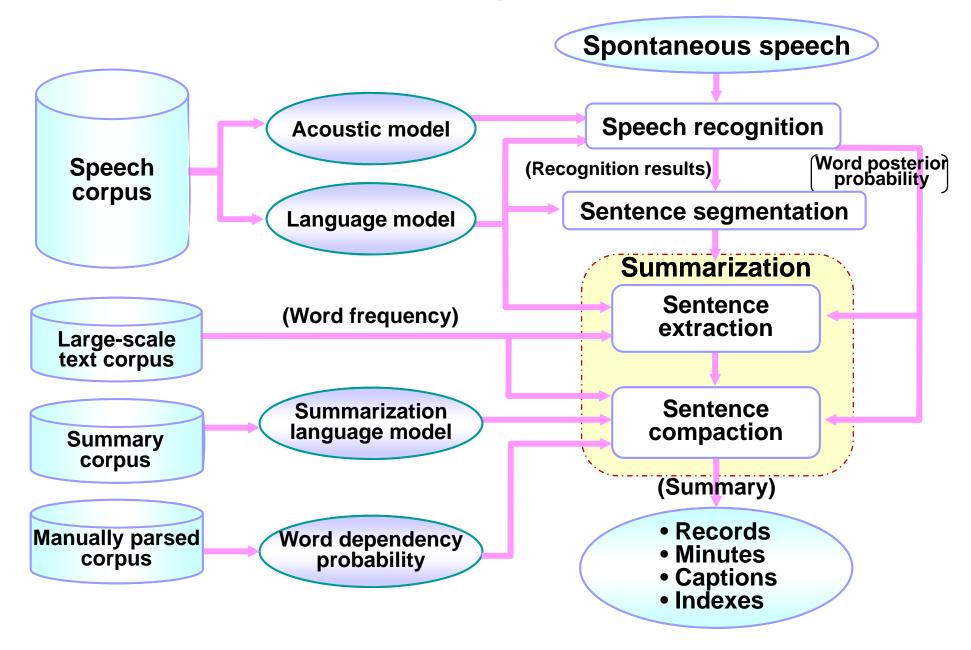


Equation for estimating word recognition accuracy

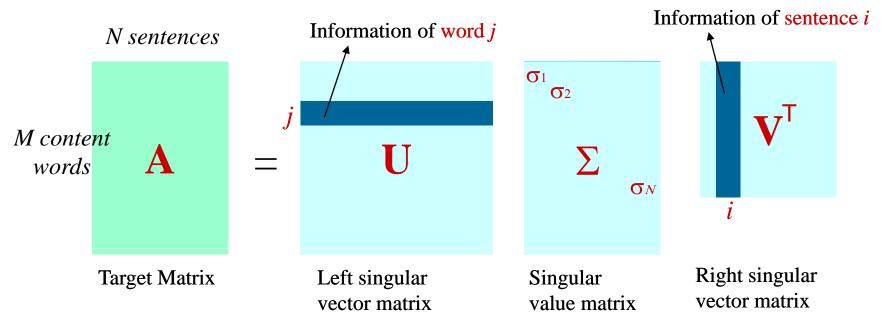


a, b, c: Constant

Speech summarization by sentence extraction and compaction



Sentence clustering using SVD

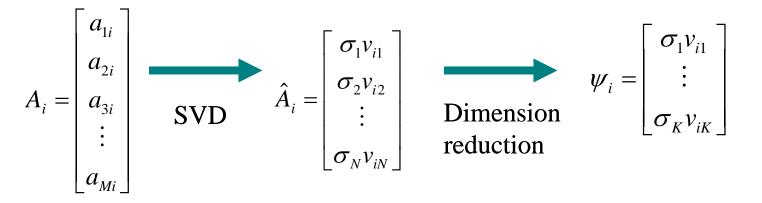


SVD semantically clusters content words and sentences

- Deriving a latent semantic structure from a presentation speech represented by the matrix A
- Element a_{mn} of the matrix **A** $a_{mn} = f_{mn} \cdot \log (F_A / F_m)$
 - f_{mn} : Number of occurrences of a content word (*m*) in the sentence (*n*)
 - F_m : Number of occurrences of a content word (m) in a large corpus

LSA-based sentence extraction

Dimension reduction by SVD



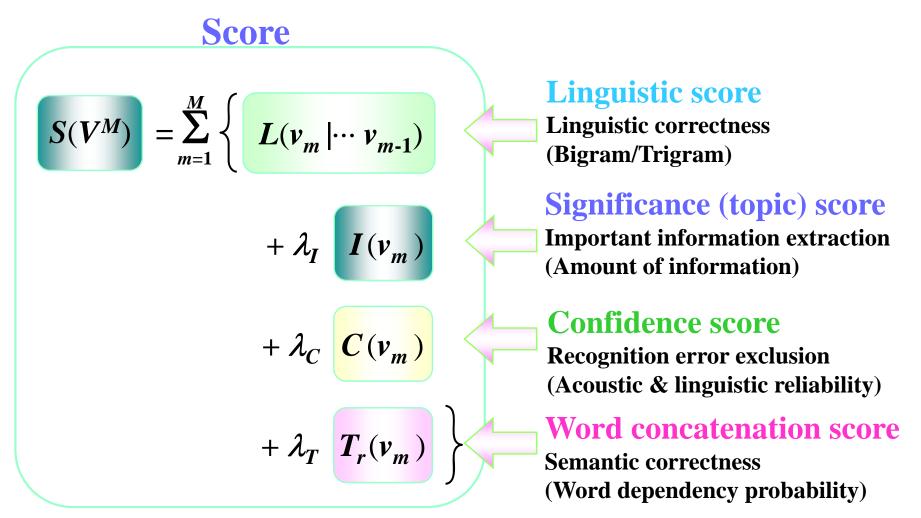
- Each sentence is represented by a weighted singular-value vector
- In order to evaluate each sentence, the score of each sentence is calculated by the norm in the *K* dimensional space

$$\|\psi_i\| = \sqrt{\sum_{k=1}^{K} (\sigma_k v_{ik})^2}$$
 Score for sentence extraction

A fixed number of sentences having relatively large sentence scores in the reduced dimensional space are selected.

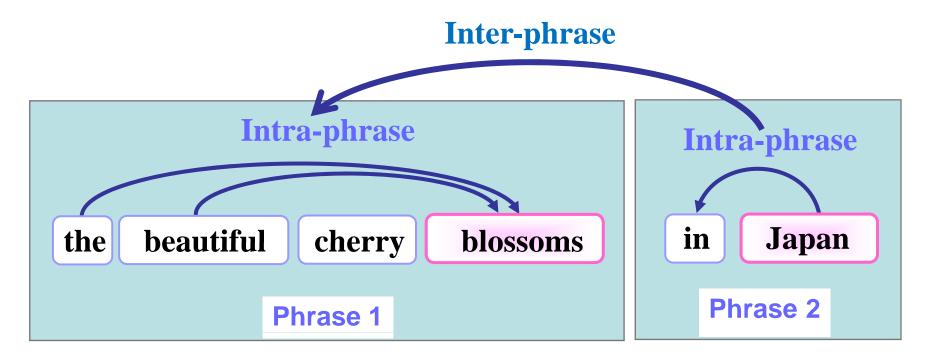
Word extraction score

Summarized sentence with *M* words $V = v_1, v_2, ..., v_M$



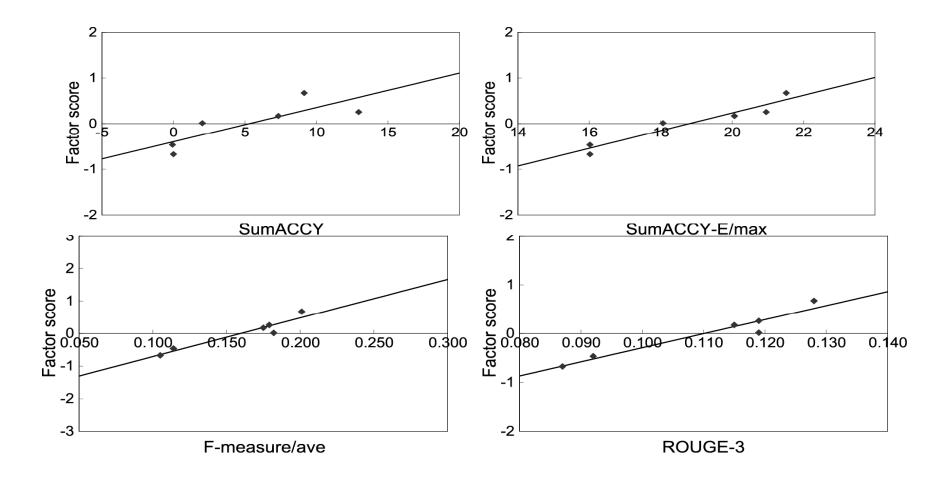
Word concatenation score

A penalty for word concatenation with no dependency in the original sentence



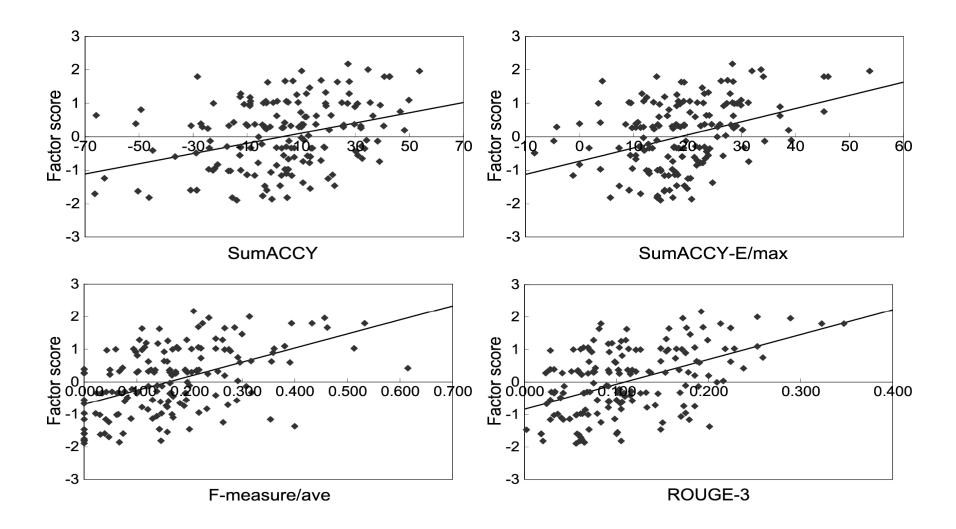
Grammatically correct but incorrect as a summary

Correlation between subjective and objective evaluation scores (averaged over presentations)



In the subjective evaluation, the summaries were evaluated in terms of ease of understanding and appropriateness as summaries on five levels.

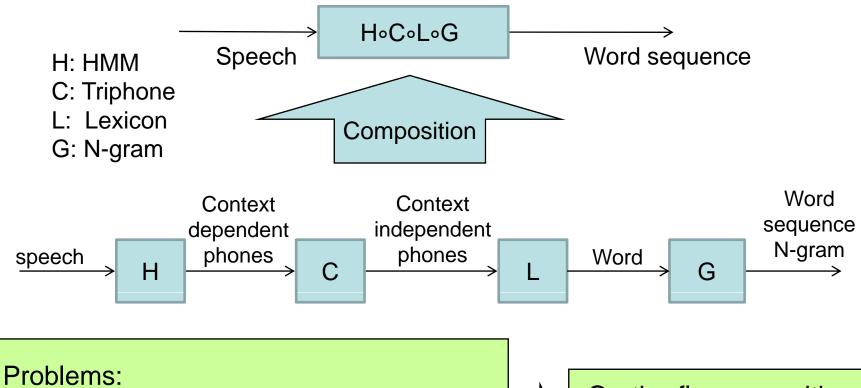
Correlation between subjective and objective evaluation scores (each presentation)



2000s (2)

- Development of WFST-based decoder and application
- Unsupervised cross-validation and aggregated adaptation methods

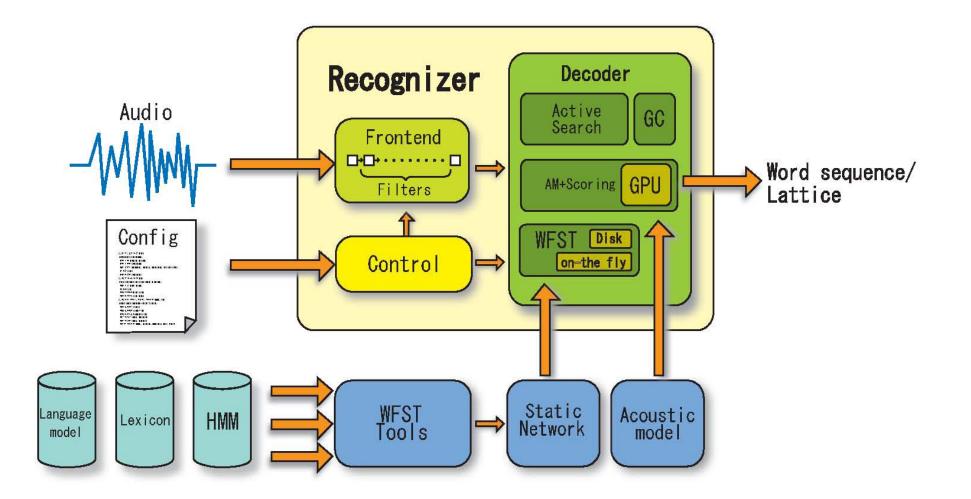
WFST (Weighted Finite State Transducer)-based "T³ decoder"



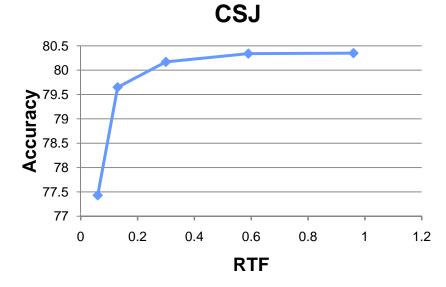
- Large memory requirement
- Small flexibility
 - Difficult to change partial models

On-the-fly composition Parallel decoding

Structure of the T³ decoder

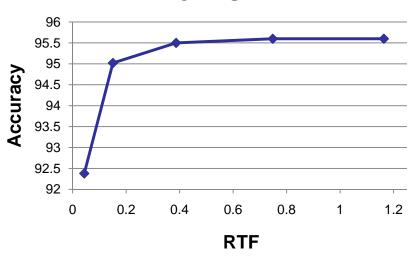


T³ decoder performance



- Spontaneous speech
- "Corpus of Spontaneous Japanese (CSJ)"
- Test set of 10 lectures
- 128 Gaussians per mixture
- 65K word vocabulary

JNAS

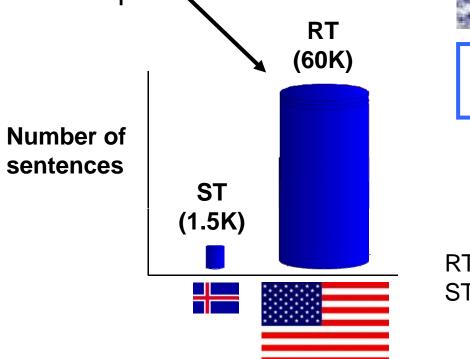


- Read speech
- "Japanese Newspaper Article Sentences (JNAS)"
- Test set of 200 utterances
- 16 Gaussians per mixture
- 465k word vocabulary

Icelandic speech recognition using an English corpus

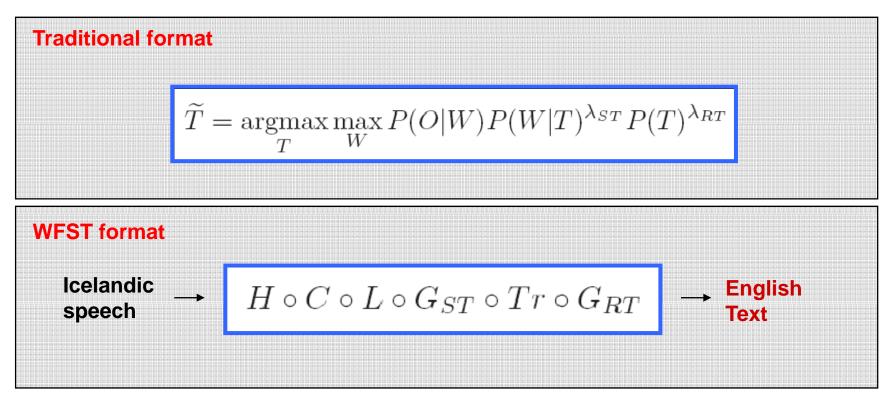
The Jupiter corpus

 (a weather information corpus developed by
) was used as the English rich corpus



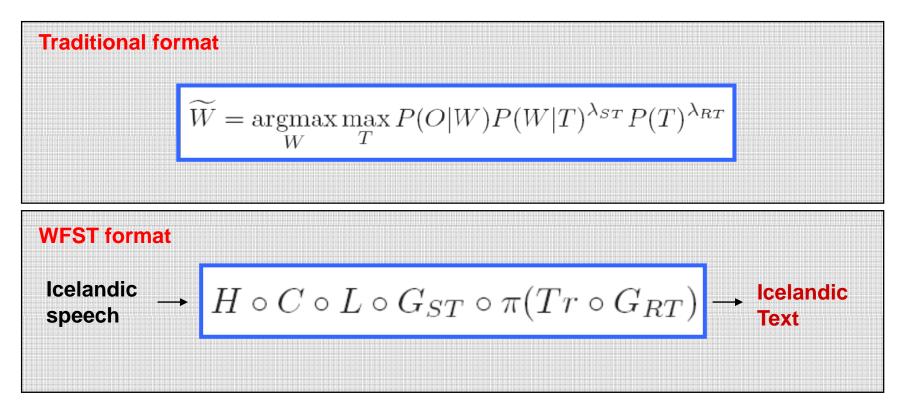
Weather information domain

Icelandic speech recognition using English LM (English output)

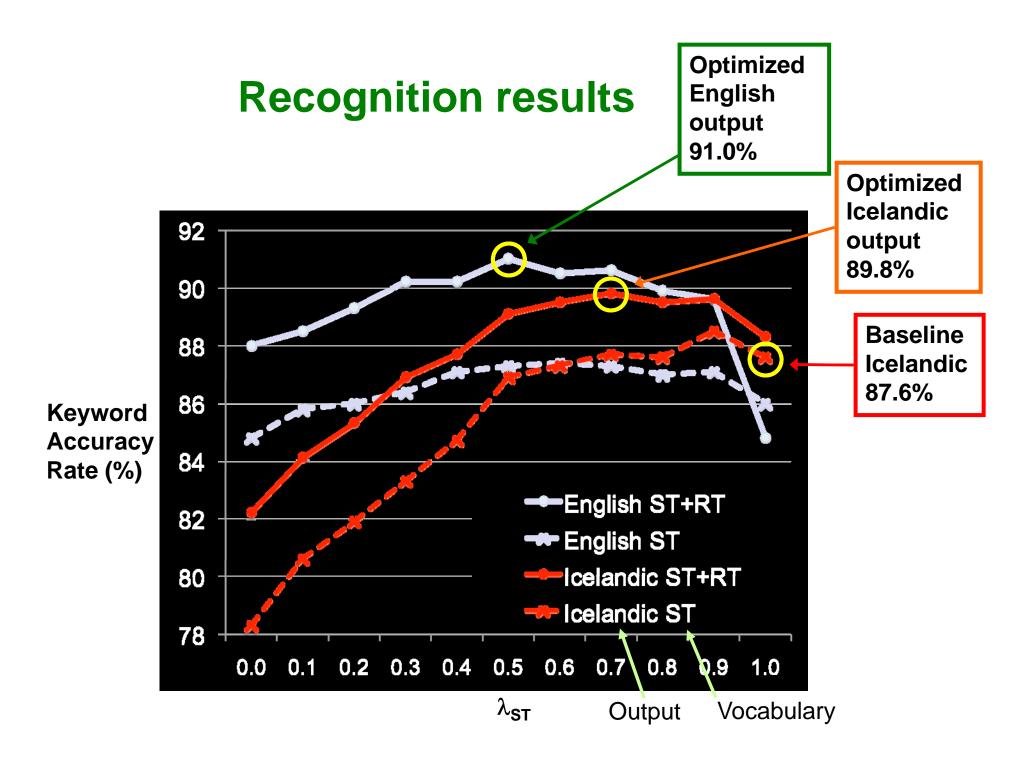


- P(O|W): Icelandic acoustic model
- P(W|T): English to Icelandic translation model
- *P*(*T*): English language model

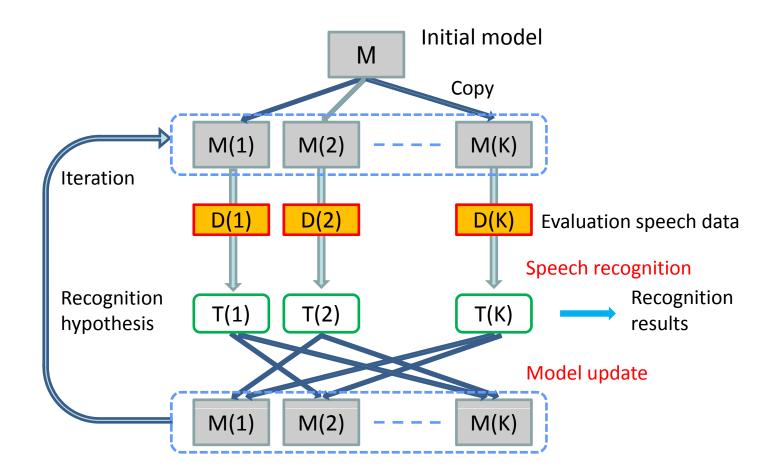
Icelandic speech recognition using English LM (Icelandic output)



- P(O|W): Icelandic acoustic model
- P(W|T): English to Icelandic translation model
- *P*(*T*): English language model



Unsupervised cross-validation (CV) adaptation

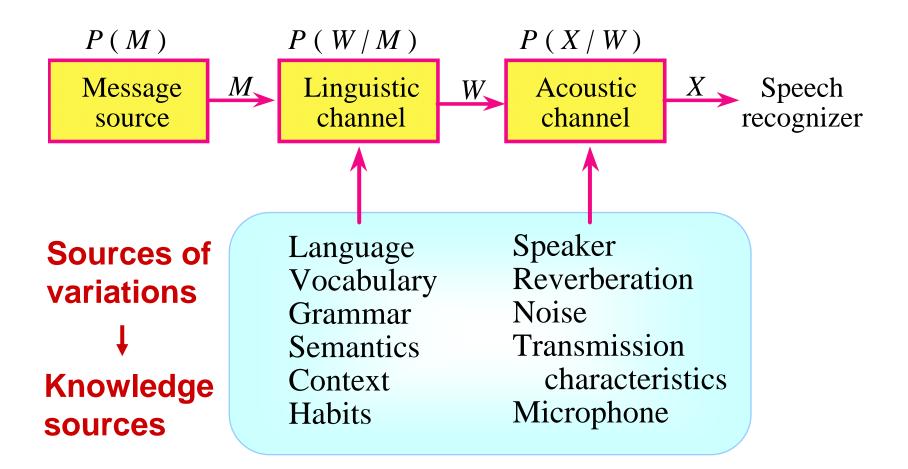


• Reducing the influence of recognition errors by separating the data used for the decoding step and the model update step

Future

- Increasing flexibility and robustness against various sources of variations
- Spoken language comprehension

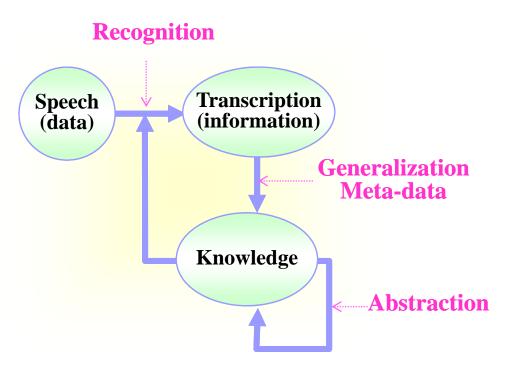
A communication - theoretic view of speech generation & recognition



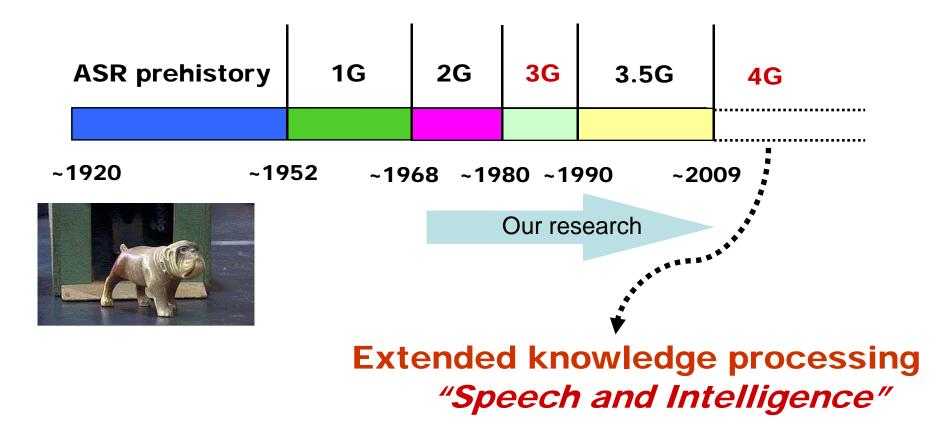
Knowledge sources for speech recognition

Human speech recognition is a matching process whereby an audio signal is matched to existing knowledge (comprehension).

- Knowledge (Meta-data)
 - Domain and topics
 - Context
 - Semantics
 - Speakers
 - Environment, etc.
- Systematization of various related knowledge is crucial
- How to incorporate knowledge sources into the statistical ASR framework

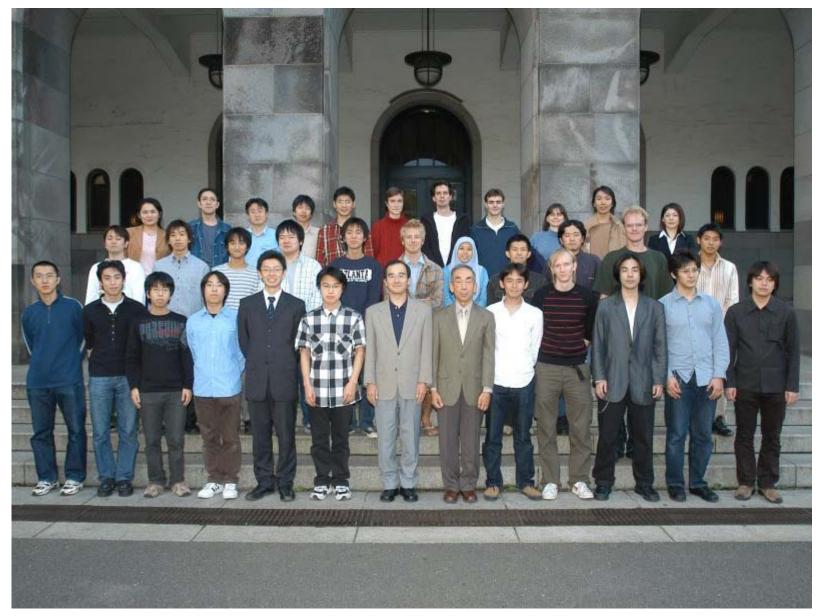


Generations of ASR technology



Future works

- Grand challenge-1: flexibility and robustness against various acoustic as well as linguistic variations
- Grand challenge-2: spoken language comprehension
- A much greater understanding of the human speech process is required before automatic speech recognition systems can approach human performance.
- Significant advances will come from extended knowledge processing in the framework of statistical pattern recognition.



Thanks to all our present and past colleagues and students at NTT Labs and Tokyo Tech!