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Generations of ASR technology
1950    1960   1970   1980   1990   2000   2010

1952 19681G
Heuristic approaches 

(analog filter bank + logic circuits)

2G1968 1980
Pattern matching
(LPC, FFT, DTW)

3G1980 1990
Statistical framework

(HMM, n-gram, neural net)

3.5G1990
Discriminative approaches, robust training, 
normalization, adaptation, spontaneous 
speech, rich transcription

4G?

Prehistory

4G
Extended knowledge
processing

?

Our research
NTT Labs (+Bell Labs), Tokyo Tech
Collaboration with other labs



J t diti l i i “K i ki i”Japanese traditional cuisine “Kaiseki-ryori” 



1970s

• Speaker recognition by statistical p g y
features

• Speaker recognition by cepstral p g y p
features



Speaker recognition by long-term averaged 
spectrum

100 100

spectrum

90 90

%
)80 80

%
)

A
cc

u
ra

cy
 (

70
Method Ⅰ

70
Method ⅠA

cc
u
ra

cy
 (

60

Method Ⅱ

Method Ⅲ
Method Ⅳ

60

Method Ⅱ

Method Ⅲ

Method Ⅳ

50
2-3days 3 weeks 6 weeks 3 months

50
2-3days 3 weeks 6 weeks 3 months

(a) Speaker identification (b) Speaker verification

2 3days 3 weeks 6 weeks 3 months 2 3days 3 weeks 6 weeks 3 months



Speaker recognition by using LPC features
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The amount of spectral variation as a 
function of time interval
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Variation of the long-time averaged spectrum from four 
sessions over eight months, and corresponding spectral 

envelopes derived from cepstrum coefficients weighted by the 
t f i isquare root of inverse variances
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(b) Envelopes by weighted cepstrum(a) Long-time averaged spectra



Speaker recognition by using LPC features
(Eff ti f i filt i )
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Research at Bell Laboratories, Murray Hill, 
f 1978 t 1979from 1978 to 1979



Speaker verification using cepstrum features
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On-line speaker verification experiments usingOn line speaker verification experiments using 
120 Bell Labs employees

User: “We were away a year ago.”
System: “Stand by for analysis ”System: Stand by for analysis.
System: “Your identity has been verified. Thank you.”



1980s

• Spectral dynamics in speech p y p
perception and recognition

• Speaker recognition by HMM/GMMSpeaker recognition by HMM/GMM



Analysis of relationships between 
spectral dynamics and syllable perception
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Relationship between truncated CV syllable identification scores and 
truncation position relative to the perceptual critical point
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Relationship between spectral transition and syllable identification 
scores as a function of the truncation position for the syllable /njo/
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Distribution of the difference between the perceptual critical point 
and the maximum spectral transition position for all 100 syllables
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Relationship between truncation position and identification scores for 
the truncated CV syllables
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Experimental resultsExperimental results
• “Perceptual critical points” (Ti, Tf) are related to p p ( i, f)

maximum spectral transition positions (Tm).
• 10ms period including the Tm bears the most10ms period including the Tm bears the most 

important information for consonant and syllable 
perception.

• Crucial information for both consonant and 
vowel identification is contained across the same 
transitional part of each syllable.

• The spectral transition is more crucial than p
unvoiced and buzz bar periods for consonant 
(syllable) perception.



Role of spectral transition for speech perception
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Cepstrum and delta-cepstrum coefficients

Parameter (vector) trajectory

Instantaneous vector
Transitional (velocity) vector

( )Instantaneous vector
(Cepstrum)

(Delta-cepstrum)



Instantaneous and dynamic cepstrum features

Speech

FFTFFT

Spectrum

Cepstrum

DCTDCTLogLog

Δ Acoustic
vector

Δ2



A five-state ergodic HMM
for text-independent speaker recognition
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Speaker identification rates as a function of the 
number of states and mixtures in ergodic HMMs
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1990s

• Japanese LVCSR using a newspaper p g p p
corpus and broadcast news

• Robust ASRRobust ASR
• Text-prompted speaker recognition



Japanese LVCSR using a newspaper corpus and 
b d tbroadcast news

Compa ison of le ica and LM t aining co po a fo  Comparison of lexica and LM training corpora for 
different languages

WSJ L  M d
Frankfurter 

Nikkei
(Japanese)

WSJ
(English)

Le Monde
(French)

Frankfurter 
Rundschau
(German)

Sole 24
(Italian)

Training test size [words] 180M 37 2M 37 7M 36M 25 7MTraining test size [words]

Distinct words

5k coverage

180M 37.2M 37.7M 36M 25.7M

623k 165k 280k 650k 200k

88 0% 90 6% 85 2% 82 9% 88 3%5k coverage

20k coverage

40k coverage

88.0% 90.6% 85.2% 82.9% 88.3%

96.2% 97.5% 94.7% 90.0% 96.3%

98.2% 99.2% 97.6% - 98.9%g

65k coverage

20k OOV rate

99.0% 99.6% 98.3% 95.1% 99.0%

3.8% 2.5% 5.3% 10.0% 3.7%

LM units for Japanese: morphemes 



Entry items corresponding to the number of homophone Entry items corresponding to the number of homophone 
classes with k graphemic forms in the class

Rate in
Lexicon

1 2 3 >4

Corpus Homophone class size (k)

1 2 3 >4

Nikkei (30k) 20% 24.1k 2438 706 565

BREF (10k)

BREF (40k)

35% 6686 1329 215 73

45% 23.7k 5361 1264 1039

WSJ (9k)

WSJ (65k)

6% 8453 237 22 1

15% 60.4k 3689 890 291

FR (64k)

So24 (10k)

10% 58.1k 2769 221 57

1.7% 9872 85 3 0



Relationship between perplexity (bigram) and 
word error rate for a read newspaper taskword error rate for a read newspaper task
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Relationship between perplexity (bigram) and 
word error rate for a broadcast-news taskword error rate for a broadcast news task
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Robust ASR
(Supervised/unsupervised acoustic(Supervised/unsupervised acoustic 

model adaptation)

• Hierarchical spectral clustering-based• Hierarchical spectral clustering-based 
unsupervised adaptation
MAP+MCE (minim m classification• MAP+MCE (minimum classification 
error) training-based supervised 
adaptationadaptation

• N-best-based unsupervised adaptation



Robust ASR
(Supervised/unsupervised acoustic(Supervised/unsupervised acoustic 

model adaptation)

• Hierarchical spectral clustering-based• Hierarchical spectral clustering-based 
unsupervised adaptation
MAP+MCE (minim m classification• MAP+MCE (minimum classification 
error) training-based supervised 
adaptationadaptation

• N-best-based unsupervised adaptation



Hierarchical codebook adaptation algorithm maintaining 
continuity between adjacent clusters

Speaker-independent
codebook
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Training
utterances

u1u1 u1u1
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(1) (2)

(4)(3)



Cepstral distortion between input speech and reference templates 
resulted from hierarchical codebook adaptation
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Text-prompted speaker recognition method

(Training)

Training dataTraining dataTraining dataTraining data
SpeakerSpeaker--specific phonemespecific phoneme

model creationmodel creation

Training dataTraining data
• • SpeechSpeech
• • TextText

SpeakerSpeaker--independentindependent

Training dataTraining data
• • SpeechSpeech
• • TextText

SpeakerSpeaker--independentindependentpp pp
phoneme modelsphoneme models

pp pp
phoneme modelsphoneme models

(Recognition)
SpeakerSpeaker--specific phonemespecific phoneme

model concatenationmodel concatenationText

Likelihood calculationLikelihood calculationInput speech

Text confirmation andText confirmation and
speaker verificationspeaker verification



2000s (1)

• Spontaneous speech recognition 
j t d CSJproject and CSJ corpus

• Spectral reduction in spontaneous 
speechspeech

• Automatic speech summarization and 
evaluationevaluation



CSJ corpus construction

n

Academic 
presentationson Prosody labeling Segmental 

fo
rm

at
io

n

Extemporaneous 
presentations

Oth (i t ia 
co

lle
ct

io y g
(manual)

Manual 
morphological

g
labeling (manual)

Core
(500k words)

va
rio

us
 inOthers (interviews, 

dialogues, etc.)D
at

a morphological 
analysis

Corpus of 
Spontaneous Japanese

( CSJ ) G
iv

in
g 

v

Speech file with 
noise description Automatic 

morphological 
l i

(7M words)

sc
rip

tio
n analysis

Sentence 
segmentation by 

pauses

Transcribing text
(text and reading)

Tr
an

s

D t fl t kXML Data flow at work
Giving information for research



Contents of the CSJ
Type of Speech # Speakers # Files Monologue/

Dialogue
Spontaneous/ 

Read Hours

Academic SAcademic 
presentations (AP) 838 1006 Monolog Spont. 299.5

Extemporaneous 
presentations (EP) 580 1715 Monolog Spont. 327.5

Interview on AP * (10) 10 Dialog Spont. 2.1

Interview on EP * (16) 16 Dialog Spont 3 4Interview on EP  (16) 16 Dialog Spont. 3.4
Task oriented 

dialogue * (16) 16 Dialog Spont. 3.1

F di l * (16) 16 Di l S t 3 6Free dialogue * (16) 16 Dialog Spont. 3.6

Reading text *(244) 491 Dialog Read 14.1

Reading 
transcriptions * (16) 16 Monolog Read 5.5

*Counted as the speakers of AP or EP Total  hours 658.8



Out-of-vocabulary (OOV) rate, word error rate (WER) and adjusted 
test-set perplexity (APP) as a function of the size of language modeltest-set perplexity (APP) as a function of the size of language model

training data (8/8 = 6.84M words)



Word error rate (WER) as a function of the size of 
acoustic model training data (8/8 = 510 hours)



Linear regression models of the word accuracy (%)g y ( )
with the six presentation attributes

Speaker-independent recognition

Acc=0.12AL−0.88SR−0.020PP−2.2OR+0.32FR−3.0RR+95

Speaker-adaptive recognition

Acc=0.024AL−1.3SR−0.014PP−2.1OR+0.32FR−3.2RR+99

Acc: word accuracy SR: speaking rateAcc: word accuracy,  SR: speaking rate, 
PP: word perplexity,  OR: out of vocabulary rate, 
FR: filled pause rate,  RR: repair ratep , p



The reduction ratio of the vector norm between each phoneme 
and the phoneme center in the spontaneous speech to that inand the phoneme center in the spontaneous speech to that in 

the read speech 

(Academic presentations) (Extemporaneous presentations)



Mean reduction ratios of vowels and consonants for 
each speaking style



Distribution of distances between phonemes
(R: read speech, D: dialogue)



Relationship between phoneme distances and p p
phoneme recognition accuracy



Relationship between test-set perplexity and word 
recognition accuracy (%) (NC: news commentary)



Equation for estimating word recognition 
accuracyaccu acy

(Acoustic variation only) (Acoustic and linguistic variations)

b cbyaxAccuracy ++−~
phonemesbetweendistancesMahalanobiMean:x

Constant:,,
perplexitysetTest:

cba
y −



Speech summarization by sentence extraction 
and compaction

Spontaneous speech

Acoustic model

Speech
corpus

Word posterior
probability

Speech recognition
(Recognition results)

SummarizationSummarization

Language model
corpus

Sentence segmentation

(Word frequency)
Large-scale
text corpus

Sentence
extraction

Summarization
language modelSummary

corpus

p

Sentence
compaction

• Records
MinutesWord dependencyWord dependencyManually parsed

corpus
(Summary)

• Minutes
• Captions
• Indexes

p y
probabilitycorpus



Sentence clustering using SVDg g

N sentences
Information of Information of sentence sentence iiInformation of Information of word word jj

V
UA Σ

T
σ1
σ2

=
M content

d

j

UA Σ
σΝ

=words

i

Target MatrixTarget Matrix Right singular Right singular 
vector matrixvector matrix

Left singular Left singular 
vector matrixvector matrix

Singular Singular 
value matrixvalue matrix

SVD semantically clusters content words and sentencesSVD semantically clusters content words and sentencesSVD semantically clusters content words and sentencesSVD semantically clusters content words and sentences
Deriving a latent semantic structure from a presentation speech represented by the Deriving a latent semantic structure from a presentation speech represented by the 
matrix matrix AA

)/(log mAmnmn FFfa ⋅=
Element Element aamnmn of the matrix of the matrix AA

:: Number of occurrences of a content word (m) in the sentence (n)f : : Number of occurrences of a content word (m) in the sentence (n)mnf

Fm    : Number of occurrences of a content word (m) in a large corpus



LSA-based sentence extraction

Dimension reduction by SVDDimension reduction by SVD

⎥
⎥
⎤

⎢
⎢
⎡

i

i

a
a

2

1

⎥
⎥
⎤

⎢
⎢
⎡ i

v
v

σ
σ 11

⎥
⎥
⎤

⎢
⎢
⎡

=
ivσ

ψ M
11

⎥
⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢
⎢

⎣

= ii aA
M
3

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣

=

iNN

i
i

v

v
A

σ

σ
M

22ˆ
⎥
⎥
⎦⎢

⎢
⎣

=

iKK

i

vσ
ψ M

SVDSVD DimensionDimension
reductionreduction

Each sentence is represented by a weighted singularEach sentence is represented by a weighted singular--value vectorvalue vector
In order to evaluate each sentence the score of each sentence is calculated byIn order to evaluate each sentence the score of each sentence is calculated by

⎥⎦⎢⎣ Mia ⎦⎣

K

In order to evaluate each sentence, the score of each sentence is calculated by In order to evaluate each sentence, the score of each sentence is calculated by 
the norm in the the norm in the KK dimensional spacedimensional space

∑
=

σ=
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k
ikki v

1

2)(ψ Score for sentence extractionScore for sentence extraction

A fixed number of sentences having relatively large sentence scores in the A fixed number of sentences having relatively large sentence scores in the 
reduced dimensional space are selected.reduced dimensional space are selected.



Word extraction scoreWord extraction score

Summarized sentence with M words V = v1 ,v2 ,…, vM1 2 M

Score
Linguistic scoreLinguistic score
Linguistic correctness 
(Bigram/Trigram)

M

S(VM)   = Σ
m=1

L(vm |… vm-1)

Significance (topic) score
Important information extraction
(Amount of information)

+ λI      I (vm ) (Amount of information)

Confidence score
Recognition error exclusion+ λC C (vm ) Recognition error exclusion
(Acoustic & linguistic reliability)

Word concatenation score

C    ( m )

+ λ T (v ) Semantic correctness
(Word dependency probability)

+ λT    Tr(vm )



Word concatenation score
A penalty for word concatenation with 
no dependency in the original sentenceno dependency in the original sentence

Inter-phraseInter-phrase

Intra-phrase Intra-phrasep

in Japanthe beautiful cherry blossoms

Phrase 1Phrase 1 Phrase 2Phrase 2

in       Japanthe  beautiful      cherry       blossoms 

“the beautiful Japan” Grammatically correct “the beautiful Japan” y
but incorrect as a summary



Correlation between subjective and objective 
l ti ( d t ti )evaluation scores (averaged over presentations)

In the subjective evaluation, the summaries were evaluated in terms of ease of 
understanding and appropriateness as summaries on five levels.



Correlation between subjective and objective j j
evaluation scores (each presentation)



2000s (2)

• Development of WFST-based 
decoder and applicationdecoder and application

• Unsupervised cross-validation and 
aggregated adaptation methods



WFST (Weighted Finite State Transducer)-based 
“T3 decoder”T3 decoder

Word sequenceSpeechH: HMM
C: Triphone
L L i

H C L G

Context Context Word

CompositionL:  Lexicon
G: N-gram

H C L G
speech

Context
dependent

phones

Context
independent

phones Word

Word
sequence
N-gram

Problems:Problems:
– Large memory requirement
– Small flexibility

On-the-fly composition
Parallel decoding

• Difficult to change partial models



Structure of the T3 decoder



T3 decoder performance
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• Spontaneous speech
• “Corpus of Spontaneous 

Japanese (CSJ)”
• Test set of 10 lectures

• Read speech
• “Japanese Newspaper Article 

Sentences (JNAS)”
• Test set of 200 utterances• Test set of 10 lectures

• 128 Gaussians per mixture
• 65K word vocabulary

• Test set of 200 utterances
• 16 Gaussians per mixture
• 465k word vocabulary



Icelandic speech recognition using an 
E li hEnglish corpus

• The Jupiter corpus 
(a weather information corpus 
d l d b MIT ) d thdeveloped by MIT ) was used as the 
English rich corpus

RTRT
(60K) Weather information 

domain

ST

Number of 
sentences

(1.5K)

RT: Rich text
ST: Sparse textST: Sparse text



Icelandic speech recognition using 
E li h LM (E li h t t)English LM (English output)

T diti l f tTraditional format

Icelandic 
h

English 

WFST format

speech Text

• P(O|W): Icelandic acoustic model
• P(W|T): English to Icelandic translation model

P(T) E li h l d l• P(T): English language model



Icelandic speech recognition using 
E li h LM (I l di t t)

Traditional format

English LM (Icelandic output)
Traditional format

Icelandic 
speech

Icelandic 
Text

WFST format

speech Text

• P(O|W): Icelandic acoustic model
• P(W|T): English to Icelandic translation model

P(T) E li h l d l• P(T): English language model



Optimized 
English Recognition results
output 
91.0%

Optimized 

Recognition results

Icelandic 
output 
89.8%

Baseline 
Icelandic 

Keyword 
Accuracy 
Rate (%)

87.6%

Rate (%)

λST Output Vocabulary



Unsupervised cross-validation (CV) 
adaptation

Initial model
M

adaptation

M(2)

Copy

M(1) M(K)

M

M(2)

D(1) Evaluation speech data

Iteration

M(1) M(K)

D(2) D(K)( ) p

Recognition 
h th i

Recognition 
lt

Speech recognition

( ) ( )

T(1) T(2) T(K)hypothesis results

Model update

T(1) T(2) T(K)

M(2)M(1) M(K)

Reducing the influence of recognition errors by separating the data used for 
the decoding step and the model update step



Future
• Increasing flexibility and robustness 
against various sources of variationsagainst various sources of variations

• Spoken language comprehension



A communication - theoretic view of
h ti & itispeech generation & recognition

P ( X | W )
M

P ( W | M )

Linguistic W X Speech 

P ( M )

Message Acoustic g
channel

W p
recognizer

g
source channel

Language 
Vocabulary

Speaker 
Reverberation

Sources of
Vocabulary 
Grammar 
Semantics 

Reverberation 
Noise 
Transmission 

h i i

variations

Context 
Habits

    characteristics 
Microphone

Knowledge
sources



Knowledge sources for speech recognitiong p g

Human speech recognition is a matching process whereby an 
di i l i t h d t i ti k l d ( h i )audio signal is matched to existing knowledge (comprehension).

• Knowledge (Meta-data)g ( )
– Domain and topics
– Context
– Semantics

RecognitionRecognition

– Speakers
– Environment, etc.

Speech
(data)

Transcription
(information)

GeneralizationGeneralization• Systematization of various
related knowledge is crucial

Knowledge

Generalization
Meta-data

Generalization
Meta-data

• How to incorporate 
knowledge sources into the 
t ti ti l ASR f k

Knowledge

AbstractionAbstraction

statistical ASR framework



Generations of ASR technologyGenerations of ASR technology

ASR prehistory 1G 2G 3G 3.5G 4G

~1920 ~1952 ~1968 ~1980 ~1990 ~2009

Our research

Extended knowledge processing
“Speech and Intelligence”



Future works
• Grand challenge-1: flexibility and robustness 

against various acoustic as well as linguisticagainst various acoustic as well as linguistic
variations
G d h ll 2 k l• Grand challenge-2: spoken language 
comprehension

• A much greater understanding of the human 
speech process is required before automatic 
speech recognition systems can approach human 
performance.

• Significant advances will come from extended 
knowledge processing in the framework of 
statistical pattern recognition. 



Thanks to all our present and past colleagues and students
at NTT Labs and Tokyo Tech!


