Dialogue Acts and Information State

Julia Hirschberg

CS 4706
Information-State and Dialogue Acts

• If we want a dialogue system to be more than just form-filling, it

• Needs to:
 – Decide when user has asked a question, made a proposal, rejected a suggestion
 – **Ground** user’s utterance, ask clarification questions, suggestion plans

• Good conversational agents need sophisticated models of interpretation and generation – beyond slot filling
Information-State Architecture

- Information state representation
- Dialogue act interpreter
- Dialogue act generator
- Set of update rules
 - Update dialogue state as acts are interpreted
 - Generate dialogue acts
- Control structure to select which update rules to apply
Information-state

Speech

Natural Language Understanding

Dialogue Act Interpreter

Information State
- discourse context
- beliefs
- goals
- user model
- task context

Behavioral Agent
- update rules
- control

Dialogue Act Generator

Natural Language Generation

Speech
Dialogue acts

• AKA *conversational moves*
• Actions with (internal) structure related specifically to their dialogue function
• Incorporates ideas of grounding with other dialogue and conversational functions not mentioned in classic *Speech Act Theory*
Speech Act Theory: Reminder

• John Searle *Speech Acts* ‘69
 – *Locutionary acts*: semantic meaning/surface form
 – *Illocutionary acts*: request, promise, statement, threat, question
 – *Perlocutionary acts*: Effect intended to be produced on Hearer: regret, fear, hope
What Kind of Speech Acts do we need for a Real Task: Verbmobil

- Two-party scheduling dialogues
- Speakers were asked to plan a meeting at some future date
- Data used to design conversational agents which would help with this task
- Issues:
 - Cross-language
 - Machine translation
 - Scheduling assistant
Verbmobil Dialogue Acts

<table>
<thead>
<tr>
<th>Action</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>THANK</td>
<td>thanks</td>
</tr>
<tr>
<td>GREET</td>
<td>Hello Dan</td>
</tr>
<tr>
<td>INTRODUCE</td>
<td>It’s me again</td>
</tr>
<tr>
<td>BYE</td>
<td>Allright, bye</td>
</tr>
<tr>
<td>REQUEST-COMMENT</td>
<td>How does that look?</td>
</tr>
<tr>
<td>SUGGEST</td>
<td>June 13th through 17th</td>
</tr>
<tr>
<td>REJECT</td>
<td>No, Friday I’m booked all day</td>
</tr>
<tr>
<td>ACCEPT</td>
<td>Saturday sounds fine</td>
</tr>
<tr>
<td>REQUEST-SUGGEST</td>
<td>What is a good day of the week for you?</td>
</tr>
<tr>
<td>INIT</td>
<td>I wanted to make an appointment with you</td>
</tr>
<tr>
<td>GIVE_REASON</td>
<td>Because I have meetings all afternoon</td>
</tr>
<tr>
<td>FEEDBACK</td>
<td>Okay</td>
</tr>
<tr>
<td>DELIBERATE</td>
<td>Let me check my calendar here</td>
</tr>
<tr>
<td>CONFIRM</td>
<td>Okay, that would be wonderful</td>
</tr>
<tr>
<td>CLARIFY</td>
<td>Okay, do you mean Tuesday the 23rd?</td>
</tr>
</tbody>
</table>
Automatic Interpretation of Dialogue Acts

• How do we automatically identify dialogue acts?
• Given an utterance:
 – Decide whether it is a QUESTION, STATEMENT, SUGGEST, or ACKNOWLEDGMENT
• Recognizing illocutionary force will be crucial to building a dialogue agent
• Perhaps we can just look at the form of the utterance to decide?
Can we just use the surface syntactic form?

• YES-NO-Qs have auxiliary-before-subject syntax:
 – Will breakfast be served on USAir 1557?

• STATEMENTs have declarative syntax:
 – I don’t care about lunch

• COMMANDs have imperative syntax:
 – Show me flights from Milwaukee to Orlando on Thursday night
Surface Form != Speech Act Type

<table>
<thead>
<tr>
<th></th>
<th>Locutionary Force</th>
<th>Illocutionary Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can I have the rest of your sandwich?</td>
<td>Question</td>
<td>Request</td>
</tr>
<tr>
<td>I want the rest of your sandwich</td>
<td>Declarative</td>
<td>Request</td>
</tr>
<tr>
<td>Give me your sandwich!</td>
<td>Imperative</td>
<td>Request</td>
</tr>
</tbody>
</table>
Dialogue act disambiguation is hard! *Who’s on First?*

Abbott: Well, Costello, I'm going to New York with you. Bucky Harris the Yankee's manager gave me a job as coach for as long as you're on the team.

Costello: Look Abbott, if you're the coach, you must know all the players.

Abbott: I certainly do.

Costello: Well you know I've never met the guys. So you'll have to tell me their names, and then I'll know who's playing on the team.

Abbott: Oh, I'll tell you their names, but you know it seems to me they give these ball players now-a-days very peculiar names.

Costello: You mean funny names?

Abbott: Strange names, pet names...like Dizzy Dean...

Costello: His brother Daffy

Abbott: Daffy Dean...

Costello: And their French cousin.

Abbott: French?

Costello: Goofe'

Abbott: Goofe' Dean. Well, let's see, we have on the bags, Who's on first, What's on second, I Don't Know is on third...

Costello: That's what I want to find out.

Abbott: I say Who's on first, What's on second, I Don't Know's on third....
Dialogue act ambiguity

• Who’s on first
 – INFO-REQUEST
 – or
 – STATEMENT
Dialogue Act ambiguity

• Can you give me a list of the flights from Atlanta to Boston?
 – Looks like an INFO-REQUEST.
 – If so, answer is:
 • YES.
 – But really it’s a DIRECTIVE or REQUEST, a polite form of:
 – Please give me a list of the flights…

• What looks like a QUESTION can be a REQUEST
Dialogue Act Ambiguity

- What looks like a STATEMENT can be a QUESTION:

<table>
<thead>
<tr>
<th>Us</th>
<th>OPEN-OPTION</th>
<th>I was wanting to make some arrangements for a trip that I’m going to be taking uh to LA uh beginning of the week after next</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>HOLD</td>
<td>OK uh let me pull up your profile and I’ll be right with you here. [pause]</td>
</tr>
<tr>
<td>Ag</td>
<td>CHECK</td>
<td>And you said you wanted to travel next week?</td>
</tr>
<tr>
<td>Us</td>
<td>ACCEPT</td>
<td>Uh yes.</td>
</tr>
</tbody>
</table>
Indirect Speech Acts

• Utterances which use a surface statement to ask a question
 – And you want to…

• Utterances which use a surface question to issue a request
 – Can you get me…
DA Interpretation as Statistical Classification

• Lots of clues in each sentence that can tell us which DA it is:
 – Words and Collocations:
 • Please or would you: good cue for REQUEST
 • Are you: good cue for INFO-REQUEST
 – Prosody:
 • Rising pitch is a good cue for INFO-REQUEST
 • Loudness/stress can help distinguish yeah/AGREEMENT from yeah/BACKCHANNEL
 – Conversational Structure
 • Yeah following a proposal is probably AGREEMENT; yeah following an INFORM probably a BACKCHANNEL
Disambiguating Ambiguous DAs Intonationally

• Nickerson & Chu-Carroll ’99: Can info-requests be disambiguated reliably from action-requests?
• Modal (Can/would/would..willing) questions
 – Can you move the piano?
 – Would you move the piano?
 – Would you be willing to move the piano?
Experiments

• Production studies:
 – Subjects read ambiguous questions in disambiguating contexts
 – Control for given/new and contrastiveness
 – Polite/neutral/impolite

• Problems:
 – Cells imbalanced
 – No pretesting
 – No distractors
 – Same speaker reads both contexts
Results

- Indirect requests (e.g. for action)
 - If L%, more likely (73%) to be indirect
 - If H%, 46% were indirect: differences in height of boundary tone?
 - Politeness: can differs in impolite (higher rise) vs. neutral
 - Speaker variability
Statistical Classifier Model of DA Interpretation

• Goal: decide for each sentence what DA it is
• **Classification task**: 1-of-N classification decision for each sentence
 – With N classes (= number of dialog acts).
 – Three probabilistic models corresponding to the 3 kinds of cues from the input sentence.
 • Conversational Structure: Probability of one dialogue act following another \(P(Answer|Question) \)
 • Words and Syntax: Probability of a sequence of words given a dialogue act: \(P(“do\ you”\ |\ Question) \)
 • Prosody: probability of prosodic features given a dialogue act: \(P(“rise\ at\ end\ of\ sentence”\ |\ Question) \)
Corpus Studies: Jurafsky et al ‘98

• Lexical, acoustic/prosodic/syntactic differentiators for yeah, ok, uhuh, mhmm, um…

• Labeling
 – Continuers: Mhmm (not taking floor)
 – Assessments: Mhmm (tasty)
 – Agreements: Mhmm (I agree)
 – Yes answers: Mhmm (That’s right)
 – Incipient speakership: Mhmm (taking floor)
Corpus

- Switchboard telephone conversation corpus
 - Hand segmented and labeled with DA information (initially from text)
 - Relabeled for this study
 - Analyzed for
 - Lexical realization
 - F0 and rms features
 - Syntactic patterns
Results: Lexical Differences

• Agreements
 – yeah (36%), right (11%),…

• Continuer
 – uhuh (45%), yeah (27%),…

• Incipient speaker
 – yeah (59%), uhuh (17%), right (7%),…

• Yes-answer
 – yeah (56%), yes (17%), uhuh (14%),…
Results: Prosodic and Syntactic Cues

- Relabeling from speech produces only 2% changed labels over all (114/5757)
 - 43/987 continuers --> agreements
 - Why?
 - Shorter duration, lower F0, lower energy, longer preceding pause
- Over all DA’s, duration best differentiator but…
 - Highly correlated with DA length in words
- Assessments: That’s X (good, great, fine,…)
Generating Dialogue Acts

- Confirmation
- Rejection
Confirmation

• Another reason for grounding
 – **ASR Errors**: Speech is a very errorful channel
 – Even for humans in noisy conditions
 – Humans use grounding to **confirm** that they’ve heard correctly
 – ASR is much worse than humans!

• Conclusion: SDS need to do even more grounding and confirmation than humans
Explicit confirmation

• S: Which city do you want to leave from?
• U: Baltimore
• S: Do you want to leave from Baltimore?
• U: Yes
Explicit confirmation

• U: I’d like to fly from Denver Colorado to New York City on September 21st in the morning on United Airlines

• S: Let’s see then. I have you going from Denver Colorado to New York on September 21st. Is that correct?

• U: Yes
Implicit confirmation: display

• U: I’d like to travel to Berlin
• S: When do you want to travel to Berlin?

• U: Hi I’d like to fly to Seattle Tuesday morning
• S: Traveling to Seattle on Tuesday, August eleventh in the morning. Your name?
Implicit vs. Explicit

• Complementary strengths
• Explicit: Easier for users to correct system’s mistakes (Can just say “no”)
• But explicit is cumbersome and long
• Implicit: Much more natural, quicker, simpler (if system guesses right).
Implicit and Explicit

• Early systems: all-implicit or all-explicit
• Modern systems: adaptive
• How to decide?
 – ASR system can provide confidence metric.
 • Expresses how convinced system is of its transcription of the speech
 – If high confidence, use implicit confirmation
 – If low confidence, use explicit confirmation
Computing Confidence

• Simplest: Use acoustic log-likelihood of user’s utterance

• More features might help
 – Prosodic: utterances with longer pauses, F0 excursions, longer durations
 – Backoff: did we have to backoff in the LM?
 – Cost of an error: Explicit confirmation before moving money or booking flights
Rejection

- e.g., VoiceXML “nomatch”
- “I’m sorry, I didn’t understand that.”
- Reject when:
 - ASR confidence is low
 - Best interpretation is semantically ill-formed
- Option: 4-tiered level of confidence:
 - Below confidence threshold, reject
 - Above threshold, explicit confirmation
 - If even higher, implicit confirmation
 - Even higher, no confirmation
DA Detection Example: Correction Detection

• Despite clever confirmation/rejection strategies, dialogue systems still make mistakes
• If system misrecognizes an utterance, and either
 – Rejects
 – Via confirmation, displays its misunderstanding
• Then user has a chance to make a correction
 – Repeat themselves
 – Rephrasing
 – Saying “no” to the confirmation question.
Learning from Human Behavior (Krahmer et al ’01)

- Learning from human behavior
 - ‘go on’ and ‘go back’ signals in grounding situations (implicit/explicit verification)
 - Positive: short turns, unmarked word order, confirmation, answers, no corrections or repetitions, new info
 - Negative: long turns, marked word order, disconfirmation, no answer, corrections, repetitions, no new info
– Hypotheses supported but…
 • Can these cues be identified automatically?
 • How might they affect the design of SDS?
Corrections

• Unfortunately, corrections are harder to recognize than normal sentences
 – Swerts et al (2000): Corrections misrecognized twice as often (in terms of WER) as non-corrections
 – Why?
 • Prosody seems to be largest factor: hyperarticulation
 • Example from Liz Shriberg
 – “NO, I am DE-PAR-TING from Jacksonville”
 • Hyperarticulation
A Labeled dialogue (Swerts et al)

<table>
<thead>
<tr>
<th>Turn</th>
<th>Corr Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>On which day of the week do you want to leave?</td>
</tr>
<tr>
<td>S</td>
<td>Sorry, I didn’t hear anything from you. Please tell me your departure date</td>
</tr>
<tr>
<td>U</td>
<td>Um tomorrow</td>
</tr>
<tr>
<td>S</td>
<td>You can say the departure date. For example, you can say ’today’ or ’tomorrow’. Or you can say ’Monday’, ’Tuesday’, ’Wednesday’...</td>
</tr>
<tr>
<td>U</td>
<td>Tomorrow</td>
</tr>
<tr>
<td>S</td>
<td>You can say the departure date. For example, you can say ’today’ or ’tomorrow’. Or you can say ’Monday’, ’Tuesday’, ’Wednesday’...</td>
</tr>
<tr>
<td>U</td>
<td>Saturday</td>
</tr>
<tr>
<td>S</td>
<td>Do you want to leave on Saturday?</td>
</tr>
<tr>
<td>U</td>
<td>Yes</td>
</tr>
<tr>
<td>S</td>
<td>What time do you want to leave?</td>
</tr>
<tr>
<td>U</td>
<td>Eight o’clock A M</td>
</tr>
<tr>
<td>S</td>
<td>Do you want to leave around ten o’clock p-m</td>
</tr>
<tr>
<td>U</td>
<td>Eight o’clock</td>
</tr>
<tr>
<td>S</td>
<td>Do you want to leave around ten o’clock p-m</td>
</tr>
<tr>
<td>U</td>
<td>No</td>
</tr>
<tr>
<td>S</td>
<td>What time do you want to leave?</td>
</tr>
<tr>
<td>U</td>
<td>Eight o’clock A M</td>
</tr>
</tbody>
</table>
Distribution of Correction Types

<table>
<thead>
<tr>
<th></th>
<th>Add</th>
<th>Add/Omit</th>
<th>Omit</th>
<th>Par</th>
<th>Rep</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>8%</td>
<td>2%</td>
<td>32%</td>
<td>19%</td>
<td>39%</td>
</tr>
<tr>
<td>After Misrec</td>
<td>7%</td>
<td>3%</td>
<td>40%</td>
<td>18%</td>
<td>32%</td>
</tr>
<tr>
<td>After Rej</td>
<td>6%</td>
<td>0%</td>
<td>7%</td>
<td>28%</td>
<td>59%</td>
</tr>
</tbody>
</table>
Machine Learning to Detect User Corrections

- Build classifiers using features like
 - Lexical information (words “no”, “correct”, “I don’t”, swear words)
 - Prosodic features (various increases in F0 range, pause duration, and word duration that correlation with hyperarticulation)
 - Length
 - ASR confidence
 - LM probability
 - Dialogue features (e.g., repetitions)
But….

• What to do when you recognize a user is trying to correct the system?
Summary

• Dialogue Acts and Information State
• Dialogue Acts
 – Ambiguities and disambiguation
• Dialogue Acts: Recognition
 – ML approaches to DA classification
• Dialogue Acts: Generation
 – Confirmation Strategies
 – Rejections
• Dialogue Acts: Detecting Corrections
Next

• Evaluating Spoken Dialogue Systems