Back-End Synthesis and Evaluation

Julia Hirschberg
CS 4706
(*Thanks to Dan and Jim)
Outline

- Waveform Generation
 - Diphones
 - Unit Selection
 - HMM Synthesis
- TTS Evaluation
 - Objective Measures
 - Subjective Measures
Modern TTS systems

- 1970’s
 - Joe Olive 1977 concatenation of linear-prediction diphones
 - Speak and Spell
- 1980’s
 - 1979 MIT MITalk (Allen, Hunnicut, Klatt)
- 1990’s-present
 - Diphone synthesis
 - Unit selection synthesis
 - HMM synthesis
Architectures of Modern Synthesis

• **Articulatory Synthesis:**
 – Model movements of articulators and acoustics of vocal tract

• **Formant Synthesis:**
 – Start with acoustics, create rules/filters to create each formant

• **Concatenative Synthesis:**
 – Use databases of stored speech to assemble new utterances.

• **HMM Synthesis**
Formant Synthesis

- Were the most common commercial systems while computers were relatively underpowered.
- 1979 MIT MITalk (Allen, Hunnicut, Klatt)
- 1983 DECTalk system 🎧
- The voice of Stephen Hawking
Concatenative Synthesis

- All current commercial systems.
- Diphone Synthesis
 - Units are diphones; middle of one phone to middle of next.
 - Why? Middle of phone is steady state.
 - Record 1 speaker saying each diphone
- Unit Selection Synthesis
 - Larger units
 - Record 10 hours or more, so have multiple copies of each unit
 - Use search to find best sequence of units
TTS Demos (all are Unit-Selection)

• Festival

• Cepstral
 – http://www.cepstral.com/cgi-bin/demos/general

• IBM
How do we get from Text to Speech?

- TTS “Backend” only covers the segments+f0+duration to waveform part
- A full system needs to go all the way from random text to sound
Two steps

- PG&E will file schedules on April 20.
- TEXT ANALYSIS: Text into intermediate representation:

<table>
<thead>
<tr>
<th>P</th>
<th>G</th>
<th>AND</th>
<th>E</th>
<th>WILL</th>
<th>FILE</th>
<th>SCHEDULES</th>
<th>ON</th>
<th>APRIL</th>
<th>L-L%</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>iy</td>
<td>jh</td>
<td>iy</td>
<td>ae</td>
<td>n</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- WAVEFORM SYNTHESIS: From the intermediate representation into waveform

3/10/2010
The Hourglass

PG&E will file schedules on April 20.

Text Analysis

Text Normalization

Phonetic Analysis

Prosodic Analysis

Waveform Synthesis

Unit Selection

Unit Database
Waveform Synthesis

• Given:
 – String of phones
 – Prosody
 • Desired F0 for entire utterance
 • Duration for each phone
 • Stress value for each phone, possibly accent value

• Generate:
 – Waveforms
Diphone TTS Architecture

• Training:
 – Choose units (kinds of diphones)
 – Record 1 speaker saying 1 example of each diphone
 – Mark the boundaries of each diphone,
 • Cut each diphone out to create a diphone database

• Synthesizing an utterance,
 – Select relevant set of diphones from database
 – Concatenate them in order, doing minor signal processing at boundaries
 – Use signal processing techniques to change prosody (F0, energy, duration) of sequence
Diphones

• Where is the stable region?
Diphones

• Middle of phone more stable than edges
• Need $O(\text{phone}^2)$ number of units
 – Some phone-phone sequences don’t exist
 – ATT (Olive et al.’98) system had 43 phones
 • 1849 possible diphones
 • Phonotactics: ([h] only occurs before vowels), don’t need to keep diphones across silence
 • Only 1172 actual diphones
 – But…may want to include stress or accent differences, consonant clusters, etc., so may need more
 – Requires much knowledge of phonetics in design
• Database relatively small (by today’s standards)
 – Around 8 megabytes for English (16 KHz 16 bit)
Voice

• Speaker
 – Called the **voice talent**
 – **How to choose?**

• Diphone database
 – Called a **voice**
 – Modern TTS systems have multiple voices
Prosodic Modification

• Modifying pitch and duration *independently*
• Changing sample rate modifies both:
 ‒ Chipmunk speech
• **Duration**: duplicate/remove parts of the signal
• **Pitch**: resample to change pitch
Speech as Short Term signals
Duration modification

• Duplicate/remove short term signals
Duration modification

• Duplicate/remove short term signals
Pitch Modification

- Move short-term signals closer together/further apart: more cycles per sec means higher pitch and vice versa
- Add frames as needed to maintain desired duration
TD-PSOLA ™

- Time-Domain Pitch Synchronous Overlap and Add
- Patented by France Telecom (CNET)
- Epoch detection and windowing
- Pitch-synchronous
- Overlap-and-add
- Very efficient
- Can modify Hz up to two times or by half
Unit Selection Synthesis

• Generalization of the diphone intuition
 – Larger units
 • From diphones to sentences
 – Record many copies of each unit
 • E.g. 10 hours of speech instead of 1500 diphones
 (a few minutes of speech)
Unit Selection Intuition

• Given a large labeled database, find the unit that best matches the desired synthesis specification

• What does “best” mean?
 – **Target cost**: Find closest match in terms of
 • Phonetic context
 • F0, stress, phrase position
 – **Join cost**: Find best join with neighboring units
 • Matching formants + other spectral characteristics
 • Matching energy
 • Matching F0
Targets and Target Costs

• Target cost $T(ut,st)$: How well does the target specification st match the potential unit in the database ut?

• Goal: find the unit \textit{least unlike} the target

• Examples of labeled diphone midpoints
 – /ih-t/ +stress, phrase internal, high F0, content word
 – /n-t/ -stress, phrase final, high F0, function word
 – /dh-ax/ -stress, phrase initial, low F0, word=\textit{the}

• Costs of different features have different weights
Target Costs

• Comprised of p subcosts
 – Stress
 – Phrase position
 – F0
 – Phone duration
 – Lexical identity

• Target cost for a unit:

\[C^t(t_i, u_i) = \sum_{k=1}^{p} w_k^t C_k^t(t_i, u_i) \]
Join (Concatenation) Cost

• Measure of smoothness of join between two database units (target irrelevant)
• Features, costs, and weights
• Comprised of p subcosts:
 – Spectral features
 – F0
 – Energy
• Join cost: \(C_j(u_{i-1}, u_i) = \sum_{k=1}^{p} w_k C_k(u_{i-1}, u_i) \)
Total Costs

- Hunt and Black 1996
- We now have weights (per phone type) for features set between target and database units
- Find best path of units through database that minimize:

\[
C(t_1^n, u_1^n) = \sum_{i=1}^{n} C^{\text{target}}(t_i, u_i) + \sum_{i=2}^{n} C^{\text{join}}(u_{i-1}, u_i)
\]

\[
\hat{u}_1^n = \arg\min_{u_1, \ldots, u_n} C(t_1^n, u_1^n)
\]

- Standard problem solvable with Viterbi search with beam width constraint for pruning
Unit Selection Summary

• Advantages
 – Quality is far superior to diphones: fewer joins, more choices
 – Natural prosody selection sounds better

• Disadvantages:
 – Quality can be very bad when no good match in database
 • HCI problem: mix of very good and very bad is quite annoying
 – Synthesis is computationally expensive
 – Can’t synthesize everything you want. e.g.
 • Diphone technique can vary emphasis
 • Unit selection can give result that conveys wrong meaning
New Trend

• Problems with Unit Selection Synthesis
 – Can’t modify signal
 • Mixing modified and unmodified sounds unpleasant
 • But database often doesn’t have exactly what you want
 • Solution: HMM (Hidden Markov Model) Synthesis
 – Won recent TTS bakeoff
 • Sounds less natural to researchers but naïve subjects preferred it
 • Has the potential to improve over both diphone and unit selection
Tokuda et al ’02
HMM Synthesis

- Unit selection (Roger)
- HMM (Roger)

- Unit selection (Nina)
- HMM (Nina)
TTS Evaluation

- Intelligibility Tests
- Mean Opinion Scores
- Preference Tests
Intelligibility Tests

• Diagnostic Rhyme Test (DRT)
 – Listening test
 – Listeners choose between two words differing by a single phonetic feature (voicing, nasality, sustenation, sibilation)
 – DRT: 96 rhyming pairs
 • Dense/tense, bond/pond, …
 – Subject hears dense, chooses either dense or tense
 – % of correct answers is intelligibility score
 – Problem: Only tests single word synthesis
• Modified DRT:
 – 300 words, 50 sets of 6 words (went, sent, bent, tent, dent, rent)
 – Embedded in carrier phrases:
 • Now we will say dense again
• Mean Opinion Score
 – Have listeners rate output on a scale from 1 (bad) to 5 (excellent)
• Preference tests:
 – Reading addresses out loud, reading news text, using two different systems or systems against human voice
 – Do a preference test (prefer A, prefer B)
Next Class

• Speech Recognition Overview
• HW 4 due: Can you come up with ways to evaluate TTS systems better?
• Happy Spring Break