ASR Evaluation

Julia Hirschberg CS 4706

Outline

- Intrinsic Methods
 - Transcription Accuracy
 - Word Error Rate
 - Automatic methods, toolkits
 - Limitations
 - Concept Accuracy
 - Limitations
- Extrinsic Methods

Evaluation

- How to evaluate the 'goodness' of a word string output by a speech recognizer?
- Terms:

Evaluation

- How to evaluate the 'goodness' of a word string output by a speech recognizer?
- Terms:
 - ASR hypothesis: ASR output
 - Reference transcription: ground truth what was actually said

Transcription Accuracy

- Word Error Rate (WER)
 - Minimum Edit Distance: Distance in words between the ASR hypothesis and the reference transcription
 - Edit Distance: =

(Substitutions+Insertions+Deletions)/N

- For ASR, usually all weighted equally but different weights can be used to minimize difference types of errors
- WER = Edit Distance * 100

WER Calculation

• Word Error Rate =

100 (Insertions+Substitutions + Deletions)

Total Word in Correct Transcript

Alignment example:

- REF: portable **** PHONE UPSTAIRS last night so
- HYP: portable FORM OF STORES last night so

Eval I S S

WER = 100 (1+2+0)/6 = 50%

• Word Error Rate =

100 (Insertions+Substitutions + Deletions)

Total Word in Correct Transcript Alignment example:

REF: portable **** phone upstairs last night so *** HYP: preferable form of stores next light so far Eval S I S S S S I WER = 100(1+5+1)/6 = 117%

NIST sctk-1.3 scoring softare: Computing WER with sclite

- http://www.nist.gov/speech/tools/
- Sclite aligns a hypothesized text (HYP) (from the recognizer) with a correct or reference text (REF) (human transcribed)

id: (2347-b-013)

Scores: (#C #S #D #I) 9312

- REF: was an engineer SO I i was always with **** MEN UM and they
- HYP: was an engineer ** AND i was always with THEM THEY ALL THAT and they
- Eval: DS IISS

Sclite output for error analysis

(972) CONFUSION PAIRS Total With $\geq 1 \text{ occurances (972)}$ 1: $6 \rightarrow (\text{hesitation}) ==> \text{ on }$ 2: $6 \to \text{the} => \text{that}$ 3: 5 -> but ==> that 4: 4 -> a ==> the 5: $4 \rightarrow four ==> for$ 6: $4 \rightarrow in ==> and$ 7: 4 -> there ==> that 8: $3 \rightarrow (\text{hesitation}) ==> \text{ and }$ 9: $3 \rightarrow ($ %hesitation) ==> the 10: 3 -> (a-) => i 11: 3 -> and ==> i 12: $3 \rightarrow \text{and} ==> \text{in}$ 13: 3 -> are ==> there 14: 3 -> as ==> is 15: $3 \rightarrow have ==> that$

16: $3 \rightarrow is ==> this$

Sclite output for error analysis

- 17: 3 -> it ==> that
- 18: $3 \rightarrow \text{mouse} => \text{most}$
- 19: 3 -> was ==> is
- 20: 3 -> was ==> this
- 21: 3 -> you ==> we
- 22: 2 -> (%hesitation) ==> it
- 23: 2 -> (%hesitation) ==> that
- 24: 2 -> (%hesitation) ==> to
- 25: 2 -> (%hesitation) ==> yeah
- 26: 2 -> a ==> all
- 27: 2 -> a ==> know
- 28: 2 -> a ==> you
- 29: 2 -> along ==> well
- 30: 2 -> and ==> it
- 31: 2 -> and ==> we
- 32: 2 -> and ==> you
- 33: 2 -> are ==> i
- 34: 2 -> are ==> were

Other Types of Error Analysis

- What speakers are most often misrecognized (Doddington '98)
 - Sheep: speakers who are easily recognized
 - Goats: speakers who are really hard to recognize
 - Lambs: speakers who are easily impersonated
 - Wolves: speakers who are good at impersonating others

- What (context-dependent) phones are least well recognized?
 - Can we predict this?
- What words are most confusable (confusability matrix)?
 - Can we predict this?

Are there better metrics than WER?

- WER useful to compute transcription accuracy
- But should we be more concerned with meaning ("semantic error rate")?
 - Good idea, but hard to agree on approach
 - Applied mostly in spoken dialogue systems, where semantics desired is clear
 - What ASR applications will be different?
 - Speech-to-speech translation?
 - Medical dictation systems?

Concept Accuracy

- Spoken Dialogue Systems often based on recognition of Domain Concepts
- Input: I want to go to Boston from Baltimore on September 29.
- Goal: Maximize concept accuracy (total number of domain concepts in reference transcription of user input)

Concept	Value
Source City	Baltimore
Target City	Boston
Travel Date	Sept. 29

- CA Score: How many domain concepts were correctly recognized of total N mentioned in reference transcription
 - Reference: I want to go from Boston to Baltimore on September 29
 - Hypothesis: Go *from* Boston *to* Baltimore on December 29
 - 2 concepts correctly recognized/3 concepts in ref transcription * 100 = 66% Concept Accuracy
- What is the WER?
 - 3 Ins+2 Subst+0Del/11 * 100 = 45% WER (55% Word Accuracy)

Sentence Error Rate

- Percentage of sentences with at least one error
 - Transcription error
 - Concept error

Which Metric is Better?

- Transcription accuracy?
- Semantic accuracy?

Next Class

• Human speech perception