Statistical Parsing



A Context-Free Grammar

S = NP VP
VP = Vi

VP = Vt NP
VP = VP PP
NP = DT NN
NP = NP PP
PP = P NP

Vi = sleeps

Vit = saw

NN = man

NN = dog

NN = telescope
DT = the

IN = with

IN = In




Ambiqguity

e A sentence of reasonable length can easily have 10s, 100s,
or 1000s of possible analyses, most of which are very
Implausible

e Examples of sources of ambiguity:

— Part-of-Speech ambiguity
NNS — walks
Vi — walks
— Prepositional phrase attachment

| drove down the street in the car

— Pre-nominal modifiers
the angry car mechanic



NP VP

|

VP PP
/\ in NP
Vit PP
| /\
drove /\ the car
down NP
/\
the street
S
NP VP
I
|
Vt PP
I
drove
down NP
NP PP
/\
the street in/\

NP
PN
the car



/\

/\
| /\

|
the

angry NN
|

Car

|
NN

mechanic

D N
| /\
the N N
TN |
JJ N NN

angry NN mechanic

car



A program to promote safety in trucks and vans

There are at least 14 analyses for this noun phrase...



A Probabilistic Context-Free Grammar

S = NP VP 10 Vi = sleeps 1.0
: Vi = saw 1.0

VP = Vi 0.4 e = —
VP = Vt NP |04 N z A 05
vP = VP PP 0.2 NN = telgsco eOll
NP = DT NN |03 e .
DT = the 1.0

NP = NP PP |07 = = g
PP = P NP | 1.0 = '
IN = in 0.5

e Probability of a tree with rules; — £; is [I; P(c; — [Gi|cw)



DERIVATION RULES USED PROBABILITY

S S— NP VP 1.0
NP VP NP— DT N 0.3
DT N VP DT — the 1.0
the N VP N— dog 0.1
the dog VP VP— VB 0.4
the dog VB VB— laughs 0.5

the dog laughs

PROBABILITY=1.0x0.3x1.0x0.1 x04 x0.5

S

T

NP VP

N
DT N VB

| |
the dog laughs




Properties of PCFGs

e Say we have a sentenég set of derivations for that sentence
IS 7 (.5). Then a PCFG assigns a probability to each member
of 7(S). i.e.,we now have a ranking in order of probability

e Given a PCFG and a senteng€ewe can find

P(T
arg max P(T, 5)

using dynamic programming (e.g., a variant of the CKY
algorithm)



Overview

e \Weaknesses of PCFGs

e Heads In context-free rules

e Dependency representations of parse trees

e Two models making use of dependencies



Weaknesses of PCFGs

e Lack of sensitivity to lexical information

e Lack of sensitivity to structural frequencies



S

/\
NP VP
| T

NNP Vit NP

| | |
IBM  bought NNP

Lotus

PROB= P(S— NP VP|S) « P(NNP — I BM | NNP)
x P(VP — V NP | VP) x P(Vt — bought | Vt)

«P(NP— NNP|NP)  xP(NNP — Lotus | NNP)
X P(

NP — NNP | NP)



A Case of PP Attachment Ambiguity

(a) S

T

NP VP

| /\
NNS
|

VP PP
workers N TN
VBD NP IN NP

| | N SN
dumped NNS into DT NN

sacks a bin



(b) S

N

NP VP
NNS
| VBD NP
workers dun|1ped NP/\PP
NI|\IS IN NP

| | N
sacks into DT NN

a bhin



Rules Rules

S— NPVP S— NP VP

NP — NNS NP — NNS

VP — VP PP NP — NP PP

VP — VBD NP VP — VBD NP

NP — NNS NP — NNS

PP— IN NP PP— IN NP
(a) NP — DT NN (b) NP — DT NN

NNS — workers NNS — workers

VBD — dumped VBD — dumped

NNS — sacks NNS — sacks

IN — into IN — into

DT — a DT — a

NN — bin NN — bin

If PINP— NP PP | NP) > P(VP — VP PP | VP) then (b) is
more probable, else (a) is more probable.

Attachment decision is completely independent of the words



A Case of Coordination Ambiguity

(a) NP
NP CC NP
|
NE//&\\EP and NNS
| RN |
NNS IN NP cats

o |
dogs In NNS

houses



o e e

| |
NNS and NNS

houses cats




Rules Rules
NP — NP CC NP NP — NP CC NP
NP — NP PP NP — NP PP
NP — NNS NP — NNS
PP— IN NP PP— IN NP
NP — NNS NP — NNS

(@) | NP NNS ®) | NP NNS
NNS — dogs NNS — dogs
IN — In IN — In
NNS — houses NNS — houses
CC— and CC— and
NNS — cats NNS — cats

Here the two parses have identical rules, and therefore have
identical probability under any assignment of PCFG rule
probabilities



Structural Preferences: Close Attachment

(@) NP (b) NP
NP PP /\
NP PP
| T
/\
NN N NP Np/\pp IN NP
NP PP N|N IN NP NN
NN IN NP NN

e Example:president of a company in Africa

e Both parses have the same rules, therefore receive same
probability under a PCFG

e “Close attachment” (structure (a)) Is twice as likely in Wall
Street Journal text.



Structural Preferences: Close Attachment

John was believed to have been shot by Bill

Here the low attachment analysis (Bill does #moting contains
same rules as the high attachment analysis (Bill doebdheving,
so the two analyses receive same probability.



Heads in Context-Free Rules

Add annotations specifying the‘head” of each rule:

S = NP VP Vi = sleeps

: Vi = saw
VP = VI NN = man
VP = Vt NP NN womarn
vPb = Vb PP NN z telescope
NP = DT NN A P
NP = NP PP N =
PP = IN NP - W

IN = 1In

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional
phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun,
IN=preposition



Rules which Recover Heads:
An Example of rules for NPs

If the rule contains NN, NNS, or NNP:
Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP: Choose the leftmost NP
Else If the rule contains a JJ: Choose the rightmost JJ
Else If the rule contains a CD: Choose the rightmost CD

Else Choose the rightmost child

e.g.,
NP = DT NNP NN
NP = DT NN NNP
NP = NP PP
NP = DT JJ
NP = DT



Adding Headwords to Trees

S

T

NP VP

DIT/\NIN vt/\NP
the  lawyer quesltioned DT/\NN
tr|1e Witl’|1€SS
Y
S(questionell
NP(awye VP(questione}l
DT (e NN(Bwver /\

(| ) (|wy ) Vt(questioned) NP(witnesg

the lawyer |
questioned  prihe)  NN(witness)
| |

the withess



Adding Headwords to Trees

S(guestionejl

TN

NP(awyer) VP(questionell

DT(the) NN(lawyer) _ _
| | Vt(questioned) NP(witnesg
the lawyer |

questioned DT(the) NN(witness)
| |

the withess

e A constituent receives itseadwordrom its head child.

S = NP VP (S receives headword from VP)
VP = Vit NP (VP receives headword from Vt)
NP = DT NN (NP receives headword from NN)



Adding Headtags to Trees

S(guestioned, it

NP(awyer, NN VP(questioned, Wt
/\
DT NN
| | Vit NP(witness, NN
the lawyer | N

questioned DT NN
| |

the withess

e Also propagatgart-of-speech tagaup the trees
(We'll see soon why this is useful!)



Lexicalized PCFGs

S(questioned, Wt

NP(awyer, NN) VP(questioned, Jt
/\ /\
DT NN
| | \Yi NP(witness, NN
the lawyer | T

guestioned DT NN
| |

the withess

e In PCFGs we had rules such&s- > NP VP, with probabilities such as
P(NP VP|S)
¢ In lexicalized PCFGs we have rules such as
S(questioned, Vt) -> NP(lawer, NN) VP(questioned, Vt)
with probabilities such as
P(NP(1 awyer, NN) VP(questioned, Vt) |S(questi oned, Vt))



A Model from Charniak (1997)

S(questioned, Vt)

U P(NP(__,NN) VP | S(questioned,V})

S(questioned, Vi)

NP(__,NN) VP(questioned,Vt)
U P(lawyer| S,VP,NP,NN, questioned,Vjt)

S(questioned, Vi)

NP(awyer,NN) VP(questioned,Vt)



Smoothed Estimation

P(NP(_,NN) VP | S(questioned,V})=

A X count(S(questioned,VONP(__,NN) VP

Count(S(CuUestioned, V)

Count(S(__,Vt)ﬁN P(__, N N) VP)
+Az X Count(S(__,Vt))

e Where0 < A\, Ao < 1,and); + \o =1



Smoothed Estimation

P(lawyer| S,VP,NP,NN,questioned,Vt

Ao % count(lawyer| S,VP,NP,NN,questioned, V't
1 count(S,VP,NP,NN,questioned, Yt

1+ X Count(lawyer| S,VP,NP,NN,VI
2 Count(S,VP,NP,NN, Vi

Count(lawyeﬂ NN)

+A3 X Count(NN)

e Where( < A1, A, Az < 1, and\; + X+ X3 =1



P(NP(lawyer,NN) VP| S(questioned, V)=

count(S(questioned,VONP(__,NN) VP

(A1 % count(S(questioned, Vi)
C’ount(S(__,Vt)—>N P(__,NN) VP
+)\2 % Count(S(__,Vt)) )

x (A x Counlawyer| S,VP,NP,NN questioned, vt
: count(S,VP,NP,NN,questioned, Vi

o X Count(lawyer| S,VP,NP,NN,VI
2 Count(S,VP,NP,NN,VI

Count(lawyer| NN) )

+)\3 % Count(N N)



Motivation for Breaking Down Rules

e First step of decomposition of (Charniak 1997):
S(questioned,Vt)

U P(NP(_,NN) VP | S(questioned,V})

S(questioned,Vt)

TN

NP(__,NN) VP(questioned,Vt)

e Relies on counts of entire rules

e These counts argparse

— 40,000 sentences from Penn treebank have 12,409 rules.

— 15% of all test data sentences contain a rule never seen in training



Motivation for Breaking Down Rules

Rule Count|| No. of Rules| Percentage| No. of Rules| Percentage
by Type by Type by token by token

1 6765 54.52 6765 0.72
2 1688 13.60 3376 0.36
3 695 5.60 2085 0.22
4 457 3.68 1828 0.19
5 329 2.65 1645 0.18
6..10 835 6.73 6430 0.68
11... 20 496 4.00 7219 0.77
21 ... 50 501 4.04 15931 1.70
51...100 204 1.64 14507 1.54
> 100 439 3.54 879596 93.64

Statistics for rules taken from sections 2-21 of the treebank
(Table taken from my PhD thesis).




Modeling Rule Productions as Markov Processes

e Step 1. generate category of head child

S(told,V[6])

4

S(told, V[6])

VP(toI‘d,V[G])

P,(VP | S, told, V[6]



Modeling Rule Productions as Markov Processes

e Step 2: generate left modifiers in a Markov chain

S(told, V[6])
22 VP(told,V[6])
U

S(told, V[6])

NP(Hillary,NNP) VP(told,V[6])

P,(VP | S, told, V[6]) x P,(NP(Hillary,NNP) | S,VP,told,V[6],LEFT)



Modeling Rule Productions as Markov Processes

e Step 2: generate left modifiers in a Markov chain

S(told,V[6])

77 NP(Hillary,NNP) VP(told,V[6])

U
S(told, V[6])

NP (yesterday,NN) NP(Hillary,NNP) VP(told,VI[6])

P, (VP | S, told, V[6]) x P;(NP(Hillary,NNP)| S,VP,told,V[6],LEFT) x
P;(NP(yesterday,NN) S,VP,told,V[6],LEFT)



Modeling Rule Productions as Markov Processes

e Step 2: generate left modifiers in a Markov chain

S(told,V[6])
?7? NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6])
Y
S(told,V[6])
STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6])

P, (VP | S, told, V[6]) x P;(NP(Hillary,NNP)| S,VP,told,V[6],LEFT) x
Pi(NP(yesterday,NN) S,VP,told,V[6],LEFT) x P;(STOP| S,VP,told,V[6],LEFT)



Modeling Rule Productions as Markov Processes

e Step 3: generate right modifiers in a Markov chain

S(told,V[6])
STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6]) ?7?
Y
S(told,VI[6])
STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6]) STOP

P, (VP | S, told, V[6]) x P;(NP(Hillary,NNP)| S,VP,told,V[6],LEFT) x
P,(NP(yesterday,NN) S,VPtold,V[6],LEFT) x P,;(STOP| S,VP,told,V[6],LEFT) x
P,(STOP| S,VP,told,V[6],RIGHT)



A Refinement: Adding aDistanceVariable

e A = 1 if position is adjacent to the head.

S(told, V[6])
22 VP(told,V[6])

|

S(told,V[6])

NP(Hillary,NNP) VP(told,V[6])

P,(VP| S, told, V[6]) x
P,(NP(Hillary,NNP)| S,VP,told,V[6],LEFTA = 1)



A Refinement: Adding aDistanceVariable

e A = 1 if position is adjacent to the head.

S(told,V[6])

77 NP(Hillary,NNP) VP(told,V[6])

U
S(told, V[6])

NP (yesterday,NN) NP(Hillary,NNP) VP(told,VI[6])

P, (VP | S, told, V[6]) x P;(NP(Hillary,NNP)| S,VP,told,V[6],LEFT) x
P;(NP(yesterday,NN) S,VP,told,V[6],LEFTA = 0)



The Final Probabilities

S(told,V[6])

STOP NP(yesterday,NN) NP (Hillary,NNP) VP(told,V[6]) SPO

P, (VP | S, told, V[6]) x

P, (NP(Hillary,NNP)| S,VP,told,V[6],LEFTA = 1)x
P;(NP(yesterday,NN) S,VP,told,V[6],LEFTA = 0) x
P;(STOP| S,VP,told,V[6],LEFTA = 0) x

P;(STOP| S,VP,told,V[6],RIGHTA = 1)



Adding the Complement/Adjunct Distinction

S

/\
NP VP

subject V S(told,V[6])

verb

NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6])

| |
NN NNP V[6]

| | |
yesterday Hillary told

e Hillary is the subject
e yesterdays a temporal modifier
e But nothing to distinguish them.



Adding the Complement/Adjunct Distinction

VP

TN
V NP

‘ ‘ VP(told,V[6])
verb object

V[6] NP (BIill,NNP) NP(yesterday,NN) SBAR(that,COMP)
| | | |
told NNP NN e
| |
Bill yesterday

e Bill is the object
e yesterdays a temporal modifier
e But nothing to distinguish them.



Complements vs. Adjuncts

e Complements are closely related to the head they modify,
adjuncts are more indirectly related

e Complements are usually arguments of the thing they modify
yesterday Hillary told . . = Hillary is doing thetelling

e Adjuncts add modifying information: time, place, manner. et
yesterday Hillary told . . = yesterdays atemporal modifier

e Complements are usually required, adjuncts are optional

yesterday Hillary told . . (grammatical)
vs. Hillary told. . . (grammatical)
vS. yesterday told. . (ungrammatical)



Adding Tags Making the Complement/Adjunct Distinction

S S
/\
NP.C VP NP/\VP
) | | |
subject V modifier V
| |
verb verb

S(told, V[6])

NP (yesterday,NN) NP-C(Hillary,NNP) VP(told,VI[6])

| |
NN NNP VI6]

| | |
yesterday Hillary told



Adding Tags Making the Complement/Adjunct Distinction

VP VP

/\
V. NP-C VANP

verb object verb modifier

VP(told,V[6])

V[6] NP-C(Bill,NNP) NP(yesterday,NN) SBAR-C(that,COMP)
| | | |
told NNP NN .

| |
Bill yesterday



Adding Subcategorization Probabilities

e Step 1. generate category of head child

S(told, V[6])

4

S(told, V[6])

VP(toI‘d,V[G])

P,(VP | S, told, V[6))



Adding Subcategorization Probabilities

e Step 2: choose leflubcategorization frame

S(told, V[6])

VP(toI‘d,V[G])

4

S(told, V[6])

VP(toI‘d,V[6])

(NP-C}

P(VP | S, told, V[6]) x P.({NP-C} | S, VP, told, V[6)



e Step 3: generate left modifiers in a Markov chain

S(told, V[6])

72 VP(told,V[6])
{NP-C}

|

S(told,V[6])

NP-C(Hillary,NNP) VP(told,V[6])
{}

P, (VP | S, told, V[6]) x P,.({NP-C} | S, VP, told, V[6) x
P, (NP-C(Hillary,NNP)| S,VP,told,V[6],LEFT{NP-C})



S(told,V[6])

77 NP-C(Hillary,NNP) VP(told,V[6])
{}

J
S(told, V[6])

NP (yesterday,NN) NP-C(Hillary,NNP) VP(told,VI[6])
i

P, (VP | S, told, V[6]) x P,.({NP-C} | S, VP, told, V[6)
P;(NP-C(Hillary,NNP)| S,VP,told,V[6],LEFT{NP-C}) x
P;(NP(yesterday,NN) S,VP,told,V[6],LEFT{ })



S(told, V[6])

?7? NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V[6])
{7}
Y
S(told,V[6])
STOP NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V[6])
{}
Py (VP | S, told, V[6]) x P.({NP-C} | S, VP, told, V[6)
P;(NP-C(Hillary,NNP)| S,VP,told,V[6],LEFT{NP-C}) x
P;(NP(yesterday,NN) S,VP,told,V[6],LEFT{}) x
P;(STOP| S,VP,told,V[6],LEFT{ })



The Final Probabilities

S(told,V[6])

STOP NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V[6]) SP

P.(VP| S, told, V[6]) x

P.({NP-C} | S, VP, told, V[6) x

P,(NP-C(Hillary,NNP)| S,VP,told,V[6],LEFTA = 1,{NP-C})x
P;(NP(yesterday,NN) S,VP,told,V[6],LEFTA = 0,{}) x
P,(STOP| S,VP,told,V[6],LEFTA = 0,{})x

P.({}|'S, VP, told, V[6) x
P,(STOP| S,VP,told,V[6],RIGHTA = 1,{})



Another Example

VP(told,V[6])

V[6](told, V[6]) NP-C(BIllLNNP)  NP(yesterday,NN) SBAR-C(th&OMP)

Py (V[6] | VP, told, V[6]) x

P.({} | VP, V[6], told, V[6]) x

P;(STOP| VPV[6],told,V[6],LEFT,A = 1,{}) %

P..({NP-C, SBAR-G | VP, V[6], told, V[6]) x

P;(NP-C(BIll,NNP) | VP,V[6],told,V[6],RIGHT,A = 1,{NP-C, SBAR-G) x
P;(NP(yesterday,NN) VP,V[6],told,V[6],RIGHT,A = 0,{ SBAR-C}) x
P;(SBAR-C(that, COMP) VP,V[6],told,V[6],RIGHT,A = 0,{ SBAR-C}) x
P;(STOP| VP,V[6],told,V[6],RIGHT,A = 0,{})



Summary

¢ |dentify heads of ruless> dependency representations

e Presented two variants of PCFG methods applied to
lexicalized grammars

— Break generation of rule down into small (markov
process) steps

— Build dependencies back up (distance, subcategorization)



Evaluation: Representing Trees as Constituents

S
NP VP
/\
DT NN T
| | Vit NP
| /\

the lawyer .
i questioned DT~ NN

the witnhess

Label Start Point End Point
NP 1 2
NP 4 5
VP 3 5
S 1 5



Precision and Recall

Label  Start Point - End Poin Label Start Point End Point
NP 1 2 NP 1 5
NP 4 5
NP 4 5
NP 4 8
PP 6 8
PP 6 8
NP 7 8
NP 7 8
VP 3 8
VP 3 8 S 1 g
S 1 8
e G =number of constituents inold standare 7
e P =number inparse output 6
e C =number correct=6
C 6 . C 6
Recall= 100% x — = 100% x — Precision= 100% x — = 100% x —

G 7 P 6



Results

Method Recall | Precision
PCFGs (Charniak 97) 70.6% | 74.8%
Conditional Models — Decision Trees (Magerman 9334.0% | 84.3%
Lexical Dependencies (Collins 96) 85.3% | 85.7%
Conditional Models — Logistic (Ratnaparkhi 97) 86.3% | 87.5%
Generative Lexicalized Model (Charniak 97) 86.7% | 86.6%
Model 1 (no subcategorization) 87.5% | 87.7%
Model 2 (subcategorization) 88.1% | 88.3%




Effect of the Different Features

MODEL | A V R P

Modell | NO | NO || 75.0%| 76.5%
Modell | YES | NO || 86.6% | 86.7%
Modell | YES | YES | 87.8% | 88.2%
Model2 | NO | NO || 85.1%| 86.8%
Model 2 | YES | NO || 87.7%| 87.8%
Model 2 | YES | YES || 88.7% | 89.0%

Results on Section 0 of the WSJ Treebank. Model 1 has no subcategorization,
Model 2 has subcategorization. A = YES, V = YES mean that the
adjacency/verb conditions respectively were used in the distance melddare.
recall/precision.



Weaknesses of Precision and Recall

Label Start Point End Point : :
Label Start Point End Point
NP 1 2
NP 1 2
NP 4 5
NP 4 5
NP 4 8
PP 5] 8
PP 5] 8
NP 7 8
NP 7 8
VP 3 8
VP 3 8 S 1 5
S 1 8

NP attachment:
(S (NP The men) (VP dumped (NP (NP sacks) (PP of (NP the substance)))))

VP attachment:
(S (NP The men) (VP dumped (NP sacks) (PP of (NP the substance))))



NP-C(Hillary,NNP)

|
NNP

I
Hillary

(told
(told
(told
(that
(was
(was

S(told,V[6])

V[6](toid,V[6])

V[|6]

tolld
. told
V[6] Hillary
V[6] Clinton
V[6] that
COMP was
Vit she
Vit president

VP(told,V[6])
NP-C(Clinton,NNP) SBAR-C(that, COMP)
erup /\
Clir|1ton COMP S-C
th T
NP-C(she,PRP) VP(was,Vt)
PlRP /\
| Vit NP-C(president,NN)
she W|as NIN
president
v[e] TOP S — SPECIAL)
NNP S VP NP-C LEFT)
NNP VP V[6] NP-C RIGHT)
COMP VP V[6]  SBAR-C RIGHT)
Vit SBAR-C COMP S-C RIGHT)
PRP  S-C VP NP-C LEFT)

NN VP Vit NP-C RIGHT)



Dependency Accuracies

e All parses for a sentence withwords have: dependencies
Report a single figure, dependency accuracy

e Model 2 with all features scores 88.3% dependency accuracy
(91% if you ignore non-terminal labels on dependencies)

e Can calculate precision/recall on particular dependéynoys
e.g., look at all subject/verb dependencies
all dependencies with lab&s,VP,NP-C,LEFT)

number of subject/verb dependencies correct

Recall =rumper of subject/verb dependencies in gold standard

Precision = number of subject/verb dependencies correct
“number of subject/verb dependencies In parser’s outp




R CP P Count | Relation Rec Prec
1 | 29.65| 29.65| 11786 | NPB TAG TAG L 94.60 | 93.46
2 | 40.55| 1090 | 4335 | PP TAG NP-C R 94.72 | 94.04
3 | 48.72| 8.17 | 3248 | S VP NP-C L 95.75 | 95.11
4 | 54.03| 531 | 2112 | NP NPB PP R 84.99 | 84.35
5 [ 5930 527 | 2095 | VP TAG NP-C R 92.41 | 92.15
6 | 64.18| 4.88 | 1941 | VP TAG VP-C R 97.42 | 97.98
7 | 68.71| 453 | 1801 | VP TAG PP R 83.62 | 81.14
8 | 73.13| 442 | 1757 | TOP TOP S R 96.36 | 96.85
9 | 7453 | 1.40 558 | VP TAG SBAR-C R 94.27 | 93.93
10 | 75.83| 1.30 518 | QP TAG TAG R 86.49 | 86.65
11 | 77.08| 1.25 495 NP NPB NP R 74.34 | 75.72
12 | 78.28 | 1.20 477 | SBAR TAG S-C R 94.55 | 92.04
13 | 79.48 | 1.20 476 NP NPB SBAR R 79.20 | 79.54
14 | 80.40| 0.92 367 | VP TAG ADVP R 7493 | 78.57
15 | 81.30| 0.90 358 NPB TAG NPB L 97.49 | 92.82
16 | 82.18 | 0.88 349 | VP TAG TAG R 90.54 | 93.49
17 | 82.97| 0.79 316 | VP TAG SG C R 92.41 | 88.22

Accuracy of the 17 most frequent dependency types in section 0 of the treebank,
as recovered by model 2. R =rank; CP = cumulative percentage; P = percentage,;
Rec = Recall; Prec = precision.






Type Sub-type Description | Count | Recall | Precision
Complement to a verb S VP NP-C L Subject 3248 | 95.75 95.11
VP TAG NP-C R Object 2095 | 92.41 92.15
6495 = 16.3% of all casey| VP TAG SBAR-C R 558 94.27 93.93
VP TAG SG- C R 316 92.41 88.22
VP TAG S-C R 150 74.67 78.32
SV SCL 104 93.27 78.86
SV SGCL 14 78.57 68.75
TOTAL 6495 | 93.76 92.96
Other complements PP TAG NP-C R 4335 | 94.72 94.04
VP TAG VP-C R 1941 | 97.42 97.98
7473 =18.8% of all case SBAR TAG S-C R 477 94.55 92.04
SBAR VHNP SG C R 286 90.56 90.56
PP TAG SGC R 125 94.40 89.39
SBAR WHADVP S-C R 83 97.59 98.78
PP TAG PP-C R 51 84.31 70.49
SBAR VNP S-C R 42 66.67 84.85
SBAR TAG SG- C R 23 69.57 69.57
PP TAG S-C R 18 38.89 63.64
SBAR VHPP S-C R 16 100.00 | 100.00
S ADJP NP-C L 15 46.67 46.67
PP TAG SBAR-C R 15 100.00 88.24
TOTAL 7473 | 94.47 94.12




Type Sub-type Description | Count | Recall | Precision
PP modification NP NPB PP R 2112 | 84.99 84.35
VP TAG PP R 1801 | 83.62 81.14
4473 =11.2% of allcasey S VP PP L 287 90.24 81.96
ADJP TAG PP R 90 75.56 78.16
ADVP TAG PP R 35 68.57 52.17
NP NP PP R 23 0.00 0.00
PP PP PP L 19 21.05 26.67
NAC TAG PP R 12 50.00 100.00
TOTAL 4473 | 82.29 81.51
Coordination NP NP NP R 289 55.71 53.31
VP VP VP R 174 74.14 72.47
763 =1.9% of all cases SSSR 129 72.09 69.92
ADJP TAG TAG R 28 71.43 66.67
VP TAG TAG R 25 60.00 71.43
NX NX NX R 25 12.00 75.00
SBAR SBAR SBAR R 19 78.95 83.33
PP PP PP R 14 85.71 63.16
TOTAL 763 61.47 62.20




Type Sub-type Description Count | Recall | Precision
Mod’'n within BaseNPs NPB TAG TAG L 11786 | 94.60 93.46
NPB TAG NPB L 358 97.49 92.82
12742 = 29.6% of all case§ NPB TAG TAG R 189 74.07 75.68
NPB TAG ADJP L 167 65.27 71.24
NPB TAG QP L 110 80.91 81.65
NPB TAG NAC L 29 51.72 71.43
NPB NX TAG L 27 14.81 66.67
NPB QP TAG L 15 66.67 76.92
TOTAL 12742 | 93.20 92.59
Mod’n to NPs NP NPB NP R Appositive 495 74.34 75.72
NP NPB SBAR R Relative clause 476 79.20 79.54
1418 = 3.6% of all cases NP NPB VP R Reduced relative] 205 77.56 72.60
NP NPB SG R 63 88.89 81.16
NP NPB PRN R 53 45.28 60.00
NP NPB ADVP R 48 35.42 54.84
NP NPB ADJP R 48 62.50 69.77
TOTAL 1418 | 73.20 75.49




Type Sub-type Description | Count | Recall | Precision
Sentential head TOP TOP S R 1757 96.36 96.85
TOP TOP SINV R 89 96.63 94.51
1917 =4.8% of all caseg| TOP TOP NP R 32 78.12 60.98
TOP TOP SG R 15 40.00 33.33
TOTAL 1917 | 94.99 94.99
Adjunct to a verb VP TAG ADVP R 367 74.93 78.57
VP TAG TAG R 349 90.54 93.49
2242 =5.6% of all cases| VP TAG ADJP R 259 83.78 80.37
S VP ADVP L 255 90.98 84.67
VP TAG NP R 187 66.31 74.70
VP TAG SBAR R 180 74.44 72.43
VP TAG SG R 159 60.38 68.57
S VP TAG L 115 86.96 90.91
S VP SBAR L 81 88.89 85.71
VP TAG ADVP L 79 51.90 49.40
S VP PRN L 58 25.86 48.39
S VP NP L 45 66.67 63.83
S VP SG L 28 75.00 52.50
VP TAG PRN R 27 3.70 12.50
VP TAG S R 11 9.09 100.00
TOTAL 2242 | 75.11 78.44




Some Conclusions about Errors in Parsing

e “Core” sentential structure (complements, NP chunks)
recovered with over 90% accuracy.

e Attachment ambiguities involving adjuncts are resolvethwi
much lower accuracyy 80% for PP attachmenty 50 — 60%
for coordination).



