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Abstract—To minimize the amount of data-shuffling I/O that occurs between the pipeline stages of a distributed data-parallel

program, its procedural code must be optimized with full awareness of the pipeline that it executes in. Unfortunately, neither

pipeline optimizers nor traditional compilers examine both the pipeline and procedural code of a data-parallel program so

programmers must either hand-optimize their program across pipeline stages or live with poor performance. To resolve this

tension between performance and programmability, this paper describes PeriSCOPE, which automatically optimizes a

data-parallel program’s procedural code in the context of data flow that is reconstructed from the program’s pipeline topology.

Such optimizations eliminate unnecessary code and data, perform early data filtering, and calculate small derived values (e.g.,

predicates) earlier in the pipeline, so that less data—sometimes much less data—is transferred between pipeline stages.

PeriSCOPE further leverages symbolic execution to enlarge the scope of such optimizations by eliminating dead code. We

describe how PeriSCOPE is implemented and evaluate its effectiveness on real production jobs.

Index Terms—Data-parallel, data-shuffling I/O, optimization, static analysis, symbolic execution
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1 INTRODUCTION

THE performance of big data computations improves
dramatically when they are parallelized and distrib-

uted on a large number of machines to operate on parti-
tioned data [1], [2]. Such data-parallel programs involve
pipelines of computation stages where I/O intensive data
shuffling between these stages can dominate program
performance. Unfortunately, data-shuffling I/O is diffi-
cult to optimize automatically because computations at
each pipeline stage are encoded as flexible procedural
code; current pipeline optimizers treat this code as a
black box while compilers treat pipelines as black boxes
and so are unaware of the data flow between the proce-
dural code at different computation stages. The program-
mer must manually perform optimizations that require
examining both the program’s pipeline and procedural
code; e.g., to not propagate unused data or to move the
computation of smaller derived values to an earlier stage
so less data is transmitted during data shuffling. Perform-
ing these optimizations by hand is not only tedious, it
also limits code reuse from generic libraries.

So that programmers can write data-parallel programs
with reasonable performance without sacrificing program-
mability, automatic optimizations must examine both the
pipeline and procedural code of a data-parallel program.
Common logical optimizations [3], [4], [5], [6], [7] for data-
parallel programs focus on a high-level pipeline topology
that is subject to relational query-optimization techniques.
Unfortunately, at best relational components are extracted
from procedural code into a relational optimization frame-
work [8], which is limited by the inability of the relational
framework to match the expressiveness of procedural code.
We instead observe that projecting well-understood declar-
ative pipeline properties into more flexible procedural code
is intrinsically simpler than extracting declarative proper-
ties from procedural code. Such projection can then be used
to reconstruct program data flow, enabling automatic opti-
mizations of procedural code across pipeline stages that can
improve I/O performance.

This paper presents PeriSCOPE, which automatically
optimizes the procedural code of programs that run on
SCOPE [3], [9], a production data-parallel computation sys-
tem. PeriSCOPE connects the data flow of a SCOPE pro-
gram’s procedural code together by examining a high-level
declarative encoding of the program’s pipeline topology.
PeriSCOPE then applies three core compiler-like optimiza-
tions to the program. Column reduction suppresses unused
data in the pipeline based on the program’s reconstructed
data flow. Early filtering moves filtering code earlier in the
pipeline to reduce how much data is transmitted down-
stream. Finally, smart cut finds a better boundary between
pipeline stages in the data flow graph to minimize cross-
stage I/O; e.g., the code that computes a predicate from two
string values could be moved to an earlier stage. The result
is faster program execution because less data needs to be
transferred between pipeline stages.
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The above code transformation moves the code across
pipeline stages, and PeriSCOPE introduces several safety
rules to ensure its correctness, i.e., the execution results of
the job remain unchanged, which bridges our domain
knowledge of data-parallel computation to program analy-
sis and transformation. For example, a counting statement
is not allowed to be moved before data-shuffling, because
the ending count of the total records will be different due to
data-shuffling. While the traditional program analysis usu-
ally considers any value for the input data to ensure the cor-
rectness of later code transformation, PeriSCOPE adopts
symbolic execution to collect and propagate the constraints
applied to the data along the execution flow to further
enlarge the optimization scope while the safety rules always
hold. For example, a job may have an early filter on the
input data, which leads a predicate be always false for a if
statement, enabling the whole if-body dead code. Removing
such code enables more opportunities for all above optimi-
zations, i.e., column reduction, early filtering, and smart cut.

We have implemented PeriSCOPE and evaluated its
effectiveness on 33,681 real SCOPE jobs from a large pro-
duction cluster. We also evaluate end-to-end performance
comparisons on several real jobs.

The remainder of this paper is organized as follows.
Section 2 presents a sample SCOPE program to show the
potential benefits of PeriSCOPE’s optimizations. The I/O-
reduction optimizations in PeriSCOPE are described in
Section 3, including column reduction, early filtering and
smart cut. Section 4 discusses how PeriSCOPE ensures the
correctness of the optimizations, and how it leverages sym-
bolic execution to expand optimization scope. PeriSCOPE’s
implementation is covered in Section 5, followed by an
evaluation in Section 6. We survey related work in Section 7
and conclude in Section 8.

2 MOTIVATION AND OVERVIEW

2.1 A Motivated Example

We motivate PeriSCOPE by describing the pipeline-aware
optimization opportunities that are found in a sample data-
parallel program, which is adapted from a real SCOPE job.
SCOPE is a distributed data-parallel computation system
that employs a hybrid programming model where declara-
tive SQL-like code describes a program’s high-level pipeline

structure, like other similar systems such as Hive [10], Pig
[11], and DryadLINQ [6]. Fig. 1 shows the declarative code
of our sample job that is compiled into an execution pipe-
line, which we illustrate in Fig. 2.

The operators of a SCOPE pipeline manipulate a data
model of rows and columns and can be encoded as user-
defined functions of procedural code that are either defined
by the user or reused from generic libraries. A computa-
tion stage consists of one or more chained operators, and
runs on a group of machines independently with parti-
tioned data stored locally; data-shuffling phases then
connect computation stages together by transmitting
requisite data between machines. The pipeline in Fig. 2
contains two computation stages that are separated by one
data-shuffling phase according to the reduce call on line 6
in Fig. 1. SCOPE applies logical optimizations, such as
early selection, to programs according to the declarative
structure of their pipeline. For example, the filtering
clause on line 10 of Fig. 1 can be applied before data shuf-
fling; and so the Filter$GenFilter$Gen operator in the first stage of
Fig. 2 therefore includes the conditions from line 10 as
well as line 5. Such logical optimizations apply only to
the declarative code defined in Fig. 1, treating the proce-
dural code of the DefaultTextExtractorDefaultTextExtractor, PScoreReducerPScoreReducer,
and SigReportProcessorSigReportProcessor as black boxes.

The SCOPE program of Fig. 1 is easily written by
reusing two functions (DefaultTextExtractorDefaultTextExtractor and
SigReportProcessorSigReportProcessor in Fig. 4) from generic libraries
while the encoding of the custom PScoreReducerPScoreReducer func-
tion, shown in Fig. 3, is straightforward. However, the
program contains four serious I/O inefficiencies that
need to be eliminated before it is “fast enough.” First,
the ifif statement on line 7 of Fig. 3 is actually a proce-
dural filter that discards rows. Such rows can be filtered
out early so that they are not transmitted during the
data-shuffling phase, which can be accomplished by
splitting PScoreReducerPScoreReducer into two parts as encoded in
Fig. 6: a PScoreReducerPrePScoreReducerPre function that executes the
computations of lines 5-7 in Fig. 3 before data-shuffling;
and a PScoreReducerPostPScoreReducerPost that executes the rest of the
computations from the original PScoreReducerPScoreReducer function
after data-shuffling. Our sample program’s declarative
SCOPE code is updated in Fig. 5 to reflect this split,
whose pipeline is illustrated in Fig. 7.

Next, the alteredQueryalteredQuery column is transmitted only for
computing a simple predicate on line 9 of Fig. 3; the pred-
icate computation can be done before the shuffling phase
so that smaller Boolean values are transmitted instead of

Fig. 1. Declarative code that defines the pipeline of a sample SCOPE pro-
gram. Rows of typed columns (line 1) are first extracted from a log file (line 3)
using a default text extractor (line 4) and filtered based on certain conditions
(line 5). Next, the input rows are reduced with a user-defined function
PScoreReducerPScoreReducer (line 9) to produce a table with six columns (line 7)
after being filtered (line 10). Finally, the user-defined function
SigReportProcessorSigReportProcessor (line 13) is applied to the result as it is emitted (line 14).

Fig. 2. An illustration of the pipeline defined by the declarative code in
Fig. 1. The Filter$GenFilter$Gen operator is generated from the HAVINGHAVING clauses
on lines 4 and 8 of Fig. 1; other operators refer to user-defined functions.
Each directed edge represents the data flow between operators.
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strings. This is accomplished by computing the predicate
in PScoreReducerPrePScoreReducerPre on line 16 of Fig. 6 and propagating
its result as a column to PScoreReducerPostPScoreReducerPost where it is
used on line 29.

Third, the SigReportProcessorSigReportProcessor function called on line 13
of Fig. 1 uses the cvaluecvalue column, bound to its input parame-
ter, that is computed by the PScoreReducerPScoreReducer function; in con-
trast the mvaluemvalue column computed on lines 16 and 19 of
Fig. 3 is unused and therefore does not need to be computed
and propagated in the PScoreReducerPostPScoreReducerPost function of
Fig. 6. As a consequent, the programmer can define their
own specialized MyTextExtractorMyTextExtractor function (top of Fig. 6)
that does not extract and propagate the marketmarket column.

Finally, the predicate for the ifif statement on line 6-7 in
Fig. 4 is always False because all input rows are guarded
by the previous filter GetLengthðqueryÞGetLengthðqueryÞ>44 (line 10 in
Fig. 1). Consequently, lines 6-9 in Fig. 4 are dead and can be

eliminated, which further makes name an unused column
because line 9 is the only place to use the value derived
from name.

2.2 Overview of PeriSCOPE

The optimized sample program in Figs. 5 and 6 executes
more efficiently at the expense of programmability: it can
no longer reuse the DefaultTextExtractorDefaultTextExtractor function, the
logic for the PScoreReducerPScoreReducer function is now distributed
into two sections that execute in different pipeline stages,
while the optimizations are tedious as the programmer
must carefully move code across pipeline stages.

PeriSCOPE automates such optimizations by considering
both user-defined functions and the pipeline of a data-paral-
lel program. In particular, PeriSCOPE reconstructs the data

Fig. 4. The procedural code of the SigReportProcessorSigReportProcessor user-defined
function; strike-through text is original code that is eliminated. Lines 6-9
are eliminated because they are unreachable, line 5 is eliminated as it
doesn’t contribute to outRowoutRow, and line 10 is eliminated as it’s forwarded
by early filtering.

Fig. 3. The procedural code of the PScoreReducerPScoreReducer user-defined function.
Because PScoreReducerPScoreReducer is a reduce operator, the preceding data shuf-
fling ensures that rows having the same shuffling key are grouped
together. For each group (inputinput) of rows sharing the same shuffling key
(line 2), this reduce operator iterates on each row in that group using a
loop (lines 4-17) and outputs a single row as outRow for that group (line
22). The imprimpr variable of line 5 represents an “improvement” that regu-
lates accumulation of mvaluemvalue and cvaluecvalue.

Fig. 5. Optimized declarative code of our sample program; strike-through
text is original code that is eliminated.

Fig. 6. Optimized procedural code of our sample program.
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flow across the user-defined functions according to the
pipeline topology and applies column reduction to remove
unused columns along with the computations to compute
them from user-defined functions; e.g., PeriSCOPE can
eliminate the unused mvaluemvalue, marketmarket and namename columns of
our sample program. PeriSCOPE next identifies filtering
conditions in a user-defined function and moves them ear-
lier in the pipeline through early filtering; e.g., the if condi-
tion on line 7 of Fig. 3 is moved earlier to reduce row
propagation in the pipeline. Finally, PeriSCOPE applies
smart cut that finds better boundaries between two stages to
minimize data-shuffling I/O by moving size-reducing
transformation upstream and size-enlarging transformation
downstream in the pipeline. We describe how PeriSCOPE
automates these optimizations in Sections 3.

PeriSCOPE also adopts symbolic execution to enlarge opti-
mization opportunities by reasoning that the code is exe-
cuted with what conditions of the input data instead of any
value, e.g., lines 11-14 and line 17 are executed with a con-
straint (line 10) on input data, with which early filtering is
applied for constraint so that less data is transferred. We
describe how symbolic execution helps PeriSCOPE to
expand optimization scope in Section 4.

3 I/O REDUCTION

This section describes three I/O reduction optimizations in
PeriSCOPE. Column reduction suppresses unused data in the
pipeline. Early filtering moves filtering code earlier in the
pipeline to reduce the number of rows transmitted down-
stream. Smart cut finds a better boundary between pipeline
stages in the data flow graph to minimize cross-stage I/O.

3.1 Column Reduction

A user-defined function might not use a particular input
column that is available to it in a calling pipeline. For exam-
ple, the SigReportProcessorSigReportProcessor function of Section 2’s sample
program does not use the mvaluemvalue column of the pipeline
encoded in Fig. 1. In distributed data-parallel programs,
transferring unused columns during data-shuffling can con-
sume a significant amount of network I/O. As we discuss in
Section 6, this problem commonly arises from the reuse of
user-defined functions that we observe in production
SCOPE jobs.

Column reduction is an optimization in PeriSCOPE that
leverages information about how operators are connected
together in a pipeline to eliminate unused columns from the
program, removing their associated computation and I/O
costs. The optimization analyzes the dependency informa-
tion between the input and output columns of all operators

in the pipeline; Fig. 8 shows part of the column dependency
graph for the example in Fig. 1. An input or output column
of an operator is represented as a vertex while an edge from
a source column s to a destination column d indicates that d
has either a data or control dependency on s. Only data
dependency edges are shown in Fig. 8 as control depen-
dency edges are too numerous to illustrate clearly. Because
SCOPE allows a column to be accessed by name (e.g., line 6
in Fig. 3) or index (e.g., line 18), a column read or write oper-
ation may be unresolved during compilation, where Peri-
SCOPE considers that this column could be any column
that is visible to the user-defined function, leaving no
opportunity for column reduction. Fortunately, as we dis-
cuss in Section 6, column accesses that cannot be resolved
through simple optimization techniques are relatively
rare—at only a 13.4 percent occurrence in our survey of real
SCOPE jobs.

PeriSCOPE applies column reduction by computing a set
of “used” output columns for each operator that are used as
the input columns of succeeding operators in the pipeline
topology. If the operator immediately precedes a data-shuf-
fling phase, the shuffling-key columns are also required as
used output columns. Any unused output columns of an
operator are removed and, if the operator is a user-defined
function, PeriSCOPE also rewrites it to remove all code that
only contributes to computing the removed output col-
umns. If any columns were removed, PeriSCOPE removes
any input columns that are no longer used because of
removed code and repeats column reduction again.

For example, the column mvaluemvalue is removed from the
PScoreReducerPScoreReducer function because it is not used by the
SigReportProcessorSigReportProcessor function listed in Fig. 3. This causes
the code that computes mvaluemvalue to be removed (lines 36 and
33 in Fig. 6), which further causes the output column
marketmarket to be removed from the DefaultTextExtractorDefaultTextExtractor

function. Finally, PeriSCOPE creates, through specialization
that eliminates code, function whose code is semantically
similar to the MyTextExtractorMyTextExtractor function of Fig. 6.

3.2 Early Filter

Early filtering is applied to the first user-defined function in
a computation stage that executes after a data shuffling
phase. PeriSCOPE first identifies filtering statements in the
user-defined function’s main loop, which are statements
that branch back to the beginning of the main loop. Fig. 9
shows the control flow graph for the loop body of

Fig. 8. A simplified column-dependency graph for column reduction.
Columns and computation in the shaded areas are removed by the
column reduction optimization.

Fig. 7. Resulting pipeline for the optimized job.
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PScoreReducerPScoreReducer in Fig. 3; statements 7, 14 and the end of
basic block G are identified as filtering statements.

Earlier filtering will reduce the number of rows that are
iterated on later. Since the data-shuffling phase can trans-
parently change the number and order of the rows proc-
essed on each machine through re-partitioning and
grouping, PeriSCOPE must ensure that moving a filtering
statement does not change the cumulative effect. Specifi-
cally, we define an computation that relies on the number
or order of the rows stateful, and such stateful computation
(e.g., lines 11-16 on Fig. 4) must be carefully taken care of to
ensure correctness; further details are discussed in Section 4.

PeriSCOPE next identifies code that computes the fil-
tering condition by applying backward slicing [12], which
starts from the identified filtering statement and collects,
as its backward slice, the statements that can affect it. The
backward slice of statement 7 in Fig. 9 includes state-
ments 5-7. PeriSCOPE then copies the entire backward
slice upward causing rows to be filtered out before data
shuffling occurs. Finally, the conditions of the moved fil-
ter can now be assumed in the original user-defined func-
tion, enabling the removal of code through dead code
elimination. For the code in Fig. 9, statement 7 is removed
because ð!inclincl && imprimpr < 0Þ is always false; no row oth-
erwise is permitted past the data-shuffling phase due to
early filtering. Statement 6 is then removed because inclincl

is not used anymore, causing ctrlsctrls to become unused in
the user-defined function. As a result, early filtering not
only reduces the number of rows that are transferred
across a data shuffling phase, but can also trigger column
reduction (e.g., on ctrlsctrls).

3.3 Smart Cut

The cross-stage flow of data across the network in a data-
parallel program is significantly more expensive than a tra-
ditional program whose data flows only through memory.
PeriSCOPE therefore aims at re-partitioning the code by

finding smart cuts as shuffling I/O boundaries that mini-
mize cross-stage data flow. Finding smart-cuts can be for-
mulated as a compiler-like instruction scheduling problem.
However, while a compiler usually rearranges instructions
to improve instruction-level parallelism on a specific CPU
architecture, smart cut reorders statements to reduce the
amount of data transmitted across the network.

Smart cut is applied to user-defined functions that are
immediately adjacent to data-shuffling phases. PeriSCOPE
first applies if-conversion [13] to the body of the main loop
for a given user-defined function so that the loop body
becomes a single basic block, which is necessary because
instruction scheduling can only be applied to blocks of non-
branching instructions. Fig. 10 shows the simplified result
for the code segment on lines 5-15 of Fig. 3, after lines 6 and
7 are removed according to early filtering. Every statement
is now guarded with a predicate that specifies the path con-
dition of its execution; e.g., the statement on line 13 is
guarded with predicate p1 because it is executed only when
p1 is true.

PeriSCOPE then builds a data dependency graph for this
basic block using the SSA [14] format. Vertices in the data
dependency graph are instructions, while directed edges
represent read-after-write (RAW) data dependencies where
sink instructions use variables defined in the source instruc-
tions. PeriSCOPE labels the edges with the name and byte
size of the dependent variables, which are either columns or
local variables. Fig. 11 shows part of the labeled data depen-
dency graph for our example; PeriSCOPE further adds two
vertices S and T to represent the overall input and output of
this code snippet, respectively. PeriSCOPE also adds an
edge labeled queryquery from S to T as queryquery is used as the shuf-
fling key and should always be transmitted.

PeriSCOPE adds directed edges from S to any state-
ment that is either stateful or generates shuffling keys
before the data-shuffling phase, and adds directed edges
from any stateful statement after the data-shuffling phase
to T; all of these edges have an infinite weight to ensure

Fig. 10. Simplified if-conversion result for lines 5-15 in Fig. 3. T stands for
True which means that the statement always executes.

Fig. 9. Control flow graph for the loop body in PScoreReducerPScoreReducer in Fig. 3.
Edges marked T and F are branches that are taken when the last predi-
cate in the source basic block evaluates to true and false, respectively.
The vertices in gray are the basic blocks that contain filtering statements.

Fig. 11. Labeled data dependency graph with a smart cut. Statements
13-15 are omitted. Statements in gray are stateful.
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that those statements are never moved across the data-
shuffling phase.

The smart-cut problem is now reduced to one of finding
an edge cut between S and T in the data dependency graph
that minimizes the total byte size of all dependent variables
on edges across the cut.

Computing an optimal edge cut statically is difficult
because the precise weights of some edges depend on
dynamic data. In practice, PeriSCOPE resorts to a simple
heuristic-based technique to identify opportunities to move
code across data-shuffling phases. Specifically, PeriSCOPE
looks for a simple pattern with a variable computed from
one or more input columns. If the total size of the input col-
umns that are used only for computing this variable is
larger than the size of this variable, this computation should
be moved to an earlier stage. Similarly, PeriSCOPE also
looks for a reverse pattern where a variable is used to gener-
ate one or more output columns. In Fig. 11, the input col-
umns alteredQueryalteredQuery and queryquery from Fig. 3 are used to
compute variable pp in the optimize function of Fig. 6.
Although the alteredQueryalteredQuery column is never used else-
where, the queryquery column is used in a later stage. Because
the byte size of a string type (alteredQueryalteredQuery) is always larger
than that of a Boolean variable (p), the cut should cross the
edges labeled with p, instead of those labeled with
alteredQueryalteredQuery. In the end, edges between statements 9
and 11, and between statements 5 and 12, are selected for
the smart cut.

4 DEFINING OPTIMIZATION SCOPE

This section describes how PeriSCOPE defines the scope for
the above optimizations. In particular, it focuses on two
questions: first, how to ensure the code transformation to be
safe in that the execution results of a job remains the same;
second, how to enlarge the optimization scope without
breaking the safety guarantee? We answer the first question
by introducing three safety rules, which bridges our domain
knowledge about data-parallel computation to program
analysis, and the second by adopting symbolic execution to
collect and propagate certain constraints on the input
data values along the execution flow to expose further
opportunities.

4.1 Safety Rules

Our stated techniques, early filtering and smart cut, move
code from user-defined functions across pipeline stages.
Such code motion must be done only if it’s safe, i.e., the
results of the program are unchanged. We describe three
correctness conditions of code motion using the example in
Fig. 3, with a focus on identifying the domain knowledge
that is needed to define correctness. The idea is to model the
dependencies between the data shuffling code and the code
that before and after data shuffling, without really analyz-
ing the data shuffling code.

First, any computation which relies on the number or
order of the rows cannot be moved across the data-shuffling
phase, i.e.,

Rule 1. PeriSCOPE must not move a stateful statement across
the data shuffling phase.

For example, for the stateful statements on lines 12-14 in
Fig. 3, the value of maxImprmaxImpr depends on the processing order
of the input rows. Because data shuffling re-orders rows
based on a shuffling key, computing maxImprmaxImpr before and
after data shuffling would yield different results. So Peri-
SCOPE cannot move the computation of maxImprmaxImpr before
data shuffling.

Second, early filtering can only eliminate rows which
donnot affect other downstream rows, or contribute to state-
ful variables; i.e.,

Rule 2. PeriSCOPE must not move a filtering statement before a
data shuffling phase if the statement is, or is reachable from, a
stateful statement.
This rule excludes statement 14 from early filtering in

Fig. 9 because it is stateful, and excludes the last state-
ment in basic block G because it is reachable from state-
ment 14.

Finally, the data-shuffling phase reads the shuffling-key
columns of each row, leaving other columns untouched; i.e.,

Rule 3. PeriSCOPE must not move a statement after data shuf-
fling if it generates shuffling-key columns.

Since our safety rules largely depend on stateful state-
ments, care must be taken in identifying stateful statements.
PeriSCOPE applies loop dependency analysis [15] to the
body of the main loop for each user-defined function to
identify stateful statements as those that have loop-carried
dependencies. A loop-carried dependency indicates that the
destination statement relies on the execution of the source
statement from an earlier iteration.

Although all the three safety rules depend on stateful
statements, they are largely orthogonal and provide dif-
ferent ensurance to correctness. Rule 1 strictly forbidden
moving stateful statements across data shuffling. Rule 2
shows the condition of forwarding a filtering statement,
while Rule 3 shows the condition of moving a statement
after data shuffling.

4.2 Enlarging Scope with Symbolic Execution

PeriSCOPE further adopts symbolic execution to expand
optimization scope, which is inspired by the observation
that there are redundant or contradicted if-predicates in
many nested if statements, resulting dead code be the
predicate itself and those in one of the branches. For
example, lines 6-9 in Fig. 4 is considered dead code
because the input data is guarded by a previous if pred-
icate (GetLengthGetLength(queryquery) > 44 on line 6 in Fig. 2) and the
predicate on line 7 will be always FFalse (contradicted to
the above predicate). Removing the dead code usually
exposes more opportunities to our I/O reduction techni-
ques above. In this case, eliminating the code further
makes name a dead column therefore column reduction
becomes applicable.

We formally define this optimization as follows. Con-
sider an if-predicate p (called branch condition), and all con-
straints S applied to the input data that make the data reach
p (called path condition). When

VðS; pÞ ¼ ;;
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where VðXÞ contains all data satisfy X, p is always False

which results the if-block dead code. Similarly, when

VðS;:pÞ ¼ ;;

p is always Truewhich makes the else-block dead.
To realize this opportunity, PeriSCOPE slices a program

into paths with symbolic execution by traversing all instruc-
tions in a topological order with respect to their data and
control dependencies: (1) PeriSCOPE starts from the entry-
point of the program (a PeriSCOPE job in this case) with an
empty path constraint S; (2) when it encounters a branch
instruction with predicate p, it forks the current traverse
process into two with different path constraints ðS; pÞ and
ðS;:pÞ. PeriSCOPE then checks the two path constraints to
see whether VðS; pÞ ¼ ; (or VðS;:pÞ ¼ ;). If it is true, Peri-
SCOPE terminates the traverse of the correspondent path as
an unreachable path; (3) when it comes across an instruction
which yields output data for the job, the current path is ter-
minated as a reachable path; (4) for other instructions, Peri-
SCOPE generates symbolic value for all defined operands,
which may be referenced in later branch conditions.

As a result, PeriSCOPE slices a program into many reach-
able and unreachable paths with each labeled with different
path constraints. For instructions that do not appear in any
paths, PeriSCOPE eliminates them because they are dead.
After that, PeriSCOPE applies the I/O reduction optimiza-
tion again to see whether the code elimination exposes
more opportunities. Note we have more opportunities here
by doing path-specific optimization with the labeled path
constraints as the filtering condition for the input data,
which is left as a future work.

4.3 Solving Constraints

This section describes how we solve VðS; pÞ ¼ ; given path
condition S and branch condition p. According to how Peri-
SCOPE generates the path conditions described above, we
know S ¼ fc1; c2; . . . ; ckg where c1; c2; . . . ck are the branch
conditions from the entry-point of the job to the place where
this path condition is generated. Because PeriSCOPE termi-
nates the traverse when VðS; pÞ ¼ ;, we have Vðci; cjÞ 6¼ ;
where ci; cj 2 S (otherwise VðSÞ ¼ ;). We therefore have

Lemma 1.

9ci 2 S : Vðci; pÞ ¼ ; ) VðS; pÞ ¼ ;:

As a result, instead of checking S against p holistically,
which is required if we really want to find the data satisfy-
ing both S and p, PeriSCOPE only checks each ci against p,
which simplifies the problem. Intuitively, we can use a
solver (e.g., Z3 [16]) to answer the question: is there a possi-
ble data value that satisfies both ci and p? If the answer is
no, we know VðS; pÞ ¼ ;. If the answer is yes or timeout
due to the solver capability or time constraint, PeriSCOPE
conservatively thinks that there are possible satisfiable data
values. This approach only produces false negatives, ensur-
ing our optimization is safe.

The challenge relies on the expressiveness of the sup-
ported language by a solver: state-of-the-art solvers like Z3
do not support non-arithmetic types and their operations

(e.g., string and string-based operations). However, they
are commonly used in our targeted SCOPE job programs.
PeriSCOPE addresses this challenge as follows. Consider-
ing Vðci; pÞ, if both ci and p are arithmetic constraints, they
can be fed to solvers directly. If both of them are non-arith-
metic constraints, PeriSCOPE involves specific symbolic
execution engine to solve it, described later. Otherwise,
PeriSCOPE conservatively thinks there are possible satisfi-
able data values, which only introduces false negative
(ensuring safety) and it is usually true because these two
kinds of constraints are in most cases orthogonal.

4.3.1 Handling Non-Arithmetic Constraints

In PeriSCOPE, most non-arithmetic constraints come from
containers, like list, array, dictionary and string. We here
use string, which is the most challenging container type we
encountered in SCOPE, as an example to illustrate how we
model and solve non-arithmetic constraints; other contain-
ers are handled similarly.

Weuse the example in Fig. 12, andwe assume the symbolic
execution process is now at line 1 where we want to check
whether the following if-block at lines 2-6 is dead or not. At
this point, we have S ¼ fname:StartWithname:StartWithð“ABCDABCD”Þg and
p ¼ !name:Contains!name:Containsð“XYZXYZ”Þ. To make the constraint solving
process operation independent, PeriSCOPE models the con-
straint imposed by a string operation based on the observa-
tion that the constraint is usually applied to a sub string with
its value equal to (or not equal to) some input value, defined
as follows:

C ¼ ðhost; value; location; isEqualÞ
where host is the host string the operation is bound to,
location tells where the sub string is, value is a constant
string or a symbolic value computed before, and isEqual
indicates whether the sub string is equal to the given value
or not. Instead of precisely capturing the location, Peri-
SCOPE defines the following four kinds of location as an
approximation to ease the reasoning later:

� start: value is at the head of host.
� end: value is at the tail of host.
� any: there are one or more values contained in host.
� all: value is equal to host.

We therefore get the above S and p defined as follows:

S ¼ fðnname; 00ABCD00; start; TrueÞg
p ¼ ðnamename; 00XYZ00; any; FalseÞ

Evaluating Vðci; pÞ ¼ ; or not where ci 2 S is non-trivial.
However, due to this limited model, we are able to enumer-
ate all the possible combinations (regarding to location and
isEqual) and write decision function for each. For the above
example, the function return FalseFalse, i.e., it is possible that

Fig. 12. Example for symbolic execution. Line 5 is dead.
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both the constraints are satisfied. We put an complete
implementation of these decision functions at [17].

4.3.2 Extracting Arithmetic Constraints

While PeriSCOPE in general considers there are always sat-
isfiable data points regarding to an arithmetic constraint
and a non-arithmetic constraint because they are largely
orthogonal, one meaningful exception we see in SCOPE
jobs is that the program extracts the LengthLength property from
stringstring, which anticipates further arithmetic computation.
PeriSCOPE therefore tries to minimize false negatives intro-
duced by this phenomena by adding a simple constraint:
the length of a string is equal to or greater than the sum of
each value’s length appeared in all constraints with their
host the current string and isEqual true, i.e.,

lenðhiÞ �
X

lenðci:valueÞ;
where ci:host ¼ hi; ci:location 6¼ all; ci:isEqual ¼ True

lenðhiÞ ¼ lenðci:valueÞ;
where ci:host ¼ hi; ci:location ¼ all; ci:isEqual ¼ True:

Consequently, the path condition at line 3 in Fig. 12 con-
tains an additional constraint: lenðnameÞ >¼ lenð“ABCD”Þ,
which contradicts to the succeeding constraint lenðnameÞ <
4 (imposed by line 4), making line 5 an unreachable
statement.

Note this additional constraint has a precondition that
values from different constraints are non-overlapping. This
is not always true and PeriSCOPE has to check it statically.
If they are overlapping or PeriSCOPE cannot decide it stati-
cally, PeriSCOPE conservatively considers overlapping pos-
sible, and drops this additional constraint at the cost of
higher false negative ratio. In reality, this rarely happens:
our study of more than 20K SCOPE jobs reveals that only
less than 1.5 percent of the jobs contain overlapped values
or cannot be decided statically.

5 IMPLEMENTATION

PeriSCOPE examines a SCOPE program’s operators, the def-
inition of the rows used by the operators, and the program’s
pipeline topology represented as a directed acyclic graph
(DAG) in the program’s execution plan. In PeriSCOPE’s tar-
geting large scale data parallelism, a program is modeled as
a dataflow graph: a directed acyclic graph with vertices rep-
resenting processes and edges representing data flows [3].
Furthermore, the DAG part is organized with declarative
SQL-like code, while the vertices, which include if-else

branches and loops, are organized with procedural code,
like C#. As if-else branches or loops are in each vertices,
instead of between execution stages, we only represent the
execution stages as DAG, instead of the whole program.

The operators and row definitions are extracted from .
NET binary executables, while the pipeline topology is rep-
resented as an XML file. PeriSCOPE extends ILSpy [18], a
de-compiler from .NET byte-code to C# code, and Cecil
[19], a library to generate and inspect .NET assemblies, to
implement PeriSCOPE as two components. PeriSCOPE’s
optimizer is built on top of ILSpy to specialize all operators

in the input execution plan, applying all PeriSCOPE’s opti-
mizations to operators (as user-defined functions) as found
at the intermediate representation (IR) level. The generator
emits new bytecode for user-defined functions and gener-
ates all utility code for the program, such as new row sche-
mas and their related serialization routines, as well as the
new SCOPE description file for the execution plan.

The optimizer and generator components are both
implemented in C# with 7;334 and 2;350 lines of code,
respectively. The reason we choose C# is most of our
existing tools are written with C#, including ILSpy and
Cecil. As PeriSCOPE’s optimizations work at the level of
byte-code operators and pipeline descriptions, our imple-
mentation does not limits to C# as our discussion shows
in Section 7. Fig. 13 illustrates PeriSCOPE’s optimization
flow with three major tasks, each containing several
steps, where the optimizer performs the first two tasks,
while the generator performs the last. Plan rewriting
updates the original DAG XML file that describes pipe-
line topology because some original operators are now
split into different computation stages.

The symbolic execution engine is implemented in C#
with about 3,130 lines of code, which uses Mathematica [20]
as the SAT solver. Inside the engine, we built support for
the most commonly used non-arithmetic types: string, list
and dictionary, with 53 decision functions in total. To enable
commonly used non-arithmetic types, we consider an object
as a set of properties generated by corresponding operations
instead of representing it with possible input values. All
operations which involve non-algorithmic types, are con-
verted to one of our decision functions.

Another challenge of implementing symbolic execution
is we have to leverage heuristics to limit the time of Peri-
SCOPE’s symbolically executing a loop. Usually, Peri-
SCOPE can’t decide the loop time as the loop bound is a
variable, and symbolic execution may be trapped by infinite
loop. We explore a loop until all branches in the loop are
tested instead of testing the symbolic value. This means we
cannot cover all paths in loop but it’s sufficient for
PeriSCOPE’s detecting unreachable paths and path condi-
tions. Special loops also leverage some domain knowledge.
For example, the main loop which iterates on input data is

Fig. 13. Optimization flow in PeriSCOPE.
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symbolically executed only once, the loop with known
bound is also checked if the loop bound is too large to
suffer.

Instead of directly rewriting operator code, PeriSCOPE
copies operator code when it needs to be written because a
user-defined function can be reused multiple times in a job,
each reuse requiring different code transformations. Like-
wise, row type schema definitions and serialization code
are copied and transformed as columns are eliminated from
different points in the pipeline.

6 EVALUATION

Our evaluation focuses on first assessing the overall poten-
tial for these optimizations and second evaluating in detail
the effectiveness of these optimizations on the end-to-end
performance of several real production jobs. We use a real
trace of 33,681 jobs from a 10,000 machine SCOPE produc-
tion cluster to evaluate PeriSCOPE’s core I/O reduction
optimizations of column reduction, early filtering, and
smart cut. The jobs are randomly collected without filtering
or sampling to demonstrate the overall potential for these
optimizations and several typical cases are selected to show
PeriSCOPE’s effectiveness in detail.

With an average analysis time of 3.9 seconds for each
job, our current implementation successfully analyzes
26,109 (78 percent) of the 33,681 jobs. PeriSCOPE fails on
the rest of these jobs given limitations in our implemen-
tation primarily relating to inconsistent SCOPE versions
(6.1 percent) or outright ILSpy de-compilation failures
(2.3 percent), but a minority involve code that cannot be
analyzed in general due to unresolved column indices
(13.4 percent) or for reasons that we have yet been
unable to determine (0.3 percent).

Table 1 shows that before applying symbolic execution
15.70 percent of the jobs are eligible for column reduction
optimization, 5.47 percent for early filtering, and 5.40 percent
for smart cut. It also shows that the optimizing scope is
enlarged after applying symbolic execution, 17.70 percent
for column reduction optimization, 10.78 percent for early fil-
tering, and 6.12 percent for smart cut. Some jobs are eligible
for multiple types of optimizations, and so the total percent-
age (20.75 percent before and 26.73 percent after applying
symbolic execution) of jobs that are eligible for those optimi-
zations is lower than the sum of the three.

We next examine the user-defined functions of these
jobs. We found that these jobs used only 1,716 unique
user-defined functions, meaning many jobs are encoded

purely in declarative code that leverages pre-existing
user-defined functions. About 20.0 percent of the user-
defined functions are reused more than ten times, where
the most popular user-defined function is reused 1,263
times. We suppose that the heavy reuse of user-defined
functions creates more opportunities for PeriSCOPE’s
optimizations. And in fact, about 30.0 percent of the
user-defined functions in jobs eligible for column reduc-
tion were reused at least 10 times, confirming our specu-
lation that generic library functions contain a lot of
redundancies that can be optimized away. On the other
hand, no such correlation is observed for early filtering
or smart cut, whose eligibility appear to be unrelated to
reuse. Finally, 30.2 percent unique user-defined functions
used in these jobs have arguments in their function bod-
ies that are used as branch conditions or column names,
while 79.1 percent of the user-defined function invoca-
tions in the job scripts contain constant parameters. Spe-
cialization of such user-defined functions is a necessary
pre-processing step to resolve columns and apply Peri-
SCOPE’s optimizations.

6.1 Case Study for I/O Reduction

To understand the overall effectiveness of PeriSCOPE’s
optimizations, we compare the performance of the jobs
before and after our optimization (w/o symbolic execution)
in terms of both execution time and the amount of I/O used
during the data-shuffling phase; effectiveness of symbolic
execution is present next. Ideally, we would carry out this
experiment with representative benchmarks, which unfor-
tunately do not exist. We therefore select eight real and typi-
cal SCOPE jobs that are eligible for at least one of
PeriSCOPE’s optimizations and whose input data is still
available on the cluster. The selected jobs are mostly related
to web-search scenarios that process crawler traces, search
query histories, search clicks, user information, and product
bidding logs. Our experiment executes these real produc-
tion jobs (cases 1-8 in Fig. 14) on various number of
machines. Specifically, cases 1, 2, and 4 use 1,000 machines,
case 3 uses 10 machines, cases 5-7 use 192 machines, while
case 8 uses 100 machines.

Fig. 14 shows the performance-gain breakdown for our
chosen eight production jobs in terms of a reduction in
both execution time and data-shuffling I/O. The unopti-
mized and optimized versions of each job are executed
three times; we report the average. Due to the nature of
our shared computing environment we are using, we see
high relative standard deviations (7.3 to 23.0 percent) in
our latency experiments, while the reduction numbers in
data-shuffling I/O is a more reliable indicator. In particu-
lar, highest standard deviations are seen for cases 5 (23.0
and 22.6 percent) and 6 (18.0 and 14.9 percent), indicating
that the reductions are insignificant statistically in those
cases. The execution time reduction for case 8 (10 percent)
is also statistically insignificant with standard deviations of
13.4 and 7.3 percent. Case 1 benefits from all three of Peri-
SCOPE’s optimizations, cases 2-3 are eligible for two, while
cases 4-8 are only eligible for one each. PeriSCOPE reduces
data-shuffling I/O in all cases but the last by between 9
and 99 percent; the last case incurs no benefit for reasons
discussed below. Execution time is reduced by between 7

TABLE 1
Optimization Coverage Statistics which Lists the Number

and the Percentage of the Jobs that Are Eligible
for the Given Optimization

optimization eligible jobs (BSE) eligible jobs (ASE)

column reduction 5,289 (15.70%) 5,963 (17.70%)
early filtering 1,843 (5.47%) 3,630 (10.78%)
smart cut 1,818 ( 5.40%) 2,060 (6.12%)
Total 6,989 (20.75%) 9,002 (26.73%)

BSE is short for before symbolic execution while ASE is short for after symbolic
execution.

1726 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 6, JUNE 2015



to 74 percent, which, beyond data-shuffling I/O, includes
other tasks such as executing data-processing code, and
reading and writing data to and from storage. Case 4 is
particularly sensitive to storage overhead as this job
extracts data from a 2:26TB log file.

Column reduction can be applied six of the eight jobs,
yielding I/O reductions ranging from 4.8 up to 96 percent
that depend on how many columns are removed compared
to the total byte size of all columns. Column reduction on
case 4 removes 18 columns out of 22; the reducer that
executes immediately after an extractor uses only four of
the columns extracted. For case 7, only 2 out of 31 columns
are used by its reducer; other columns are consumed by
other operators and are not transmitted across the data-
shuffling phase.

The effectiveness of early filtering depends highly on
the goal of filtering. We have found that filtering condi-
tions simply exclude rows whose columns have invalid
values. While such case is rare, early filtering leads only
to a negligible I/O reduction; case 8 is exactly this case.
The execution time of case 8 is still reduced because Peri-
SCOPE moved the filtering computation to before the
data-shuffling phase, improving the parallelism because
more resource (136 CPU cores) are allocated to the stage
before shuffling than after (42). When the filtering does
not check for invalid values, they usually exclude a large
number of rows and early filtering is quite effective. As
an extreme case, data-shuffling I/O is reduced by 99 per-
cent in case 1 because the vast majority of the rows in
this job are filtered out and so do not need to be transmit-
ted in the pipeline. The opportunity for early filtering
discovered by PeriSCOPE was not obvious: 7 ifif condi-
tions, some of them deeply nested, select desired rows
for various computations, and manually writing a single
filtering condition to replicate these ifif conditions is not
trivial for a developer.

In contrast to early filtering, smart cut will always deliver
I/O reductions when it can be applied. Computations that
trigger smart cut typically involve one column that is
mapped to a column of a smaller size, usually via the con-
version from string to some arithmetic types, or size-reduc-
tion operations such as Trim and Substring. Binary
operations (e.g., þ; �;¼¼; >) between two input columns
can also trigger smart cut. For example, case 5 contains two
string-typed columns as start and end event timestamps;
the job parses the two as integer timestamps and computes
their delta for the elapsed time of the event, where smart
cut causes the delta to be precomputed.

6.2 Case Study for Symbolic Execution

Fig. 15 shows further I/O reduction after PeriSCOPE
adopts symbolic execution. The four cases are randomly
selected from the job set in which the jobs benefit from
symbolic execution.

Fig. 14. Performance gains with PeriSCOPE’s column reduction, early filtering, and smart cut optimizations (w/o symbolic execution); chart (a) labels
unoptimized job time in seconds while chart (b) labels total unoptimized job shuffling I/O size in GB; the bars in each case represent the effectiveness
of each optimization relative to unoptimized execution time (a) or shuffling I/O (b); shorter bars indicate more reduction; the “All” bar is only shown for
cases that are eligible for more than one PeriSCOPE’s optimization; both the execution time and the shuffling I/O are average values with a relative
standard deviation (RSD) ranging from 7.3 to 23.0 percent due to the nature of our shared computing environment.

Fig. 15. I/O reduction before and after applying symbolic execution. BSE
means applying all stated optimizations before symbolic execution while
ASE means applying all optimizations after symbolic execution.
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Before applying symbolic execution, PeriSCOPE opti-
mizes case 1 and 2 by column reduction, and PeriSCOPE
does not see any opportunities in cases 3 and 4. After apply-
ing symbolic execution, dead code is eliminated and further
opportunities are exposed for PeriSCOPE’s I/O reduction
optimizations. In case 1, PeriSCOPE determines that a filter-
ing statement applied on joined data is always false, which
further enables early filtering on other branches of joined
data, resulting few data joined and data shuffling I/O
reduced by 96 percent. In cases 2, an user-defined function
is found to generate part of the outputs on an unreachable
path, enabling certain code eliminated and early filtering
opportunities. In case 3 and 4, symbolic execution helps get
all column access index resolved which exposes multiple
unused columns.

7 RELATED WORK

PeriSCOPE is closely related to a large body of research in
the areas of data-parallel computation, distributed database
systems [21] and compiler optimizations [15]. Instead of
attempting to cover those areas thoroughly, we focus on the
most related research that lies in the intersection of those
two areas.

7.1 Distributed Data-Parallel Systems

MapReduce [2] has inspired a lot of follow-up research on
large-scale distributed data-parallel computation, including
Hadoop [1] and Dryad [22]. The MapReduce model has
been extended [23] with Merge to support joins and adapted
[24] to support pipelining. High-level languages for data-
parallel computation have also been proposed for ease of
programming. Examples include Sawzall [25], Pig Latin
[11], [26], SCOPE [3], Hive [5], [10], and DryadLINQ [6]. In
addition, FlumeJava [27] is a Java library for programming
and managing MapReduce pipelines that proposes new
parallel-collection abstractions, does deferred evaluation,
and optimizes the data flow graph of an execution plan
internally before executing. Nova [28] is a work-flow man-
ager with support for stateful incremental processing which
pushes continually arriving data through graphs of Pig pro-
grams executing on Hadoop clusters. Cascading [29] is a
Java library built on top of Hadoop for defining and execut-
ing complex, scale-free, and fault tolerant data processing
work-flows. Bu et al. [30] shows how recursive SQL queries
may be translated into iterative Hadoop jobs. Programs in
those systems go through a compilation and optimization
process to generate code for a low-level execution engine,
such as MapReduce and Dryad. All of them support user-
defined functions that are treated as black boxes during
optimization of the program’s pipeline.

PeriSCOPE’s optimizations work at the level of byte-code
operators and pipeline descriptions, which are typically the
result of the existing compilation and optimization process.
Conceptually, the approaches taken by the PeriSCOPE’s opti-
mizations can be applied to data-parallel systems other than
SCOPE, because almost all systems produce a pipeline with
operators that call user-defined functions. The coverage and
the effectiveness of the concrete optimizations, however, vary
due to their different programming models and language
runtime implementation. We show two cases where the

differences in those systemsmatter. First, the datamodels dif-
fer, ranging from a relational data model (e.g., SCOPE) or its
variations (e.g., Hive, Pig), to the object model (e.g.,
FlumeJava and DryadLINQ), which introduces different
opportunities and difficulties for PeriSCOPE’s optimizations.
For example, with an object model, PeriSCOPE does not need
to resolve the columnaccess index anymore, because all fields
are accessed explicitly. Also, in an object model, declaring a
new schema requires explicit class/object definitions. The
resulting inconvenience often cause developers to reuse exist-
ing object definitions that contains unneeded fields, offering
more opportunities for column reduction. Developers some-
timeswrite custom (de-)serialization functions for an object to
achieve better performance, which would pose challenges to
PeriSCOPE’s optimizations that cause schema changes: those
functionsmust bemodified accordingly.

Second, different systems might define different interfa-
ces to their user-defined functions; those interfaces represent
different trade offs between expressiveness and ease of anal-
ysis. For example, SCOPE exposes a collection of records to a
mapper while others usually take a single record as the input
to a mapper (e.g., in the MapReduce framework in Hadoop).
Other examples include the reducer interface in SCOPE ver-
sus the UDAF (user-defined aggregation function) interface
in Hive, where the former exposes the record collection and
the latter only receives a single value, and is usually applied
to a single column. The more restricted the interface and the
less expressive the language, the easier it is to analyze. The
interface definition also influences where the optimization
opportunities lie. For example, if a user-defined function is
defined to take a single column as its input, cross-column
relationships are now explicitly expressed, reducing the
need for program analysis and optimizations.

7.2 Program Analysis and Optimizations

The need to analyze user-defined functions, by means of
techniques such as data flow analysis [15], abstract interpre-
tation [31], and symbolic execution [32], has already been
recognized. Ke et al. [33] focuses on data statistics and
computational complexity of user-defined functions to cope
with data skew. Agarwal et al. [34] concludes that certain
data and code properties can improve performance of data-
parallel jobs, and presents the RoPE system that adaptively
re-optimizes jobs by collecting statistics on such code and
data properties in a distributed context. Scooby [35] ana-
lyzes the data flow relationships of SCOPE’s user-defined
functions between input and output tables, such as column
independence and column equality, by extending the Clou-
sot analysis infrastructure [36]. Yu et al. [37] define the asso-
ciative-decomposable property of a reducer function to enable
partial aggregation automatically after analysis on the
reducer functions. Sudo [38] identifies a set of interesting
user-defined functions, such as pass-through, one-to-one,
and monotonicity, and develops a framework to reason
about data-partition properties, functional properties, and
data shuffling in order to eliminate unnecessary data shuf-
fling. Sudo analyzes user-defined functions to infer their
properties, but never rewrites any user-defined functions.

Compilation of declarative language has huge impact on
the efficiency of a high-performance and high-throughput
environment. Steno [39] can translate code for declarative
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LINQ [40], [41] queries both in serial C# programs and Dry-
adLINQ programs to type-specialized, inlined, and loop-
based procedural code that is as efficient as hand-optimized
code. PeriSCOPE similarly applies those optimizations in
program specialization as a preparation step, although dif-
ferences in the language designs between SCOPE and
LINQ lead to different challenges and approaches. Steno
can automatically generate code for operators expressed in
LINQ, but has to treat external functions called inside oper-
ators as black boxes. PeriSCOPE instead works with com-
piled user-defined functions, which include such external
functions.

As a promising approach to improve precision of pro-
gram analysis, there has been many related works about
symbolic execution. Most of them target program testing
or finding bugs, such as Pex [42] and KLEE [43], Christoph
et al. [44] propose an idea to find bugs MapReduce style
programs by leverage symbolic execution. It generates test
cases by encoding MapReduce correctness conditions as
symbolic program constraints by dynamically symbolic exe-
cuting a MapReduce program. Only few works target opti-
mizing large scale data parallel programs. HadoopToSQL
[45] uses symbolic execution to derive preconditions and
postconditions for the map and reduce functions in MapRe-
duce and transform them to equivalent SQL queries to
apply restrictions to input data set. The approach of gener-
ating preconditions and postconditions is like what Peri-
SCOPE does on early filtering.

8 CONCLUSION

Optimizing distributed data-parallel computation benefits
from an inter-disciplinary approach that involves database
systems, distributed systems, and program languages. In
particular, PeriSCOPE has demonstrated performance gains
on real production jobs by applying compiler optimizations
and symbolic execution in the context of the pipelines that
these jobs execute in. Much more can be done. We can
explore how to enhance the reliability and predictability of
PeriSCOPE’s optimizations so programmers can reuse exist-
ing code as well as write straightforward code without
much guilt that performance is being sacrificed. Going fur-
ther, we can explore how the programming model itself can
be enhanced with more guarantees about program behav-
ior, allowing for even more aggressive optimizations that
further improve performance.
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