
Large-scale L-BFGS using MapReduce

Weizhu Chen, Zhenghao Wang, Jingren Zhou
Microsoft

{wzchen,zhwang,jrzhou}@microsoft.com

Abstract

L-BFGS has been applied as an effective parameter estimation method for various
machine learning algorithms since 1980s. With an increasing demand to deal
with massive instances and variables, it is important to scale up and parallelize
L-BFGS effectively in a distributed system. In this paper, we study the problem
of parallelizing the L-BFGS algorithm in large clusters of tens of thousands of
shared-nothing commodity machines. First, we show that a naive implementation
of L-BFGS using Map-Reduce requires either a significant amount of memory or a
large number of map-reduce steps with negative performance impact. Second, we
propose a new L-BFGS algorithm, called Vector-free L-BFGS, which avoids the
expensive dot product operations in the two loop recursion and greatly improves
computation efficiency with a great degree of parallelism. The algorithm scales
very well and enables a variety of machine learning algorithms to handle a massive
number of variables over large datasets. We prove the mathematical equivalence
of the new Vector-free L-BFGS and demonstrate its excellent performance and
scalability using real-world machine learning problems with billions of variables
in production clusters.

1 Introduction

In the big data era, many applications require solving optimization problems with billions of vari-
ables on a huge amount of training data. Problems of this scale are more common nowadays, such
as Ads CTR prediction[1] and deep neural network[2]. The other trend is the wide adoption of map-
reduce [3] environments built with commodity hardware. Those large-scale optimization problems
are often expected to be solved in a map-reduce environment where big data are stored.

When a problem is with huge number of variables, it can be solved efficiently only if the storage and
computation cost are maintained effectively. Among a diverse collection of large-scale optimization
methods, Limited-memory BFGS (L-BFGS)[4] is one of the frequently used optimization methods
in practice[5]. In this paper, we study the L-BFGS implementation for billion-variable scale prob-
lems in a map-reduce environment. The original L-BFGS algorithm and its update procedure were
proposed in 1980s. A lot of popular optimization software packages implement it as a fundamen-
tal building block. Approaches to apply it in a problem with up to millions of variables are well
studied and implemented in various optimization packages [6]. However, studies about how to scale
L-BFGS into billions of variables are still in their very early stages. For such a massive scale, the
parameters, their gradients, and the associated L-BFGS historical states are not only too large to
be stored in the memory of a single computation node, but also create too huge computation com-
plexity for a processor or multicores to conquer it within reasonable time. Therefore, it is critical
to explore an effective decomposition over both examples and models via distributed learning. Yet,
to our knowledge, there is still very limited work to explore billion-variable scale L-BFGS. This
directly leads to the consequence that very little work can scale various machine learning algorithms
up to billion-variable scale using L-BFGS on map-reduce.

1

In this paper, we start by carefully studying the implementation of L-BFGS in map-reduce environ-
ment. We examine two typical L-BFGS implementations in map-reduce and present their scaling
obstacles. Particularly, given a problem with d variables andm historical states to approximate Hes-
sian [5], traditional implementation[6][5], either need to store 2md variables in memory or need to
perform 2mmap-reduce steps per iteration. This clearly creates huge overhead for the problem with
billions of variables and prevents a scalable implementation in map-reduce.

To conquer these limitations, we reexamine the original L-BFGS algorithm and propose a new L-
BFGS update procedure, called Vector-free L-BFGS (VL-BFGS), which is specifically devised for
distributed learning with huge number of variables. In particular, we replace the original L-BFGS
update procedure depending on vector operations, as known as two-loop recursion, by a new proce-
dure only relying on scalar operations. The new two-loop recursion in VL-BFGS is mathematically
equivalent to the original algorithm but independent on the number of variable. Meanwhile, it re-
duces the memory requirement fromO(md) toO(m2) where d could be billion-scale butm is often
less than 10. Alternatively, it only require 3 map-reduce steps compared to 2m map-reduce steps in
another naive implementation.

This new algorithm enables the implementation of a collection of machine learning algorithms to
scale to billion variables in a map-reduce environment. We demonstrate its scalability and advantage
over other approaches designed for large scale problems with billions of variables, and share our
experience after deploying it into an industrial cluster with tens of thousands of machines.

2 Related Work

L-BFGS [4][7] is a quasi-newton method based on the BFGS [8][9] update procedure, while main-
taining a compact approximation of Hessian with modest storage requirement. Traditional imple-
mentation of L-BFGS follows [6] or [5] using the compact two-loop recursion update procedure.
Although it has been applied in the industry to solve various optimization problems for decades,
recent work, such as [10][11], continue to demonstrate its reliability and effectiveness over other
optimization methods. In contrast to our work, theirs implemented L-BFGS on a single machine
while we focus on the L-BFGS implementation in a distributed environment.

In the context of distributed learning, there recently have been extensive research break-through.
GraphLab [12] built a parallel distributed framework for graph computation. [13] introduced a
framework to parallelize various machine learning algorithms in a multi-core environment. [14] ap-
plied the ADMM technique into distributed learning. [15] proposed a delayed version of distributed
online learning. General distributed learning techniques closer to our work are the approaches based
on parallel gradient calculation followed by a centralized algorithm ([7][16][17]). Different from our
work, theirs built on fully connected environment such as MPI while we focus on the map-reduce
environment with loose connection. Their centralized algorithm is often the bottleneck of the whole
procedure and limits the scalability of the algorithm. For example, [17] clearly stated that it is im-
practical for their L-BFGS algorithm to run their large dataset due to huge memory consumption in
the centralized algorithm although L-BFGS has been shown to be an excellent candidate for their
problem. Moreover, the closest to our work lies in applying L-BFGS in the map-reduce-like environ-
ment, such as [18][2]. They are solving large-scale problems in a map-reduce adapted environment
using L-BFGS. [18] run L-BFGS on a map-reduce plus AllReduce environment to demonstrate the
power of large-scale learning with map-reduce. Although it has been shown to scale up to billion
of data instances with trillion entries in their data matrix, the number of variables in their problem
is only about 16 million due to the constraints in centralized computation of L-BFGS direction. [2]
used L-BFGS to solve the deep learning problem. It introduced the parameter servers to split a
global model into multiple partitions and store each partition separately. Despite their successes,
from the algorithmic point of view, their two-loop recursion update procedure is still highly de-
pendent on the number of variable. Compared with these work, our proposed two-loop recursion
updating procedure is independent on the number of variables and with much better parallelism.
Furthermore, the proposed algorithm can run on pure map-reduce environment while previous work
[2] and [18] require special components such as AllReduce or parameter servers. In addition, it is
straightforward for previous work, such as [2][18][17], to leverage our proposal to scale up their
problem into another order of magnitude in terms of number of variables.

2

3 L-BFGS Algorithm

Given an optimization problem with d variables, BFGS requires to store a dense d by d matrix to
approximate the inverse Hessian, where L-BFGS only need to store a few vectors of length d to
approximate the Hessian implicitly. Let us denote f as the objective function, g as the gradient and
· as the dot product between two vectors. L-BFGS maintains the historical states of previous m
(generally m = 10) updates of current position x and its gradient g = ∇f(x).
In L-BFGS algorithm, the historical states are represented as the last m updates of form sk =
xk+1 − xk and yk = gk+1 − gk where sk represents the position difference and yk represents the
gradient difference in iteration k. Each of them is a vector of length d. All of these 2m vector
with the original gradient gk will be used to calculate a new direction in line 3 of Algorithm 1.

Algorithm 1: L-BFGS Algorithm Outline
Input: starting point x0, integer history size m > 0, k=1;
Output: the position x with a minimal objective function

1 while no converge do
2 Calculate gradient∇f(xk) at position xk ;
3 Compute direction pk using Algorithm 2 ;
4 Compute xk+1 = xk + αkpk where αk is chosen to satisfy Wolfe conditions;
5 if k > m then
6 Discard vector pair sk−m, yk−m from memory storage;;
7 end
8 Update sk = xk+1 − xk, yk = ∇f(xk+1)−∇f(xk), k = k + 1 ;
9 end

Algorithm 2: L-BFGS two-loop recursion
Input: ∇f(xk), si, yi where i = k −m, ..., k − 1
Output: new direction p

1 p = −∇f(xk) ;
2 for i← k − 1 to k −m do
3 αi ← si·p

si·yi ;
4 p = p− αi · yi ;
5 end
6 p = (sk−1·yk−1

yk−1·yk−1
)p

7 for i← k −m to k − 1 do
8 β = yi·p

si·yi ;
9 p = p+ (αi − β) · si;

10 end

The core update procedure in Algorithm 1 is the line 3 to calculate a new direction pk using s and
y with current gradient ∇f(xk). The most common approach for this calculation is the two-loop
recursion in Algorithm 2[5][6]. It initializes the direction p with gradient and continues to update it
using historical states y and s. More information about two-loop recursion could be found from [5].

4 A Map-Reduce Implementation

The main procedure in Algorithm 1 lies in Line 2, 3 and 4. The calculation of gradient in Line 2
can be straightforwardly parallelized by dividing the data into multiple partitions. In the map-reduce
environment, we can use one map step to calculate the partial gradient for partial data and one reduce
to aggregate them into a global gradient vector. The verification of the Wolfe condition only depends
on the calculation of the objective function following the line search procedure[5]. So thus Line 4
can also be easily parallelized following the same approach as Line 2. Therefore, the challenge in
the L-BFGS algorithm is Line 3. In other words,the difficulties come from the calculation of the
two-loop recursion, as shown in Algorithm 2.

3

4.1 Centralized Update

The simplest implementation for Algorithm 2 may be to run it in a single processor. We can easily
perform this in a singleton reduce. However, the challenge is that Algorithm 2 requires 2m + 1
vectors and each of them has a length of d. This could be feasible when d is in million scale. Nev-
ertheless, when d is in billion scale, either the storage or the computation cost becomes a significant
challenge and makes it impractical to implement it in map-reduce. Given the Ads CTR prediction
task [1] as an example, there are more than 1 billion of features. If we set m = 10 in a linear model,
it will produce 21 ∗ 1 = 21 billion variables. Even if we compactly use a single-precision floating
point to represent a variable, it requires 84 GB memory to store the historical states and gradient.
For a map-reduce cluster built from commodity hardware and shared with other applications, this is
generally unfeasible nowadays. For example, for the cluster into which we deployed the L-BFGS,
its maximal memory limitation for a map-reduce step is 6 GB.

4.2 Distributed Update

Due to the storage limitation in centralized update, an alternative is to store s and y into multiple
partitions without overlap and use a map-reduce step to calculate every dot product, such as si ·p and
si ·yi in Line 3 of Algorithm 2. Yet, if each dot product within the for-loop in Algorithm 2 requires a
map-reduce step to perform the calculation, this will result in at least 2m map-reduce steps in a two-
loop recursion. If we call Algorithm 2 for N times(iterations) in Algorithm 1, it will lead to 2mN
map-reduce steps. For example, if m = 10 and N = 100, this will produce 2000 map-reduce steps
in a map-reduce job. Unfortunately, each map-reduce step will bring significant overhead due to the
scheduling cost and application launching cost. For a job with thousands of map-reduce steps, both
these cost often dominate the overall running time and make the useful computational time spent
in algorithmic vector operations negligible. Moreover, given our current production cluster as an
example, a job with such a huge number of map-reduce step is too large for execution. It will trigger
a compilation timeout error before becoming too complicated for an execution engine to execute it.

5 Vector-free L-BFGS

For the reasons mentioned, a feasible two-loop recursion procedure has to limit both the memory
consumption and the number of map-reduce steps per iteration. To strictly limit the memory con-
sumption in Algorithm 2, we can not store the 2m+ 1 vectors with length d in memory unless d is
only up to million scale. To comply with the allowable map-reduce steps per iteration, it is neither
practical to perform map-reduce steps within the for-loop in Algorithm 2. Both of these assumptions
motivate us to carefully re-examine Algorithm 2 and lead to the proposed algorithm in this section.

5.1 Basic Idea

Before illustrating the new procedure, let us describe following three observations in Algorithm 2
that guide the design of the new procedure in Algorithm 3:

1. All inputs are invariable during Algorithm 2.
2. All operations applied on p are linear with respect to the inputs. In other words, p could be

formalized as a linear combination of the inputs although its coefficients are unknown.
3. The core numeric operation is the dot product between two vectors.

Observation 1 and 2 motivate us to formalize the inputs as (2m+ 1) invariable base vectors.
b1 = sk−m, b2 = sk−m+1, ..., bm = sk−1 (1)

bm+1 = yk−m, bm+2 = yk−m+1, ..., b2m = yk−1 (2)
b2m+1 = ∇f(xi) (3)

So thus we can represent p as a linear combination of bi . Assume δ as the scalar coefficients in this
linear combination, we can write p as:

p =

2m+1∑
k=1

δkbk (4)

4

Since bk are the inputs and invariants during the two-loop recursion, if we can calculate the coeffi-
cients δk, we can proceed to calculate the direction p.

Following observation 3 with an re-examination of Algorithm 2, we classify the dot product opera-
tions into two categories in terms of whether p is involved in the calculation. For the first category
only involving the dot product between the inputs (si, yi), a straightforward intuition is to pre-
compute their dot products to produce a scalar, so as to replace each dot product with a scalar in
the two-loop recursion. However, the second category of dot products involving p can not follow
this same procedure. Because the direction p is ever-changing during the for loop, any dot products
involving p can not be settled or pre-computed. Fortunately, thanks to the linear decomposition of
p in observation 2 and Eqn.4, we can decompose any dot product involving p into a summation of
dot products with its based vectors and corresponding coefficients. This new elegant mathematical
procedure only happens after we formalize p as the linear combination of the base vectors.

5.2 The VL-BFGS Algorithm

We present the algorithmic procedure in Algorithm 3. Let us denote the results of dot products
between every two base vectors as a scalar matrix of (2m + 1) ∗ (2m + 1) scalars. The proposed
VL-BFGS algorithm only takes it as the input. Similar as the original L-BFGS algorithm, it has a
two-loop recursion, but all the operations are only dependent on scalar operations. In Line 1-2, it
assigns the initial values for δi. This is equivalent to Line 1 in Algorithm 2 to use opposite direction
of gradient as the initial direction. The original calculation of αi in Line 6 relies on the direction
vector p. It is worth noting that p is variable within the first loop in which δ is updated. So thus we
can not pre-compute any dot product involving p. However, as mentioned earlier and according to
observation 2 and Eqn.4, we can formalize bj · p as a summation from a list of dot products between
base vectors and corresponding coefficients, as shown in Line 6 of Algorithm 3. Meanwhile, since all
base vectors are invariable, their dot products can be pre-computed and replaced with scalars,which
then multiply the ever-changing δl. But these are only scalar operations and they are extremely
efficient. Line 7 continues to update scalar coefficient δm+j , which is equivalent to update the
direction p with respect to the base vector bm+j or corresponding yj . This whole procedure is the
same when we apply it to Line 14 and 15. With the new formalization of p in Eqn.4 and the

Algorithm 3: Vector-free L-BFGS two-loop recursion
Input: (2m+ 1) ∗ (2m+ 1) dot product matrix between bi
Output: The coefficients δi where i = 1, 2, ...2m+ 1

1 for i← 1 to 2m+ 1 do
2 δi = i ≤ 2m ? 0 : −1
3 end
4 for i = k − 1 to k −m do
5 j = i− (k −m) + 1 ;

6 αi ← si·p
si·yi =

bj ·p
bj ·bm+j

=
∑2m+1

l=1 δlbl·bj
bj ·bm+j

;
7 δm+j = δm+j − αi ;
8 end
9 for i← 1 to 2m+ 1 do

10 δi = (bm·b2m
b2m·b2m)δi

11 end
12 for i← k −m to k − 1 do
13 j = i− (k −m) + 1 ;

14 β =
bm+j ·p
bj ·bm+j

=
∑2m+1

l=1 δlbm+j ·bl
bj ·bm+j

;
15 δj = δj + (αi − β)
16 end

invariability of yi and si during Algorithm 2, Line 4 in Algorithm 2 updating with yi (equivalent to
bm+j) is mathematically equivalent to Line 7 in Algorithm 3, so as Line 9 in Algorithm 2 and Line
15 in Algorithm 3. For other lines between these two algorithms, it is easy to infer their equivalence
with the consideration of Eqn.1-4. Thus, Algorithm 3 is mathematically equivalent to Algorithm 2.

5

5.3 Complexity Analysis and Comparison

Using the dot product matrix of scalars as the input, the calculation in Algorithm 3 is substantially
efficient, since all the calculation is based on scalars. Altogether, it only requires 8m2 multiplications
between scalars in the two for-loops. This is tiny compared to any vector operation involving billion-
scale of variables. Thus, it is not necessary to parallelize Algorithm 3 in implementation.

To integrate Algorithm 3 as the core step in Algorithm 1, there are two extra steps we need to
perform before and after it. One is to calculate the dot product matrix between the (2m + 1) base
vectors. Because all base vectors have the same dimension d, we can partition them using the
same way and use one map-reduce step to calculate the dot product matrix. This computation is
greatly parallelizable and intrinsically suitable for map-reduce. Even without the consideration of
parallization, a first glance tells us it may require about 4m2 dot products. However, since all the
si and yi except the first ones are unchanged in a new iteration, we can save the tiny dot product
matrix and reuse most entries across iterations. With the consideration of the commutative law of
multiplication since si · yj ≡ yj · si, each new iteration only need to calculate 6m new dot products
which involve new sk, yk and gk. Thus, the complexity is only 6md and this calculation is fully
parallel in map-reduce, with each partition only calculating a small portion of 6md multiplications.

The other and the final step is to calculate the new direction p based on δi and the base vectors. The
complexity is another 2md multiplications, which means the overall complexity of the algorithm
is 8md multiplications. Since the overall δ is just a tiny vector with 2m + 1 dimensions, we can
join it with all the other base vectors, and then use the same approach as dot product calculation to
produce the final direction p using Eqn.4. A single map-reduce step is sufficient for this final step.
Altogether, without considering the gradient calculation which is same to all algorithms, VL-BFGS
only require 3 map-reduce steps for one iteration in the update.

For the centralized update approach in section 4.1, it also requires 6md multiplications in each
two loop recursion. In addition to being a centralized approach, as we analyzed above, it requires
(2m + 1) ∗ d memory storage. This clearly limits its applications to large-scale problems. On the
other hand, VL-BFGS in Algorithm 3 only requires (2m+1)2 memory storage and is independent on
d. For the distributed approach in section 4.2, it requires at least 2m map-reduce step in a two-loop
recursion. Given the number of iteration asN (generallyN > 100), the total number of map-reduce
steps is 2mN . Fortunately, the VL-BFGS only requires 3N map-reduce steps. In summary, VL-
BFGS algorithm enjoys a similar overall complexity but it is born with massive degree of parallelism.
For problem with billion scale of variables, it is the only map-reduce friendly implementation of the
three different approaches.

6 Experiment and Discussion

As demonstrated above, it is clear that VL-BFGS has a better scalability property than original L-
BFGS. Although it is always desirable to invent an exact algorithm that could be mathematically
proved to obtain a better scalability property, it is beneficial to demonstrate the value of larger
number of variables with an industrial application. On the other hand, for a problem with billions
of variables, there are existing practical approaches to reduce it into a smaller number of variables
and then solve it with traditional approaches designed for centralized algorithm. In this section, we
justify the value of learning large scale variables and simultaneously compare it with the hashing
approach, and finally demonstrate the scalability advantage of VL-BFGS.

6.1 Dataset and Experimental Setting

The dataset we used is from an Ads Click-through Rate (CTR) prediction problem [1] collected from
an industrial search engine. The click event (click or not) is used as the label for each instance. The
features include the terms from a query and an Ad keyword along with the contextual information
such as Ad position, session-related information and time. We collect 30 days of data and split them
into training and test set chronologically. The data from the first 20 days are used as the training
set and rest 10 days are used as test set. The total training data have about 12 billions instances and
another 6 billion in testing data. There are 1,038,934,683 features the number of non-zero features
per instance is about 100 on average. Altogether it has about 2 trillion entries in the data matrix.

6

Table 1: Relative AUC Performance over different number of variables
K Relative AUC Performance

Baseline(K=1,038,934,683) 0.0%
K=250 millions -0.1007388%
K=100 millions -0.1902843%
K= 10 millions -0.3134094%
K= 1 millions -0.5701142%

Table 2: Relative AUC Performance over different number of Hash bits
K Relative AUC Performance

Baseline(K=1,038,934,683) 0.0%
K=64 millions(26 bits) -0.1063033%
K=16 millions(24 bits) -0.2323647%
K= 4 millions(22 bits) -0.3300788%
K= 1 millions(20 bits) -0.5080904%

We run logistic regression training, so thus each feature corresponds to a variable. The model is
evaluated based on the testing data using Area Under ROC Curve [19], denoted as AUC. We set
the historical state length m = 10 and enforce L1[20] regularizer to avoid overfitting and achieve
sparsity. The regularizer parameter is tuned following the approach in [18].

We run the experiment in a shared cluster with tens of thousands of machines. Each machine has up
to 12 concurrent vertices. A vertex is generally a map or reduce step with an allocation of 2 cores
and 6G memory. There are more than 1000 different jobs running simultaneously but this number
also varies significantly. We split the training data into 400 partitions and allocate 400 tokens for this
job, which means this job can use up to 400 vertices at the same time. When we partition vectors to
calculate their dot products, our strategy is to allocate up to 5 million entries in a partial vector. For
example, 1 billion variables will be split into 200 partitions evenly.

We use the model trained with original 1 billion features as the baseline. All the other experiments
are compared with it. Since we are not allowed to exhibit the exact AUC number due to privacy
consideration, we report the relative change compared with the baseline. The scale of the dataset
makes any relative AUC change over 0.001% produce a p-value less than 0.01.

6.2 Value of Large Number of Variables

To reduce the number of variables in the original problem, we sort the features based on their fre-
quency in the training data. If we plan to reduce the problem to K variables, we keep the top K
frequent features. The baseline without filtering is equivalent to K = 1, 038, 934, 683. We choose
different K values and report the relative AUC number in Table 1.

The table shows that while we reduce the number of variables, the results consistently decline signif-
icantly. When the number of variables is 1 million, the drop is more than 0.5% . This is considerably
significant for the problem. Even when we increase the number of variable up to 250 million, the
decline is still obvious and significant. This demonstrates that the large number of variables is really
needed to learn a good model and the value of learning with billion-scale of variables.

6.3 Comparison with Hashing

We follow the approach in [21][18] to calculate a new hash value for each original feature value
based on a hash function in [18]. The number of hash bits ranges from 20 to 26. Experimental
results compared with the baseline in terms of relative AUC performance are presented in Table 2

Consistently with previous results, all the hashing experiments result in degradation. For the exper-
iment with 20 bits, the degradation is 0.5%. This is a substantial decline for this problem. When we
increase the number of bits till 26, the gap becomes smaller but still noticeable. All of these consis-

7

tently demonstrate that the hashing approach will sacrifice noticeable performance. It is beneficial
to train with large-scale number of raw features.

6.4 Training Time Comparison

We compare the L-BFGS in section 4.1 with the proposed VL-BFGS. To enable a larger number of
variable support for L-BFGS, we reduce the m parameter into 3. We conduct the experiments with
varying number of feature number and report their corresponding running time. We use the original
data after hashing into 1M features as the baseline and compare all the other experiments with it and
report the relative training time for same number of iterations. We run each experiment 5 times and
report their mean to cope with the variance in each run. The results with respect to different hash bits
range from 20 to 29 and the original 1B features are shown in figure 1. When the number of features
is less than 10M, the original L-BFGS has a small advantage over VL-BFGS. However, when we
continue to increase the feature number, the running time of L-BFGS grows quickly while that of
VL-BFGS increases slowly. On the other hand, when we increase the feature number to 512M, the
L-BFGS fails with an out-of-memory exception, while VL-BFGS can easily scale to 1B features.All
of these clearly show the scalability advantage of VL-BFGS over traditional L-BFGS.

Figure 1: Training time over feature number.

7 Conclusion

We have presented a new vector-free exact L-BFGS updating procedure called VL-BFGS. As op-
posed to original L-BFGS algorithm in map-reduce, the core two-loop recursion in VL-BFGS is
independent on the number of variables. This enables it to be easily parallelized in map-reduce
and scale up to billions of variables. We present its mathematical equivalence to original L-BFGS,
show its scalability advantage over traditional L-BFGS in map-reduce with a great degree of par-
allelism, and perform experiments to demonstrate the value of large-scale learning with billions of
variables using VL-BFGS. Although we emphasis the implementation on map-reduce in this paper,
VL-BFGS can be straightforwardly utilized by other distributed frameworks to avoid their central-
ized problem and scale up their algorithms. In short, VL-BFGS is highly beneficial for machine
learning algorithms relying on L-BFGS to scale up to another order of magnitude.

8

References

[1] T. Graepel, J.Q. Candela, T. Borchert, and R. Herbrich. Web-Scale Bayesian Click-Through
Rate Prediction for Sponsored Search Advertising in Microsofts Bing Search Engine. In Inter-
national Conference on Machine Learning, pages 13–20. Citeseer, 2010.

[2] Jeffrey Dean, G Corrado, Rajat Monga, Kai Chen, and Matthieu Devin. Large Scale Distributed
Deep Networks. Advances in Neural Information Processing Systems 25, pages 1232–1240,
2012.

[3] Jeffrey Dean and Sanjay Ghemawat. MapReduce : Simplified Data Processing on Large Clus-
ters. Communications of the ACM, 51(1):1–13, 2008.

[4] DC Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical programming, 45(1-3):503–528, 1989.

[5] J Nocedal and S J Wright. Numerical Optimization, volume 43 of Springer Series in Opera-
tions Research. Springer, 1999.

[6] C Zhu, RH Byrd, P Lu, and J Nocedal. Algorithm 778: L-BFGS-B: Fortran subroutines for
large-scale bound-constrained optimization. ACM Transactions on Mathematical Software, 23,
pages 550–560, 1997.

[7] Stephen G. Nash and Ariela Sofer. Block truncated-Newton methods for parallel optimization.
Mathematical Programming, 45(1-3):529–546, 1989.

[8] Jorge Nocedal. Updating quasi-Newton matrices with limited storage, 1980.
[9] DF Shanno. On broyden-fletcher-goldfarb-shanno method. Journal of Optimization Theory

and Applications, 1985.
[10] N Schraudolph, J Yu, and S Günter. A stochastic quasi-Newton method for online convex

optimization. Journal of Machine Learning Research, pages 436–443, 2007.
[11] H Daumé III. Notes on CG and LM-BFGS optimization of logistic regression. 2004.
[12] Y Low, J Gonzalez, and A Kyrola. Graphlab: A new framework for parallel machine learning.

Uncertainty in Artificial Intelligence, 2010.
[13] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Y. Ng,

and Kunle Olukotun. Map-Reduce for Machine Learning on Multicore. In Advances in Neural
Information Processing Systems 19, pages 281–288. MIT Press, 2007.

[14] S Boyd, N Parikh, and E Chu. Distributed optimization and statistical learning via the al-
ternating direction method of multipliers. Foundations and Trends in in Machine Learning,
(3):1–122, 2011.

[15] J Langford, AJ Smola, and M Zinkevich. Slow learners are fast. Advances in Neural Informa-
tion Processing Systems 22, pages 2331–2339, 2009.

[16] C Teo, Le.Q, A Smola, and SVN Vishwanathan. A scalable modular convex solver for regular-
ized risk minimization. ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
2007.

[17] S Gopal and Y Yang. Distributed training of Large-scale Logistic models. Proceedings of the
30th International Conference on Machine Learning, 28:287–297, 2013.

[18] Alekh Agarwal, Oliveier Chapelle, Miroslav Dudı́k, and John Langford. A Reliable Effective
Terascale Linear Learning System. Journal of Machine Learning Research, 15:1111–1133,
2014.

[19] CX Ling, J Huang, and H Zhang. AUC: a statistically consistent and more discriminating
measure than accuracy. IJCAI, pages 329–341, 2003.

[20] Galen Andrew and Jianfeng Gao. Scalable training of l1-regularized log-linear models. Pro-
ceedings of the 24th International Conference on Machine Learning, pages 33–40, 2007.

[21] K Weinberger, A Dasgupta, J Langford, Smola.A, and J Attenberg. Feature hashing for large
scale multitask learning. International Conference on Machine Learning, 2009.

9

