
Dynamic Materialized Views

Jingren Zhou
Microsoft Research

jrzhou@microsoft.com

Per-Åke Larson
Microsoft Research

palarson@microsoft.com

Jonathan Goldstein
Microsoft Research

jongold@microsoft.com

Luping Ding
Worcester Polytechnic Institute

lisading@cs.wpi.edu

Abstract

A conventional materialized view blindly materializes
and maintains all rows of a view, even rows that are never
accessed. We propose a more flexible materialization strat-
egy aimed at reducing storage space and view maintenance
costs. A dynamic materialized view selectively materializes
only a subset of rows, for example, the most frequently ac-
cessed rows. One or more control tables are associated
with the view and define which rows are currently mate-
rialized. The set of materialized rows can be changed dy-
namically, either manually or automatically by an internal
cache manager using a feedback loop. Dynamic execution
plans are generated to decide whether the view is applicable
at run time. Experimental results in Microsoft SQL Server
show that compared with conventional materialized views,
dynamic materialized views greatly reduce storage require-
ments and maintenance costs while achieving better query
performance with improved buffer pool efficiency.

1 Introduction
Judicious use of materialized views can speed up the

processing of queries by several orders of magnitude. The
idea of using materialized views is more than twenty years
old [17, 22] and all major database systems (DB2, Oracle,
SQL Server) now support materialized views [2, 23, 5]. The
support included in those systems consists of computing,
materializing, and maintaining all rows of the view defini-
tion result, which we refer to as static materialized views.

However, storage costs may be high for large static views
and maintenance can also be costly if the views are fre-
quently updated. If only a small subset of the full view
result is used over a period of time, disk storage is wasted
for the unused records and many records that are never used
are unnecessarily kept up to date.

In this paper we introduce dynamic materialized views
which selectively materialize only some of the rows in the
view, for example, only the most frequently accessed rows.
Which rows are currently materialized is specified by one
or more control tables associated with the view. Changing
which rows are materialized can be done dynamically (at
run time) simply by modifying data in a control table. We
illustrate the basic idea by an example.

Example 1 Consider the following parameterized query
against the TPC-H database that finds information for a
given part.
Q1:select p partkey, p name, p retailprice, s name,

s suppkey, s acctbal, l quantity, l extendedprice
from part, lineitem, supplier
where p partkey=l partkey and s suppkey=l suppkey
and p partkey=@pkey

Suppose Q1 is executed frequently but its current re-
sponse time is deemed too high for the application’s needs.
To speed up the query, we could define a materialized view
V1 that precomputes the join.
create view V1 as
select p partkey, p name, p retailprice, s name,
s suppkey, s acctbal, l quantity, l extendedprice

from part, lineitem, supplier
where p partkey=l partkey and s suppkey=l suppkey

If the view result is clustered on (p partkey, s suppkey),
the three-table join in the query is replaced by a very effi-
cient index lookup of the clustered index.

V1 materializes the complete join, so it may be quite
large. On a database at scale factor 1, there would be
200,000 parts and the view would contain 6 million rows.
Now consider a scenario where the access pattern is highly
skewed and, in addition, changes over time. Suppose 1,000
parts account for 90% of the queries on any given day but
this subset of parts changes seasonally - some parts are pop-
ular during summer but not during winter and vice versa. In
this scenario, we could get 90% of the benefit of the mate-
rialized view by materializing only 0.5% of the rows. This
would both reduce overhead for maintaining the view dur-
ing updates and also save storage space. However, this is
not possible with today’s materialized view technology be-
cause the seasonally changing contents of the materialized
view cannot be specified by a static predicate.

Dynamic materialized views are ideally suited for situ-
ations like this. To handle our example query, we create a
control table hotspot and a dynamic materialized view DV1

whose content is controlled by hotspot.
create table hotspot(hotpartkey int primary key)

create view DV1 as
select p partkey, p name, p retailprice, s name,
s suppkey, s acctbal, l quantity, l extendedprice

from part, lineitem, supplier



where p partkey=l partkey and s suppkey=l suppkey
and exists(select * from hotspot hs

where p partkey=hs.hotpartkey)

3

19
7hotspot

Query Q1

hit

R
un-tim

e
C

hecking

miss

Case 1: 
Using View

Case 2:
Using Tables

Cache Manager

New hot
keys

Record
EventDBA

3

19
7

DV1

r1

r3
r2

...
Base Tables

Figure 1. Overall Architecture
While the static view V1 materializes information about

all parts, DV1 only materializes information about the parts
listed in the control table hotspot, that is, parts satisfying
the exists clause. The control table is invisible – queries do
not need to explicitly reference the control table to exploit
the view.

Figure 1 outlines the overall architecture of using dy-
namic materialized views in a database system. Query Q1

can be answered from the view if the key of the desired part
is found in hotspot. To exploit the view safely, the opti-
mizer produces a query plan that first checks at run-time
whether the desired part key exists in hotspot, shown as
step ① in Figure 1. If it does, the plan evaluates the query
using a simple select against DV1 (step ②). Otherwise, the
query is evaluated using the base tables (step ③).

Upon updates to the base tables, only changes affecting
the hot parts need to be propagated to DV1, which greatly
reduces the view maintenance cost. The content of DV1

can be changed dynamically by updating the control table
hotspot. Inserting a new part key into the control table
automatically adds its information to the view. The dele-
tions happen in a similar way. We delay discussion of in-
crementally maintaining dynamic materialized views until
Section 2.

Figure 1 also shows two possible ways to manage the
content of DV1. A DBA can manually change the contents
of the control table according to new business requirements
(step ④). Or, the control table can be automatically man-
aged by an internal cache manager using a feedback loop.
During execution of Q1, the cache manager records whether
the query could be answered from the view or not (step ⑤).
The cache manager implements some caching policy and
recommends admitting or evicting rows in the control ta-
ble based on its policy (step ⑥). The recommended updates
of the control table are done asynchronously so that normal
query execution is not affected1.

Dynamically materializing only part of a view can be
useful in many scenarios. For example, dynamic views can
be extremely useful for a mid-tier database cache [16, 1, 8],

1The update process is not shown in the figure.

where the replicated data can be treated as dynamic materi-
alized views and contain only the most frequently accessed
rows. A dynamic view can also be used for incremental
view materialization. Conventionally, materialized views
cannot be exploited before the materialization finishes. The
process can be very lengthy for an expensive view. Before
the view gets fully materialized, we can treat it as a dynamic
materialized view and the contents of the control table rep-
resent the current materialization progress. As a result, the
view can be exploited even before it is fully materialized!
We discuss other potential applications in Section 4.

The main contributions of our paper are as follows:
• We provide a new mechanism to dynamically adapt

and exploit the contents of materialized views. Com-
pared with traditional approaches, dynamic material-
ized views significantly reduce view maintenance costs
and storage requirements.

• We extend conventional view matching and mainte-
nance algorithms to dynamic materialized views. Dy-
namic query execution plans determine at run time
whether a view can be used or not.

• We introduce a feedback loop with a novel caching
policy to automatically adapt the contents of dynamic
materialized views.

• We outline several potential applications of dynamic
materialized views across different areas in database
systems.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the general form of a dynamic mate-
rialized view, and present view matching and maintenance
algorithms. We describe several types of control schemas
and dynamic views with more complex control designs in
Section 3. In Section 4, we explain how to adapt the con-
tents of the dynamic view using a feedback loop and outline
other applications. Experimental results in Microsoft SQL
Server are presented in Section 5. We review related work
in Section 6 and conclude in Section 7.

2 Dynamic Materialized Views
In this section, we define dynamic materialized views

and describe how to extend regular view matching and
maintenance algorithms to work with dynamic materialized
views. For ease of presentation, we use a dynamic materi-
alized view with a single control table as an example. The
techniques presented here are also applicable to more ad-
vanced dynamic materialized views in Section 3.

2.1 View Definitions
Let Vb denote the query expression defining a standard

SPJG (select, project, join and an optional group-by) view
and Pv its select-join predicate. We refer to Vb as the base
view. Borrowing from SQL, we use the shorthand Vb.∗ to
denote all columns of view Vb.

A dynamic materialized view Vd is defined over the base
view Vb but has materialization controlled by a control table
Tc and a control predicate Pc(Vb, Tc).



create view Vd as
select Vb.* from Vb

where exists (select 1 from Tc where Pc(Vb, Tc))

Control table Tc can be a regular table or even another
materialized view. Control predicate Pc references columns
from Tc and only non-aggregated output columns from Vb.
This restriction is important for view matching and for view
maintenance as described in Section 2.2 and Section 2.3.

The exists clause in the definition restricts the rows actu-
ally materialized in Vd to those satisfying the control pred-
icate Pc for rows currently stored in Tc. Hence, by adding
and deleting rows from Tc, we control the contents of Vd.

The dynamic materialized view DV1 defined earlier has
the following components. We omit the full column list.
Vb:select ...

from part, lineitem, supplier
where p partkey=l partkey and s suppkey=l suppkey

Pv:(p partkey=l partkey) ∧ (l suppkey=s suppkey)
Tc:hotspot(hotpartkey int)
Pc(Vb, Tc):(p partkey=hotpartkey)

2.2 View Matching
A view matching algorithm for regular materialized

views is described in [5]. A view can be used to answer the
whole query or some subexpressions. To determine whether
a query expression can be computed from a view, the query
and view expressions are first converted into normal form.
Next containment is tested, that is, whether all rows re-
quired by the query are contained in the view. Finally, ad-
ditional requirements such as whether the view supplies all
required columns and has the correct duplication factor are
checked. In this section, we show how to extend this algo-
rithm to handle dynamic materialized views.

For regular views, containment of the query in the view
can be tested at optimization time but for dynamic materi-
alized views, part of the testing has to be postponed to ex-
ecution time. We call the test evaluated at execution time a
guard condition. In this paper, we assume that guard condi-
tions are limited to checking whether one or a few covering
values exist in the control table. If the desired values are
found in the control table, then all tuples associated with
those values are currently materialized.

At optimization time, we construct the guard condition
so that the query is guaranteed to be contained in the view
if the guard condition evaluates to true. The evaluation of
the guard condition is delayed until execution time. The
query plan must also contain an alternative subplan, called
a fallback plan, that computes the query expression from
other input sources in case the guard condition evaluates to
false.

Figure 2 shows a possible dynamic query plan for Q1.
The ChoosePlan operator first evaluates the guard condi-
tion shown on the right. (The operator tree for evaluating
the guard condition is not shown.) If it evaluates to true,
the dynamic view contains the required rows and the left
branch using the view is executed. Otherwise, the right
branch computing the result from base tables is executed.

ChoosePlan

SELECT
p_partkey = @pkey

DV1

JOIN

JOIN Supplier

SELECT
p_partkey = @pkey

Lineitem

Part

exists (select 1 from hotspot
 where hotpartkey = @pkey)True False

Using View

Fallback plan

Guard Condition

Figure 2. Dynamic execution plan for Q1

More formally, let Vd be a dynamic materialized SPJ
view with base view Vb and control predicate Pc. Denote
the select-join predicate of Vb with Pv . Consider a SPJ
query Q over the same tables as Vb and denote its combined
select-join predicate by Pq . Due to space limitation, all the
proofs are omitted and can be found in [24].

Containment checking requires that Pq ⇒ (Pv ∧ Pc) in
order to answer Q from Vd. The control table is invisible
to the query so Pq does not reference the control table. The
implication cannot be proven at compile time because it de-
pends on the contents of the view at run time. To deal with
this, we break up the test into three parts; the first two are
evaluated at optimization time and the third one – the guard
condition – is evaluated at execution time.

The first part is Pq ⇒ Pv, which tests whether the query
is contained in the view if it is fully materialized. Clearly,
the query cannot be contained in a dynamic materialized
view if it is not even contained in the corresponding fully
materialized view.

For the second part, we add a guard predicate Pg , if pos-
sible, to the antecedent, obtaining the condition (Pg∧Pq) ⇒
(Pv ∧ Pc). This condition asks the question: “If the addi-
tional condition Pg is satisfied, is the query then contained
in the view?” If the first condition, Pq ⇒ Pv , is satisfied,
this second condition can be simplified to (Pg ∧ Pq) ⇒ Pc.

The third part of the test consists of verifying, at execu-
tion time, that a tuple satisfying the guard predicate exists
in the control table, that is, ∃t ∈ Tc : Pg(t).

Theorem 1 Consider an SPJ query Q with a conjunctive
predicate Pq and a dynamic materialized SPJ view Vd with
base view predicate Pv , control predicate Pc, and control
table Tc. Then query Q is covered by view Vd if there exists
a predicate Pg such that the following three conditions are
satisfied.

Pq ⇒ Pv (1)

(Pg ∧ Pq) ⇒ Pc (2)

∃t ∈ Tc : Pg(t) (3)

Example 2 For our example view PV1 and query Q1, it is
easy to see that the first test is true. Choosing the guard
predicate as (hotpartkey=@pkey), the second test (Pg ∧
Pq) ⇒ Pc is simplified to

(hotpartkey=@pkey)∧(p partkey=@pkey)⇒
(p partkey=hotpartkey)

It is easy to see that this condition is also true. The last
test, to be evaluated at execution time, equals



∃ t∈ hotspot:(t.hotpartkey=@pkey)

This condition, expressed in SQL, is shown in Figure 2.

Whether the dynamic materialized view is guaranteed
to contain all required rows depends on whether Pg , with
known parameters, evaluates to true at execution time. The
following theorem considers queries with non-conjunctive
predicates.

Theorem 2 Consider an SPJ query Q with a non-
conjunctive predicate Pq , which can be converted to dis-
junctive normal form as Pq = P 1

q ∨ · · · ∨ Pn
q and a dy-

namic materialized SPJ view Vd with base view predicate
Pv and control predicate Pc referencing a control table Tc.
Then query Q is covered by view Vd if, for each disjunct
i = 1, 2, · · ·, n, there exists a predicate P i

g such that the
following three conditions are satisfied.

P i
q ⇒ Pv (4)

(P i
g ∧ P i

q) ⇒ Pc (5)

∃ti ∈ Tc : P i
g(ti) (6)

Example 3 The following query is similar to Q1 but the
equality predicate has been changed to an IN predicate.
An IN predicate can be rewritten as a disjunction of equal-
ity predicates, which after conversion to disjunctive normal
form, produces the two disjuncts shown below.

Q′
1:select ...
from part, lineitem, supplier
where p partkey=l partkey and s suppkey=l suppkey
and p partkey in (12, 25)

P 1
q :(p partkey=l partkey) ∧
(s suppkey=l suppkey) ∧ (p partkey=12)

P 2
q :(p partkey=l partkey) ∧
(s suppkey=l suppkey) ∧ (p partkey=15)

The view matching tests for this example will be the
same as in Example 2, except @pkey is replaced by 12 or
by 15. The optimization-time tests still evaluate to true. For
the query to be covered, both execution-time tests must be
satisfied, which produces the following guard condition.

∃ t1∈ hotspot:(t1.hotpartkey=12) ∧
∃ t2∈ hotspot:(t2.hotpartkey=15)

which can be expressed in SQL most efficiently as

2=(select count(*) from hotspot
where hotpartkey in (12,15))

An aggregation query or view is treated as an SPJ query
followed by a group-by operation. Aggregation adds one
step to view matching that tests whether the grouping in
the view is compatible with that in the query. For a dy-
namic aggregation view the grouping-compatibility test is
the same as for a regular view because of our requirement
that the control predicate Pc of the view involves only non-
aggregated output columns of the base view Vb. Hence, ei-
ther all the rows in a group or none of them will satisfy the
control predicate.

2.3 View Maintenance
Incremental maintenance of materialized views is a well-

studied problem, and efficient maintenance algorithms are
known for SPJG views. Compared with a fully material-
ized view, a dynamic materialized view can be maintained
more efficiently, because only a small number of rows are
actually materialized. However, current view maintenance
algorithms are designed for SPJG views and do not support
views containing exist subqueries. In this section, we out-
line how to incrementally maintain a dynamic materialized
view. The general observation is that if the base view Vb

is maintainable, the corresponding dynamic view Vd is also
maintainable.

If the query expression in the exists clause returns at most
one row for each possible value of the control columns, the
subquery can be converted to a join. A dynamic material-
ized view Vd that satisfies this requirement can, for main-
tenance purposes, be treated as the regular view V ′

d shown
below.
create view V ′

d as
select Vb.* from Vb, Tc where Pc(Vb,Tc)

The view V ′
d is a regular SPJG view and can be incre-

mentally maintained. For example, the view DV1 is of this
type because hotpartkey is a primary key of the control table
hotspot. Converting the subquery to an inner join produces
the following equivalent definition
create view DV ′

1 as
select ...
from part, lineitem, supplier, hotspot
where p partkey=l partkey and s suppkey=l suppkey
and p partkey=hotpartkey

If the query expression in the exists clause may return
more than one row, converting the subquery into a join may
produce duplicate rows. We consider two situations based
on whether Vb contains aggregation.

Case 1: First consider the case when Vb is a SPJ view.
If the output columns of Vb contain a unique key 2, we can
convert the view Vd into the following aggregation view V ′

d
to make it incrementally maintainable.
create view V ′

d as
select Vb.*, count(*) as cnt
from Vb, Tc where Pc(Vb, Tc) group by Vb.*

All the output columns of Vb have to be included as
group-by columns so that they can be output. The group-by
operation in V ′

d simply removes the duplicated rows and the
count is added for view maintenance. The view V ′

d contains
exactly the same rows as the view Vd; the only difference is
that each row has an additional column cnt.

If the output columns of Vb do not contain a unique key,
an extra join is required during maintenance so as not to
introduce duplicates. We will show the rewrite assuming a
single control column and denote this column by Cc. The
generalization to multiple view columns is straightforward.
We rewrite Vd using a self-join for maintenance purposes.

2In Microsoft SQL Server, a materialized view is required have a
unique key.



create view V ′
d as

select Vb.*
from Vb v1 join

(select Cc from Vb, Tc

where Pc(Vb, Tc)group by Cc) v2
on (v1.Cc=v2.Cc)

The inner query removes duplicate rows. Although V ′
d is

no longer a SPJG view, it can be maintained incrementally.
During updates, the delta table of the inner query is com-
puted first, including duplicate elimination, and then used
to update the outer view.

Case 2: Now consider the case when Vb is an aggrega-
tion view. Let V spj

b denote the SPJ part of the view and
G denote the group-by columns of the view. If the output
columns of V spj

b contain a unique key, we can rewrite Vd as
follows for maintenance purposes. The inner query removes
duplicate rows before applying the aggregation in the outer
query.
create view V ′

d as
select Vb.*

from (select V spj
b .* from V spj

b , Tc

where Pc(Vb, Tc) group by V spj
b .*)

group by G

Similarly, if the output columns of V spj
b do not contain a

unique key, the inner query can by replaced by a self-join;
the view can also be incrementally maintained.

In summary, these rewrites show that dynamic views can
be efficiently maintained incrementally in the same way as
regular views.

3 Control Schemes

So far we show dynamic views with equality control
predicates. But many other types of control predicates and
control tables are also possible. In this section, we cover a
few important types, discuss what type of queries they can
support and show how to construct the guard predicate Pg .

Equality Control Tables: An equality control table is
one where the control predicate specifies an equijoin be-
tween one or more columns in the base view and in the
control table. This type of control table can only sup-
port queries with equality constraints on all join columns
or queries that can be converted to this form. The control
table hotspot and the dynamic materialized view DV1 in
Section 1 are of this type.

Range Control Tables: A range control table is one that
supports range control predicates. A dynamic materialized
view with a range control table can support range queries or
point queries.
Example 4 Consider the following parameterized range
query that finds information about all suppliers for a given
range of parts, e.g. (p partkey > @pkey1 ∧ p partkey <
@pkey2). To support the query we create a dynamic mate-
rialized view with a range control table.
create table hotrange(lowerkey int, upperkey int)

create view DV2 as
select ... from part, lineitem, supplier

where p partkey=l partkey and s suppkey=l suppkey
and exists (select * from hotrange

where p partkey>lowerkey and p partkey<upperkey)

For efficiency, one would ensure that hotrange contains
only non-overlapping ranges. This can be done by adding a
suitable check constraint or trigger to the table.

To guarantee that the view contains all required rows, the
control table must contain a range that covers the query’s
range. Hence, the guard predicate becomes
Pg: (lowerkey≤@pkey1) ∧ (upperkey≥@pkey2)

and the guard condition, expressed in SQL, becomes
exists(select * from hotrange

where lowerkey<=@pkey1 and upperkey>=@pkey2)

Control tables specifying just an upper or a lower bound
are feasible as well, and would support queries that specify
a single bound, a range constraint, or an equality constraint.
The control table would have only one row containing the
current lower (or upper) bound.

Control Predicates on Expressions: The control predi-
cate Pc is not limited to comparisons with “plain” columns
from the base view. The comparison may instead be applied
to the result of an expression or function over columns from
the base view. Even a user-defined function can be used as
long as it is deterministic.
Example 5 Suppose we have a user-defined function Zip-
Code that takes as input an address string and returns the
zip code of the address. Consider the following query that
finds information about all suppliers within a specified zip
code, e.g. ZipCode(s address) = @zip.

To support this query we define a control table hotzip-
code and a dynamic view DV3 as shown below.
create table hotzipcode(zipcode int primary key)

create view DV3 as
select ... from part, lineitem, supplier
where p partkey=l partkey and s suppkey=l suppkey
and exists (select * from hotzipcode zc

where ZipCode(s address)=zc.zipcode)

The guard predicate is the same as for an equality control
predicate referencing a “plain” column.
Pg: hotzipcode.zipcode=@zip

More Elaborate Control Designs: A dynamic materi-
alized view can have multiple control tables, and the control
predicates for each table can be combined in different ways.
For example, a dynamic materialized view can store infor-
mation only for hot parts defined in a control table hotpart
and hot suppliers defined in another control table hotsup-
plier. A query that ask information for a given part and a
given supplier can exploit the view with a run-time guard
condition
exists(select 1 from hotpart where hotpartkey=@pkey)
and exists(select 1 from hotsupplier

where hotsuppkey=@skey)

More interestingly, different dynamic materialized views
may share a common control table. The same control ta-
ble controls the contents of all the views. Moreover, a (dy-
namic) materialized view can be used as a control table to
define another dynamic materialized view.



Example 6 Suppose we wish to cache data about cus-
tomers in the most frequently accessed market segments and
also their orders. To do so, we would create a control table
containing market segment ids and two views.
create table hotsegments(segm varchar[25] primary key)

create view DV4 as
select ... from customer
where exits(select * from hotsegments

where c mktsegment=segm)

create view DV ′
4 as

select ... from orders
where exists (select * from DV4

where o custkey=c custkey)

The two views can of course be used independently, that
is, DV4 for queries against the customer table where the
market segment is specified and DV ′

4 for queries against the
orders table where the customer key is specified. In addition
they can be used for queries joining customer and orders
that specify a market segment, e.g. the following query.
select ... from customer, orders
where c custkey=o custkey and c mktsegment=’Household’

Dynamic views with other powerful and flexible control
schemes are possible; further details can be found in [24].

4 Control Table Management
Control table updates are treated no differently than nor-

mal base table updates. As detailed in Section 2.3, a dy-
namic materialized view can be properly maintained with-
out distinguishing whether the update applies to a control
table or a base table.

A materialization policy are simply rules for deciding
which rows to materialize and when. The choice of ma-
terialization policy depends on the applications. A policy
can be manually performed by a DBA or automatically de-
ployed by the system. In this section we describe a few
important applications and their corresponding policies.

Automatic Caching: A materialized policy can be im-
plemented using some form of caching policy. For exam-
ple, we implemented a feedback loop in Microsoft SQL
Server to automatically manage the contents of the con-
trol table of a dynamic materialized view. An in-memory
cache controller is associated with each control table. Dur-
ing execution of a query that uses a dynamic materialized
view we record in its cache controller whether the required
rows were covered by the control table, that is, whether the
query could be answered by the view or not. A cache con-
troller implements some caching policy and recommends
admitting or evicting rows in the control table based on its
policy. The recommended updates to the control table are
done asynchronously so that normal query execution is not
affected. A cache controller’s data structures are stored in
memory only and not persisted to disk. The cache controller
is created the first time a dynamic materialized view is used
after system startup.

An analysis of commonly used caching policies (LRU,
LRU-k, Clock, GClock, 2Q) revealed that none of them

satisfied all our requirements. All of them always admit
a new key on its first access, ignoring the cost of the ad-
mission and possible an eviction as a consequence. In the
case of dynamic views, admissions to the control table re-
sults in execution of a query and insertion of the result into
the view. Evictions from the control table cause deletions
from the view. The costs of admissions cannot be ignored.
Therefore, we need a cache policy that has a low admis-
sion/eviction rate combined with a high hit rate. Because
the cache controller is in memory, the cache policy needs to
be very space efficient too.

We designed a novel cache policy based on the 2Q algo-
rithm [14]. Due to space limitation, we can only highlight
the important features of the algorithm.

• Similar to the 2Q algorithm, we make use of two
queues, one for admissions and one for evictions.

• We consider admission of a new row on its second and
subsequent accesses.

• We keep track of the approximate temperature (time
since last access) of every row in both queues.

• If the cache is full, a row is admitted only of it is hotter
than the coolest row already in the cache. This reduces
the admission/eviction rate and keeps the hit rate high.

• We use bitmaps and hashing to significantly reduce
memory requirements.

Experiments showed that our new policy is much more
space efficient than competing policies and achieves a com-
petitive hit rate coupled with a low admission/eviction rate
and rapid response to changing access patterns.

Automatic caching can also be extremely useful for a
mid-tier database cache, such as Microsoft’s MTCache [16,
15] and IBM’s DBCache [1]. A mid-tier cache replicates
part of the data from a backend server and attempts to han-
dle as many queries as possible from the replicated data to
achieve improved scale-out. MTCache models local data
as materialized views [16] that are updated asynchronously.
Sometimes it would be preferable to automatically materi-
alize only the most frequently accessed rows and change the
set of rows in response to the access pattern of queries. We
describe various models using dynamic views in [8].

Incremental View Materialization: A dynamic view
can be used to incrementally materialize an expensive view.
This can be done using a range control table and slowly in-
creasing the range covered. Having the control predicates
range over the view’s clustering key would materialize the
view page by page and minimize overhead. Before the view
gets fully materialized, we treat it as a dynamic materialized
view and the contents of the control table represent the cur-
rent materialization progress. The view can be exploited
even before it is fully materialized! When materialization
completes, all we need to do is to mark the view as being a
fully materialized view and abandon the fallback plans.

Dynamic views can also be useful for clustering hot
items, views with non-distributive aggregates, and view
support for parameterized queries and queries with parame-
ters in complex subqueries; the details can be found in [24].



5 Experimental Results
We have prototyped support for dynamic views with

equality control predicates in Microsoft SQL Server 2005.
We ran a series of experiments to compare the performance
of a dynamic view with that of a fully materialized view.

All experiments were performed on a workstation with
dual 3.2 GHz Xeon processor, 2GB of memory and two
70GB SCSI disks, running Windows Server 2003. All
queries were against a 10GB version (SF=10) of the TPC-H
database. Automatic control table management as described
in Section 4 was used throughout our experiments. We fixed
the maximum size of the dynamic view and the cache con-
troller determined which rows to materialize based on ob-
served access patterns.

Dynamic materialized views are intended for applica-
tions with skewed access patterns. One main benefit of a dy-
namic view is reduced maintenance overhead, in case of fre-
quent updates with either uniformly distributed or skewed
update patterns. In this section, we focus in particular on
the following areas.
• Due to partial materialization, a dynamic view cannot

answer every possible query. With skewed access pat-
terns and a fixed size, we want to verify that its query
performance is no worse than that of a fully material-
ized view, even if occasionally some queries have to
use the fallback plan.

• Secondly, we want to examine the query performance
of a dynamic materialized view when memory space
(for the buffer pool) is limited.

• Finally, we want to investigate the maintenance over-
head for a dynamic view. Different update patterns
need to be considered, either quite different or the
same as the query access pattern.

5.1 Query Performance

With unlimited buffer pool size, the query performance
provided by a dynamic view improves with the hit rate be-
cause fewer queries use the more expensive fallback plan.
The higher the hit rate, the closer its performance is to
that of a fully materialized view, assuming both views fit
in memory. However, if the buffer pool size is limited, a
larger fraction of a dynamic view fits in memory, which re-
duces disk I/O. As a result, the overall query performance
of a dynamic view may even be better than that of a fully
materialized view despite the fact the view may not cover
all queries. The experiments reported in this section are
designed to quantify the net effect on query performance
and how it is affected by skewness in the access pattern and
buffer pool size.
Q5:select p partkey, p name, p retailprice, s suppkey

s name, s acctbal, sum(l quantity) as sum qty
sum(l extendedprice*(1-l discount)*(1+l tax))

as revenue
from part, supplier, lineitem
where p partkey=l partkey and s suppkey=l suppkey
and p partkey=@partkey
group by p partkey, p name, p retailprice,

s suppkey, s name, s acctbal

create view V5 as
select Q5.* from part, supplier, lineitem
where p partkey=l partkey and s suppkey=l suppkey
group by p partkey, p name, p retailprice,

s suppkey, s name, s acctbal

create table hotspot(hotpartkey int primary key)

create view DV5 as
select Q5.* from part, supplier, lineitem
where p partkey=l partkey and s suppkey=l suppkey
and exists (select * from hotspot hs

where p partkey=hs.hotpartkey)
group by p partkey, p name, p retailprice,

s suppkey, s name, s acctbal

The workload consisted of query Q5 with varying pa-
rameter values. Three different database designs were con-
sidered: using a dynamic materialized view (DMV) DV5,
using a fully static materialized view (FMV) V5, and us-
ing no views. When using the fully materialized view, the
query execution plan is a simple index lookup of V5. When
using the dynamic materialized view DV5, the query exe-
cution plan is a dynamic plan with two branches. The fast
branch consists of a simple index lookup against DV5. The
fallback branch consists of an index lookup against the part
table followed by two indexed nested loop joins with the
supplier table and the lineitem table, respectively, and a fi-
nal aggregation.

We ran the query one million times with randomly se-
lected partkey values drawn from a Zipfian distribution with
skew factor α. To avoid running a long series of queries
to warm up the control table for every experiment, we
preloaded the control table hotspot of view DV5 with the
most frequent accessed partkeys for each scenario 3.

The size of the fully materialized view V5 is about 1GB.
We fixed the size of the dynamic materialized view DV5 to
5% of the size of V5, that is, about 51 MB. By varying the
skew factor α, we were able to change the view’s hit rate,
that is, the fraction of queries answered from DV5

4.
We considered different skew factors. The larger the

skew factor α, the more skewed the access pattern and the
higher the hit rate for DV5. We reported the results for three
scenarios so that DV5 covered 90%, 95%, and 97.5%, re-
spectively, of the query executions. The guard condition
was evaluated by an index lookup against the 1MB control
table – the overhead was very small. The feedback loop is
enabled so that new hot partkeys, if any, are automatically
loaded or evicted from the view. The view’s cache con-
troller is called on every access and adds to the CPU load.

3We experimentally verified that preloading resulted in the cor-
rect initial state, that is, the same state as would have been reached
by running a series of warm-up queries, and also that beginning
with a cold cache controller did not materially affect the admis-
sion/eviction rate after warm-up.

4We also ran experiments for dynamic views with various sizes,
up to 100% of the size of V5. The results are similar; we do not
report them here due to lack of space. As its size increased, the per-
formance of the dynamic view converged to that of the full view.



0

1

2

3

4

5

6

7

64 128 256 512

Buffer Pool Size (MB)

E
xe

cu
ti

o
n

 T
im

e 
(K

 s
ec

o
n

d
s)

DMV FMV No View

0

1

2

3

4

5

6

64 128 256 512

Buffer Pool Size (MB)

E
xe

cu
ti

o
n

 T
im

e 
(K

 s
ec

o
n

d
s)

DMV FMV No View

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

64 128 256 512

Buffer Pool Size (MB)

E
xe

cu
ti

o
n

 T
im

e 
(K

 s
ec

o
n

d
s)

DMV FMV No View

(a) 90% (α = 1) (b) 95% (α = 1.1) (c) 97.5% (α = 1.115)
Figure 3. Effect of Buffer Pool Size and Access Skew

In all the experiments, both the overhead of evaluating the
guard condition and the cache controller overhead was too
low to measure reliably.

For each scenario, we also varied the buffer pool size.
Figure 3 shows the total execution time with different buffer
pool sizes for the three scenarios. The buffer pool is too
small to hold all three base tables (part, partsupp and sup-
plier), which have a combined size of 1.5 GB. Because the
hot part keys are randomly distributed over the key space,
we expect to have poor buffer pool usage and significant
disk I/O. The smaller the buffer pool, the more severe the
I/O problem. With the fully materialized view V5, no joins
are needed and CPU time is saved. However, V5 is still too
large to fit completely in the buffer pool, resulting in some
I/O. The dynamic view DV5 is small enough to fit com-
pletely in the buffer pool.

As expected, it is much faster to use a materialized view
than computing the query from scratch, as shown in Fig-
ure 3. All three plan types benefit from an increase in buffer
pool size. Using the dynamic view DV5 can be up to 33%
faster than using the full view V5 because of better buffer
pool utilization; performance is slightly worse only when
the buffer pool is very small. When the access pattern is
highly skewed, as shown in Figure 3(c), the dynamic view
can achieve about the same performance as the fully ma-
terialized view with only a quarter of the memory. When
the access pattern is less skewed, as shown in Figure 3(a),
the dynamic view achieves comparable performance as the
fully materialized view. For the 10% of the queries that the
dynamic view cannot answer, it is sufficiently expensive to
compute the results from scratch with the limited memory
available to cancel the savings resulting from better buffer
pool utilization for the other 90% of the queries.

In summary, the performance benefits of using a dy-
namic view depends on several factors, such as the amount
of memory available, the skew in the access pattern, and the
relative cost of the fallback plan, etc. The benefit is higher
if the access pattern is more skewed and the dynamic mate-
rialized view covers more queries, not taking into account
buffer pool effects.

5.2 Processing Fewer Rows
In the previous experiment, both views were clustered

on the control column p partkey. Query Q5 includes the
very selective predicate (p partkey=@pkey), so both plans

included a small index scan using the view’s clustering in-
dex. No matter which view is used, the number of rows
scanned is the same, and so is the cost of computing the rest
of the query. Therefore, the overall number of rows pro-
cessed is the same for both views and the savings in elapsed
time is due to improved buffer pool utilization.

What if the views are not clustered on the control col-
umn? In this case, fewer pages need to be fetched and fewer
rows processed when using a dynamic materialized view in-
stead of a fully materialized view. Simply put, there is less
“junk” (non-qualifying rows) to wade through to find the
target rows. Query performance should improve because
less work needs to be done.

To investigate this effect, we created the follow-
ing dynamic view with an equality control predicate on
s nationkey and ran a query with selection predicates on
p type and s nationkey.

create table hotnation(nationkey int primary key)

create view DV6 as
select p partkey, p name, p type, s name,

sp supplycost, s suppkey, s name, s nationkey
from part, partsupp, supplier
where p partkey=sp partkey and s suppkey=sp suppkey
and exists (select * from hotnation ht

where s nationkey=ht.nationkey)

Q6:select p partkey, p name, p type, s name,
sp supplycost, s suppkey, s name, s nationkey

from part, partsupp, supplier
where p partkey=sp partkey and s suppkey=sp suppkey
and p type like ’STANDARD POLISHED%’
and s nationkey=@nkey

To speed up processing of the query, both DV6 and the
corresponding fully materialized view were clustered on
(p type, s nationkey, p partkey, s suppkey). We varied the
size of the dynamic view DV6 by varying the number of
rows in the control table. DV6 always contained the nation-
key for Argentina. We ran query Q6 with @nkey=1 (Ar-
gentina) 100 times and computed the average elapsed time.

hotnation Size Full View Dynamic View Savings(%)

1 1.130 0.121 89%
5 1.130 0.294 74%

10 1.130 0.594 47%
25 1.130 1.170 -3%

The above table compares query Q9 execution time with
a cold buffer pool. For both view types, the main part of



the execution consisted of an index scan using the view’s
clustering index. Because DV6 only contains rows from a
subset of nations, fewer rows need to be read and processed
compared with a fully materialized view. As expected, the
savings is highest when the dynamic materialized view is
small and increases linearly with the view size. The 3%
increase when the dynamic materialized view contains all
rows is caused by higher query startup cost and the the cost
of evaluating the guard condition.

Experiments with a warm buffer pool gave similar results
but the savings were lower. With a warm buffer pool, no I/O
is required to answer the query regardless of view type so
the reduction in execution time is strictly due to reduced
CPU time.

5.3 Update Performance

0

2

4

6

8

10

12

14

16

18

Part (20K
Updates)

Lineitem (20K
Updates)

Supplier (10K
Updates)

E
xe

cu
ti

o
n

 T
im

e 
(x

10
0 

se
co

n
d

s)

DMV FMV

0

2

4

6

8

10

12

14

Part (20K Updates) Lineitem (20K
Updates)

Supplier (10K
Updates)

E
xe

cu
tio

n 
Ti

m
e 

(x
10

0 
se

co
nd

s)

DMV FMV

(a) Uniform Update (b) Skewed Update
Figure 4. Maintenance Costs

Dynamic views are expected to have lower maintenance
cost than the corresponding fully materialized view. To in-
vestigate this issue, we created two instances of the 10GB
TPC-H database, one with the dynamic view DV5 and the
other with the fully materialized view V5. We chose the
view configuration corresponding to Figure 3(b) (skew fac-
tor α = 1.1, size of DV5 5% of the size of V5) and set the
maximum buffer pool size of 512MB.5

For each base table, we issued a series of updates, each
one updating a single column of a single table row selected
based on the primary key of the table. The updates modi-
fied p retailprice in the part table, l quantity in the lineitem
table, and s acctbal in the supplier table, respectively.

We ran experiments with two scenarios: uniform updates
with random key value selection and skewed updates with
skewed key value selection. We measured the total update
time, including the time for the base table update and view
maintenance and the time to flush updated pages to disk.

Figure 5 shows the corresponding update plans. Recall
that the control table contains only 5% of the part keys
(100,000 keys), so it is relatively small compared with the
base tables. The join with the control table greatly reduces
the number of rows so it is applied as early as possible in
each of the plans. The more significant savings, however,
results from having far fewer updates to apply to the view.

In the uniform update case, the parameter values were
uniformly distributed over their domains. Figure 4(a) shows

5The results for other configurations are similar, and are omit-
ted due to space considerations.

IndexSeek
hotspot

Nested
Loops

delta
part

Nested
Loops

IndexSeek
lineitem

Nested
Loops

IndexSeek
supplier

Aggregate

Apply
Update

Aggregate

IndexSeek
hotspot

Nested
Loop

IndexSeek
part

Nested
Loop

delta
lineitem

Nested
Loop

IndexSeek
supplier

Apply
Update

Aggregate

IndexScan
hotspot

Nested
Loop

IndexSeek
lineitem

Nested
Loop

delta
supplier

Merge
Join

IndexSeek
part

Apply
Update

(a) Update Part (b) Update Lineitem (c) Update Supplier

Figure 5. Update Plans
the total update costs for the uniform update scenario. As
expected, the observed cost is much lower – up to 20 times
– when using a dynamic view DV5 than when using a fully
materialized view V5.

The gain when updating lineitem is much smaller than
when updating supplier. The reason is that each update
only affects one row in the full materialized view V5. Even
though we do much less maintenance work for the dynamic
materialized view DV5, the total execution cost is so low
that the query initialization cost is a significant fraction of
the overall cost. The initialization cost is the same whether
we use a fully or dynamic materialized view. However,
when updating the supplier table, each update affects hun-
dreds of rows in V5 and those rows are not clustered to-
gether, which means that many disk pages are affected by
each update. In this case, the reduced maintenance work for
DV5 makes a huge difference.

In the second scenario the rows to be updated were ran-
domly selected using a skewed (Zipfian) distribution. The
update columns are the same as the first scenario. The up-
date plans generated were the same as shown in Figure 5.

When updating the part table, the updates had the same
skewed distribution as queries. As DV5 covered 95% of
the query execution, DV5 was also affected by 95% of the
updates. This is the extreme case when the update skew is
the exactly the same as the query skew. As shown in Fig-
ure 4(b), the benefits of using DV5 is not as high as for uni-
formly distributed updates. Still, maintaining the dynamic
view is cheaper by a factor of two. For 95% of the updates,
the dynamic view and the fully materialized view were both
affected by the update. However, the affected rows in the
fully materialized view are scattered over the whole view.
Maintaining them requires many more disk I/Os than main-
taining the dynamic materialized view.

When updating the lineitem and supplier tables, the up-
dates had a skewed distribution based on l orderkey and
s suppkey with a skew factor α = 1.0, respectively. How-
ever, the skew was not correlated to p partkey. Again, main-
taining the dynamic materialized view DV5 is much cheaper
and the improvement is up to a factor of 15.

In summary, compared with maintaining a fully mate-
rialized view, the maintenance saving for a dynamic view
depends on several factors.
• The cost of computing the delta rows for the view.

• How many rows in the view are affected by an update.



• Whether the affected rows are clustered or not.
• If an update affects very few rows, the benefit may not

be significant because of the constant startup cost.

6 Related Work
The problems of view matching and view maintenance

have received considerable attention in the research com-
munity for the last two decades. However, to the best of our
knowledge, researchers have only considered fully materi-
alized views.

Answering queries using views has been studied in [17,
22, 4, 20]. Larson and Yang [17, 22] were the first to de-
scribe view matching algorithms for SPJ queries and views.
Srivastava et al. [20] proposed a view-matching algorithm
for queries and views with aggregation. Chaudhuri et al.
[4] considered using materialized views in a System-R style
query optimizer. A thorough survey of work on answering
queries using views can be found in [12].

Incremental view maintenance has been studied in [3, 11,
7, 18]. They all use the update delta paradigm - compute
a set of changed tuples (inserted or deleted) that are then
used to update the materialized view. Gupta et al. [10] also
described incremental view adaption techniques.

Materialized views have been adopted in all major com-
mercial database systems. Oracle was the first commercial
database system to support materialized views [2]. Zahar-
ioudakis et al. [23] described a bottom-up view matching
algorithm in IBM DB2. Goldstein and Larson [5] presented
algorithms to matching views in Microsoft SQL Server.

Partial indexes that contain only some of the values in a
column of a table were proposed in [21, 19]. The restric-
tion is represented by a static predicate in the index defini-
tion. Similar to a regular materialized view, a partial index
is defined over a single table by a select-project expression.
Dynamic views are much more flexible.

Dynamic plans were proposed by Graefe and Ward
in [6]. They have been used in the context of mid-tier
caching in [1, 16, 9] and probably also in other contexts. At
least one commercial system, Red Brick Warehouse [13],
implements dynamic plans.

7 Conclusion
In current database systems, a view must be either fully

materialized or not materialized at all. A dynamic view ma-
terializes only some of the rows and which rows are ma-
terialized can be easily and quickly modified by updating
a control table. Adapting the contents can be done either
manually by a DBA or automatically by an internal caching
strategy that monitors which rows of the view are most fre-
quently requested. We showed that dynamic views can be
seamlessly integrated into the existing materialized view in-
frastructure.

Dynamic views offer significant performance benefits
compared to regular materialized view for applications with
skewed access patterns. The primary benefits are lower
storage requirements, lower maintenance costs and lower

buffer pool requirements. The new mechanism to dynami-
cally adapt and exploit materialized views is ideal for many
database applications.

References

[1] M. Altinel, C. Bornhovd, S. Krishnamurthy, C. Mohan, H. Pirahesh,
and B. Reinwald. Cache tables: Paving the way for an adaptive
database cache. In Proc. of VLDB Conference, 2003.

[2] R. G. Bello, K. Dias, A. Downing, J. J. Feenan, J. L. Finnerty, W. D.
Norcott, H. Sun, A. Witkowski, and M. Ziauddin. Materialized views
in Oracle. In Proc. of VLDB Conference, 1998.

[3] J. A. Blakeley, P. Larson, and F. W. Tompa. Efficiently updating
materialized views. In Proc. of SIGMOD Conference, 1986.

[4] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Op-
timizing queries with materialized views. In Proc. of ICDE Confer-
ence, 1995.

[5] J. Goldstein and P. Larson. Optimizing queries using materialized
views: A practical, scalable solution. In Proc. of SIGMOD Confer-
ence, 2001.

[6] G. Graefe and K. Ward. Dynamic query evaluation plans. In Proc.
of SIGMOD Conference, 1989.

[7] T. Griffin and L. Libkin. Incremental maintenance of views with
duplicates. In Proc. of SIGMOD Conference, 1995.

[8] H. Guo, P. Larson, and R. Ramakrishnan. Caching with ’good
enough’ currency, consistency, and completeness. In Proc. of VLDB
Conference, 2005.

[9] H. Guo, P. Larson, R. Ramakrishnan, and J. Goldstein. Relaxed cur-
rency and consistency: how to say ”good enough” in sql. In Proc. of
SIGMOD Conference, 2004.

[10] A. Gupta, I. S. Mumick, and K. A. Ross. Adapting materialized
views after redefinitions. In Proc. of SIGMOD Conference, 1995.

[11] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views
incrementally. In Proc. of SIGMOD, 1993.

[12] A. Y. Halevy. Answering queries using views: A survey. The VLDB
Journal, 10(4), 2001.

[13] IBM. Red Brick Warehouse 6.3, Peformance Guide, 2004.

[14] T. Johnson and D. Shasha. 2Q: A low overhead high performance
buffer management replacement algorithm. In Proc. of VLDB Con-
ference, 1994.

[15] P. Larson, J. Goldstein, H. Guo, and J. Zhou. Mtcache: Mid-tier
database caching for sql server. Data Engineering Bulletin, 27(2),
2004.

[16] P. Larson, J. Goldstein, and J. Zhou. MTCache: Mid-tier database
cache in SQL server. In Proc. of ICDE Conference, 2004.

[17] P. Larson and H. Z. Yang. Computing queries from derived relations.
In Proc. of VLDB Conference, 1985.

[18] I. S. Mumick, D. Quass, and B. S. Mumick. Maintenance of data
cubes and summary tables in a warehouse. In Proc. of SIGMOD
Conference, 1997.

[19] P. Seshadri and A. Swami. Generalized partial indexes. In Proc. of
ICDE Conference, 1995.

[20] D. Srivastava, S. Dar, H. V. Jagadish, and A. Y. Levy. Answering
queries with aggregation using views. In Proc. of VLDB Conference,
1996.

[21] M. Stonebraker. The case for partial indexes. SIGMOD Record,
18(4), 1989.

[22] H. Z. Yang and P. Larson. Query transformation for psj-queries. In
Proc. of VLDB Conference, 1987.

[23] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, and M. Urata.
Answering complex sql queries using automatic summary tables. In
Proc. of SIGMOD Conference, 2000.

[24] J. Zhou, P.-Å. Larson, and J. Goldstein. Partially materialized views.
Technical Report MSR-TR-2005-77, Microsoft Research, 2005.


