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ABSTRACT
Complex queries often contain common or similar subex-
pressions, either within a single query or among multiple
queries submitted as a batch. If so, query execution time can
be improved by evaluating a common subexpression once
and reusing the result in multiple places. However, current
query optimizers do not recognize and exploit similar subex-
pressions, even within the same query.

We present an efficient, scalable, and principled solution
to this long-standing optimization problem. We introduce
a light-weight and effective mechanism to detect potential
sharing opportunities among expressions. Candidate cover-
ing subexpressions are constructed and optimization is re-
sumed to determine which, if any, such subexpressions to in-
clude in the final query plan. The chosen subexpression(s)
are computed only once and the results are reused to an-
swer other parts of queries. Our solution automatically ap-
plies to optimization of query batches, nested queries, and
maintenance of multiple materialized views. It is the first
comprehensive solution covering all aspects of the problem:
detection, construction, and cost-based optimization. Ex-
periments on Microsoft SQL Server show significant perfor-
mance improvements with minimal overhead.

Categories and Subject Descriptors
H.2.4 [Database Management]: System—Query Process-
ing

General Terms
Algorithms

Keywords
similar subexpressions, query optimization, query process-
ing

1. INTRODUCTION
Database systems frequently encounter queries contain-

ing similar subexpressions but today’s systems do not au-
tomatically exploit such commonalities to speed up query
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processing. Similar subexpressions may occur in a batch of
related queries or within a single complex query with multi-
ple nested subqueries. If a database contains multiple mate-
rialized views with similar parts, view maintenance may also
produce queries with common or similar subexpressions.

Historically, this problem has been referred to as multi-
query optimization but multi-query optimization is just one
instance of the problem. Current query optimizers optimize
queries one at a time and do not identify any commonality
in queries. Because they make locally optimal choices for
each query, they may miss globally optimal plans.

SQL provides two mechanisms for users to define sharable
subexpressions: (virtual) views and common table expres-
sions using the WITH clause. A view or common table ex-
pression referenced more than once in a query represents
a sharing opportunity. However, simply materializing and
sharing user-defined expressions is not necessarily the best
choice. There may be other sharable expressions that im-
prove performance more. It should be the responsibility of
the query optimizer to detect sharing opportunities auto-
matically and to select the best alternative in a cost-based
fashion. The following example illustrates the opportunities
and the optimization challenges.

Example 1 Consider the following batch of three queries
against the TPC-H database that compute summary infor-
mation for nations and regions.

Q1: select c nationkey, c mktsegment,
sum(l extendedprice) as le, sum(l quantity) as lq

from customer, orders, lineitem
where c custkey = o custkey and o orderkey = l orderkey
and o orderdate < ’1996-07-01’
and c nationkey > 0 and c nationkey < 20
group by c nationkey, c mktsegment

Q2: select c nationkey, sum(l extendedprice) as le,
sum(l quantity) as lq

from customer, orders, lineitem
where c custkey = o custkey and o orderkey = l orderkey
and o orderdate < ’1996-07-01’
and c nationkey > 5 and c nationkey < 25
group by c nationkey

Q3: select n regionkey, sum(l extendedprice) as le,
sum(l quantity) as lq

from customer, orders, lineitem, nation
where c custkey = o custkey and o orderkey = l orderkey
and c nationkey = n nationkey and o orderdate < ’1996-07-01’
and c nationkey > 2 and c nationkey < 24
group by n regionkey

The first two queries join the same three tables customer,
orders, and lineitem, but they group on different columns.



The third query looks similar except it joins an additional
table nation and groups on a column of that table. All three
queries have slightly different selection predicates.

A traditional query optimizer would optimize the three
queries separately and generate three query execution plans,
each one computing the join of customer, orders, and lineitem.

It is obvious that execution time could be reduced by shar-
ing some intermediate results instead of computing the same
joins three times. But there are multiple sharing options.
One could share the result of joining tables customer and
orders, the result of joining tables orders and lineitem, pos-
sibly with some aggregation, or the result of joining all three
tables, possibly also with some aggregation. It is not imme-
diately clear which solution is the best. ∗

In this paper, we present an efficient, scalable, and princi-
pled solution to reducing query processing time by recogniz-
ing and exploiting similar SPJG (selection-projection-join-
groupby) subexpressions within a query or among a batch of
queries. A query batch can either be submitted by a user or
automatically generated. For example, data analysis appli-
cations frequently require a batch of queries to be executed.
Query batches can also come from a set of decision-support
queries or from an application generating reports.

After detecting a set of similar subexpressions, we may
construct a Covering SubExpression (CSE) that contains
all tuples and columns required by all the subexpressions.
The optimizer evaluates different CSEs and determines which
ones, if any, to use in the final optimal plan. The chosen
CSE(s) are computed only once and the results are reused
to compute other parts of queries.

Our solution has been prototyped in Microsoft SQL Server.
Extensive experimental results show very significant reduc-
tion in execution time with only moderate increase in opti-
mization time. Our main contributions are as follows.

(a) We introduce a new light-weight mechanism, called
table signatures, for rapidly finding groups of potentially
sharable SPJG subexpressions. The overhead is minimal
if there are no sharable expressions.

(b) Our algorithm is the first to consider all detected shar-
ing opportunities and select among them in a cost-based
manner. We even allow CSEs themselves to share smaller
subexpressions. Previous work missed many optimization
opportunities.

(c) Our algorithm is the first to correctly optimize queries
in the presence of multiple CSEs and it fits seamlessly into
a commercial-grade optimizer.

(d) Finally, our solution is automatically applied to all
query expressions regardless of whether they originate from
a single query, a query batch, or view maintenance.

The rest of this paper is organized as follows. We first
give an overview of our solution in Section 2. We describe
our light-weight mechanism for detecting sharable subex-
pressions in Section 3. In Section 4, we present how to con-
struct candidate CSEs covering a set of similar subexpres-
sions and describe cost-based heuristics to prune out clearly
poor choices. We extend optimization to consider multiple
CSEs in Section 5. We outline three potential applications
and present experimental results in Section 6. Finally, we
survey related work in Section 7 and conclude in Section 8.

2. SYSTEM ARCHITECTURE
We start with describing our overall design. To assist

the reader in understanding the optimization process, we

first give a brief overview of transformation-based optimizers
built on the Volcano [7] or the Cascades [6] framework.

2.1 Brief Optimizer Overview
Conceptually, an optimizer generates all possible rewrit-

ings of a query expression and chooses the one with the
lowest estimated cost. A transformation-based optimizer
applies local transformation rules on query subexpressions
and may generate a large number of expressions during op-
timization. Graefe [6] describes a memo structure that very
compactly stores a set of operator trees by consolidating
expressions into a DAG (directed acyclic graph).

Nodes in the memo DAG are called groups. Each group
is assigned a unique group number and is composed of a
set of logically equivalent group expressions. A group ex-
pression contains a single query operator that references its
inputs (children) by group numbers. All group expressions
within a group generate the same set of result tuples. A
group may be referenced by many different group expres-
sions in other groups. Groups and group expressions are
consolidated representations of sets of equivalent expressions
(operator trees).

Optimization of a query proceeds in several phases with
early phases applying fewer transformation rules than later
phases. The decision whether to proceed with the next opti-
mization phase depends on the complexity of the query, the
cost of the best plan found so far and the elapsed optimiza-
tion time. Simple, cheap queries may only go through the
first phase.

2.2 Solution Overview
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Figure 1: Overall System Architecture

Figure 1 shows the overall system architecture and the
three key steps in our solution. The covering subexpression
(CSE) manager is a new optimizer component. Its function
will become clear as we describe our approach in more detail.
We also added one more optimization phase, the covering
subexpression (CSE) optimization phase, which is entered
after normal optimization but only if the query is expensive
and contains potentially sharable subexpressions.1

Step 1: Table signature generation

When a query is submitted, it is first compiled and opti-
mization proceeds in the normal way. The optimizer rewrites
the query in different ways by applying transformation rules.
For each logically unique expression generated by the opti-
mizer, we compute its table signature and register it with
the CSE manager. This is shown in Figure 1 as Step 1.
The purpose of this step is to allow detection of potentially
sharable expressions with minimal overhead.

1A batch of queries is treated as a single complex query by tying
them together with a dummy root operator.



A table signature is a very simple abstract of an expression
but with the crucial property that expressions with different
table signatures cannot be computed from a covering subex-
pression. Table signatures are described in more detail in
Section 3. The CSE manager maintains a hash table that
records every table signature found in the query with point-
ers back to the expressions corresponding to the signatures.

If no cheap plan is found during normal optimization, we
proceed with Step 2 and enter the CSE optimization phase.

Step 2: Generation of candidate CSEs

The manager first checks its hash table looking for table
signatures that reference two or more expressions originating
from different parts of the query. These expressions are the
potentially sharable expressions. This check is the first part
of Step 2 in Figure 1. If no such expressions are found, we
exit and generate a final execution plan in the normal way.

For each set of potentially sharable expressions, we con-
struct candidate CSEs. A candidate CSE is a logical ex-
pression with a spool operator on top. The spool opera-
tor materializes the result in a work table so that it can
be reused multiple times. We describe how to construct a
CSE covering a given set of expressions and also heuristics
to prune out less promising candidates in Section 4.

If at least one candidate CSE is generated, we proceed
with Step 3, which resumes query optimization to select the
best CSE(s) and generate a final execution plan.

Step 3: Optimization with candidate CSEs

We treat each candidate CSE in the same way as a (ma-
terialized) view and rely on the optimizer’s view matching
mechanism to generate equivalent rewrites. The choice of
CSEs in the final plan is entirely cost based. If more than
one candidate CSE is available, the optimizer may optimize
the query multiple times with different sets of candidates.
We do not force the optimizer to use CSEs – the optimizer
may conclude that the most efficient solution is not to use
any CSEs at all. We discuss how to incorporate considera-
tion of CSEs into query optimization in Section 5.

3. TABLE SIGNATURES
Table signatures are at the core of our mechanism for

cheaply detecting potentially sharable subexpressions. Be-
cause most queries do not contain any similar expression, the
mechanism has to be extremely light-weight with minimal
overhead during normal optimization.
Definition 3.1 (Table Signatures) A table signature Se

exists for an expression e iff e represents an SPJG expres-
sion. If Se exists, it is a binary tuple Se = [Ge; Te] where

• Ge is a boolean indicating whether e contains a group-
by operation.

• Te is the set of source tables (or views) in e.
SPJG signatures described in [2] are similar to table signa-

tures but contain more information and are more expensive
to compute. They cannot be used for commonality detection
because different instances of the same table have different
SPJG signatures.

Table signatures serve as high level abstracts of expres-
sions. Two expressions with different table signatures can-
not be covered by the same CSE. Table signatures are used
as a fast filter to detect potentially sharable SPJG expres-
sions. For example, πc1,c2,sum(γc1,c2(σp1(A) � σp2(B))) and
πc3,min(γc3(σp3(A) � σp4(B))) have the same table signa-
ture [T; {A, B}] even though they have different predicates

and column lists. Nevertheless, the two expressions could
share some computation of join and aggregation. However,
neither expression can share computation with γ(σ(C) �

σ(D)) which has a different table signature [F; {C, D}].

Operator Table Signature

Table/View (t) St = [F; t]
Select (σ) Sσ(e) = Se, if Ge = F

Project (π) Sπ(e) = Se, if Ge = F

Join (�) Se1�e2 = [F; Te1 ∪ Te2 ], if Ge1 = Ge2 = F

Group-by (γ) Sγ(e) = [T; Te], if Ge = F

Figure 2: Rules for Computing Table Signatures
(For all other cases not listed, Se = ∅)

The table signature for an SPJG expression can be com-
puted efficiently and incrementally by traversing the opera-
tor tree in post order and, at each node, applying the rules
shown in Figure 2. The output signature is calculated using
only the signatures of the input trees and local information.
For example, the signature of γ(σ(C) � σ(D)) can be calcu-
lated from the signatures of σ(C) and σ(D) using the join
rule.

We store table signatures along with groups and group ex-
pressions in the memo to facilitate the optimization process.
Table signatures are computed incrementally over group ex-
pressions and groups. We omit the details due to space lim-
itation. The overhead of computing signatures is so small
that we could not reliably measure it in our experiments.

4. GENERATING CANDIDATE CSES
A set of expressions with the same table signature ref-

erence the same input tables so, in principle, it is always
possible to create a CSE that covers all the expressions.
However, in the worst case, this may require a covering ex-
pression consisting of the Cartesian product of the input
tables. The result may be so large that it is better to com-
pute each expression from scratch. At the other extreme, we
could create a covering expression for every possible subset
of expressions and let the optimizer figure out which ones,
if any, to use. This is not practical either because it might
greatly increase optimization time. The goal of Step 2 is to
generate a small number of promising CSEs but without
losing opportunities.

4.1 Join Compatible Expressions
To avoid CSEs containing Cartesian products, we require

that the covered expressions are join compatible, that is,
have “enough” joins in common. Virtually all joins are
equijoins so we consider only equijoins when defining join
compatibility.

Let E = σp(T1 × T2 × · · · × Tn) be a normalized SPJ ex-
pression. The equijoins in E can be summarized compactly
by a collection of equivalence classes [5] based on the col-
umn equality conditions in p. An equivalence class is a set
of columns that are guaranteed to be equal in the result
of E. Computing the equivalence classes is straightforward
and can be found in [5]. From the collection of equivalence
classes, we construct the equijoin graph for E. The equijoin
graph contains one node for each table Ti in E. There is an
edge between nodes Ti and Tj if there exists an equivalence
class containing a column from Ti and a column from Tj .

Definition 4.1 Two SPJ expressions E1 and E2 over the
same set of tables are join compatible if the equijoin graph



constructed from the intersection of their equivalence classes
is connected.

The intersection of equivalence classes C1 and C2 is de-
fined in the natural way: for every pair of sets, one from C1

and one from C2, output their intersection.

Example 2 Expressions R �R.a=S.d∧R.b=S.e S and
R �R.a=S.d∧R.c=S.f S are join-compatible. The intersection
of their equivalence classes equals {{R.a, S.d}, {R.b, S.e}} ∩
{{R.a, S.d}, {R.c, S.f}} = {{R.a, S.d}}. The correspond-
ing equijoin graph is connected; it consists of two nodes
R and S and there is an edge between them (generated
by the equivalence class {R.a, S.d}). However, expressions
R �R.a=S.d∧R.b=S.e S and R �R.c=S.f S are not join com-
patible. The intersection of their equivalence classes is empty
so the equijoin graph has two nodes but no edges. ∗

The simplest way to derive join compatibility among a
set of expressions is as follows. For each expression, first
extract its full operator tree from the memo and construct
its equivalence classes. Then proceed with testing join com-
patibility by intersecting equivalence classes and checking
connectivity of equijoin graphs.

However, it can be somewhat expensive to extract from
the memo an operator tree matching a given table signature
and to construct its equivalence. It turns out that we can
often avoid the extraction step and derive join compatibility
for a set of expressions from the join compatibility of their
subexpressions. We illustrate the process by an example.

Example 3 Consider the following two expressions

e1 = σpr1(R) �p1 S �p2∧p3 σpt1(T )

e2 = σpr2(R) �p1 σps2(S) �p2 σpt2(T )

All the joins are assumed to be equijoins. If we know that
subexpressions e′1 = σpr1(R) �p1 S and e′2 = σpr2(R) �p1

σps2(S) are join compatible, and that subexpressions e
′′
1 =

S �p2∧p3 σpt1(T ) and e
′′
2 = σps2(S) �p2 σpt2(T ) are join

compatible, we can safely conclude that e1 and e2 are join
compatible.

Here is the reasoning. The equijoin graph of e′1 and e′2
consists of nodes R and S and an edge (R, S). Otherwise
the graph would not be connected and the expressions would

not be join compatible. Similarly, the equijoin graph for e
′′
1

and e
′′
2 consists of node S and T and an edge (S, T ). The

equijoin graph of e1 and e2 consists of, at least, the union
of these two equijoin graphs. The union of the two graphs
contains nodes, R, S, and T , and edges (R, S) and (S, T ).
That is, the union graph covers all tables and is connected.
It follows that e1 and e2 are join compatible. ∗

However, such optimization may not always work because
the optimizer may not have explored enough subexpressions.
If so, we fall back on deriving join compatibility by the basic
method described in the beginning of this section.

4.2 Covering Subexpressions (CSE)
The join-compatibility analysis divides expressions with

the same table signature into join-compatible groups. Each
group contains only mutually join-compatible expressions.
The next step is to generate candidate CSEs for each group
containing more than one expression.

Given a set of target expressions, a covering subexpression
(CSE) that contains all tuples and columns required by the
target expressions can be constructed as follows. We call
the target expressions potential consumers of the CSE.

1. Compute equivalence classes for all potential consumers
and take their intersection. Create an N-ary join op-
erator, with equijoin predicates from the intersected
equivalence classes.

2. Simplify the selection predicate of each potential con-
sumer by deleting any conjunct already included in the
join predicate constructed in step 1.

3. Add a covering selection predicate, if any, by OR’ing
the simplified predicates. AND the covering predicate
to the join predicate constructed in step 1.

4. If aggregation is required, add a group-by operator on
top of the N-ary join. Its grouping columns consists of
the union of the following: the group-by columns of all
potential consumers and all columns referenced in the
covering predicate constructed in the step 3. Its ag-
gregation expressions (functions) include aggregation
expressions from all potential consumers.

5. If needed, add a projection operator on top. Include
as output columns, all columns and (aggregation) ex-
pressions that are required to compute the result of a
potential consumer.

6. Add a spool operator on top.
Example 4 Consider the following two expressions

γe1
c1,c2(σpa1(A) �p1 B �p2∧p3 σpc1(C))

γe2
c1 (σpa2(A) �p1 σpb2(B) �p2 σpc2(C)).

All joins are assumed to be equijoins. Both expressions have
table signature [T; {A, B, C}] and are join compatible. We
first convert the expression into normal form, which pro-
duces γe1

c1,c2 σpa1∧p1∧p2∧p3∧pc1(A × B × C) and
γe2

c1 σpa2∧p1∧pb2∧p2∧pc2(A×B×C). The common join pred-
icates are p1 and p2. To create the covering predicate, we
first drop p1 and p2 from both predicates and then OR the
result. We also need a group-by operator. Suppose the cov-
ering predicate references columns c2 and c3. The group-by
columns for the operator are then {c1, c2}∪{c1}∪{c2, c3} =
{c1, c2, c3} and the aggregation expressions are e1 and e2.
The CSE (without the spool operator) is then

γe1,e2
c1,c2,c3 σp1∧p2∧((pa1∧p3∧pc1)∨(pa2∧pb2∧pc2))(A × B × C)

4.3 Candidate Generation
Suppose we have a group with four consumers. What can-

didate CSEs should we generate? A simple solution would
be to create a single CSE that covers all four consumers.
However, this is not necessarily the best solution. The CSE
may produce a very large result that does not fit any of
its consumers well. This may happen, for example, if the
consumers require different sets of columns or different sets
of tuples. In that case, each consumer may have to “wade
through” a lot of data that it does not need. This illustrates
the fact that we must consider multiple candidate CSEs,
each one covering some subset (or all) of the consumers.
We cannot a priori decide that a single CSE covering all
consumers is the best solution.

Ideally, we would create a candidate CSE for every subset
of consumers. But this exhaustive algorithm is exponential
in the number of consumers. Instead we use the greedy algo-
rithm described in Algorithm 1. We create one trivial CSE
for each consumer, which is, of course, exactly the same as
its only consumer. We start with a trivial CSE and greedily
merge in one other trivial CSE at a time to maximize the
merging benefit until no more beneficial merging is available.



Algorithm 1: CreateCandidateCSE(E)

Input: ExprSet E /* Set of join compatible expressions */
/* with the same table signature */

Output: CandidateSet C
CandidateSet R, M ; Bool IsCandidate;
R = TrivialCandidateSet(E); C = ∅;
Apply heuristics in Section 4.3.1 and 4.3.2 to reduce R.
while |R| > 1 do

Pick r ∈ R;
R = R − {r}; M = E − {r}; IsCandidate = F ;
while M �= ∅ do

Pick m ∈ M which maximizes the benefit ∆;
/*∆ defined in Section 4.3.3. */
if ∆ > 0 then

r = Merge(r, m); IsCandidate = T ;
M = M − {m}; R = R − {m};

else
break; /*no more beneficial merging exists */

end
end
if IsCandidate then C = C + {r};

end
return C;

If there are still trivial CSEs that have not been merged, we
apply the algorithm again to the remaining trivial CSEs.

During generation, several heuristic rules are applied to
prune out candidate CSEs that are not promising or are less
promising than other candidates. The goal is to reduce the
number of candidate CSEs generated but without missing
opportunities. We have to be careful to keep the overhead
of the heuristic rules low. In particular, we cannot afford to
fully cost each candidate CSE, as done in [1].

Fortunately, we are not completely helpless. Because nor-
mal optimization phases have completed before entering the
CSE phase, the memo structure contains a wealth of infor-
mation that can be exploited. It contains the best solution
found so far for the query and its final cost CQ. A group
may have been optimized several times, each time with dif-
ferent requirements on the solution, for example, unsorted
or sorted on a given set of columns. For each group and
requirements, we know the best solutions found, if any, and
cost bounds, including both the upper bound and the lower
bound. Our heuristics exploit these optimal costs or cost
bounds to prune out candidates that do not appear promis-
ing. The actual costs for using a candidate are computed
and evaluated during later optimization as described in Sec-
tion 5. Our heuristics are applied in a conservative manner
in that they are only active if all required cost bound infor-
mation is available.

In the rest of this section, we describe four important
cost-based heuristics. As we shall see in Section 6, they
are both effective and efficient. We denote the cost of the
best solution found before CSE optimization by CQ. For a
giving candidate, we denote its N potential consumers by
G1, . . . , GN .

4.3.1 Don’t Bother With Cheap Expressions
The first heuristic is based on the observation that only

expensive expressions are worth consideration. The criteria
is that the total cost of all potential consumers must be a
significant part of the overall query cost. Otherwise, the
potential improvement is likely to be too small to be worth
the potential optimization overhead.

Heuristic 1 Consider a candidate CSE and denote the lower

cost bound of its potential consumer Gi by Clower
Gi

. Discard
this CSE if there is not enough potential savings, that is, if
it satisfies the condition

∑
Clower

Gi

CQ
< α

where α is a constant. In our experiments, we use α = 10%.

We use the lower cost bound here because it represents
either the cost of its optimal solution or the cost of another
competing plan.

∑
Clower

Gi
represents the maximum pos-

sible contribution from all the consumers. We apply this
heuristic both before and after analyzing join compatibility.
Applying it before analyzing join compatibility among a set
of potential consumers helps discard obviously trivial cases
immediately. After join compatibility analysis, we can ap-
ply this heuristic again because we may lose some consumers
due to join incompatibility and the remaining potential im-
provement may no longer be compelling.

Example 5 Consider the three queries in Example 1. The
join of customer and orders could be shared by three po-
tential consumers. However, the cost of this join operation
is so low, compared to the query overall cost, that we can
safely exclude this candidate from further consideration. ∗

4.3.2 Exclude Consumers With Huge Results
Sharing CSEs does not come free of charge. There are

three costs associated with a CSE E. First, the expres-
sion E is evaluated once. We denote the evaluation cost by
CE . The “spool” operator materializes the result into an
internal work table at a writing cost of CW . Each consumer
reads the work table sequentially and performs any required
additional computation, such as evaluating compensation
predicates, etc. We denote the combined usage cost by CR.
For each candidate CSE, we know what columns it must
output to serve all its consumer(s). Together with the esti-
mated cardinality, we can calculate both CW and CR based
on the estimated data volume written and read.

A candidate CSE that produces a large result has high
materialization and reading costs. To avoid generating can-
didates that produce very large results, we exclude a con-
sumer from consideration if the cost of materializing and
reading its result is higher than computing the expression
from scratch. We estimate the cost of computing an ex-
pression from scratch conservatively by using its upper cost
bound, that is, the maximum cost among the optimal plans
in the group to which the expression belongs.

Heuristic 2 Consider a candidate CSE with N consumers.
For a given consumer Gi, denote its upper cost bound by
Cupper

Gi
, the cost of materializing its result by CWi , and the

cost of using the result by CRi . Discard consumer Gi if it
satisfies the condition

Cupper
Gi

< CRi +
Cupper

Gi
+ CWi

N

Note that if a candidate is created to cover consumer Gi

only, the cost of evaluating the candidate is at most Cupper
Gi

.
In the best case, both the evaluation cost and the mate-
rialization cost are shared by all consumers (right side of
the inequality). Even so, if it is still cheaper to compute
the expression from scratch (left side of the inequality), we
can safely exclude this consumer from consideration. The
criteria identifies consumer expressions that are cheap to
compute but generate a large result.



Example 6 Consider the following two queries that join
customer and orders in a TPC-H database.

Q4: select *
from customer, orders where c custkey = o custkey

Q5: select c name, c nationkey, o totalprice
from customer, orders where c custkey = o custkey

The join of customer and orders could be shared between
the two queries. However, Q4 requires all columns from
customer and orders so the cost of just writing the result
would be significantly higher than the cost of computing
the query from scratch. Therefore, consumer Q4 should be
discarded and no candidate is generated. ∗

4.3.3 Merge Only When Beneficial
Merging two candidates can save redundant computation

but it is not always beneficial because the new CSE may
produce a larger result than the source CSEs and thus sig-
nificantly increase the materialization cost and reading cost
for its consumers. We should create a merged CSE only
when using the merged one is cheaper than using the two
source ones separately.

With N final consumers, using a CSE E contributes a
total cost of CE + CW +

∑N CR to the final query cost. As
indicated earlier, CW and CR can be estimated based on the
cardinality of the expression and the set of output columns.

To obtain a correct estimate of the evaluation cost CE we
would have to invoke the optimizer on the merged expression
but this may be expensive. Instead we approximate it using
the cost bounds of its consumers as follows. Clearly, the
cost of the merged expression must be at least as high as
the lowest cost bound of each of its consumers. That is, we
find the lowest cost bound of each one of its consumers and
use the highest among them as a lower cost bound for the
merged expression. Denote this lower cost bound as Clower

E .

Heuristic 3 Consider two candidate CSEs Ei and Ej with
Ni and Nj consumers, respectively. Clower

Ei
(Clower

Ej
) repre-

sents the estimated lower bound on evaluation cost, Ci
R(Cj

R)

represents the usage cost and Ci
W (Cj

W ) represent the writ-
ing cost. The expression E created by merging Ei and Ej

would have N consumers (N ≤ Ni+Nj), an estimated lower
bound on evaluation cost of Clower

E , a usage cost of CR and
a writing cost of CW . The benefit for merging is defined as
TotalCostEi + TotalCostEj − TotalCostE.

Computing the merged CSE cannot be cheaper than com-
puting one of the source CSEs, that is, Clower

E ≥ max(Clower
Ei

,

Clower
Ej

). We estimate benefit ∆ as

∆ =(Ci
W +

Ni∑
Ci

R + Cj
W +

Nj∑
Cj

R) − (CW +

N∑
CR)

− max(Clower
Ei

, Clower
Ej

)

Merge the two candidate CSEs only if ∆ > 0.

Example 7 Consider the following two queries that join
orders and lineitem in a TPC-H database.

Q6: select o orderkey, l extendedprice
from orders, lineitem
where o orderkey=l orderkey and o orderdate=’1995-01-01’

Q7: select o orderkey, l extendedprice
from orders, lineitem
where o orderkey=l orderkey and o orderdate>’1995-01-01’

Both queries contain a join between orders and lineitem.
We create a (trivial) candidate CSE for each of the two con-
sumers. Is it worthwhile creating a merged CSE E covering
both consumers? The result of the merged CSE would be
fairly large because consumer Q7 requires all items ordered
after 01/01/1995. On the other hand, before merging, the
expression for the other consumer Q6 is extremely cheap
due to an index on o orderdate. Computing Q6 from the
merged CSE would be much more expensive because we
would have to scan the whole result of the CSE. In the end,
∆ = (CQ6

R +CQ6
W +CQ7

R +CQ7
W )−(

∑2 CE
R +CE

W )−CQ6 < 0.
According to this heuristic, merging is not helpful. ∗

4.3.4 Containment Checking
Whenever two or more expressions are equivalent, they

also share equivalent subexpressions. This means that when-
ever we create a candidate CSE for a set of consumers, those
consumers may share many subexpressions, for which we
could also create candidate CSEs. We could blindly cre-
ate candidate CSEs for all shared subexpressions and let
the optimizer determine which ones are the most beneficial.
This is wasteful because in many cases we can safely deter-
mine that a candidate is dominated by another candidate.

Definition 4.2 (Containment) A candidate CSE Ec is
contained by another candidate CSE Ep if

• The set of input tables of Ec is a subset of the set of
input tables of Ep;

• Each of Ec’s consumers Gc is a descendant of one of
Ep’s consumers Gp in the operator tree. That is, in
the memo structure, group(Gc) is a descendant group
of group(Gp).

We say that the parent candidate Ep is wider because it
references more tables than the child candidate Ec. A wider
CSE is usually preferable because it incorporates more shared
computation than a narrower one. However, this is not al-
ways true; the wider CSE may produce a much larger result
such that the narrower one may become more beneficial.

Example 8 Consider the query shown in Figure 3(a). The
three-way join of A, B, and C appears twice in the operator
tree. We can create a candidate E2, shown in Figure 3(c),
corresponding to the three-way join. At the same time, any
two-way join among A, B, and C is also shared by two con-
sumers. For example, candidate E1 can be created, shown
in Figure 3(b), corresponding to the two-way join of A and
B.

G0

G1

…

C

A B

G3

G6

C

A B

G2

G4

A B

SPOOL

(b) Candidate E1
SPOOL

C

A B

(a) Query Operator Tree (c) Candidate E2

Figure 3: CSE Containment

E1 has a consumer set of {G6, G4} and E2 has a con-
sumer set of {G3, G2}. At first glance, E2 appears to be
preferable because more work is shared. However, if E2 is
much larger than E1, the materialization and reading costs
may be significantly higher than for E1. If so, the narrower
expression E1 may be preferable. ∗



In this example, the two CSEs have the same number
of potential consumers but this is not always the case. As
shown later in the experiments, a narrower CSE Ec may
have more consumers than a wider CSE Ep. In that case,
by definition, Ec is not contained by Ep.

Heuristic 4 Consider a candidate CSE Ec that is contained
by another candidate CSE Ep. Suppose Ec produces a re-
sult with estimated size Sc and Ep produces a result with
estimated size Sp. Discard the contained Ec if

Sc > β × Sp

where β is a constant. In our experiments, we use β = 90%.

CSE containment is very common for queries with joins
of multiple tables. This heuristic prunes out a large num-
ber of small, less promising candidate CSEs and reduces
optimization time dramatically.

Example 9 We consider the three queries in Example 1
again and two candidate CSEs: E1 that joins customer,
orders, and lineitem and E2 that aggregates on columns
(c nationkey, c mktsegment) after the join. Considered in
isolation, each expression seems to be useful and is not
pruned out by earlier heuristics. However, E1 is contained
by E2 and E2 is even smaller than E1 because of the aggrega-
tion. By the containment heuristic, E2 is always preferable
to E1. We can exclude E1 without missing opportunities. ∗

5. OPTIMIZATION WITH CSES
If any candidate CSE remains after the heuristic prun-

ing, we resume query optimization to determine which can-
didates, if any, to make use of in the final plan. In gen-
eral, adding another phase to optimization is much cheaper
than optimizing from scratch because only some parts of
the query are reoptimized and all optimization information
gathered in previous phases helps avoid redundant work.

Due to space limitations, we only list important optimiza-
tion strategies in this paper. We also omit the details on
handling stacked CSEs, described in Section 5.5.

5.1 General Procedure
We treat candidate CSEs in the same way as material-

ized views and rely on the view matching algorithms [5] to
generate substitute expressions. For example, a substitute
may include a compensation predicate over a CSE. The
optimizer compares the plan using the CSE against other
alternatives in its normal cost-based fashion. The final plan
may or may not use the CSE.

For each candidate, we know exactly which expressions are
potential consumers. To avoid reapplying view matching for
every expression in the query, we enable the view matching
rule only for consumer expressions.

5.2 CSE Costing
Costing CSEs properly is crucial for correct optimization.

As discussed earlier, a CSE has a “spool” operator on top,
which materializes the result of the expression. There are
three costs associated with a CSE. We call the combination
of CE and CW the initial cost of the CSE.

Normal costing of a spool operator assumes that the op-
erator has a known set of consumers. Under this assump-
tion, costing of a spool operator is straightforward. With N
consumers, the optimizer splits the initial cost of the spool
among all the consumers so that each consumer gets charged

a cost of CR + CE+CW
N

for using the spool. However, in the
case of a CSE, we only know a set of potential consumers.
There is no guarantee that every consumer will eventually
use the CSE. For example, some consumer may choose an
even cheaper solution, such as an index operation or using
materialized views, etc. Simple cost splitting may result in
incorrect costing for the rest of the consumers. We illustrate
the issues by an example.

Example 10 Figure 4(a) shows a (simplified) operator tree
of a query. G0 to G6 indicate which memo groups the opera-
tors originates from. The query has three similar subexpres-
sions rooted at G3, G5, and G6. We create a candidate cov-
ering all three subexpressions, shown in Figure 4(b). Groups
G3, G5, and G6 are its potential consumers.
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(a) Memo DAG (b) Candidate

Figure 4: CSE Optimization

The optimizer traverses the operator tree in post order.
Consumers G3, G5, and G6 are optimized individually and
substitutes using the CSE are generated. When optimizing
G3, the optimizer does not know whether the CSE will also
be used by G5 and G6. For the reasons described earlier, we
cannot split the initial cost into three parts and charge each
consumer one third of the cost.

Another possibility is to charge the whole initial cost plus
the usage cost for the first consumer and charge only the us-
age cost for the rest consumers. However, this is not feasible
either. It treats the first consumer so unfavorably that its
cost of using the CSE is always more expensive that its cost
of not using the CSE. As a result, the plan using the CSE
would be pruned out by the optimizer and there would be
no first consumer. ∗

The correct solution is to charge the usage cost CR for
each consumer that uses a candidate CSE but only add the
initial cost once we know the decision of all consumers. But,
where and when can we add the initial cost?

Of course, we can always add the initial cost at the root
group of the query, that is, group G0 in Figure 4(a). But this
is later than necessary and may waste optimization time.
Before reaching the root group, the optimizer may (wrongly)
select subplans using the CSE because only usage costs have
been charged yet. After adding the initial costs, the final
plan may be more expensive than other alternatives. But
the optimizer could not tell until it reached the root group
G0. At that time, a lot of optimization work done for the
plan turns out to be useless. To avoid this wasted effort, we
need to add the initial cost as soon as possible.

Definition 5.1 (Least Common Ancestor) In an oper-
ator tree, the least common ancestor of a set of nodes S is
the lowest node p in the tree such that every node in S is
descendant of p.

The groups in the memo structure form are connected in
a DAG. The least common ancestor for a set of groups G is
the lowest group p in the DAG such that every group in G is
a descendant of p.



The initial cost for a candidate CSE can be safely charged
when optimizing the least common ancestor group of all its
potential consumer groups.

The least common ancestor group for a CSE can be calcu-
lated statically before the CSE optimization phase begins.
Each group maintains a set of potential consumer groups of a
CSE that are its descendants. Information about potential
consumers is propagated recursively bottom-up. The first
node that has collected information from all consumers of a
CSE is the least common ancestor for that CSE. Note that
different CSEs may have different least common ancestors.

Query optimization is done by traversing the operator tree
in post order. Each subplan produced carries with it infor-
mation about the plan, including which CSEs it uses and
how many times each CSE has been used. At the least
common ancestor, two actions are performed.

• Discard any plan with only one consumer of the CSE;
• Otherwise, add the initial cost for the CSE.

As a further improvement, we determine the least common
ancestor dynamically instead of statically. For example, G1

is the original least common ancestor for the candidate in
Example 10. Suppose the optimizer traverses the tree in
the order G0 → G1 → G3. After G3 has been optimized
and if the resulting plan does not use the CSE (possibly
due to some cheap index available), all remaining potential
consumers come from the left branch of G1. The optimizer
can then dynamically designate G2 as the least common
ancestor for the candidate. By doing so, we can add the
initial cost at G2, possibly pruning expensive plans earlier.

5.3 Multiple Candidates CSEs
So far we have discussed how to extend the optimizer to

consider a single candidate CSE. We now consider how to
handle multiple candidate CSEs. Because the optimizer
initially charges only the usage cost for each consumer, it
may prematurely prune out useful plans, solely based on
the usage costs as illustrated by the following example.
Example 11 Consider the a query with two equivalent (sim-
plified) operator trees extracted from the memo DAG, as
shown in Figure 5(a) and (c). The only difference between
the two operator trees is the difference in join order of the
trees rooted at G4. Both groups G5 and G7 are children of
G4 in the memo. We have two candidate CSEs, shown in
Figures 5(b) and (d). Their least common ancestors are G1

and G2, respectively.
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Figure 5: Optimization with Multiple Candidates

Optimization proceeds bottom-up. For view substitutes
at groups G5 and G7, only the usage cost of the correspond-
ing candidate is charged. At G4, the optimizer chooses the

cheaper of the two alternative plan trees and discards the
other one. Assume that the usage cost of E1 is far less than
that of E2. Therefore, the optimizer prefers the plan using
E1 and removes the other one.

However, the initial cost of E1 can be much higher than
that of E2. After taking the initial costs into account, the
plan using E2 may actually be cheaper. But the optimizer
cannot determine this until it processes their least common
ancestors G2 and G1. By that time, the plan using E2 has
already been discarded. In this case, candidates E1 and E2

are mutually exclusive. The optimizer prematurely pruned
out the useful plan purely by comparing usage costs. ∗

The solution to this problem is to trigger optimization
multiple times, each time specifying a different set of can-
didate CSEs to be considered. The optimizer may use any
candidates in the set but is not required to. The set of can-
didates for the optimizer to consider is treated as part of
required properties, which are propagated top-down as the
optimizer traverses the memo structure. At the least com-
mon ancestor of a candidate, any returned plan with only
one consumer is discarded as described before.

In the previous example, we optimize the query with three
different sets, {E1, E2}, {E1}, and {E2}. The optimizer
then compares the three resulting plans with each other
and also with other plans generated in normal optimization
phases and chooses the cheapest one.

Unfortunately, this means that more optimization is re-
quired. The naive way is to optimize the query with ev-
ery possible combination of candidate CSEs. With N can-
didates available, the number of optimizations would be
2N −1. However, exploring the relationship among different
candidates can help us reduce reoptimization significantly.

Definition 5.2 (Competing/Independent CSEs) Con-
sider two candidate CSEs E1 and E2 and denote the least
common ancestor group of all their potential consumers by
Glca

1 and Glca
2 , respectively. If Glca

1 is either a descendant or
an ancestor group of Glca

2 , E1 and E2 are said to be compet-
ing CSEs. If E1 and E2 are not competing, they are said
to be independent CSEs.

If E1 and E2 are competing CSEs, the optimizer at some
level may have to choose between a plan using E1 and a
plan using E2. Because this decision would be based purely
on the usage costs, it could potentially result in a subopti-
mal plan, as described in the previous example. Additional
strategies with different sets of candidate CSEs enabled
may have to be evaluated. On the other hand, if E1 and E2

are independent, their potential consumers are completely
unrelated so the decision whether to use E1 has no effect on
the decision whether to use E2. Such information can be
exploited to prevent unnecessary reoptimization work.

Definition 5.3 (Independent CSE Set) Let S be a set
of candidate CSEs {E1, E2, · · · , En}. If every candidate
Ei ∈ S is independent of all other candidates in S, S is
an independent CSE set.

Before describing our pruning algorithm, we first present
a few important observation. At each optimization step,
some set of candidate CSEs is enabled.

Proposition 5.4 Suppose S is a set of independent candi-
date CSEs. After the query has been optimized with the set
S enabled, we can skip optimization for any set Si such that
Si ⊆ S.



If S is a set of independent candidate CSEs, the CSEs in
S have totally unrelated sets of potential consumers and the
decision whether to use a candidate or not is not affected by
any other candidate in S. If the resulting plan uses a CSE
E (E ∈ S), it must be the case that using E is cheaper than
not using E. It also follows that if the resulting plan does
no use a CSE E (E ∈ S), it must be the case that using
E is more expensive than not using E. In either case, any
optimization with a subset of S enabled is redundant.

Proposition 5.5 Suppose S = T ∪ R, T ∩ R = ∅, is a
set of candidate CSEs such that all the candidates in T are
independent of all other candidates in S. After the query
has been optimized with S enabled, we can skip optimization
for any set Si such that Si ⊂ S, Si∩R = R and Si∩T ⊂ T .

Proposition 5.5 is a fairly straightforward generalization
of Proposition 5.4 and the reasoning why we can skip the
indicated sets is similar. The final proposition is based on
the properties of the returned optimal plan at each step.

Proposition 5.6 For each optimization, if the returned op-
timal plan uses a set Su of candidate CSEs, the returned
plan is optimal also if optimizing with only Su enabled.

This property means that we can skip optimization for Su.
At the same time, we can treat the optimization as having
been done with Su enabled, and apply Proposition 5.5 to
eliminate other combinations.

Overall Procedure: We begin by listing all 2N − 1 sub-
sets and sort them based on the number of CSEs in the set.
We then perform CSE optimization in descending order, at
each step enabling a different set of candidates. After each
optimization, we apply Propositions 5.5 and 5.6 to elimi-
nate combinations that have not yet been processed. This
process continues until there are no more combinations to
process. The final plan is the cheapest plan found.

Example 12 Consider a query with four CSEs, {E1, E2,
E3, E4}. We start by optimizing the query with all four
CSEs enabled.

Case 1: {E1, E2, E3, E4} is a independent CSE set. No
matter what the returned plan is, we are done. The returned
best plan is the final optimal plan.

Case 2: E1 is competing with E2 and E3 is competing
with E4 but E1 and E2 do not compete with E3 and E4.
That is, we have two sets, {E1, E2} and {E3, E4}, each set
with consumers unrelated to the consumers of the other set.

If the returned best plan contains only {E1, E2, E3}, by
Proposition 5.5 and 5.6, we can skip combinations of {E1,
E2, E3} and {E1, E2}.

If the returned plan uses all the four candidates, in prin-
ciple, we should try {E1} and {E2} for the first set of con-
sumers, and {E3} and {E4} for the second set of consumers.
However, our algorithm may still try combination of {E1, E3, E4}
(and others). It sounds redundant for the second set of con-
sumers, but, in fact, there is little overhead because the
optimizer knows that previous solution for the second set is
still usable and returns the plan immediately, as described
in the next section. Therefore, in the end, we only carry out
the reoptimizations that are necessary.

Due to space limitation we cannot enumerate all possi-
ble cases but it is clear that the improved reoptimization
strategy can save a lot of unnecessary work. ∗

5.4 Exploiting Optimization History
The CSE optimization phase comes after normal opti-

mization phases. Much optimization history has been col-
lected and can be exploited. Even information collected
during CSE reoptimization can be helpful for later reop-
timizations with different sets of candidates enabled. Re-
optimization with a different set of candidates can be much
cheaper than a totally new optimization.

First, we only consider reoptimization for groups whose
descendants contain potential consumers. Other groups are
not affected by CSEs and their solutions can be reused.

Second, we treat the set of enabled CSEs as part of re-
quired properties. Previous optimization history on each
group is heavily exploited. For example, if at a given group,
the existing solution satisfies the new requirement and the
new requirement satisfies the previous requirement, we can
deduce that the existing solution is also optimal under the
new requirement. We can also use optimization history to
tighten the cost bounds, or deduce that no solution can be
found at a particular group.

5.5 Stacked Covering Subexpressions
Similar subexpressions can be shared at different levels.

For example, a query may have two CSEs E1 = A � B � C
and E2 = B � C � D. The two CSEs share another smaller
subexpression E3 = B � C. It could be beneficial to com-
pute E3 first and use the result to compute E1 and E2. Their
results are then used to compute other parts of the query.
By extending our algorithm to CSE expression construc-
tions, we automatically consider this kind of optimization
strategy. We demonstrate the usage of stacked CSEs in
benchmark queries in Section 6.2.

6. EXPERIMENTAL RESULTS
Our prototype implementation was built on Microsoft SQL

Server. To demonstrate the benefits of exploiting similar
subexpressions, we briefly outline several scenarios and de-
scribe experimental results. All experiments were performed
on a workstation with a Pentium 4 3.0 GHz processor, 1GB
of memory and one 160GB disk, running Windows XP. All
queries were against a 1GB version (SF=1) of the TPC-H
database.

When no candidate CSEs are generated in Step 2, the
only overhead is from collecting table signatures, and, if
there are shared table signatures, attempting to generate
candidates. We ran the optimizer on several TPC-H queries
that have no sharing opportunities and tried to measure the
overhead of our algorithm. The overhead was so small that
we could not reliably measure it.

We cannot experimentally compare our approach to tech-
niques proposed in previous work. It is simply not feasible
for us to implement all of them in our system. But as de-
tailed in Section 7, all of them consider only one or a small
set of candidate CSEs and none of them have a correct
cost-based strategy to choose among multiple candidates.

6.1 A Query Batch
Our technique can detect and exploit similar subexpres-

sions among the queries in a batch that are optimized and
executed together. Our first experiment used a query batch
consisting of the three queries in Example 1. Without prun-
ing, the five candidate CSEs shown in Figure 6 were gener-
ated in Step 2. Details about predicates and output columns



are omitted and table names customer, orders, lineitem are
abbreviated to C, O, L, respectively. With pruning enabled,
all but E5 were pruned out.

C O O L C LO O

Aggo_custkey

L C

Aggc_nationkey,
c_mktsegment

LO

(a) E1 (b) E2 (c) E3 (d) E4 (e) E5

Figure 6: Candidate CSEs for Example 1

Candidates E1 to E3 are, as expected, joins of different
sets of tables. Candidate E4 was generated because the op-
timizer considered preaggregation of the join of orders and
lineitem. Candidate E5 had a consumer in Q3 too because
the optimizer also considered preaggregation of the join re-
sult, followed by a join with nation, and final aggregation.

Applying the heuristics in Section 4.3 reduced the set of
candidates to only E5 (see below). E1 was pruned out by
Heuristic 1 because the join was too cheap. E2, E3, and
E4 were pruned out by Heuristic 4 because they were all
contained by E5 and E5 produces the smallest result.
E5: select c nationkey, c mktsegment,

sum(l extendedprice) as vle, sum(l quantity) as vlq
from customer, orders, lineitem
where c custkey = o custkey and o orderkey = l orderkey
and o orderdate < ’1996-07-01’
and c nationkey > 0 and c nationkey < 25
group by c nationkey, c mktsegment

With pruning disabled, all five candidates were given to
the optimizer for consideration but with heuristic pruning
enabled, only E5 was considered. In both cases the optimizer
chose the same final plan that used E5 only. This verified
that our heuristics pruned out the correct candidates and
did not miss any optimization opportunities.

In the final plan E5 is computed once and its result is used
by all three queries as shown below (expressed in SQL).
Q′

1: select * from E5

where c nationkey > 0 and c nationkey < 20

Q′
2: select c nationkey, sum(vle) as le, sum(vlq) as lq

from E5

where c nationkey > 5 and c nationkey < 25
group by c nationkey

Q′
3: select n regionkey, sum(vle) as le, sum(vlq) as lq

from E5, nation
where c nationkey = n nationkey
and c nationkey > 2 and c nationkey < 24
group by n regionkey

We compared three scenarios: regular optimization with-
out CSEs, optimization using CSEs with heuristic pruning,
and optimization using CSEs without heuristic pruning.
For all three scenarios, we recorded the number of candidate
CSEs generated, number of additional CSE optimizations
(in brackets), estimated cost of the chosen plan, and actual
optimization and execution time, as shown in Table 1.

No Using Using CSEs
CSE CSEs (no heuristics)

# of CSEs [CSE Opts] N/A 1 [1] 5 [15]
Optimization time (secs) 0.159 0.213 0.383
Estimated cost 539.93 206.47
Execution time (secs) 165.54 55.64

Table 1: Query batch (Q1, Q2, Q3) in Example 1
With pruning enabled, clearly we only need one CSE op-

timization for one candidate. Without pruning enabled, all

five candidate CSEs are competing against each other. Nev-
ertheless, our optimization algorithm in Section 5.3 reduces
the number of optimizations down to 15 (from 31). Most of
these optimizations are cheap because thay exploit previous
optimization history.

We achieve close to a 3X reduction in execution time with
a modest increase in optimization time. Applying heuris-
tic pruning significantly reduced the optimization overhead.
The overall increase in optimization time is negligible com-
pared with the savings in execution time.

In this example there are many different ways for a user
to rewrite the queries using WITH clauses. In fact, each can-
didate in Figure 6 can be written using a WITH clause. But
only one rewrite (using E5) achieves optimal performance.
This illustrates the danger of relying on user-defined WITH

clauses to find the best common subexpressions. An opti-
mizer can consider all options and choose among them in a
cost-based manner.

6.2 Stacked CSEs
The optimal choice of CSEs can be quite different with a

slightly different query batch. In the second experiment, we
added another query Q8 to the query batch in the previous
experiment.
Q8: select p type, sum(p availqty) as qty

from part, orders, lineitem
where p partkey = l partkey and o orderkey = l orderkey
and o orderdate < ’1996-07-01’
order by p type

Without pruning, the same set of five candidate CSEs
shown in Figure 6 were generated. Enabling pruning re-
duced the set of candidates to E2 and E5. E2 could not be
pruned out because Q8 contains a potential consumer for it
so that E2 was no longer fully contained by E5.

The final plan used both E2 and E5. The result of E2 is
used to answer Q8 and, more interestingly, it is also used to
compute E5. The result of E5 is then used to compute the
first three queries in the same way as before. We show E2,
the new V ′

5 and Q′
8 in SQL below.

E2: select o custkey, l partkey, l extendedprice, l quantity
from orders, lineitem
where o orderkey=l orderkey and o orderdate<’1996-07-01’

E′
5: select c nationkey, c mktsegment,

sum(l extendedprice) as vle, sum(l quantity) as vlq
from customer, E2

where c custkey = o custkey
and c nationkey > 0 and c nationkey < 25
group by c nationkey, c mktsegment

Q′
8: select p type, sum(p availqty) as qty

from part, E2

where p partkey = l partkey
group by p type

No Using Using CSEs
CSE CSEs (no heuristics)

# of CSEs [CSE Opts] N/A 2 [1] 5 [7]
Optimization time (secs) 0.215 0.321 0.518
Estimated cost 716.03 372.06
Execution time (secs) 216.40 85.94

Table 2: Query batch (Q1, Q2, Q3, Q8)
Table 2 shows the results for the query batch of Q1, Q2,

Q3, and Q8. Exploiting similar subexpressions greatly re-
duces the execution time. The additional query results in
a different overall choice of covering subexpressions, which
confirms the importance of full cost-based optimization.



6.3 Nested Subquery
A complex decision-support query may contain several

subqueries that are similar, providing great opportunities
for exploiting similar subexpressions between subqueries and
the main query block or among different subqueries.

We ran an experiment with a nested query that is similar
to Query 11 in the TPC-H benchmark 2. Both the main
query and the subquery contain a join of customer, orders,
and lineitem, although they provide different aggregated
values and output different columns.

Q9: select c nationkey, n name, sum(l discount)
from customer, orders, lineitem, nation
where c custkey = o custkey and o orderkey = l orderkey
and c nationkey = n nationkey
group by c nationkey, n name
having sum(l discount) > (
select sum(l discount) / 25
from customer, orders, lineitem
where c custkey = o custkey and o orderkey = l orderkey)

order by totaldisc desc
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Figure 7: Candidates for Q9

Without heuristic pruning the system generated four can-
didate CSEs, as shown in Figure 7, but only E4 was used
in the final plan. With heuristic pruning enabled, only E4

was generated and also used in the same final plan. E1 was
pruned out by Heuristic 1 while E2 and E3 were pruned out
by Heuristic 4. Again, our heuristics pruned out the correct
candidates. We show E4 and the rewritten query below.

E4: select c nationkey, sum(l discount) as totaldisc
from customer, orders, lineitem
where c custkey = o custkey and o orderkey = l orderkey
group by c nationkey

Q′
9: select c nationkey, n name, totaldisc

from E4, nation
where c nationkey = n nationkey
having totaldisc > (select sum(totaldisc)/25 from E4)
order by totaldisc desc

Table 3 shows the results with and without using CSEs
(with pruning enabled). In this case, we cut execution time
by half, again with a modest increase in optimization time.

No Using Using CSEs
CSE CSEs (no heuristics)

# of CSE [CSE Opts] N/A 1 [1] 4 [8]
Optimization time (secs) 0.138 0.197 0.295
Estimated cost 442.61 240.49
Execution time (secs) 135.26 67.67

Table 3: Nested Query

6.4 Materialized View Maintenance
A database may contain many similar materialized views.

Every affected materialized view has to be maintained after
an update, so it may be possible to reduce maintenance over-
head by optimizing the maintenance expressions together
and exploiting similar subexpression.

Our technique can be applied to optimizing view main-
tenance plans. When a base table is updated, the updated

2Query 2 and 15 are also similar nested queries but they can be
computed cheaply and thus are of less interest.

tuples are stored in an internal work table, called a delta
table, and the table is then used to drive maintenance for
all affected views. We treat the delta table as a special table
when generating table signatures and constructing CSEs.

To verify our prototype, we created three materialized
views whose expression are the same as the three queries
in Example 1. When updating the customer table, mainte-
nance time was reduced by a factor of three using a CSE
similar to E5 in Example 1. We omit the details due to
space limitation.

6.5 Scaleup Analysis
We also conducted experiments to assess the performance

of our approach for increasing number of queries and for
larger queries.

First, we consider the effect of increasing the number of
queries. We created several query batches with different
number of queries. Similar to Q1, Q2 or Q3, each query
contains joins of tables lineitem, orders, and customer, but
has different local predicates, group on different columns,
and may also join additional tables nation and region.
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Figure 8: Optimization of Query Batches

Figure 8 shows estimated costs and optimization time for
query batches with two to ten queries. With pruning en-
abled, one or two candidate CSEs were generated, com-
pared to four or five candidates without pruning. In either
case, a single CSE was used in the final plan for each query
batch. As expected, the cost benefit is proportional to the
number of queries in the batch. With pruning enabled, the
CSE optimization overhead is very small and the optimiza-
tion time increases linearly with the number of queries in
the batch. The results indicate that our approach scales
well with increasing batch sizes.

No Using Using CSEs
CSE CSEs (no heuristics)

# of CSEs [CSE Opts] N/A 2 [2] 51 [391]
Optimization time (secs) 2.103 3.892 12.745
Estimated Cost 294.57 173.45
Execution time (secs) 81.45 48.73

Table 4: Complex Joins

Second, we verified how well our approach scales up with
query size. We used a query batch consisting of two queries.
Each query joins all eight tables in TPC-H and finally ag-
gregates by region. Each query also contains different local
predicates. Without heuristics enabled, 51 candidate CSEs
were generated. Most of the candidates were either cheap or
contained by other candidates. By exploiting the fact that
some candidates are independent of each other, the number
of optimizations can be significantly reduced. With heuris-
tics enabled, only two candidates were generated and two
optimizations were performed. Using CSEs, we achieved
almost a 2X reduction in plan costs with a modest increase
in optimization time.



7. RELATED WORK
There is a large body of research on multi-query optimiza-

tion [3, 10, 13, 15, 14, 16]. The idea of exploiting similar
subexpressions has also been applied to materialized view
selection [8, 9, 12] and optimization of queries with nested
subqueries [11]. In this paper, we propose a uniform solution
to all three problems.

Early work on multi-query optimization [10, 15, 14] fo-
cused primarily on expensive exhaustive algorithms and the
solutions were not integrated with the system’s query opti-
mizer. The work in [3, 16] was limited to finding common
subexpressions in a post-optimization phase and considering
sharing opportunities only among the best plans for each
query. This can obviously lead to suboptimal plans.

Roy et al. [13] were the first to describe integration of
multi-query optimization features into a Volcano-style op-
timizer. However, the proposed solution is somewhat lim-
ited and may miss certain important optimization oppor-
tunities. First, every covering expression is constructed to
cover all its potential consumers, which, as observed in Sec-
tion 4.3.2, may result in expressions producing large results.
Second, their optimization algorithm does not consider mul-
tiple competing covering expressions correctly and may in-
correctly prune out an alternative based on usage cost alone.
The proposed greedy algorithm does not always produce an
optimal solution. For example, it misses the case when us-
ing either covering expressions e2 or e3 alone is less efficient
than using e1, but using both e2 and e3 is more beneficial
than using e1. Finally, it requires extensive and fundamental
modifications to the optimizer, something database vendors
are reluctant to do because of cost and quality concerns.

Maintenance cost for a set of materialized views can some-
times be reduced by creating supporting materialized views.
Ross et al. [12] considered how to determine the best set of
supporting views given a limited amount of space. Mistra et
al. [9] applied multi-query optimization techniques to speed
up maintenance of a set of views. Lehner et al. [8] also con-
sidered exploiting similar subexpressions when maintaining
multiple materialized views. They create the widest possi-
ble covering subexpression and force each consumer to use
it in the final plan. The covering subexpression is also de-
signed to cover all potential consumers. The paper does
not discuss how to consider multiple competing covering ex-
pressions. Folkert et al. [4] proposed a refresh scheduling
algorithm such that materialized views can be refreshed us-
ing query rewrite against previously refreshed materialized
views. Our solution can achieve the same improvement but
is much more general. The common subexpressions can be
either the views themselves or part of them.

Rao and Ross [11] studied the problem of exploiting in-
variant parts of a nested subquery. Our technique can be
applied to nested queries and achieve the same effect.

Automated selection of indexes and views for a given work-
load is described in [1]. Our solution automatically consid-
ers using existing indexes and views in order to generate the
optimal plan. Queries can benefit from exploiting similar
subexpressions, no matter whether the workload informa-
tion is available.

8. CONCLUSION
In this paper, we present a practical, scalable, and uniform

solution to detecting and exploiting similar subexpressions
to improve query performance. It is applicable to all simi-

lar subexpressions no matter whether they originate from
a single query, multiple queries or view maintenance ex-
pressions. Our table signature technique finds potentially
sharable subexpressions very efficiently. There is virtually
no overhead when queries do not have any sharable expres-
sion. We consider all possible covering subexpressions, in-
cluding popular (with most consumers) ones and less pop-
ular (with fewer consumers) ones, wide (more tables) ones
and narrow (fewer tables) ones, etc. The query optimizer
evaluates different candidates in fully cost-based manner.
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