
The VLDB Journal
DOI 10.1007/s00778-012-0280-z

SPECIAL ISSUE PAPER

SCOPE: parallel databases meet MapReduce

Jingren Zhou · Nicolas Bruno · Ming-Chuan Wu ·
Per-Ake Larson · Ronnie Chaiken · Darren Shakib

Received: 15 August 2011 / Revised: 16 February 2012 / Accepted: 14 May 2012
© Springer-Verlag 2012

Abstract Companies providing cloud-scale data services
have increasing needs to store and analyze massive data sets,
such as search logs, click streams, and web graph data. For
cost and performance reasons, processing is typically done on
large clusters of tens of thousands of commodity machines.
Such massive data analysis on large clusters presents new
opportunities and challenges for developing a highly scal-
able and efficient distributed computation system that is
easy to program and supports complex system optimization
to maximize performance and reliability. In this paper, we
describe a distributed computation system, Structured Com-
putations Optimized for Parallel Execution (Scope), targeted
for this type of massive data analysis. Scope combines bene-
fits from both traditional parallel databases and MapReduce
execution engines to allow easy programmability and deliver
massive scalability and high performance through advanced
optimization. Similar to parallel databases, the system has a
SQL-like declarative scripting language with no explicit par-
allelism, while being amenable to efficient parallel execution
on large clusters. An optimizer is responsible for convert-
ing scripts into efficient execution plans for the distributed

J. Zhou (B) · N. Bruno · M.-C. Wu · P.-A. Larson ·
R. Chaiken · D. Shakib
Microsoft Corp., One Microsoft Way, Redmond, WA 98052, USA
e-mail: jrzhou@microsoft.com

N. Bruno
e-mail: nicolasb@microsoft.com

M.-C. Wu
e-mail: mingchuw@microsoft.com

P.-A. Larson
e-mail: palarson@microsoft.com

R. Chaiken
e-mail: rchaiken@microsoft.com

D. Shakib
e-mail: darrens@microsoft.com

computation engine. A physical execution plan consists of a
directed acyclic graph of vertices. Execution of the plan is
orchestrated by a job manager that schedules execution on
available machines and provides fault tolerance and recovery,
much like MapReduce systems. Scope is being used daily
for a variety of data analysis and data mining applications
over tens of thousands of machines at Microsoft, powering
Bing, and other online services.

Keywords SCOPE · Parallel databases · MapReduce ·
Distributed computation · Query optimization

1 Introduction

The last decade witnessed an explosion in the volumes of
data being stored and processed. More and more companies
rely on the results of such massive data analysis for their busi-
ness decisions. Web companies, in particular, have increas-
ing needs to store and analyze the ever growing data, such as
search logs, crawled web content, and click streams, usually
in the range of petabytes, collected from a variety of web
services. Such analysis is becoming crucial for businesses in
a variety of ways, such as to improve service quality and sup-
port novel features, to detect changes in patterns over time,
and to detect fraudulent activities.

One way to deal with such massive amounts of data is to
rely on a parallel database system. This approach has been
extensively studied for decades, incorporates well-known
techniques developed and refined over time, and mature sys-
tem implementations are offered by several vendors. Parallel
database systems feature data modeling using well-defined
schemas, declarative query languages with high levels of
abstraction, sophisticated query optimizers, and a rich run-
time environment that supports efficient execution strategies.

123

J. Zhou et al.

At the same time, database systems typically run only on
expensive high-end servers. When the data volumes to be
stored and processed reaches a point where clusters of hun-
dreds or thousands of machines are required, parallel data-
base solutions become prohibitively expensive. Worse still,
at such scale, many of the underlying assumptions of par-
allel database systems (e.g., fault tolerance) begin to break
down, and the classical solutions are no longer viable with-
out substantial extensions. Additionally, web data sets are
usually non-relational or less structured and processing such
semi-structured data sets at scale poses another challenge for
database solutions.

To be able to perform the kind of data analysis described
above in a cost-effective manner, several companies have
developed distributed data storage and processing sys-
tems on large clusters of low-cost commodity machines.
Examples of such initiatives include Google’s MapRe-
duce [11], Hadoop [3] from the open-source community, and
Cosmos [7] and Dryad [31] at Microsoft. These systems are
designed to run on clusters of hundreds to tens of thousands
of commodity machines connected via a high-bandwidth net-
work and expose a programming model that abstracts distrib-
uted group-by-aggregation operations.

In the MapReduce approach, programmers provide map
functions that perform grouping and reduce functions that
perform aggregation. These functions are written in proce-
dural languages like C++ and are therefore very flexible. The
underlying runtime system achieves parallelism by partition-
ing the data and processing different partitions concurrently.

This model scales very well to massive data sets and has
sophisticated mechanisms to achieve load-balancing, outlier
detection, and recovery to failures, among others. However,
it also has several limitations. Users are forced to trans-
late their business logic to the MapReduce model in order
to achieve parallelism. For some applications, this map-
ping is very unnatural. Users have to provide implemen-
tations for the map and reduce functions, even for simple
operations like projection and selection. Such custom code
is error-prone and difficult to reuse. Moreover, for appli-
cations that require multiple stages of MapReduce, there
are often many valid evaluation strategies and execution
orders. Having users implement (potentially multiple) map
and reduce functions is equivalent to asking users to spec-
ify physical execution plans directly in relational database
systems, an approach that became obsolete with the intro-
duction of the relational model over three decades ago.
Hand-crafted execution plans are more often than not subop-
timal and may lead to performance degradation by orders of
magnitude if the underlying data or configurations change.
Moreover, attempts to optimize long MapReduce jobs are
very difficult, since it is virtually impossible to do com-
plex reasoning over sequences of opaque MapReduce oper-
ations.

Recent work has systematically compared parallel dat-
abases and MapReduce systems, and identified their strengths
and weaknesses [27]. There has been a flurry of work
to address various limitations. High-level declarative lan-
guages, such as Pig [23], Hive [28,29], and Jaql [5], were
developed to allow developers to program at a higher level
of abstraction. Other runtime platforms, including Nep-
hele/PACTs [4] and Hyracks [6], have been developed to
improve the MapReduce execution model.

In this paper, we describe Scope (Structured Computa-
tions Optimized for Parallel Execution) our solution that
incorporates the best characteristics of both parallel dat-
abases and MapReduce systems. Scope [7,32] is the com-
putation platform for Microsoft online services targeted for
large-scale data analysis. It executes tens of thousands of
jobs daily and is well on the way to becoming an exabyte
computation platform.

In contrast to existing systems, Scope systematically
leverages technology from both parallel databases and
MapReduce systems throughout the software stack. The
Scope language is declarative and intentionally reminis-
cent of SQL, similar to Hive [28,29]. The select statement
is retained along with joins variants, aggregation, and set
operators. Users familiar with SQL thus require little or no
training to use Scope. Like SQL, data are internally mod-
eled as sets of rows composed of typed columns and every
row set has a well-defined schema. This approach makes
it possible to store tables with schemas defined at design
time and to create and leverage indexes during execution.
At the same time, the language is highly extensible and is
deeply integrated with the .NET framework. Users can easily
define their own functions and implement their own versions
of relational operators: extractors (parsing and constructing
rows from a data source, regardless of whether it is struc-
tured or not), processors (row-wise processing), reducers
(group-wise processing), combiners (combining rows from
two inputs), and outputters (formatting and outputting final
results). This flexibility allows users to process both rela-
tional and non-relational data sets and solves problems that
cannot be easily expressed in traditional SQL, while at the
same time retaining the ability to perform sophisticated opti-
mization of user scripts.

Scope includes a cost-based optimizer based on the
Cascades framework [15] that generates efficient execu-
tion plans for given input scripts. Since the language is
heavily influenced by SQL, Scope is able to leverage
existing work on relational query optimization and per-
form rich and non-trivial query rewritings that consider
the input script as a whole. The Scope optimizer extends
the original Cascades framework by incorporating unique
requirements derived from the context of distributed query
processing. In particular, parallel plan optimization is fully
integrated into the optimizer, instead of being done at the

123

SCOPE: parallel databases meet MapReduce

post-optimization phase. The property framework is also
extended to reason about more complex structural data prop-
erties.

The Scope runtime provides implementations of many
standard physical operators, saving users from having imple-
menting similar functionality repeatedly. Moreover, different
implementation flavors of a given physical operator provide
the optimizer a rich search space to find an efficient execu-
tion plan. At a high level, a script is compiled into units of
execution and data flow relationships among such units. This
execution graph relies on a job manager to schedule work to
different machines for execution and to provide fault toler-
ance and recovery, like in MapReduce systems. Each sched-
uled unit, in turn, can be seen as an independent execution
plan and is executed in a runtime environment that borrows
ideas from traditional database systems.

The rest of this paper is structured as follows. In Sect. 2,
we give a high-level overview of the distributed data plat-
form that supports Scope. In Sect. 3, we explain how data
are modeled and stored in the system. In Sect. 4, we introduce
the Scope language. In Sect. 5, we describe in considerable
detail the compilation and optimization of Scope scripts. In
Sect. 6, we introduce the code generation and runtime sub-
systems, and in Sect. 7, we explain how compiled scripts
are scheduled and executed in the cluster. We present a case
study in Sect. 8. Finally, we review related work in Sect. 9
and conclude in Sect. 10.

2 Platform architecture

Scope relies on a distributed data platform, named Cos-
mos [7], for storing and analyzing massive data sets. Cos-
mos is designed to run on large clusters consisting of tens
of thousands of commodity servers and has similar goals to
other distributed storage systems [3,13]. Disk storage is dis-
tributed with each server having one or more direct-attached
disks. High-level design objectives for the Cosmos platform
include:

Availability: Cosmos is resilient to hardware failures to
avoid whole system outages. Data is replicated throughout
the system and metadata is managed by a quorum group
of servers to tolerate failures.
Reliability: Cosmos recognizes transient hardware condi-
tions to avoid corrupting the system. System components
are checksummed end-to-end and the on-disk data is peri-
odically scrubbed to detect corrupt or bit rot data before it
is used by the system.
Scalability: Cosmos is designed from the ground up to
store and process petabytes of data, and resources are eas-
ily increased by adding more servers.
Performance: Data is distributed among tens of thou-
sands of servers. A job is broken down into small units

Fig. 1 Architecture of the cosmos platform

of computation and distributed across a large number of
CPUs and storage devices.
Cost: Cosmos is cheaper to build, operate and expand,
per gigabyte, than traditional approaches that use smaller
number of expensive large-scale servers.

Figure 1 shows the architecture of the Cosmos platform.
We next describe the main components:

Storage system The storage system is an append-only file
system optimized for large sequential I/O. All writes are
append-only, and concurrent writers are serialized by the sys-
tem. Data are distributed and replicated for fault tolerance
and compressed to save storage and increase I/O through-
put. The storage system provides a directory with a hier-
archical namespace and stores sequential files of unlimited
size. A file is physically composed of a sequence of extents.
Extents are the unit of space allocation and replication. They
are typically a few hundred megabytes in size. Each com-
putation unit generally consumes a small number of col-
located extents. Extents are replicated for reliability and
also regularly scrubbed to protect against bit rot. The data
within an extent consist of a sequence of append blocks.
The block boundaries are defined by application appends.
Append blocks are typically a few megabytes in size and
contain a collection of application-defined records. Append
blocks are stored in compressed form with compression
and decompression done transparently at the client side. As
servers are connected via a high-bandwidth network, the
storage system supports both local and remote reads and
writes.

123

J. Zhou et al.

Computation system The Scope computation system con-
tains the compiler, the optimizer, the runtime, and the exe-
cution environment. A query plan is modeled as a dataflow
graph: a directed acyclic graph (DAG) with vertices repre-
senting processes and edges representing data flows. In the
rest of this paper, we discuss these components in detail.

Frontend services This component provides both interfaces
for job submission and management, for transferring data in
and out of Cosmos for interoperability, and for monitoring
job queues, tracking job status and error reporting. Jobs are
managed in separate queues, each of which is assigned to a
different team with different resource allocations.

3 Data representation

Scope supports processing data files in both unstructured and
structured formats. We call them unstructured streams and
structured streams, respectively.1

3.1 Unstructured streams

Data from the web, such as search logs and click streams, are
by nature semi-structured or even unstructured. An unstruc-
tured stream is logically a sequence of bytes that is interpreted
and understood by users by means of extractors. Extrac-
tors must specify the schema of the resulting tuples (which
allows the Scope compiler to bind the schema information
to the relational abstract syntax tree) and implement the iter-
ator interface for extracting the data. Analogously, output of
scripts (which are rows with a given schema) can be written to
unstructured streams by means of outputters. Both extractors
and outputters are provided by the system for common sce-
narios and can be supplied by users for specialized situations.
Unlike traditional databases, data can be consumed without
an explicit and expensive data loading process. Scope pro-
vides great flexibility to deal with data sources in a variety
of formats.

3.2 Structured streams

Structured data can be efficiently stored as structured streams.
Like tables in databases, a structured stream has a well-
defined schema that every record follows. Scope provides
an built-in format to store records with different schemas,
which allows constant-time access to any column. A struc-
tured stream is self-contained and includes, in addition to
the data itself, rich metadata information such as schema,

1 For historical reasons we call data files streams, although they are
not related to the more traditional concept of read-once streams in the
literature.

structural properties (i.e., partitioning and sorting informa-
tion), and access methods. This design makes it possible to
understand structured streams and optimize scripts taking
advantage of their properties without the need of a separate
metadata service.

Partitioning Structured streams can be horizontally parti-
tioned into tens of thousands of partitions. Scope supports
a variety of partitioning schemes, including hash and range
partitioning on a single or composite keys. Based on the data
volume and distribution, Scope can choose the optimal num-
ber of partitions and their boundaries by means of sampling
and calculating distributed histograms. Data in a partition
are typically processed together (i.e., a partition represents a
computation unit). A partition of a structured stream is com-
prised of one or several physical extents. The approach allows
the system to achieve effective replication and fault recov-
ery through extents while providing computation efficiency
through partitions.

Data affinity A partition can be processed efficiently when
all its extents are stored close to each other. Unlike tradi-
tional parallel databases, Scope does not require all extents
of a partition to be stored on a single machine that could
lead to unbalanced storage across machines. Instead, Scope
attempts to store the extents close together by utilizing store
affinity. Store affinity aims to achieve maximum data local-
ity without sacrificing uniform data distribution. Every extent
has an optional affinity id, and all extents with the same affin-
ity id belong to an affinity group. The system treats store
affinity as a placement hint and tries to place all the extents
of an affinity group on the same machine unless the machine
has already been overloaded. In this case, the extents are
placed in the same rack. If the rack is also overloaded, the
system then tries to place the extents in a close rack based on
the network topology. Each partition of a structured stream
is assigned an affinity id. As extents are created within the
partition, they get assigned the same affinity id, so that they
are stored close together.

Stream references The store affinity functionality can also
be used to associate/affnitize the partitioning of an output
stream with that of a referenced stream. This causes the out-
put stream to mirror the partitioning choices (i.e., partitioning
function and number of partitions) of the referenced stream.
Additionally, each partition in the output stream uses the
affinity id of the corresponding partition in the referenced
stream. Therefore, two streams that are referenced not only
are partitioned in the same way, but partitions are physically
placed close to each other in the cluster. This layout signifi-
cantly improves parallel join performance, as less data need
not be transferred across the network.

123

SCOPE: parallel databases meet MapReduce

Indexes for random access Within each partition, a local
sort order is maintained through a B-Tree index. This orga-
nization not only allows sorted access to the content of a
partition, but also enables fast key lookup on a prefix of the
sort keys. Such support is very useful for queries that select
only a small portion of the underlying tables and also for
more sophisticated strategies such as index-based joins.

Column groups To address scenarios that require process-
ing just a few columns of a wide table, Scope supports the
notion of column groups, which contain vertical partitions
of tables over user-defined subsets of columns. As in the
Decomposition Storage Model [9], a record-id field (surro-
gate) is added in each column group so that records can be
pieced together if needed.

Physical design Partitioning, sorting, column groups, and
stream references are useful design choices that enable effi-
cient execution plans for certain query classes. As in tradi-
tional DBMSs, judicious choices based on query workloads
could improve query performance by orders of magnitudes.
Supporting automated physical design tools in Scope is part
of our future work.

4 Query language

The Scope scripting language resembles SQL but with inte-
grated C# extensions. Its resemblance to SQL reduces the
learning curve for users, eases porting of existing SQL scripts
into Scope, and allows users to focus on application logic
rather than dealing with low-level details of distributed sys-
tem. But the integration with C# also allows users to write
custom operators to manipulate row sets where needed. User-
defined operators (UDOs) are first-class citizens in Scope
and optimized in the same way as all other system built-in
operators.

A Scope script consists of a sequence of commands,
which are data manipulation operators that take one or more
row sets as input, perform some operation on the data, and
output a row set. Every row set has a well-defined schema
that all its rows must adhere to. Users can name the output of
a command using assignment, and output can be consumed
by subsequent commands simply by referring to it by name.
Named inputs/outputs enable users to write scripts in multi-
ple (small) steps, a style preferred by some programmers.

In the rest of this section, we describe individual compo-
nents of the language in more detail.

4.1 Input/output

As explained earlier, Scope supports both unstructured and
structured streams.

Unstructured streams Scope provides two customizable
commands, EXTRACT and OUTPUT, for users to easily read
in data from a data source and write out data to a data sink.

Input data to a Scope script are extracted by means of
built-in or user-defined extractors. Scope provides standard
extractors such as generic text and commonly used log extrac-
tors. The syntax for specifying unstructured inputs is as fol-
lows:

EXTRACT <column>[:<type>] {,<column>[:<type>]}
FROM <stream_name> {,<stream_name>}
USING <extractor> [<args>]
[WITH SAMPLE(<seed>) <number> PERCENT];

The EXTRACT command extracts data from one or multi-
ple data sources, specified in the FROM clause, and outputs a
sequence of rows with the schema specified in the EXTRACT
clause. The optional WITH SAMPLE clause allows users to
extract samples from the original input files, which is useful
for quick experimentation.

Scope outputs data by means of built-in or custom output-
ters. The system provides an outputter for text files with cus-
tom delimiters and other specialized ones for common tasks.
Users can specify expiration dates for streams and thus have
some additional control on storage consumption over time.
The syntax of the OUTPUT command is defined as follows:

OUTPUT [<named_rowset>]
TO <stream_name>
[WITH STREAMEXPIRY <timespan>]
[USING <outputter_name> [<output_args>]];

Structured streams Users can refer to structured streams as
follows:

SSTREAM <stream_name>;

It is not necessary to specify the columns in structured
streams as they are retrieved from the stream metadata dur-
ing compilation. However, for script readability and main-
tainability, columns can be explicitly named:

SELECT a, b, c FROM SSTREAM <stream_name>;

When outputting a structured stream, the user can declare
which fields are used for partitioning (CLUSTERED clause)
and for sorting within partitions (SORTED clause). The out-
put can be affinitized to another stream by using the REFER-
ENCE clause. The syntax for outputting structured streams
is as follows:

OUTPUT [<named_rowset>] TO SSTREAM <stream_name>
[[HASH | RANGE] CLUSTERED BY <cols>

[INTO <number>]
[REFERENCE STREAM <stream_name>]
[SORTED BY <cols>]];

cols := <column> [ASC | DESC]
{,<column [ASC | DESC]}

123

J. Zhou et al.

4.2 SQL-like extensions

Scope defines the following relational operators: selection,
projection, join, group-by, aggregation and set operators
such as union, union-all, intersect, and difference. Supported
join types include inner joins, all flavors of outer and semi-
joins, and cartesian products. Scope supports user-defined
aggregates and MapReduce extensions, which will be further
discussed in the later subsections. The SELECT command in
Scope is defined as follows:

SELECT [DISTINCT] [TOP <count>]
<select_item> [AS <alias>]
{,<select_item> [AS <alias>]}

FROM (<named_rowset>|<joined_input>)
[AS <alias>]
{,(<named_rowset>|<joined_input>)
[AS <alias>]}

[WHERE <predicate>]
[GROUP BY <column> {,<column>}]
[HAVING <predicate>]
[ORDER BY <column> [ASC|DESC]
{,<column> [ASC|DESC]}];

joined_input :=
<input_stream> <join_type>
<input_stream>
[ON <equi_join_predicate>]

join_type := [INNER] JOIN
| CROSS JOIN
| [LEFT|RIGHT|FULL] OUTER JOIN
| [LEFT|RIGHT] SEMI JOIN

Nesting of commands in the FROM clause is allowed
(ı.e., named_rowset can be the result of another com-
mand). Subqueries with outer references are not allowed.
Nevertheless, most commonly used correlated subqueries
can still be expressed in Scope by combinations of outer-
join, semi-join, and user-defined combiners.

Scope provides several common built-in aggregate func-
tions: COUNT, COUNTIF, MIN, MAX, SUM, AVG, STDEV,
VAR, FIRST, and LAST, with optional DISTINCT qual-
ifier. FIRST (LAST) returns the first (last) row in the
group (non-deterministically if the rowset is not sorted).
COUNTIF takes a predicate and counts only the rows that
satisfy the predicate. It is usually used when computing con-
ditional aggregates, such as:

SELECT id, COUNTIF(duration<10) AS short,
COUNTIF(duration>=10) AS long

FROM R
GROUP BY id;

The following example shows a very simple script that
(1) extracts data in an unstructured stream log.txt con-
taining comma-separated data using an appropriate user-
defined extractor, (2) performs a very simple aggregation,
and (3) writes the result in an XML file using an appropriate
outputter.

A = EXTRACT a:int, b:float FROM
"log.txt" USING CVSExtractor();

B = SELECT a, SUM(b) AS SB
FROM A
GROUP BY a;

OUTPUT B TO "log2.xml" USING
XMLOutputter();

4.3 .NET integration

In addition to SQL commands, Scope also integrates C#
into the language. First, it allows user-defined types (UDT) to
enrich its type system, so that applications can stay at a higher
level of abstraction for dealing with rich data semantics. Sec-
ond, it allows user-defined operators (UDO) to complement
built-in operators. All C# fragments can be either defined in
a separate library, or inlined in the script’s C# block.

4.3.1 User-defined types (UDT)

Scope supports a variety of primitive data types, includ-
ing bool, int, decimal, double, string, binary,
DateTime, and their nullable counterparts. Yet, most of
the typical web analysis applications in our environment
have to deal with complex data types, such as web doc-
uments and search engine result pages. Even though it is
possible to shred those complex data types into primitive
ones, it results in unnecessarily complex Scope scripts to
deal with the serialization and deserialization of the com-
plex data. Furthermore, it is common that complex data’s
internal schemas evolve over time. Whenever that happens,
users have to carefully review and revise entire scripts to
make sure they will work with newer version of the data.
Scope UDTs are arbitrary C# classes that can be used as col-
umns in scripts. UDTs provide several benefits. First, appli-
cations remain focused on their own requirements, instead of
dealing with the shredding of the complex data. Second, as
long as UDT interfaces (including methods and properties)
remain the same, the applications remain intact despite inter-
nal UDT implementation changes. Also, if the UDT schema
evolves, the handling of schema versioning and keeping
backward compatibility remain inside the implementation of
the UDT. The scripts that consume the UDT remain mostly
unchanged.

The following example demonstrates the use of a UDT
RequestInfo. Objects of type RequestInfo are des-
erialized into column Request from some binary data on
disk using the UDT’s constructor. The SELECT statement
will then return all the user requests that originated from an
IE browser by accessing its property Browser and calling
the function IsIE() defined by the UDT Browser.

123

SCOPE: parallel databases meet MapReduce

SELECT UserId, SessionId,
new RequestInfo(binaryData)
AS Request

FROM InputStream
WHERE Request.Browser.IsIE();

4.3.2 Scalar UDOs

Scalar UDOs can be divided into scalar expressions, scalar
functions, and user-defined aggregates. Scalar expressions
are simply C# expressions, and scalar functions take one
or more scalar input parameters and return a scalar. Scope
accepts most of the scalar expressions and scalar func-
tions anywhere in the script. User-defined aggregates must
implement the system-definedAggregate interface, which
consists of initialize, accumulate, and finalize operations.
A user-defined aggregate can be declared recursive (i.e.,
commutative and distributive) in which case it can be evalu-
ated as local and global aggregation.

4.4 MapReduce-like extensions

For complex data mining and analysis applications, it
is sometimes complicated or impossible to express the
application logic by SQL-like commands alone. Further-
more, sometimes users have preexisting third-party libraries
that are necessary to meet certain data processing needs. In
order to accommodate such scenarios, Scope provides three
extensible commands that manipulate row sets: PROCESS
(which is equivalent to a Mapper in MapReduce), REDUCE
(which is equivalent to a Reducer in MapReduce), and
COMBINE (which generalizes joins and it is not present
in MapReduce). These commands complement SELECT,
which offers easy declarative filtering, joining, arithmetic,
and aggregation. Detailed description of these extensions can
be found in [7].

Process The PROCESS command takes a row set as input,
processes each row in turn using the user-defined proces-
sor specified in the USING clause, and then outputs zero,
one, or multiple rows. Processors provide functionality for
data transformation in Extract–Transform–Load pipelines
and other analysis applications. A common usage of pro-
cessors is to normalize nested data into relational form, a
usual first step before further processing. The schema of the
output row set is either explicitly specified in the PRODUCE
clause, or programmatically defined in its interface.

PROCESS [<name_rowset>]
USING <processor> [<args>]
[PRODUCE <column> {, <column>}]
[WHERE <predicate>]
[HAVING <predicate>];

Processors can accept arguments (<args>) that influence
their internal behavior. The WHERE and HAVING clauses are
convenient shorthands that can be used to pre-filter the input
rows and to post-filter the output rows, respectively, without
separate SELECT commands.

Reduce The REDUCE command provides a way of to
implement custom grouping and aggregation. It takes as input
a row set that has been grouped by the columns specified in
the ON clause, processes each group using the reducer speci-
fied in the USING clause, and outputs zero, one, or multiple
rows per group. The reducer function is called once per group.
Unlike a user-defined aggregate, it takes a row set and pro-
duces a row set, instead of a scalar value. The schema of the
output row set is either explicitly specified in the PRODUCE
clause or defined in the interface of theReducer class. User-
defined reducers can be recursive, meaning that the reducer
function can be applied recursively on partial input groups
without changing the final result. Users specify the recursive
property of a reducer using annotations and must ensure that
the corresponding reducer is semantically correct. For non-
recursive reducers, the processing of each group is holistic;
therefore, input groups fed to the reducer function are guar-
anteed to be complete, ı.e., containing all rows of the group.
Similar to recursive aggregate functions, recursive reducers
can be executed as local and global reduce operations and
the optimizer will leverage this information to generate the
optimal execution plan.

The syntax of REDUCE command is defined as follows.
The optional WHERE and HAVING clauses have the same
semantics as in PROCESS command. In addition, REDUCE
allows a PRESORT clause, which specifies a given order of
tuples on each input group, thereby making it unnecessary to
cache and sort data in the reducer itself.

REDUCE [<named_rowset>
[PRESORT <column> [ASC|DESC]

{,<column> [ASC|DESC]}]]
ON <column> {,<column>}
USING <reducer> [<args>]
[PRODUCE <column> {,<column>}]
[WHERE <predicate>]
[HAVING <predicate>];

Combine The COMBINE command provides means for
custom join implementations. It takes as inputs two row sets,
combines them using the combiner specified in the USING
clause, and outputs a row set. Both inputs are conceptually
divided into groups of rows that share the same value of the
join columns (denoted with the ON clause). When the com-
biner function is called, it is passed two matching groups,
one from each input. One of the inputs can be empty. The
COMBINE command thus enables a full outer-join and inside
the combiner function, users can implement the actual cus-

123

J. Zhou et al.

Fig. 2 Example of a user-defined combiner

tom join logic. Non-equality predicates can be expressed
as residual predicates in the HAVING clause. The optional
PRESORT and PRODUCE are the same as for REDUCE com-
mands.

COMBINE <named_input1> [AS <alias1>]
<presort_clause>
WITH <named_input2> [AS <alias2>]
<presort_clause>

ON <column>=<column> {AND <column>=
<column>}
USING <combiner> [<args>]
[PRODUCE <column> {, <column>}]
[HAVING <predicate>];

Figure 2 shows a simple combiner the computes the dif-
ferences between two multisets.

4.4.1 Code properties and data properties

In addition to runtime and compile-time interfaces, proces-
sors, reducers, and combiners implement optional properties
that can be used during optimization.

For any output column, column dependencies describe
the set of input columns that this output column function-
ally depends on. A special case of column dependencies is
pass-through columns. A column of an output row is defined
as pass-through, if the value of the column in that output row
is simply a copy of the value from the input row. Pass-through
columns allow optimizer to reason about structural proper-
ties (defined in Sect. 5) between operator inputs and outputs.
In Sect. 5, we show how the optimizer leverages the above
properties during optimization.

Fig. 3 Compilation of a Scope script

4.5 Other language components

Due to space constraints, we cannot cover all features of the
language. Nevertheless, the following language features are
worth mentioning as they are commonly used in our envi-
ronment.

– Views: Scope allows users to define views as any com-
bination of Scope commands with a single output. The
schema of the output will be the schema of the view.
Views provide a mechanism for data owners to define
a higher level of abstraction for the data usage without
exposing the implementation detailed organization of the
underlying data.

– Macros: Scope incorporates a rich macro preprocessor,
which is useful for conditional compilation based on input
parameters to the script or view.

– Streamsets: Users can refer to multiple streams simul-
taneously using parameterized names. This is useful for
daily streams that need to be processed together in a script.
For instance, the following script fragment operates over
10 streams:

EXTRACT a, b FROM "log_%n.txt?n=1...10"
USING DefaultTextExtractor;

5 Query compilation and optimization

A Scope script goes through a series of transformations
before it is executed in the cluster, as shown in Fig. 3. Initially,
the Scope compiler parses the input script, unfolds views and
macro directives, performs syntax and type checking, and
resolves names. The result of this step is an annotated abstract
syntax tree, which is passed to the query optimizer. The opti-
mizer returns an execution plan that specifies the steps that
are required to efficiently execute the script. Finally, code
generation produces the final algebra (which details the units
of execution and data dependencies among them) and the
assemblies that contain user-defined code. This package is
then sent to the cluster, where it is actually executed. In the
rest of this section, we take a close look at the Scope query
optimizer [32].

123

SCOPE: parallel databases meet MapReduce

(a) (b) (c)

Fig. 4 Input and output trees during query optimization. a Logical
input tree, b non-optimal physical tree, c optimal physical tree

5.1 Optimizer overview

Scope uses a transformation-based optimizer based on the
Cascades framework [15] that translates input scripts into
efficient execution plans. In addition to traditional optimi-
zation techniques, the Scope optimizer reasons about parti-
tioning, grouping, and sorting properties in a single uniform
framework, and seamlessly generates and optimizes both ser-
ial and parallel query plans. Consider, as an example, the
simple script

R = SSTREAM “R.ss”;
S = SSTREAM “S.ss”;
J = SELECT * FROM R, S WHERE R.x=S.x AND

R.y=S.y;
O = REDUCE J ON x USING SampleReducer;
OUTPUT O TO SSTREAM “O.ss”;

where S.sswas generated by the following command (par-
titioned by x and sorted by x,y):

OUTPUT TO “S.ss” CLUSTERED BY x SORTED BY x,y;

Figure 4a shows a tree of logical operators that specifies,
in an almost one-to-one correspondence, the relational alge-
bra representation of the script above. Figure 4b, c show two
different physical operator trees corresponding to alternative
execution plans for the same script.

We illustrate the importance of script optimization by con-
trasting Fig. 4b, c. In the straightforward execution plan
in Fig. 4b, table R is first hash-partitioned on columns
{R.x, R.y}. This step is done in parallel, with each machine
processing its portion of the table. Similarly, table S is par-
titioned on {S.x, S.y}. Next, rows from matching R and S
partitions are hash-joined in parallel, producing a result par-
titioned on {R.x, R.y} (or {S.x, S.y}). In preparation for the
subsequent reducer, the join result is first partitioned by x and
then locally sorted by x , to ensure that tuples with the same
value of x are in the same partition, sorted by x . Finally, each
partition is reduced in parallel, producing the final result.

This plan is expensive because it contains multiple parti-
tioning operations. If both R and S contain tens of terabytes

Algorithm 1: OptimizeExpr(expr , reqd)
Input: Expression expr, ReqdProperties reqd
Output: QueryPlan plan

/* Enumerate all the logical rewrites */
LogicalTranform(expr);
foreach logical expression lexpr do

/* Try implementations for root operator
*/

PhysicalTranform(lexpr);
foreach expression pexpr that has physical
implementation for its root operator do

ReqdProperties reqdChild =
DetermineChildReqdProperties(pexpr, reqd);

/* Optimize child expressions */
QueryPlan planChild =
OptimizeExpr(pexpr.Child, reqdChild);
DlvdProperties dlvd =
DeriveDlvdProperties(planChild);

if PropertyMatch(dlvd, reqd) then
EnqueueToValidPlans();

end
end

end
plan = CheapestQueryPlan();
return plan;

of data, data reshuffling through the network can pose a seri-
ous performance bottleneck. The alternative plan in Fig. 4c
shows a different plan where some repartition operators have
been eliminated. Note that the join operator requires, for cor-
rectness, that no two tuples from R (also from S) share the
same (x, y) values but belong to different partitions. This can
be achieved by repartitioning both inputs on any non-empty
subset of {x, y}. The plan in Fig. 4c repartitions data on x
alone and thus (1) avoids shuffling data from S by leveraging
existing partitioning and sorting properties and (2) avoids a
subsequent repartitioning on x , required by the reducer oper-
ator. It also uses a merge join implementation, which requires
the inputs to be sorted by (x, y). This is done by sorting R
and obtained for free in the case of S due to a preexisting
order. As the merge join preserves the order of results in x ,
no additional sort is required before the reducer.

The Scope optimizer considers these (and many other)
alternative plans and chooses the one with the lowest esti-
mated costs, based on data statistics and an internal cost
model. The cost model of the optimizer is similar to that
of traditional database systems. Each operator computes its
own cost (including CPU, I/O, and network utilization), and
local costs are aggregated to obtain the estimated cost of an
execution plan. In this paper, we focus on how the Scope
optimizer distinguishes itself in reasoning and optimizing
parallel query plans and omit other aspects due to space lim-
itations.

Transformation-based optimization can be viewed as
divided into two phases, namely logical exploration and

123

J. Zhou et al.

physical optimization. Logical exploration applies transfor-
mation rules that generate new logical expressions. Imple-
mentation rules, in turn, convert logical operators to physical
operators. Algorithm 1 shows a (simplified) recursive opti-
mization routine that takes as input a query expression and
a set of requirements. We highlight three different contexts
where reasoning about data properties occurs during query
optimization.

– Determining child required properties. The parent (phys-
ical) operator imposes requirements that the output
from the current physical operator must satisfy. For exam-
ple, the output must be sorted on R.y. To function
correctly, the operator may itself impose certain require-
ments on its inputs, for example, the two inputs to a
join must be partitioned on R.x and S.x , respectively.
Based on these two requirements, we must then determine
what requirements to impose on the result of the input
expressions. The function DetermineChildReqd-
Properties is used for this purpose. If the require-
ments are incompatible, a compensating operator (e.g.,
sort or partition) would be added during the optimization
of the child operator by an enforcer rule (see Sect. 5.5.1).

– Deriving delivered properties. Once physical plans for the
child expressions have been determined, we compute the
data properties of the result of the current physical opera-
tor by calling the functionDeriveDlvdProperties.
A child expression may not deliver exactly the requested
properties. For example, we may have requested a result
grouped on R.x but the chosen plan delivers a result that
is, in addition, sorted on R.x . The delivered properties
are a function of the delivered properties of the inputs
and the behavior of the current operator, for example,
whether it is hash or merge join. We explain this process
in Sect. 5.4.1.

– Property matching. Once the delivered properties have
been determined, we test whether they satisfy the required
properties, by calling the function PropertyMatch. If
they do not match, the plan with the current operator is
discarded. The match does not have to be exact – a result
with properties that exceed the requirements is accept-
able. We cover the details in Sect. 5.4.3.

We next discuss some key operators in the Scope opti-
mizer in Sect. 5.2, our property formalism in Sect. 5.3, rea-
soning about data properties in Sect. 5.4, and domain-specific
transformation rules in Sect. 5.5.

5.2 Operators and parallel plans

The Scope optimizer handles all traditional logical and phys-
ical operators from relational DBMSs, such as join and union

Fig. 5 Common subexpressions during optimization

variants, filters, and aggregates. It is also enhanced with
specialized operators that correspond to the user-defined
operators described in Sect. 4.4 (i.e., extractors, reducers,
processors, combiners, and outputters). We next describe
two operators that allow the optimizer to reuse common
subexpressions and to consider parallel plans in an integrated
manner.

5.2.1 Common subexpressions

As explained in Sect. 4, Scope allows programmers to write
scripts as a series of simple data transformations. Due to
complex business logics, it is common that scripts explicitly
share common subexpressions. As an example, the follow-
ing script fragment unions two sources into an intermediate
result, which is both aggregated and joined with a different
source, producing multiple results that are later consumed in
the script:

...
U = SELECT * FROM R UNION ALL SELECT * FROM S;
G = SELECT a, SUM(b) FROM U GROUP BY a;
J = SELECT * FROM U, T ON U.a = T.a AND

U.b = T.b;
...

The optimizer represents common subexpressions by
spool operators. Figure 5 shows the logical input to the opti-
mizer for the fragment above. It is important to note that
spool operators generalize input and output trees to DAGs.
A spool operators has a single producer (or child) and multi-
ple consumers (or ancestors) in the operator DAG. Detailed
common subexpression optimization with spool operators
can be found in [33]. We also note that sharing expressed
at the logical level does not necessarily translate into shar-
ing in physical plans. The reason is subtle: it might be more
beneficial to execute the shared subexpression twice (each
one with different partitioning or sorting properties).

5.2.2 Data exchange

A key feature of distributed query processing is based on par-
titioning data into smaller subsets and processing partitions

123

SCOPE: parallel databases meet MapReduce

in parallel on multiple machines. This can done by a single
operator, the data exchange operator, which repartitions data
from n inputs to m outputs [14].

Exchange is implemented by one or two physical opera-
tors: a partition operator and/or a merge operator. Each par-
tition operator simply partitions its input while each merge
operator collects and merges the partial results that belong to
its result partition. Suppose, we want to repartition n input
partitions, each one on a different machine, into m output
partitions on a different set of machines. The processing is
done by n partition operators, one on each input machine, and
m merge operators, one on each output machine. A partition
operator reads its input and splits it onto m subpartitions.
Each merge operator collects the data for its partition from
the n corresponding subpartitions.

Exchange topology Figure 6 shows the three main types
of exchange operators. Initial Partitioning, shown in Fig. 6a,
consumes a single input stream and outputs m output streams
with the data partitioned among the m streams. (Full) Repar-
titioning, shown in Fig. 6b, consumes n input partitions and
produces m output partitions, partitioned in a different way.
Full Merge, shown in Fig. 6c, consumes n input streams and
merges then into a single output stream. Partial Partition-
ing, shown in Fig. 6d, takes n input streams and produces kn
output streams. The data from each input partition are further
partitioned among k output streams. Finally, Partial Merge,
shown in Fig. 6e, is the inverse of partial partition. A partial
merge takes kn input streams, merges groups of k of them
together, and produces n output streams.

Partitioning schemes Conceptually, an instance of a parti-
tion operator takes one input stream and generates multiple
output streams. It consumes one row at a time and writes the
row to the output stream selected by a partitioning function
applied to the row. We assume all partition operators are FIFO
(first-in and first-out), so the order of two rows r1 and r2 in
the input stream is preserved in they are assigned to the same
partition. There are several different types of partitioning
schemes. Hash Partitioning applies a hash function to the par-
titioning columns to generate the partition number to which
the row is output. Range Partitioning divides the domain of
the partitioning columns into a set of disjoint ranges, as many
as the desired number of partitions. A row is assigned to the
partition determined by the value of its partitioning columns,

producing ordered partitions. Other schemes include Non-
deterministic Partitioning, which is any scheme where the
data content of a row does not affect which partition the row
is assigned to (e.g., round-robin and random), and Broad-
casting, which outputs a copy of each row to every partition
(so that every output stream is a copy of the input stream).

Merging schemes A merge operator combines data from
multiple input streams into a single output stream. Depend-
ing on whether the input streams are sorted individually and
how rows from different input streams are ordered, we have
several types of merge operations.

Random Merge randomly pulls rows from different input
streams and merges them into a single output stream, so the
ordering of rows from the same input stream is preserved.
Sort Merge takes a list of sort columns as a parameter and a
set of input streams. The output stream iteratively consumes
the smallest element at the head of the input streams. If the
input streams are sorted by the same columns as the parameter
of sort-merge, the output is fully sorted. Concat Merge con-
catenates multiple input streams into a single output stream.
It consumes one input stream at a time and outputs its rows in
order to the output stream. That is, it maintains the row order
within an input stream but it does not guarantee the order in
which the input streams are consumed. Finally, Sort-Concat
Merge takes a list of sort columns as a parameter. First, it
picks the first row from each input stream, sorts them on the
values on the sort columns, and uses the row order to decide
the order in which to concatenate the input streams. This
is useful for merging range-partitioned inputs into a fully
ordered output.

5.3 Property formalism

In a distributed system, parallelism is achieved by parti-
tioning data into subsets that can be processed indepen-
dently. This may require complete repartitioning, which is
expensive because it involves transporting all data across
the shared network. Reducing the number of partition-
ing operations is an important optimization goal. However,
data partitioning cannot be considered in isolation because
it often interacts with other data properties like sorting
and grouping. Reasoning about partitioning, grouping, and
sorting properties, and their interactions, is an important

(a) (b) (c) (d) (e)

Fig. 6 Different types of data exchange. a Initial partitioning, b repartitioning, c full merge, d partial repartitioning, e partial merge

123

J. Zhou et al.

Table 1 Notation used in the paper

C1, C2, . . . Columns

X , Y, S, G, J Sets of columns

A, B Local structural properties

r1, r2, . . . Tuples

P1, P2, . . . Partitions

r [C], r [X] Projection of r onto column C and
columns X , respectively

∗ Any properties (including empty)

⊥, ∅, � Non-partitioned, randomly partitioned,
and replicated global properties

foundation for query optimization in a distributed environ-
ment.

A partition operation divides a relation into disjoint sub-
sets, called partitions. A partition function defines which
rows belong to which partitions. Partitioning applies to the
whole relation; it is a global structural property. Grouping
and sorting properties define how the data within each parti-
tion is organized and are thus partition-local properties, here
refereed to as local structural properties. We next define
these three properties, collectively referred to as structural
(data) properties. Table 1 summarizes the notation used in
this section.

5.3.1 Local structural properties

A sequence of rows r1, r2, . . . , rm is grouped on a set of col-
umns X , denoted X g , if between two rows that agree in X ,
there is no row with a different value in X . That is, if ∀ri , r j :
i < j ∧ ri [X] = r j [X] ⇒ ∀k : i < k < j, rk[X] = ri [X].
Similarly, a sequence of rows r1, r2, . . . , rm is sorted on a
column C in an ascending (or descending) order, denoted
by Co↑ (or Co↓), if ∀ri , r j , i < j ⇒ ri [C] ≤ r j [C] (or
ri [C] ≥ r j [C]). We use Co for simplicity when the context
is clear.

Definition 1 (Local structural properties) Local structural
properties A are ordered sequences of grouping and sort-
ing properties A = (A1, A2, . . . , An), where each Ai is
either X g or Co. A sequence of rows R = (r1, r2, . . . , rm)

satisfies local structural properties A if (1) R satisfies
(A1, A2, . . . , An−1), and (2) every subsequence of R that
agrees on the values of columns in A1, A2, . . . , An−1 addi-
tionally satisfies An .

We denote (A0 : A) to be the concatenation of a grouping
or sorting property A0 to local structural properties A, that
is, (A0, A1, A2, . . . , An).

5.3.2 Global structural properties

There are two major classes of partitioning schemes, ordered
and non-ordered. A non-ordered partitioning scheme ensures
only that all rows with the same values of the partitioning
columns are contained in the same partition. This is analo-
gous to grouping as local property. More formally, a relation
R is non-ordered partitioned on columns X with partition-
ing function P if ∀r1, r2 ∈ R : r1[X] = r2[X] ⇒ P(r1) =
P(r2).

An ordered partitioning scheme provides the additional
guarantee that the partitions cover disjoint ranges of the par-
titioning columns. In other words, rows assigned to a partition
Pi are either all less than or greater than rows in another par-
tition P j . This is analogous to ordering as a local property.
More formally, a relation R is ordered-partitioned into par-
titions P1, P2, . . . , Pm on (Co1

1 , Co2
2 , . . . , Con

n) where oi ∈
{o↑, o↓}, if it satisfies the non-ordered partitioned condition
above and, for each pair of partitions Pi and P j with i < j :

∀ri ∈ Pi , r j ∈ P j : ri [C1, . . . , Cn] <o1,...,on r j [C1, . . . , Cn]

where <o1,...,on is the multi-column comparison operator that
takes ascending/descending variants into account, so that for
instance (1, 2, 3) <o↑,o↓,o↑ (1, 5, 2).

Definition 2 (Global structural properties) Given a relation
R and columns X = {C1, . . . Cn}, a global structural prop-
erty can be (1)⊥, which indicates that data are not partitioned,
(2) ∅, which indicates that data are randomly partitioned,
(3) �, which indicates that data are completely duplicated,
(4) X g , which indicates that R is non-ordered partitioned on
columns X , and (5) (Co1

1 , . . . , Con
n), which indicates that R is

ordered partitioned on (Co1
1 , . . . , Con

n). When it is clear from
the context, we use (Co1

1 , . . . , Con
n), and X o interchangeably

for an ordered partitioned global property.

5.3.3 Structural properties

The structural properties of a relation R are specified by a pair
of global structural property G and local structural proper-
ties L, denoted as {G; L}. Additionally, a structural property
also defines the exact partitioning function and the number
of partitions, which we omit in this work for the clarity of
exposition.

Table 2 shows an instance of a relation with three columns
{C1, C2, C3}, and structural data properties {{C1}g; ({C1,

C2}g, Co
3)}. In words, the relation is partitioned on col-

umn C1 and, within each partition, data are first grouped on
columns C1, C2, and, within each such group, sorted by col-
umn C3.

123

SCOPE: parallel databases meet MapReduce

Table 2 Relation with partitioning, grouping, and sorting

Partition 1 Partition 2 Partition 3

{1,4,2}, {1,4,5}, {7,1,2} {4,1,5}, {3,7,8}, {3,7,9} {6,2,1}, {6,2,9}

5.4 Structural properties and query optimization

We next describe how the optimizer reasons about data prop-
erties in the three contexts outlined in Algorithm 1.

5.4.1 Deriving structural properties

We first consider how to derive the structural properties of
the output of a physical operator. Earlier research has shown
how to derive ordering and grouping properties for standard
relational operators executed on non-partitioned inputs [21,
22,25,26,30]. Ordering and grouping are local properties,
that is, properties of each partition, so previous work still
applies when the operators are running in partitioned mode.
What remains is to reason with global partitioning proper-
ties throughout a query plan and their interaction with local
properties.

Properties after a scan operator Recall from Sect. 3 that
data can be stored either as unstructured or structured
streams. The scan operator over an unstructured stream deliv-
ers a random partitioning. More interestingly, reading a struc-
tured stream delivers the partitioning and sorting properties
that are defined in the structured stream itself. This can be
useful to avoid further repartitioning operations whenever the
required properties of a subsequent operator can be satisfied
by the delivered properties of the structured stream itself.

Properties after a partitioning operator Partition operators
are assumed to be FIFO, that is, they output rows in the same
order that they are read from the input. Thus, they affect
the global properties but not local properties. Every output
partition inherits the local properties (sorting and grouping)
of its input. Table 3 summarizes the properties of the out-
put after an initial partitioning operator when the input has
structural properties {X θ ;A}. Hash partitioning on columns
C1, C2, . . . , Cn produces a non-ordered collection of parti-
tions, which is indicated in the table with the global structural
property {C1, C2, . . . , Cn}g . Range partitioning on columns
C1, C2, . . . , Cn produces an ordered collection of partitions,
which is indicated in the table with global structural prop-
erty (Co1

1 , Co2
2 , . . . , Con

n). In a non-deterministic partition-
ing scheme (round-robin and random partitioning), a row is
partitioned independent on its content, so we indicate this
by ∅.

Table 3 Structural properties of the result after partitioning an input
with properties {X ; A}
Scheme Result

Hash on C1, . . . , Cn {{C1, . . . , Cn}g; A}
Range on Co1

1 , . . . , Con
n {(Co1

1 , . . . , Con
n); A}

Non-deterministic {∅; A}
Broadcast {�; A}

Properties after a merge operator A full merge operator
produces a single output. Its local properties depend on the
local properties of the input and the merge operator type:
random merge, sort-merge, concat merge, and sort-concat
merge.

Table 4 summarizes the structural properties after a full
merge, depending on the type of merge operator and whether
the input partitioning is ordered or non-ordered. A random
merge does not guarantee any row order in the result, so no
local properties can be derived for the output. For a sort-
merge, there are two cases. If the local properties of the
input imply that the input streams are sorted on the col-
umns used in the merge (see Sect. 5.4.3 for more details on
property inference), the output will be sorted, otherwise not.
A concat merge operator maintains the row order within each
source partition. If each source partition is grouped in a sim-
ilar way to how it is non-ordered partitioned, the result of
is also grouped, otherwise not. Finally, a sort-concat merge
produces a sorted result if inputs are range partitioned and
each partition is also sorted on the same columns as it is
partitioned on.

Example 1 A sort-concat full merge on {Co
1 , Co

2 } of inputs
with properties {(Co

1 , Co
2); (Co

1 , Co
2 , Cg

3)} generates an out-
put with properties {⊥; (Co

1 , Co
2 , Cg

3)}.

Properties after a repartitioning operator The properties
of the result after repartitioning depend on the partitioning
scheme, the merge scheme, and the local properties of the
input. Table 5 summarizes the structural properties after rep-
artitioning an input with properties {∗;A}.
Example 2 Given inputs with properties {{C1, C2}g;
(Co

2 , Co
1 , Co

3)}, concat merging generates an output with
properties {{C1, C2}g; ({C1, C2}g, Co

3)}, for repartitioning,
and {⊥; ({C1, C2}g, Co

3)}, for a full merge.

5.4.2 Deriving required structural properties

We now consider how to determine required properties of the
inputs for different physical operators. Table 6 lists required
input properties for the most common physical operators.

123

J. Zhou et al.

Table 4 Structural properties
of the result after a full merge Input properties {X g; A} Input properties {X o; A}

Random merge {⊥; ∅} {⊥; ∅}
Sort merge on So (1). {⊥; So} if A ⇒ So (1). {⊥; So} if A ⇒ So

(2). {⊥; ∅} otherwise (2). {⊥; ∅} otherwise

Concat merge (1). {⊥; (X g : B)} if A ⇒ (X g : B) (1). {⊥; (X g : B)} if A ⇒ (X g : B)

(2). {⊥; ∅} otherwise (2). {⊥; ∅} otherwise

Sort-concat merge on So (1). {⊥; (X g : B)} if A ⇒ (X g : B) (1). {⊥; A} if So ⇔ X o and A ⇒ So

(2). {⊥; ∅} otherwise (2). {⊥; ∅} otherwise

Table 5 Structural properties of the result after repartitioning on X with input properties {∗; A}
Hash partitioning Range partitioning Non-determ. partitioning

Random merge {X g; ∅} {X o; ∅} {∅; ∅}
Sort merge on So {X g; So} if A ⇒ So {X o; So} if A ⇒ So {∅; So} if A ⇒ So

{X g; ∅} otherwise {X o; ∅} otherwise {∅; ∅} otherwise

Concat merge {X g; (X g : B)} if A ⇒ (X g : B) {X o; (X g : B)} if A ⇒ (X g : B) {∅; (X g : B)} if A ⇒ (X g : B)

{X g; ∅} otherwise {X o; ∅} otherwise {∅; ∅} otherwise

Sort-concat merge on So {X g; (X g : B)} if A ⇒ (X g : B) {X o; A} if So ⇔ X o and A ⇒ So {∅; A} if So ⇔ X o and A ⇒ So

{X g; ∅} otherwise {X o; ∅} otherwise {∅; ∅} otherwise

Table 6 Required structural properties of inputs to common physical operators

Non-partitioned version Partitioned version

Table scan, select, project {⊥; ∗} {X θ ; ∗}, X �= ∅
Hash aggregate on G {⊥; ∗} {X θ ; ∗},∅ ⊂ X ⊆ G
Stream aggregate on G {⊥; (Gg)} {X θ ; (Gg)},∅ ⊂ X ⊆ G
Nested-loop or hash join

(equijoin on columns
J1 ≡ J2)

Both inputs {⊥; ∗} Pair-wise Join:
Input 1: {X θ ; ∗},∅ ⊂ X ⊆ J1; Input 2: {Yθ ; ∗},∅ ⊂ Y ⊆ J2; X ≡ Y
Broadcast Join:
Input 1: {�; ∗}; Input 2: {X θ ; ∗}, X �= ∅

Merge join (equijoin on
columns J1 ≡ J2)

Input 1: {⊥; J o
1 } Pair-wise Join:

Input 2: {⊥; J o
2 } Input 1: {X θ ; J o

1 },∅ ⊂ X ⊆ J1; Input 2: {Yθ ; J o
2 },∅ ⊂ Y ⊆ J2; X ≡ Y

Broadcast Join:
Input 1: {�; J o

1 }; Input 2: {Y; J o
2 }, Y �= ∅

Note that for the purpose of property derivation, we treat
combiners and reducers as joins and aggregates, respectively.
Depending on whether the operator is executed in either
partitioned or non-partitioned mode, it imposes different
requirements on its inputs. A non-partitioned operator runs as
a single instance and produces non-partitioned data. A parti-
tioned operator runs as multiple instances, each instance con-
suming and producing only partitions of the data. However,
not all operators can be executed in parallel. For instance,
aggregation with no group-by columns can only be executed
in non-partitioned mode.

Table scan, select and project process individual rows and
impose no requirements on their inputs (i.e., it does not mat-

ter how the input data are partitioned, sorted, or grouped).
Thus, their input requirements are shown as {X θ ; ∗} where
X can be any set of columns.

For a hash aggregation to work correctly, all rows with
the same value of the grouping columns must be in a single
partition. This is guaranteed as long as the input is partitioned
on a subset of the grouping columns. A stream aggregation
also requires that the rows within each partition be grouped
on the grouping columns.

We consider two types of partitioned joins: pair-wise join
and broadcast join. A pair-wise join takes two partitioned
inputs. The inputs must be partitioned on a subset of the join
columns in the same way (i.e., on the same set of equivalent

123

SCOPE: parallel databases meet MapReduce

columns and into the same number of partitions). Broadcast
join takes one partitioned input (it does not really matter how
it is partitioned) and a second input that is replicated (broad-
cast) to each partition of the first input. A merge join has the
additional requirement that each partition be sorted on the
join columns.

Example 3 Suppose, we are considering using a partitioned
merge join to join tables R and S on R.C1 = S.C1 and
R.C2 = S.C2. Based on the rules in Table 6, both inputs
must be partitioned and sorted in the same way. The partition-
ing columns must be a subset of or equal to the join columns
({R.C1, R.C2} and {S.C1, S.C2}, respectively). The sort col-
umns must also be equal to the join columns on each input.
Each of the following requirements satisfies the restrictions
and is thus valid input requirements. We do not list all pos-
sibilities here and also leave the exact sort order, o↑ and o↓,
unspecified.

– {R.Cg
1 ; (R.Co

2 , R.Co
1)} and {S.Cg

1 ; (S.Co
2 , S.Co

1)}
– {R.Co

2 ; (R.Co
1 , R.Co

2)} and {S.Co
2 ; (S.Co

1 , S.Co
2)}

– {{R.C1, R.C2}g; (R.Co
2 , R.Co

1)} and
{{S.C1, S.C2}g; (S.Co

2 , S.Co
1)}

As shown by the example, the requirements in Table 6
for the child expressions are not always unique and can
be satisfied in several ways. For instance, aggregation on
{C1, C2} requires the input to be partitioned on {C1}, {C2}, or
{C1, C2}. Conceptually, each requirement corresponds to one
specific implementation. This situation could be handled by
generating multiple alternatives, one for each requirement.
However, this approach would generate a large number of
alternatives, making optimization more expensive. Instead,
we allow required properties to cover a range of possibili-
ties and rely on enforcer rules, described in Sect. 5.5.1, to
generate valid rewrites. To this end, the optimizer encodes
required structural properties as follows.

– Partitioning requirement, which can be either broad-
cast (�), non-partitioned (⊥), or a partition requirement
including minimum partitioning columns Xmin and max-
imum partitioning columns Xmax

(∅ ⊆ Xmin ⊆ Xmax).
– Sorting requirement, which consists of a sequence of sort-

ing columns (So
1 , So

2 , . . . , So
n), o ∈ {o↑, o↓}.

– Grouping requirement, which consist of a set of grouping
columns {G1, G2, . . . , Gn}g .

In the previous example of aggregation on {C1, C2}, the par-
titioning requirement is any subset of the grouping columns,
so Xmin = ∅,Xmax = {C1, C2}. This requirement is satis-
fied by a hash or range partition with column set X where
Xmin ⊂ X ⊆ Xmax.

Some operators are by themselves invariant to partition-
ing and ordering (e.g., filters) and simply pass parent require-
ments down to their children.

User-defined operators deserve a special mention. In prin-
ciple, a Processor can execute arbitrary code to produce
output rows given its input. Therefore, it would seem that
any property inference cannot propagate past such opera-
tors. The properties described in Sect. 4.4.1 provide a way
for users to specify additional information to the optimizer.
For instance, if a processor marks a column as pass-through,
it essentially means that input and output rows would satisfy
all structural properties on such column. Therefore, we can
push down a partitioning requirement through a processor as
for the case of filters whenever all the structural property col-
umns are marked as pass-through. These and other properties
(e.g., column dependencies) are also used to determine the
required output columns from a child operator, essentially
performing a guided data-flow analysis on the query DAG.

The rules in Table 6 do not consider requirements imposed
on the operator by its parent. In that case, some operators
are able to do early pruning due to conflicting properties.
For instance, if a merge join is required to produce a result
sorted on (C1, C2) but its equality join predicates are on
C3, there is no merge join implementation that could sat-
isfy its sorting requirements, assuming that sorting on (C3)

does not imply sorting on (C1, C2). This merge join is an
invalid alternative—it can never produce an output that sat-
isfies the requirements. The optimizer checks for such invalid
alternatives and discards them immediately.

5.4.3 Property matching

The optimizer ensures that a physical plan is valid by
checking that its delivered properties satisfy the required
properties. Property matching checks whether one set of
properties {X θ1;A} satisfies another {Yθ2;B}, that is, whether
{X θ1;A} ⇒ {Yθ2;B}. Matching of structural properties is
done by matching global and local properties separately:

({X θ1;A} ⇒ {Yθ2;B}) ⇔ (X θ1 ⇒ Yθ2 ∧ A ⇒ B)

Two structural properties may be equivalent even if they
appear different because of column equivalences (e.g., via
joins) or functional dependencies. Normalization and match-
ing of local properties (sorting and grouping) have been
studied extensively in [21,22]. We next review functional
dependencies, constraints, and column equivalences, and
then describe a number of inference rules to reason with
structural properties.

A set of columns X functionally determines a set of col-
umns Y , if for any two rows that agree on the values of

123

J. Zhou et al.

columns in X , they also agree on values of columns in Y .
We denote such functional dependency by X → Y .

Functional dependencies appear in several ways:

Trivial FDs: X → Y whenever X ⊇ Y .
Key constraints: Keys are a special case of functional
dependencies. If X is a key of relation R, then X func-
tionally determines every column of R.
Column equality constraints: A selection or join with a
predicate C1 = C2 implies that the functional dependen-
cies {C1} → {C2} and {C2} → {C1} hold in the result.
Constant constraints: After a selection with a predicate
C = constant all rows in the result have the same value
for column C . This can be viewed as a functional depen-
dency which we denote by ∅ → C .
Grouping columns: After a group-by with columns X , X
is a key of the result and, thus, functionally determines all
other columns in the result.

If all tuples of a relation must agree on the values of a
set of columns, such columns belong to a column equiva-
lence class. An equivalence class may also contain a con-
stant, which implies that all columns in the class have the
same constant value. Equivalence classes are generated by
equality predicates, typically equijoin conditions and equal-
ity comparisons with a constant.

Both functional dependencies and column equivalence
classes can be computed bottom up in an expression tree [10,
21,22,26], and in the following, we assume that these have
been computed.

Inference rules

We next briefly discuss inference rules for structural prop-
erties. The first rule shows that local properties can be
truncated.

{∗; (A1, . . . , Am−1, Am)} ⇒ {∗; (A1, . . . , Am−1)} (1)

Global properties cannot be truncated but they can be
expanded. A result that is partitioned on columns C1, C2 is
not partitioned on C1 because two rows with the same value
for C1 may be in different partitions. However, a result par-
titioned on C1 alone is in fact partitioned on C1, C2 because
two rows that agree on C1, C2 also agree on C1 alone and,
consequently, they are in the same partition. More formally,

{{C1, . . . , Cm}g; ∗} ⇒ {{C1, . . . , Cm, Cm+1}g; ∗} (2)

{(Co1
1 , . . . , Com

m); ∗} ⇒ {(Co1
1 , . . . , Com

m , Com+1
m+1); ∗} (3)

If a sequence of rows is sorted, it is also grouped, so:

{∗; (A1, . . . , Co, . . . , Am)}⇒{∗; (A1, . . . , {C}g, . . . , Am)}
(4)

{(Co1
1 , . . . , Con

n); ∗} ⇒ {{C1, . . . , Cn}g; ∗} (5)

Functional dependencies allow us to eliminate grouping
columns from both global and individual local structural
properties:

if ∃ C ∈ X : (X − {C}) → C, then X g ⇒ (X − {C})g

(6)

The following rule can be applied to eliminate sorting
columns in global structural properties:

if ∃ {C1, . . . , Ci−1} → Ci , then

{{Co1
1 , . . . , Coi−1

i−1 , Coi
i , Coi+1

i+1 , . . .};A}
⇒ {{Co1

1 , . . . , Coi−1
i−1 , Coi+1

i+1 , . . .};A} (7)

Finally, the following rule eliminates individual local
structural properties altogether:

if X1 ∪ . . . ∪ Xi−1 → Xi , then

{∗; (X θ1
1 , . . . ,X θi−1

i−1 ,X θi
i ,X θi+1

i+1 , . . .)}
⇒ {∗; (X θ1

1 , . . . ,X θi−1
i−1 ,X θi+1

i+1 , . . .)}. (8)

Property normalization

To simplify property matching, properties are converted to a
normalized form. The basic idea of the normalization proce-
dure is as follows. First, in each partitioning, sorting, group-
ing property, and functional dependency replace each column
with the representative column in its equivalence class. Then,
in each partitioning, sorting and grouping property remove
columns that are functionally determined by some other col-
umns. We illustrate this procedure with an example.

Example 4 We want to test whether the structural properties
P1 = {{C7, C1, C3}g; (C

o↑
6 , C

o↓
2 , C

o↑
5)} satisfy the structural

properties P2 = {{C1, C2, C4}g; ({C1, C2}g)}. We know that
the data satisfy the functional dependency {C6, C2} → {C3}.
There are two column equivalence classes {C1, C6} and
{C2, C7} with C1 and C2 as representative columns, respec-
tively. After replacing columns by representative columns,
we have that:

P1 = {{C2, C1, C3}g; (C
o↑
1 , C

o↓
2 , C

o↑
5)}

P2 = {{C1, C2, C4}g; ({C1, C2}g)}
{C1, C2} → {C3}.

123

SCOPE: parallel databases meet MapReduce

Next, we apply the functional dependency to eliminate C3,
which changes P1 to {{C2, C1}g; (C

o↑
1 , C

o↓
2 , C

o↑
5)} while P2

is unchanged.
We first consider global properties. We want to prove that

{C2, C1}g ⇒ {C1, C2, C4}g . According to the expansion
rule for global properties (inference rule (2)), the implica-
tion holds and thus the global properties match. Next, for
local properties, we need to show that (C

o↑
1 , C

o↓
2 , C

o↑
5) ⇒

({C1, C2}g). Applying the truncation rule for local properties
(inference rule (1)), we obtain (C

o↑
1 , C

o↓
2) ⇒ ({C1, C2}g)

because sorting implies grouping (inference rule (4)). Since
both global and local properties match, P1 satisfy P2.

5.5 The rule set

A crucial component in our optimizer is the rule set. In fact,
the set of rules available to the optimizer is one of the deter-
mining factors in the quality of the resulting plans. Many of
the traditional optimization rules from database systems are
clearly applicable also in our context, for example, remov-
ing unnecessary columns, pushing down selection predicates,
and pre-aggregating when possible. However, the highly dis-
tributed execution environment offers new opportunities and
challenges, making it necessary to explicitly consider the
effects of large-scale parallelism during optimization. For
example, choosing the right partition scheme and deciding
when to partition are crucial for finding an optimal plan. It is
also important to correctly reason about partitioning, group-
ing, and sorting properties, and their interaction, to avoid
unnecessary computations.

5.5.1 Enforcer rules

Query optimizers in database systems typically start with an
optimal serial plan and then add parallelism in a postpro-
cessing step. This approach may result in sub-optimal plans.
The challenge is to seamlessly integrate consideration of
parallel plans into the normal optimization process. In this
section, we describe optimization rules that automatically
introduce data exchange operators and thus seamlessly gen-
erate and optimize distributed query plans. We enhance the
optimization framework in two ways. First, for each log-
ical operator, we consider both non-partitioned and parti-
tioned implementations, as long as they can ever satisfy
their requirements. Second, we rely on a series of enforcer
rules (explained below) to modify requirements for structural
properties, say, from non-partitioned to partitioned, or from
sorted to non-sorted, etc. Together, with other optimization
rules and property inferences, this enables the optimizer to
consider both serial and parallel in a single integrated frame-
work. It greatly enhances the power of a traditional query
optimizer without dramatic infrastructure changes.

We begin with a simple example of sort optimization. Sup-
pose that, during optimization, there is a request to optimize
an expression with a specific local sort requirement S2. The
optimizer then considers different alternative physical oper-
ators for the root operator of the expression tree, derives what
properties their inputs must satisfy, and requests an optimal
plan for each input. There are typically three possible ways of
ensuring that the result will be sorted. It is up to the optimizer
to choose the best plan based on its cost estimates.

– If a physical operator itself can generate a sorted output,
try this operator and push requirements imposed by the
operator itself to its child expressions.

– If a physical operator retains the input order, try the oper-
ator and push the sort requirement plus requirements of
the operator itself to its children.

– Otherwise, try the operator but add an explicit sort match-
ing the requirement and then optimize the child expres-
sions without the sort requirement.

In the last case, the optimizer enforces a sort requirement
on top of the physical operator. We call such optimization
rules enforcer rules. Grouping requirements can be handled
in a similar way, except we may not have an explicit group-
only operator. A grouped result is usually produced as a
side effect of another operator, for example, a one-to-many
nested-loop join.

A data exchange operator is similar to sorting. Its only
effect is to change structural properties; it does not add or
eliminate rows, nor does it modify individual rows in any
way. Therefore, we model data exchange operators as enforc-
ers of structural properties.

Algorithm 2 shows simplified pseudo-code for enforcing
partitioning. For simplicity, handling of sorting and group-
ing requirements is not shown. When a sorting requirement
exists, we consider both sort-merge exchange and regular
exchange operations. We also ignore the details of the parti-
tioning requirement.

Although the pseudo-code is much simplified, it captures
the core ideas of enforcing partitioning requirements. For
any expression with particular partitioning requirements, the
optimizer (1) uses an operator that itself satisfies the require-
ments, (2) uses a partition-preserving operator and pushes the
requirements to its children, (3) adds data exchange opera-
tors that allow the requirements for its child expressions to be
relaxed or modified. The optimizer tries all the alternatives
and selects the best plan based on estimated costs.

2 For global sort requirements, such as those coming from ORDER BY
clauses, the optimizer considers an alternative that requires its input to
be both range partitioned and locally sorted by the original sort columns,
which is subsequently handled by the enforcer rules.

123

J. Zhou et al.

Algorithm 2: EnforceDataExchange(expr , reqd)
Input: Expression expr, ReqdProperties reqd

ReqdProperties reqd New;
Plan plan;
if Serial(reqd) then

/* Require a serial output */
reqd New = GenParallel(reqd);
plan =
AddExchangeFullMerge(OptimizeExpr(expr,
reqd New));

else
/* Require a parallel output. Enumerate

all possible partitioning alternatives
such that Xmin ⊆ X ⊆ Xmax */

cPlans = {};
foreach valid partition schema X do

/* Case 1: repartition. Generate new
partitioning requirements for its
children; remove specific
partitioning columns */

reqd New = GenParallel(reqd);
cPlans +=
AddExchangeRepartition(OptimizeExpr(expr,
reqd New));
/* Case 2: initial partition. Force

the child to generate a serial
output */

cPlans += AddExchangeInitialPartition(Opti-
mizeExpr(expr, reqd New));

plan = GetCheapestPlan(cPlans);
end

end
return plan;

Enforcer rules can seamlessly enable a single instance of
an operator to work on a partitioned input by introducing a
full merge operator, multiple instances of an operator to work
on a non-partitioned input by introducing an initial partition
operator, and also multiple instances of an operator with spe-
cific partitioning requirements to work on any partitioned
input sets by introducing a repartition operator. The number
of alternatives generated by enforcers could be large so usu-
ally the optimizer applies cost-based heuristics to prioritize
alternatives and prune out less promising ones.

5.5.2 Other specialized rules

In addition to the rules described earlier, the optimizer has
several exploration rules that deal with user-defined opera-
tors (e.g., processors and reducers). We next briefly describe
some of these specialized rules.

– Pushing selections below processors and reducers. By
leveraging pass-through columns (Sect. 4.4.1), we push
selection predicates below processors and reducers pro-
vided that all predicate columns are annotated as pass-

through. This is required even if the input and output
schemas of a processor have the same names, as in gen-
eral the values of such columns in input and output rows
might not be correlated.

– Unfolding recursive reducers into local/global pairs.
A recursive reducer requires that the input and output
schemas be identical. In these situations, we can explore
an alternative that performs partial reduction on inputs
that are not necessarily partitioned by the reducer col-
umns. These partial results are usually smaller than the
raw input, and we can obtain the final result by reparti-
tioning them and performing a final global reducer. This
is similar to the traditional local/global aggregate optimi-
zation in relational databases.

– Pushing processors and reducers below unions: Similar
to the optimization that pushes filters closer to the source
tables, the Scope optimizer considers alternatives that
push down processors below union-all operators. If the
operator is a reducer, this optimization cannot always be
done, since for correctness the children of the union-all
must each have a distinct set of values for the reduc-
ing columns. In that case, however, we can leverage
the previous optimization and convert a reducer into a
local/global pair. The local reducer can be pushed below
the union all, effectively pre-aggregating data and result-
ing in a more efficient plan. Also, if the optimizer can
deduce that the values of the reducing columns on each
children of a union-all operator are disjoint (leveraging
constraints or script annotations), the optimizer can effec-
tively push the reducer below the union all without requir-
ing a global reducer afterwards, greatly improving overall
performance of the resulting execution plans.

6 Code generation and runtime engine

The Scope runtime engine implements a rich class of
composable physical operators. It supports various
implementation of relational operations, such as filtering,
projection, sorting, aggregation, and join. For instance,
Scope provides three join operators: sort-merge join, (index)
nested-loop join, and hash join. The engine contains a few
built-in and optimized UDOs for common tasks. For exam-
ple, DefaultTextExtractor and DefaultTextOutputter are pro-
vided for users to extract inputs from and output results to
text files. The engine supports different access methods for
structured streams, including table scan and index lookup.

Each Scope operator implements open, next, and close
functions that allow a parent operator to get the result one
tuple at a time. Such database-like iterator interface supports
pipelining of operators naturally.

After optimization, a physical execution tree is generated.
The runtime engine performs the following tasks. First, the

123

SCOPE: parallel databases meet MapReduce

engine walks through the plan bottom up and generates code
for the corresponding operator, based on internal operator
template. Then, it combines a series of physical operators
into a super vertex, obtained by splitting the output tree at
exchange and spool operators. In addition to these mandatory
super vertex boundaries, it sometimes breaks large super ver-
tices into smaller ones to avoid having execution units that run
for a long time (and thus would make recovery in the pres-
ence of failures more time-consuming). All the generated
code is compiled into an assembly, and the entry function
for each super vertex is written into a super vertex defini-
tion file. Each super vertex is scheduled and executed in one
machine. Operators within a super vertex are executed in a
way very similar to a single-node database engine. Specifi-
cally, every super vertex is given enough memory to satisfy
its requirements (e.g., hash tables or work tables for sorts),
up to a certain fraction of total available memory and a frac-
tion of the available processors. This procedure sometimes
prevents a new super vertex from being run immediately on a
busy machine. Similar to traditional database systems, each
machine uses admission control techniques and queues out-
standing super vertices until the required resources are avail-
able. As we discuss later, in contrast to DBMSs, the overall
system has additional scheduling choices for such queued
super vertices that reduce overall latency.

The output of the compilation of a script thus consists
of three components: (1) the algebra file that enumerates all
super vertices and the data flow relationships among them,
(2) the super vertex definition file, which contains the spec-
ification and entry points in the generated code for all super
vertices, and (3) the assembly itself, which contains the gen-
erated code. This package is sent to the cluster for execution.

The Scope code generation mechanism is flexible and
can generate specific and highly optimized code for a script.
The system knows precisely the input and output schema for
each operator. The generated code is specific to the schemas
and completely avoids any runtime tuple interpretation. The
system also has many opportunities to further optimize the
generated code. For instance, the intermediate record format
can be changed to address the needs of subsequent operators.

6.1 Execution model

During execution, a super vertex reads inputs either locally
or remotely. Operators within a super vertex are executed in a
pipelined fashion. The final result of a super vertex is written
to local disks, waiting for the next vertex to pull data. This
pull execution model is much like to the MapReduce exe-
cution model. However, the Scope engine does not require
every function to be mapped into a super vertex as in the
MapReduce model, potentially in a unnatural way. The opti-
mizer has great flexibility to break arbitrary functions into
super vertices based on a principled cost model.

This execution model is very different from that of tra-
ditional parallel databases, which is optimized to avoid hit-
ting disks and instead transfer intermediate data on the fly.
Passing data on the fly requires that both producer and con-
sumer machines are running concurrently and extensive syn-
chronization between them. This approach does not scale to
thousands of machines and is less reliable when one of the
involved machines can crash in the middle of execution.

The pull execution model and materializing intermediate
results to disk may sound inefficient at first glance. However,
it has many advantages in the context of highly distributed
computation. First, it does not require both producer and con-
sumer vertices to run concurrently, which greatly simplifies
job scheduling. As we shall describe in Sect. 7, the job man-
ager guarantees the two vertices are executed in sequence and
has great flexibility when to schedule the vertices. Second, all
intermediate results are written to local disks. In case of ver-
tex failures, which are inevitable, all that is required is rerun
the failed vertex from the cached inputs on disks. Only a small
portion of a query plan may need to be re-executed. Finally,
writing intermediate results to disks frees system memory to
execute other vertices and simplifies computation resource
management.

6.2 Runtime data exchange

We next describe in some detail the support of data exchange
operations in the Scope runtime engine. Having efficient
implementations of such operators is crucial as data shuffling
is a common and expensive operation. The Scope runtime
engine supports multiple variants of partitioning and merg-
ing operators. For merging operators, the system attempts to
overlap network transfer with subsequent operations as much
as possible.

For partitioning operators, Scope supports hash and range
partitioning over one or more columns. The total number of
partitions can be either predefined or determined at runtime
based on intermediate data size.

Hash partitioning: A hash value is computed from the parti-
tioning columns and taken modulo the number of total par-
titions to get the destination partition.

Range partitioning: Calculating partitioning boundaries that
produce partitions of uniform size is crucial for avoiding out-
liers and achieving high query performance but challenging
in a distributed fashion. Figure 7 presents a job graph that
the Scope uses to range partition the input into 250 buck-
ets. First, each input machine generates a local histogram
over its local data. Second, a single coordinator combines
all the local histograms and calculate the partition bound-
aries based on the global histogram (a detailed description
of histogram computation is beyond the scope of this paper).
Finally, partitioning information is broadcast to all the input

123

J. Zhou et al.

Fig. 7 Range partitioning

machines, which then partition their local data accordingly.
This dynamic partitioning strategy greatly improves parti-
tioning quality.

Index-based partitioning: Independent of partitioning type,
the partitioned outputs are first written to local disks in sep-
arate files. When the number of partitions is large, writ-
ing too many intermediate files at the same time incurs
lots of random I/O and significantly increases the overall
latency. The Scope runtime engine supports a novel par-
titioning operation that relies on the indexing provided by
structured streams. For each tuple, the destination partition
ID, called “PID,” is calculated using the partition func-
tion in a normal way and is added to the tuple as a vir-
tual column. A stable sort on PID is performed, so that
the original tuple order within the same PID value is main-
tained. (This is crucial when maintaining the tuple order
within each partition is required for subsequent operators).
The sorted results are finally bulk written into a single
index file. The following merging operator reads the cor-
responding partition by index lookup on the desired PID.
Index-based partitioning allows the system to partition large
data into thousands of partitions without penalizing the I/O
system.

7 Job scheduling

Execution of a Scope job is coordinated by a job manager
(JM), adapted from Dryad [17]. The JM is responsible for
constructing the job graph and scheduling work across the
available resources in the cluster. As described in Sect. 6, a
Scope execution plan consists of a DAG of Scope super verti-
ces that can be scheduled and executed on different machines
independent of each other. The JM groups distinct types of
vertices into separate stages to simplify job management.
All the vertices in a stage perform the same computation,
defined in the query plan, on a different partition of input
data. The JM maintains the job graph and keeps track of the
state and history of each vertex in the graph.

Fig. 8 Scope job scheduling

7.1 Job manager overview

Figure 8 shows a simplified overview of scheduling a Scope
job. Each machine in the cluster is capable of both data stor-
age and computation. Besides storage services (not shown
in the figure), a processing node (PN) service runs on each
machine to manage local system resources (e.g., memory and
disk) and schedules execution of local vertices. PN nodes
maintain a local queue of vertex execution requests from dif-
ferent JMs and create processes on behalf of the JMs taking
into account vertex priorities and available resources. The
first time a vertex is executed on a machine, its assembly is
sent from the JM to the PN and subsequently it is executed
from a cache. PN also monitors the state of each running ver-
tex, such as whether it succeeds or fails and how much data
have been read and written, and communicates the informa-
tion back to the JM periodically through a heartbeat mech-
anism. This feedback mechanism allows the JM to monitor
the time a super vertex is queued a busy PN machine; If
necessary, the JM can schedule duplicate instances of long-
delayed vertices on different machines to reduce latencies.
Whenever the first instance of a super vertex starts executing,
all duplicate instances are eliminated from the corresponding
PN queues.

When the job starts, the system picks one machine to
launch the JM, which becomes responsible for scheduling
the Scope job. An initial DAG is built to track relation-
ship among different vertices. As we shall describe later in
Sect. 7.2, the job graph may adapt itself dynamically as the
execution proceeds and system environment changes. When
all of a vertex’s inputs become ready, the JM considers the
vertex runnable and places it in a scheduling queue. The
actual vertex scheduling order is based on vertex priority
and resource availability. One scheduling principle is based
on data locality. That is, the JM tries to schedule the vertex

123

SCOPE: parallel databases meet MapReduce

on a machine that stores or is close to its input whenever
possible. If the selected machine is temporarily overloaded,
the JM may scale back to another machine that is close in
network topology (possibly in the same rack), so reading the
input can be done efficiently with minimum network traffic.
A Scope vertex may also specify a “constraint” listing a pre-
ferred set of machines to run. Once the machine is chosen,
the JM places a request to run the vertex, together with its
assemblies, onto its PN queue.

For each vertex, the JM keeps track of all of inputs’ avail-
ability and locations. It has no information about the actual
computation performed by the vertex but it receives initial
estimates of resource consumption from the optimizer. As
the job proceeds, the JM tracks actual resource consump-
tion for vertices in a stage. This information is used to refine
resource estimates for the remaining vertices in the same
stage to improve the local scheduling decisions made by
PNs.

When a vertex execution fails for any reason, the JM is
informed. The failure could be due to user code errors or
system transient failures, such as machine reboot or network
temporal congestion. Depending on the failure type, the JM
applies different policies and acts accordingly, including fail-
ing the job or retrying the failed vertex. A failed vertex can
be rerun without rerunning the entire job [17].

There are several other interesting aspects of the JM. Mul-
tiple instances of vertex may be scheduled speculatively,
anticipating system transient failures. It is important for the
JM to detect and act on vertex outliers early in order to
avoid prolonged job runtime [2]. Hundreds of Scope jobs
are often running concurrently, so scheduling them with fine-
grain resource sharing is done by a global scheduler [18].

7.2 Runtime optimizations

Accurate information such as data location or system
environment properties are not always available at compi-
lation time. Similar to traditional databases, the Scope opti-
mizer generates the optimal plan “skeleton” based on query
semantics but certain decisions are better left to runtime when
additional information is available. In this section, we briefly
describe two dynamic optimizations to illustrate the interac-
tions between the Scope runtime engine and the JM at query
runtime.

A large cluster typically has a hierarchically structured
network. Each rack of machines has its own dedicated mini-
switch, and the per-rack switches are then connected to a
single common switch. In this network topology, it is impor-
tant to not overload the common switch and use the per-rack
switches as much as possible. Whenever possible, the JM
schedules vertices to execute on the same machine as their
input data or at least within the same rack as the data.

(a) (b)

Fig. 9 Dynamic aggregation optimization. a Before optimization,
b after optimization

Dynamic aggregation optimization As described in Sect. 5,
the last stage of data exchange operation requires aggregating
inputs from a large number of source machines. The number
of source machines could be hundreds or even thousands for
a large data set. This scale presents challenges on how to
efficiently aggregate data distributed among machines con-
nected by a hierarchal network.

Figure 9 shows a simplified example of aggregating inputs
from 6 machines in 3 racks. The default approach, shown in
Fig. 9a, is to aggregate all the inputs together in a single ver-
tex. The approach works fine when the number of inputs is
relatively small but not when there are thousands of inputs.
Reading from thousands of remote machines concurrently
across the network could result in a network traffic spike and
suffer from high probability of network failures. Further-
more, the merge vertex could be quite expensive to execute,
so in case of failure, the cost of rerunning the vertex would
be high and the likelihood of encountering another network
failure would be high.

Figure 9b shows the job graph as refined at runtime. The
JM includes heuristics to add intermediate aggregation ver-
tices at runtime so as to ensure that each vertex has no more
than a set number of inputs or a set volume of input data to
avoid overloading the I/O system of the vertex. This works
well for some Scope queries with merge operation followed
by partial aggregation. As partial aggregation reduces the
input data size and can be applied multiple times at differ-
ent levels without changing the correctness of the query, it
makes sense to aggregate the inputs within the same rack
before sending them out, thereby reducing the overall net-
work traffic among racks.

Dynamic broadcast optimization When joining a large
input with small input, the Scope optimizer may choose a
broadcast join. Typically, the large input is distributed among
several machines while the small input is located in a single
machine. Figure 10 illustrates an example of broadcasting
the small input from one machine to 5 different machines
across the cluster.

The default approach, shown in Fig. 10a, is to let the JM
choose the vertex placement based on data locality. It could
end up placing all 5 join vertices into rack 2 and overload
the system or transferring the data from input2 five times

123

J. Zhou et al.

(a) (b)

Fig. 10 Dynamic broadcast optimization. a Before optimization,
b after optimization

(shown in solid arrows) across racks, wasting the scarce
network bandwidth. With dynamic broadcast optimization,
shown in Fig. 10b, the JM can detect that multiple vertices
reside in one destination rack. A “copy” vertex is created for
the rack that copies the data across racks once. Any verti-
ces in the destination rack can now read the data cheaply
from the copy vertex (shown in dashed arrows) within the
same rack. In this case, the data are only transferred across
racks twice with two copy vertices, saving network band-
width. Even with overhead of copy vertices, the saving typ-
ically translates into overall improvements in query latency.
This optimization cannot be done at compilation time as the
data locations are unknown until runtime. However, Scope is
able to identify the pattern and explicitly include a dynamic
broadcast manager at runtime.

8 Case studies

At Microsoft, tens of thousands of Scope jobs are executed
daily that read and write tens of petabytes of data powering
the whole online services division. The number of daily jobs
has doubled every six months for the past two years, putting
the system performance and scalability to test every day. Due
to business and IP reasons, we cannot include absolute perfor-
mance numbers that could reveal confidential business intel-
ligence unless they have been publicly disclosed elsewhere.
Thus, in this section, we include one case study showing the
benefits of query optimization. In addition, we report per-
formance results on a known benchmark. Some additional
performance results can be found in [7].

8.1 Benefits of systematic query optimization

We show an example of a Scope script that is used internally
for system diagnosis. During execution of all Scope jobs,
the system logs various types of events. Two examples of
those events that we use in our example areVertexStart-
ed and VertexEnded. As their names suggest, Vertex-
Started logs information when a vertex process starts to
run. The information includes the machine name on which
the vertex runs, the job GUID, the vertex GUID, vertex pri-
ority, and the time stamp when the vertex starts. Similarly,

VertexEnded logs information when a vertex process ter-
minates. Due to the distributed environment, raw events may
be duplicated and thus log processing must perform duplicate
elimination. The script below calculates how much machine
time has been spent on jobs issued by different user groups
during last month. This is a rough estimate of the system
resources used by each user group.

startData =
SELECT DISTINCT CurrentTimeStamp AS

StartTime, VertexGUID
FROM “VertexStartEvents?Date=(Today-30)...

Today”
USING EventExtractor(“VertexStarted”);

endData =
SELECT DISTINCT CurrentTimeStamp AS EndTime,

UserGroupName, VertexGUID
FROM “VertexEndEvents?Date=(Today-30)...

Today”
USING EventExtractor(“VertexEnded”);

SELECT UserGroupName,
SUM((EndTime-StartTime).TotalHours) AS
TotalCPUHours

FROM startData JOIN endData
ON startData.VertexGUID == endData.Vertex

GUID
GROUP BY UserGroupName

The script first selects events from last month and extracts
time stamp information when each vertex starts and ends,
respectively, plus the vertex GUID and user group infor-
mation. Next, duplicates in the raw events are removed by
applying a DISTINCT aggregate on all columns. Finally,
the cleansed data are joined on the vertex GUID and the total
CPU time per user group is calculated.

Figure 11 compares query plans with and without optimi-
zation. A partitioned stream is shown as three arrows. Par-
titioning operators are shown with a dark gray background.
A partitioning operator may consist of two sub-operators—
the first generating partitions on source machines and the sec-
ond merging corresponding source partitions on destination
machines. A sequence of operators between two partitioning
operators are grouped into a super vertex, which is depicted
in light gray circles with annotated SV numbers.

The default plan in Fig. 11a performs the following steps.
It extracts the VertexStarted event, sorts this input on
each machine by the grouping columns {starttime, guid}
and removes duplicates locally (local streaming aggregation)
to reduce data before hitting the network in the next stage.
Similar operations are performed on columns
{endtime, usergroup, guid} for the VertexEnded
stream. Then, both the intermediate results are repartitioned
by the grouping columns, so all rows with the same value
of the grouping columns end up on the same destination
machine. Each destination machine sort-merges its inputs
from the source machines, so the sort order is maintained.

123

SCOPE: parallel databases meet MapReduce

(a) (b)

Fig. 11 Query plan comparison. a Default plan, b optimized plan

Similar operations apply to both inputs, except that one side
is partitioned and sort-merged by {starttime, guid} and the
other side is by {endtime, usergroup, guid}. After the rep-
artitioning, the global aggregates are then calculated in par-
allel. On each machine, the results are sorted again by the
guid column in preparation for the subsequent merge join.
The intermediate results are repartitioned by the join col-
umn guid. Each destination machine sort-merges its parti-
tions to maintain the sort order on guid and the results flow
directly into the merge join instance on that machine. At
this point, join results are resorted locally on the subsequent
grouping column usergroup and a local aggregate is applied
immediately to reduce the data. The data are subsequently
repartitioned on usergroup, and each destination machine
sort-merges its inputs to retain the sort order on usergroup.
All rows from the usergroup now reside on the same
machine, and the global aggregate on usergroup is calcu-
lated. Finally, all results are aggregated to a single machine
to produce the final results.

Figure 11b shows the plan generated by the optimizer.
We first determine input properties required by individual
operators. Based on the rules in Table 6, the partitioned
merge join requires both inputs to have structural prop-
erties {{guid}θ ; (guido)}. The partitioned stream aggre-
gate on VertexStarted events requires the input to
satisfy {X θ ; ({starttime, guid}g)}, where ∅ ⊂ X ⊆
{starttime, guid} and the partitioned stream aggregate
on VertexEnded events requires the inputs to satisfy

{Yθ ; ({endtime, usergroup, guid}g)}, where ∅ ⊂ Y ⊆
{endtime, usergroup, guid}.

In Fig. 11b, inputs are extracted and sorted by columns
(guido, starttimeo) and (guido, endtimeo, usergroupo),
respectively, and then hash repartitioned on guid. Based on
the rules in Table 5, the results have properties {{guid}g;
(guido, starttimeo)} and {{guid}g; (guido, endtimeo,

usergroupo)}, respectively, which satisfy the requirements
of its DISTINCT aggregate. The outputs from the DIS-
TINCT aggregates, in turn, also satisfy {{guid}g; (guido,

starttimeo)} and {{guid}g; (guido, endtimeo, user
groupo)}, respectively. The properties satisfy the require-
ments of the partitioned merge join, so there is no need
to resort or repartition the inputs before joining. The join
results are small, so the optimizer decides not to repartition
on usergroup. Instead, it sort-merges the inputs into a single
serial output and performs the global aggregate on a single
machine.

Compared with the default query plan, the optimized plan
runs 1.9× faster. This result clearly shows the benefits of
a high-level declarative language coupled with a cost-based
optimizer. It would be difficult and time-consuming to man-
ually tune individual MapReduce tasks, especially when the
pipeline they are part of needs to evolve to satisfy new
requirements.

8.2 Performance micro-benchmark

To showcase raw performance numbers, we next report
results on sorting one terabyte of uniformly distributed data,
composed of 100-byte rows (20-byte key and 80-byte pay-
load). The input data are distributed in a test cluster of 1,000
machines. Each machine has two six-core AMD Opteron
processors running at 1.8 GHz, 24 GB of DRAM, and four
1 TB SATA disks. All machines run Windows Server 2008
R2 Enterprise X64 Edition. The Scope script is as follows:

D = EXTRACT c1, c2 FROM “input.txt”
USING DefaultTextExtractor();

S = SELECT * FROM D ORDER BY c1;

OUTPUT TO “output.txt”
USING DefaultTextOutputter();

Figure 12 shows the execution plan for the script above
and some execution statistics. SV1 vertices read and par-
tition the input in parallel. Based on the uniformity distri-
bution assumption, the range repartition operator calculates
partition boundaries at compile time. SV2 vertices gather
the corresponding buckets across the network and perform a
local sorting before writing the final result back to disk. Local
sorting tries to overlap with reads to hide network latency.
Overall, the latency for the job is 57 s, which roughly corre-
sponds to sorting over 17GB per second.

123

J. Zhou et al.

Fig. 12 Sorting 1 TB of data in scope

9 Related work

The last decade witnessed the emergence of various solu-
tions for massive distributed data storage and computation.
Distributed file systems such as Google File System [13],
Hadoop Distributed File System [3], and Microsoft Cos-
mos [7] provide scalable and fault-tolerant storage solutions.
Simple programming models have also been designed for
distributed computing. For instance, MapReduce [11] pro-
vides a simple abstraction of common group-by-aggrega-
tion operations where map functions correspond to groupings
and reduce functions correspond to aggregations. Microsoft’s
Dryad [17] provides additional flexibility where a distrib-
uted computation job is represented as a dataflow graph and
supports scripting languages that allow users to easily com-
pose distributed data-flow programs. These programming
models help programmers write distributed applications, but
still require developers to deal with implementation details
like data distribution and system configuration to achieve
good performance. A MapReduce program written in C++
is longer than the corresponding Scope script (e.g., a word
count example [11] requires 70 lines of C++ and 6 lines of
Scope).

To tackle these issues, higher level programming lan-
guages plus conceptual data models have been proposed.
Pig [23] is a system developed by Yahoo! and Apache to
support large-scale data processing. Users write applications
in a data flow language using a nested data model. Each step
in a program specifies a single, high-level data transforma-
tion. A complex computation is expressed as a series of such
transformations. A Pig program is compiled by the underly-
ing system into a sequence of MapReduce operators that are
executed using Hadoop. Hive [28,29] is another open-source
solution built on top of Hadoop, which supports a SQL var-
iant. Programs written in Hive are transformed into a set of
MapReduce jobs by a rule-based query optimizer. In addi-
tion to query operator like select, project, join, aggregation,
Hive supports both data definition and data manipulation lan-
guages. Both Pig and Hive use a MapReduce execution envi-
ronment, which requires every computation to be structured
as a sequence of map-reduce pairs. In Scope , any compu-
tation can be expressed as an acyclic dataflow graph and

each node can execute one or a pipeline of operations, which
results in a richer execution model.

Other high-level languages/systems were recently pro-
posed in the community. Sawzall [24] is a procedural lan-
guage mimicking database cursors, which traverses through
a rowset and processes one row at a time. Jaql [5] is a declar-
ative scripting language on top of MapReduce, which uses a
JSON-like data model. Dremel [20] is designed for interac-
tive ad-hoc aggregation queries on read-only nested colum-
nar data. Tenzing [8] is a SQL-based query engine built on
top of MapReduce for ad-hoc data analysis. DryadLINQ [31]
integrates Dryad with .NET Language INtegrated Query
(LINQ). The Nephele/PACTs system [4] extends the MapRe-
duce programming model by adding second-order operators
that declare parallelization contracts. Finally, the Hyracks
system [6] improves the MapReduce runtime system by rep-
resenting a job as a DAG of operators and connectors.

HadoopDB [1] uses Hadoop as the communication layer
to connect shared-nothing processing nodes running instances
of PostgreSQL. It performs query compilation and pro-
cessing in two stages. Queries expressed in Hive are
transformed into MapReduce programs by Hive’s query
compiler. Before execution, the SMS planner intercepts
the execution plan and finds the largest subtrees that can
be pushed to individual PostgreSQL servers without rep-
artitioning the data. The results returned by PostgreSQL
may still need to be aggregated or further processed using
Hive.

The Scope system has a powerful cost-based query
optimizer that considers and optimizes performance trade-
offs of the entire system, including language, runtime, and
distributed store. It leverages database optimization tech-
niques and also incorporates unique requirements derived
from the context of distributed query processing. The
Scope system also supports data in both unstructured and
structured formats. Rich structural properties and access
methods from structured streams provide many unique
opportunities for efficient physical data design and distrib-
uted query processing.

Many of the core optimization techniques that the Scope
optimizer implemented originated from early research pro-
jects in parallel databases [12] and traditional databases
[16,19,21,22,25,26,30]. The Scope optimizer enhances pre-
vious work in several ways. For example, it fully integrates
parallel plan optimization and reasoning with more complex
properties derivation relying on structural data properties.

10 Conclusion

In this paper, we present Scope, a scripting language for mas-
sive data analysis on large clusters. The Scope language is
high-level and declarative, with a strong resemblance to SQL,
so as to provide a single machine programming abstraction

123

SCOPE: parallel databases meet MapReduce

Table 7 Scope innovations inspired from both parallel databases and MapReduce systems

Parallel databases MapReduce/dryad

Data representation Schemas Extractors and outputters

Structured streams (tables)

Partitioning, indexing, affinity, column groups

Programming model Relational algebra MapReduce extensions

Declarative language .NET integration, User defined types

Compilation and optimization Query optimization Code generation

Structural properties, parallel plan generation, etc. Super vertex generation

Runtime and optimization Intra-vertex pipelining/iterator model Inter-vertex pull model

Relational physical operators Job scheduling (Fault tolerance, outlier
detection)

Index-based execution strategies Runtime graph optimizations

and enable systematic and transparent optimization. Rich
structural properties and access methods allow sophisticated
query optimization and efficient query processing. At the
same time, Scope is also highly extensible. Users can easily
create customized processors, reducers, and combiners by
extending corresponding built-in C# interfaces. Such exten-
sions allow users to efficiently solve problems that are oth-
erwise difficult to express in SQL. Scope incorporates the
best characteristics from parallel databases and MapReduce
systems, as summarized in Table 7, achieving both good per-
formance and scalability. The Scope system is running in
production over tens of thousands of machines at Microsoft,
serving a variety of Microsoft online services.

Acknowledgments We would like thank the following people for
their contributions to the Scope system: Roni Burd, Jon Fowler, Pat
Helland, Sapna Jain, Bob Jenkins, Pavel Iakovenko, Wei Lin, Jingwei
Lu, Martin Neupauer, Thomas Phan, Bill Ramsey, Bikas Saha, Bing Shi,
Liudmila Sudanava, Simon Weaver, Reid Wilkes, Fei Xu, Eugene Zab-
okritski, and Grace Zhang. We would also like to thank all the members
of Bing infrastructure team for their support and collaboration.

References

1. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A.,
Rasin, A.: HadoopDB: an architectural hybrid of MapReduce and
DBMS technologies for analytical workloads. In: Proceeding of
VLDB Conference (2009)

2. Ananthanarayanan, G., Kandula, S., Greenberg, A., Stoica, I., Lu,
Y., Saha, B., Harris, E.: Reining in the outliers in map-reduce clus-
ters using Mantri. In: Proceedings of OSDI Conference (2010)

3. Apache. Hadoop. http://hadoop.apache.org/
4. Battré, D., Ewen, S., Hueske, F., Kao, O., Markl, V., Warneke, D.:

Nephele/PACTs: a programming model and execution framework
for web-scale analytical processing. In: Proceedings of the ACM
Symposium on Cloud Computing (2010)

5. Beyer, K.S., Ercegovac, V., Gemulla, R., Balmin, A., Eltabakh, M.,
Kanne, C.-C., Ozcan, F., Shekita, E.J.: Jaql: a scripting language for
large scale semistructured data analysis. In: Proceedings of VLDB
Conference (2011)

6. Borkar, V., Carey, M., Grover, R., Onose, N., Vernica, R.: Hyracks:
a flexible and extensible foundation for data-intensive computing.
In: Proceedings of ICDE Conference (2011)

7. Chaiken, R., Jenkins, B., Larson, P.-Å., Ramsey, B., Shakib, D.,
Weaver, S., Zhou, J.: SCOPE: easy and efficient parallel process-
ing of massive data sets. In: Proceedings of VLDB Conference
(2008)

8. Chattopadhyay, B., Lin, L., Liu, W., Mittal, S., Aragonda, P.,
Lychagina, V., Kwon, Y., Wong, M.: Tenzing: a SQL implemen-
tation on the MapReduce framework. In: Proceedings of VLDB
Conference (2011)

9. Copeland, G.P., Khoshafian, S.N.: A decomposition storage model.
In: Proceedings of SIGMOD Conference (1985)

10. Darwen, H., Date, C.: The role of functional dependencies in query
decomposition. In: Relational Database Writings 1989-1991. Addi-
son Wesley (1992)

11. Dean, J., Ghemawat, S.: MapReduce: simplified data processing
on large clusters. In: Proceedings of OSDI Conference (2004)

12. DeWitt, D., Gray, J.: Parallel database systems: the future of
high performance database processing. Commun. ACM 35(6)
85–98 (1992)

13. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system.
In: Proceedings of SOSP Conference (2003)

14. Graefe, G.: Encapsulation of parallelism in the Volcano query
processing system. In: Proceeding of SIGMOD Conference
(1990)

15. Graefe, G.: The Cascades framework for query optimization. Data
Eng. Bull. 18(3) 19–29 (1995)

16. Graefe, G., McKenna, W.J.: The Volcano optimizer generator:
extensibility and efficient search. In: Proceeding of ICDE Con-
ference (1993)

17. Isard, M. et al.: Dryad: distributed data-parallel programs from
sequential building blocks. In: Proceedings of EuroSys Conference
(2007)

18. Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., Gold-
berg, A.: Quincy: fair scheduling for distributed computing clus-
ters. In: Proceedings of SOSP Conference (2009)

19. Lu, H., Ooi, B.-C., Tan, K.L.: Query Processing in Parallel Rela-
tional Database Systems. IEEE Computer Society Press, Los
Alamitos (1994)

20. Melnik, S., Gubarev, A., Long, J.J., Romer, G., Shivakumar, S.,
Tolton, M., Vassilakis, T.: Dremel: interactive analysis of webscale
datasets. In: Proceedings of VLDB Conference (2010)

21. Neumann, T., Moerkotte, G.: A combined framework for group-
ing and order optimization. In: Proceedings of VLDB Conference
(2004)

123

http://hadoop.apache.org/

J. Zhou et al.

22. Neumann, T., Moerkotte, G.: An efficient framework for order opti-
mization. In: Proceedings of ICDE Conference (2004)

23. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig
latin: a not-so-foreign language for data processing. In: Proceed-
ings of SIGMOD Conference (2008)

24. Pike, R., Dorward, S., Griesemer, R., Quinlan, S.: Interpreting the
data: parallel analysis with sawzall. Sci. Program. J. 13(4) 277–298
(2005)

25. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A.,
Price, T.G.: Access path selection in a relational database manage-
ment system. In: Proceedings of SIGMOD Conference (1979)

26. Simmen, D., Shekita, E., Malkenus, T.: Fundamental techniques
for order optimization. In: Proceedings of SIGMOD Conference
(1996)

27. Stonebraker, M., Abadi, D., DeWitt, D.J., Madden, S., Paulson, E.,
Pavlo, A., Rasin, A.: MapReduce and parallel DBMSs: friends or
foes? Commun. ACM 53(1) 64–71 (2010)

28. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony,
S., Liu, H., Wyckoff, P., Murthy, R.: Hive—a warehousing solution
over a MapReduce framework. In: Proceedings of VLDB Confer-
ence (2009)

29. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Zhang, N.,
Antony, S., Liu, H., Murthy, R.: Hive—a petabyte scale data ware-
house using Hadoop. In: Proceedings of ICDE Conference (2010)

30. Wang, X., Cherniack, M.: Avoiding sorting and grouping in pro-
cessing queries. In: Proceeding of VLDB Conference (2003)

31. Yu, Y. et al.: DryadLINQ: a system for general-purpose distributed
data-parallel computing using a high-level language. In: Proceed-
ings of OSDI Conference (2008)

32. Zhou, J., Larson, P.-Å., Chaiken, R.: Incorporating partitioning and
parallel plans into the SCOPE optimizer. In: Proceedings of ICDE
Conference (2010)

33. Zhou, J., Larson, P.-Å., Freytag, J.-C., Lehner, W.: Efficient exploi-
tation of similar subexpressions for query processing. In: Proceed-
ings of SIGMOD Conference (2007)

123

	SCOPE: parallel databases meet MapReduce
	Abstract
	1 Introduction
	2 Platform architecture
	3 Data representation
	3.1 Unstructured streams
	3.2 Structured streams

	4 Query language
	4.1 Input/output
	4.2 SQL-like extensions
	4.3 .NET integration
	4.3.1 User-defined types (UDT)
	4.3.2 Scalar UDOs

	4.4 MapReduce-like extensions
	4.4.1 Code properties and data properties

	4.5 Other language components

	5 Query compilation and optimization
	5.1 Optimizer overview
	5.2 Operators and parallel plans
	5.2.1 Common subexpressions
	5.2.2 Data exchange

	5.3 Property formalism
	5.3.1 Local structural properties
	5.3.2 Global structural properties
	5.3.3 Structural properties

	5.4 Structural properties and query optimization
	5.4.1 Deriving structural properties
	5.4.2 Deriving required structural properties
	5.4.3 Property matching

	5.5 The rule set
	5.5.1 Enforcer rules
	5.5.2 Other specialized rules

	6 Code generation and runtime engine
	6.1 Execution model
	6.2 Runtime data exchange

	7 Job scheduling
	7.1 Job manager overview
	7.2 Runtime optimizations

	8 Case studies
	8.1 Benefits of systematic query optimization
	8.2 Performance micro-benchmark

	9 Related work
	10 Conclusion
	Acknowledgments
	References

