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ABSTRACT
Accurate cardinality estimation is critically important to
high-quality query optimization. It is well known that con-
ventional cardinality estimation based on histograms or sim-
ilar statistics may produce extremely poor estimates in a va-
riety of situations, for example, queries with complex pred-
icates, correlation among columns, or predicates containing
user-defined functions. In this paper, we propose a new,
general cardinality estimation technique that combines ran-
dom sampling and materialized view technology to produce
accurate estimates even in these situations. As a major in-
novation, we exploit feedback information from query execu-
tion and process control techniques to assure that estimates
remain statistically valid when the underlying data changes.
Experimental results based on a prototype implementation
in Microsoft SQL Server demonstrate the practicality of the
approach and illustrate the dramatic effects improved car-
dinality estimates may have.

Categories and Subject Descriptors
H.2.4 [Database Management]: System—Query Process-
ing

General Terms
Algorithms, performance

Keywords
Query optimization, cardinality estimation, sample views,
sequential sampling, statistical quality control

1. INTRODUCTION
To reliably produce efficient execution plans a query opti-

mizer needs accurate cardinality estimates. Cardinality es-
timation in commercial database systems relies on statistics,
primarily single-column histograms, computed from base
data or materialized views. As is well-known, this approach
may produce estimates that are orders of magnitude off.
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Traditional estimation methods perform poorly in several
situations.

Jagged distributions: A histogram has a limited resolu-
tion to approximate an underlying distribution. The actual
distribution of data may be much more jagged than what
can be represented by a histogram.

Complex predicates: Queries with complex predicates con-
taining combinations of AND, OR, NOT, and IN.

Functions: For predicates or grouping expressions con-
taining built-in or user-defined functions commercial sys-
tems frequently give up and apply some ”magic numbers”
to come up with an estimate.

Correlation: Correlation among columns, in the same ta-
ble or in joined tables, can have a dramatic effect on car-
dinalities. Traditional estimation methods assume indepen-
dence between columns but, when this does not hold, esti-
mates may be way off. Consider, for example, the predicate
(COLOR =’white’ and PRODUCT = ’iPod’).

Error propagation: Cardinality estimation proceeds bot-
tom up in an expression. After combining column-wise esti-
mates to compute the number of rows coming from a single
table, the local cardinalities are combined and propagated
up to the root operator. For large queries, the errors pro-
duced by this propagation process can be extremely large.

Stale statistics: Poor estimates are often caused by stale
statistics. If the underlying data changes, a histogram may
need to be refreshed to accurately reflect the data. Current
policies for triggering refresh of statistics are usually heuris-
tic and not based on sound statistical criteria and thus may
result in stale statistics or unnecessarily frequent updates.
Another reason for incorrect statistics may be that they were
computed from a poor (non-random) sample of the data.

In this paper, we propose a novel method for cardinal-
ity estimation based on sample views. A sample view is
a materialized view that contains just a random sample of
the result. A sample view is not continuously maintained
when the underlying tables are updated – it’s too expensive
– but refreshed when the estimates derived from it are no
longer statistically valid. We apply statistical process con-
trol techniques to avoid unnecessary refresh activity while
still ensuring the quality of estimates.

As illustrated in Figure 1, our approach to cardinality
estimation using sample views consists of two conceptual
loops: an exploitation loop and a feedback loop.

Sample views are exploited during query optimization to
compute cardinality estimates. Suppose we have created a
sample view SV over the join expression SV = R �p1 S �p2

T . During optimization of a query we may need to estimate
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Figure 1: Conceptual overview of our approach

the cardinality of an expression E = σpr (R) �p1 S �p2 T .
Normal view matching determines that E can be expressed
in terms of the view as E = σprSV . The cardinality of E is
then estimated by executing the probe query σprSV against
the sample and counting the number of rows returned. The
probe query scans the sample sequentially and stops as soon
as the estimate has reached the desired accuracy. Finally,
the estimate is injected into the optimizers data structures
and optimization continues.

The feedback loop monitors the quality of estimates while
queries are executing and triggers refresh of a sample when
its estimates are no longer statistically valid. Suppose query
Q contains expression E above and was optimized using es-
timates computed from sample view SV . Every time query
Q executes, it reports the number of actual rows for expres-
sion E to a quality control component where the estimate
is compared to the actual value and the estimation error is
normalized. Multiple queries may produce feedback on es-
timates based on SV , producing a stream of normalized er-
rors. We apply statistically sound process control techniques
to monitor the stream of normalized errors associated with
SV and signal the need to refresh the sample.

Sample views are intended to augment, not replace, con-
ventional cardinality estimation. Even though probe queries
run fast, they do increase optimization time. The overhead
doesn’t much matter for expensive queries that run for sev-
eral seconds or even minutes but it may be too high for very
cheap queries.

This work is based on the premise that better cardinal-
ity estimates result in better query execution plans. While
this holds in general, it is not guaranteed for every single
query expression. However, experience strongly suggests
that commercial-grade optimizers seldom produce a truly
poor plan when accurate cardinality estimates are available.

The main contributions of our work are as follows.

1. We combine random sampling and materialized view
technology to provide cardinality estimates with sta-
tistically guaranteed accuracy.

2. We provide probe query patterns dependent on the
type of cardinality estimate requirement (number of
qualifying tuples, number of distinct values and a com-
bination).

3. We apply sequential sampling to reduce the overhead
of probe queries while still satisfying stated accuracy
requirements.

4. We exploit query feedback and statistical process con-
trol techniques to trigger refresh of a sample only when
it no longer produces statistically correct estimates.

5. We demonstrate the practicality of our approach by
experiments using a prototype implementation in Mi-
crosoft SQL Server.

The rest of the paper is organized as follows. We begin by
describing how sample views are defined, created and stored
in Section 2. In Section 3 we describe how sample views are
used for cardinality estimation during optimization and, by
means of an example, show the dramatic impact that im-
proved estimates may have. In Section 4 we describe how
sample views are maintained and our use of statistical pro-
cess control. Related work is summarized in Section 5. We
conclude in Section 6.

2. SAMPLE VIEW REPRESENTATION
In this section we briefly outline how sample views are de-

fined, how they are stored, and how the sample is computed.
Regular materialized views are used during execution of a

query to speed up processing of (usually) expensive queries.
At optimization time, the optimizer performs view match-
ing, constructs a substitute expression and decides whether
or not to use a materialized view. Sample views are used
only at optimization time. After successful matching of a
sample view, the optimizer may run a probe query against
the view to compute a cardinality estimate.

View definition
A sample view is defined in the same way as a regular ma-
terialized view and the same restrictions apply. The view
definition may contain any predicates except subqueries in
the where clause and/or grouping expressions in the group-
by clause. The general form of a view definition is as follows.

CREATE VIEW <svname> WITH SCHEMABINDING AS
SELECT <keycols>, ...
FROM ...
[WHERE ...]
[GROUP BY ...]

We envision that most sample views will contain only
joins and no further restrictions because such views are more
versatile than views with restrictions. Similarly, the more
columns the view outputs, the more broadly useful it is.

Like a regular materialized view, a sample view is mate-
rialized only when we create a clustered index on the view.

CREATE UNIQUE CLUSTERED INDEX <clidxname> ON <svname>
(<keycols>) [ROWSAMPLE <samplepercent> PERCENT]

The rowsample clause marks the view as a sample view
and prevents it from being used as a regular materialized
view. The parameter <samplepercent> specifies what frac-
tion of the view to include in the sample.

The following example creates a 2% sample view over the
join of lineitem and orders with a receipt date during 1993.

CREATE VIEW SV_LINEITEM_ORDERS WITH SCHEMABINDING AS
SELECT L_ORDERKEY, L_PARTKEY, L_SUPPKEY, L_LINENUMBER, ...

O_ORDERSTATUS, O_TOTALPRICE, O_ORDERDATE, ...
FROM TPCD.LINEITEM, TPCD.ORDERS
WHERE L_RECEIPTDATE BETWEEN ’1993-01-01’ and ’1993-12-31’

AND L_ORDERKEY = O_ORDERKEY



CREATE UNIQUE
CLUSTERED INDEX SV_LINEITEM_ORDERS_CLIDX ON

SV_LINEITEM_ORDERS (L_ORDERKEY, L_LINENUMBER)
ROWSAMPLE 2 PERCENT

Internal representation
The internal representation of a sample view contains an
additional column RAND of type short int. This column
holds a random value drawn from a uniform distribution in
the range [0; MAXRAND]. For reasons that will become
clear later, MAXRAND should not be too large, say, at
most 1000.

Sample views automatically add the RAND column as
the first key column to physically store the rows sorted on
the random value. That is, internally the clustering index
is defined as

CREATE CLUSTERED INDEX <clidxname>
ON <svname> (__RAND, <keycols>)

This trick makes it possible to apply sequential sampling,
as described in more detail in the next section. Rows con-
taining the same RAND value are clustered together. If a
sequential scan of the sample is terminated at the end of a
cluster, the set of rows scanned is a statistically valid, sim-
ple random sample. However, this cannot be guaranteed if
the scan is terminated within a cluster. Within a cluster
the rows are sorted on <keycols> and the ordering may be
correlated with selectivity. For example, rows early in the
cluster may be more likely to satisfy the query predicate
than rows later in the cluster.

Sampling scheme
To be able to apply a large class of estimators, sample views
contain simple random samples created by Bernoulli sam-
pling. When the view expression is evaluated, each output
row is randomly selected for the sample with the probability
specified in the ROWSAMPLE clause. Hence, the actual
percentage of rows in the sample may be slightly different
than specified. The total number of rows in the view and
number of rows in the sample are recorded in the catalog.
In subsequent formulas we denote them by Nv and Ns.

3. EXPLOITING SAMPLE VIEWS
Sample views can be used to compute cardinality esti-

mates for SPJG-expressions, that is, select-project-join ex-
pressions with at most one group-by on top. Different esti-
mators are used for expressions with and without aggrega-
tion. This section describes the estimators used and how to
construct probe queries computing the estimates.

The matching process for sample views is the same as for
regular materialized views. However, for a sample view a
regular substitute expression is not generated but instead
expression fragments that are used later to construct the
appropriate probe query. The overhead of matching sam-
ple views is the same as for regular materialized views and
usually negligible.

3.1 Sequential sampling
Executing a probe query during optimization increases the

optimization time. The overhead can be reduced greatly by
using sequential sampling [28] (also known as progressive
sampling). The basic idea of sequential sampling is to pro-
cess only as many rows of the sample as is needed to compute

a sufficiently accurate estimate. In many cases, only a small
subset of the rows is needed to reach the desired accuracy.

To facilitate sequential sampling we store the sample in
sorted order on the RAND column. Rows with the same
RAND value are thus clustered together. If we scan the

sample sequentially and terminate the scan at the end of a
cluster, the set of rows scanned is a statistically valid, simple
random sample.

Unfortunately, we cannot decide when constructing a probe
query how many sample rows are required to achieve the
desired accuracy. Instead, we construct probe queries that
evaluate a stopping condition at every break in the RAND
column and terminates the scan as soon as the condition is
satisfied. The stopping condition primarily tests whether
the (estimated) standard error of the estimate is within
the specified range. It must also correctly handle two “end
cases”: ensure that an estimate is returned when the whole
sample has been scanned (even if the desired accuracy has
not been reached); and ensure that the estimate is based on
a minimal set of evidence, that is, not allowing the scan to
stop too early. The exact form of the condition depends on
the estimator used and will be described later.

We do not want to evaluate the stopping condition very
frequently because it is somewhat complex and expensive
to compute. We handle this by generating values for the
RAND column from a smallish range and constructing

probe queries that test the stopping condition only once for
each cluster of rows with the same RAND value. For
example, generating values in the range [1,100] means that
the stopping condition is evaluated at most 100 times. We
also have to make sure that execution plans for probe queries
do not contain any blocking operators (such as a sort), that
is, operators that consume the whole input before producing
output tuples.

3.2 Selectivity estimation
Consider a query expression E = σpq (T1 × · · ·Tn) and a

(sample) view defined by V = σpv (T1 × · · ·Tn). The view
matches the query expression if and only if pq ⇒ pv, that
is, every row that satisfies the query predicate also satisfies
the view predicate. If this is the case, the view matching
procedure returns a residual predicate pr with the property
that pq = pr ∧ pv. If the view were fully materialized, the
query expression could then be computed from the view by
the substitute expression E = σprV . We use the sample
to estimate the cardinality of the expression σprV , which of
course also is an estimate of the cardinality of the original
query expression σpq (T1 × · · ·Tn).

Estimator
Provided the view outputs all columns referenced in pr, we
can run the probe query σpr V against the whole sample
or any random subset thereof. Suppose we run the probe
query on a subset containing ns (ns ≤ Ns) rows and np rows
satisfy the residual predicate pr. We then estimate the se-
lectivity of predicate pr as P̂ = np/ns with an (estimated)

standard error of ŝ =

√
P̂ (1 − P̂ )/ns. Finally, the cardi-

nality of E can then be estimated as Card(E) = P̂Nv with

an (estimated) standard error of Ŝ = ŝNv. We assume that
the sample is a sufficiently small that the finite population
correction (fpc) can be ignored.



Probe queries
If we are willing to scan the complete sample, the probe
query is straightforward.

SELECT COUNT(*) AS n_p FROM <view name> WHERE <pred>

<pred> is the placeholder for the residual predicate, <view
name> for the name of the sample view. The sample size Ns

is available in the catalog so the estimate can be compute
as P̂ = n p/Ns.

For sequential sampling, a considerably more complex probe
query is needed because the query must return both the
number of rows scanned and the number of rows satisfying
the predicate, use a sequential scan, and terminate as soon
as the desired accuracy has been reached.

SELECT TOP(1) SUM(t2.cnt_p) AS n_p,
SUM(t2.cnt_all) AS n_s

FROM (SELECT __RAND,
SUM(t1.cnt_p) AS cnt_p, COUNT(*) AS cnt_all

FROM (SELECT __RAND,
CASE WHEN <pred> THEN 1 ELSE 0 END AS cnt_p

FROM <view name> ) t1
GROUP BY __RAND) t2

GROUP BY ALL WITH STEPWISE
HAVING <stopping condition>
OPTION (ORDER GROUP)

SV Sample View

Project __RAND,
CASE WHEN <pred> THEN 1 ELSE 0 END AS cnt_p

GbAgg SUM(cnt_p) AS cnt_p, COUNT(*) AS cnt_all
__RAND

* WITH OPTION STEPWISE

GbAgg SUM(cnt_p) AS n_p, SUM(cnt_all) AS n_s
*

Select <stopping condition>

*

Top 1

Figure 2: Execution plan of probe query for selectivity esti-
mation

The execution plan generated for this query is shown in
Figure 2. We briefly describe the function of each operator
in the plan.

The first (lowest) operator evaluates the residual predicate
and sets column cnt p to one if it is satisfied and otherwise
to zero.

The second operator performs a preaggregation by count-
ing the overall number and the number of qualified rows for
the same RAND value. Since the sample view is sorted on
the RAND column, aggregation can be done by a stream-
ing aggregate operator that outputs a row as soon as it en-
counters a break in RAND values. The purpose of the
preaggregation is to reduce the number of times the stop-
ping condition is evaluated.

The third operator performs the final aggregation by sum-
ming up the partial results cumulatively. The group-by op-
erator runs with option stepwise1 enabled, which causes

1The stepwise option is only available for system-generated
queries and not for regular queries.

the operator to generate an output row with the current
state of the aggregate values for every incoming row. Since
the scalar aggregation in this particular setup does not spec-
ify any grouping columns, we use the keyword all as a place-
holder.

The final select operator applies the stopping condition as
specified in the having clause of the probe query.

The last operator is a top operator that closes the scan
after having output one row. This row is the first row pro-
duced that satisfies the stopping condition, that is, it con-
tains an estimate that satisfies our accuracy requirements.

The stopping condition requires that a certain minimum
number of rows be read to have enough evidence. Once this
number has been reached, scanning stops as soon as one of
the following three criteria is satisfied.

1. Relative Error: the 95% confidence interval is less than
10% of the point estimate.

2. Absolute Error: the estimate number of qualifying rows
(in the real data set) is 10 or less with 90% confidence.

3. End of sample: the end of the sample is reached.

This probe query and execution plan meet the goals stated
above. The stopping condition is evaluated only after com-
bining sample rows with the same RAND value. The step-
wise option causes the grouping operator to output its run-
ning results. The final top operator shuts down the query
as soon as an estimate with acceptable accuracy is available.
Finally, keeping the rows sorted in “random order” ensures
that the estimate produced when the scan stops is based on
a simple random sample.

3.3 Estimating the Number of Distinct Values
We now consider query expressions with aggregation. Con-

sider a query expression E = γA
Gσpq (T1×· · · Tn) and a (sam-

ple) view defined by V = σpv (T1 × · · ·Tn). The notation γA
G

specifies grouping with grouping expressions G and aggrega-
tion functions A. If the view matches, both further selection
and further aggregation may be needed. View matching re-
turns, in essence, the operators γA

Gσpr . If the view were fully
materialized, the query expression could be computed from
the view by the expression E = γA

GσprV . We use the sample
to estimate the cardinality of the expression γA

GσprV , which
of course also is an estimate of the cardinality of the original
query expression.

Estimators
Estimating the cardinality of γA

GσprV is the same as esti-
mating the number of distinct values occurring in the result
of πGσpr V . This is an old statistical estimation problem,
originally formulated as estimating the number of species
in a population, and many different estimators have been
proposed. We have experimentally evaluated many of them
and three of them stood out as being most robust: Chao’s
estimator [6], Shlosser’s estimator [27], and the Poisson esti-
mator [30, 25]. All other estimators that we evaluated were
much more erratic, sometimes producing good estimates but
sometimes being wildly off the mark.

We did not want to commit to a specific estimator or
combination of estimators at this stage. Instead, we use a
probe query that returns data needed by a variety of op-
erators, giving us the freedom to decide what estimator to



use later. Virtually all distinct-value estimators take as in-
put value pairs consisting of (group size, number of groups
of that size) computed from the sample. We designed the
probe query to return this information in a single tuple be-
cause we want to apply sequential sampling and terminate
as soon as a sufficiently accurate estimate is returned. (The
estimator we use for testing purposes is a combination of
the three estimators mentioned above.)

Probe query
The following probe query outputs the data needed by many
distinct-value estimators. <pred> is the residual predicate,
<grp-list> is a placeholder for the list of grouping columns
returned by view matching. pickpivot is a fixed small table;
its contents and use will be explained shortly. The execution
plan generated for this query is shown in Figure 3.

SELECT TOP(1)
SUM(t2.grpcard) AS dvcard,
SUM(t2.grpcard * t2.grpsize) as scard
SUM(t2.grpcard * pt.flag1) AS grp1card,
...,
SUM(t2.grpcard * pt.flagn) AS grpncard

FROM (SELECT smplsize, t1.grpsize, COUNT(*) AS grpcard
FROM (SELECT INPUTCOUNT() as smplsize, <grp-list>,

COUNT(*) AS grpsize,
FROM <svname> WHERE <pred>
GROUP BY <grp-list> WITH OPTION FLUSH(__RAND)
OPTION (HASH GROUP)) t1

GROUP BY smplsize, t1.grpsize
OPTION (ORDER GROUP)) t2,
PICKPIVOT pt

WHERE t2.grpsize = pt.id
GROUP BY smplsize
HAVING <stopping condition>

SV
Sample View

GbAgg

GbAgg COUNT(*) AS grpcard
smplsize, grpsize

* WITH OPTION FLUSH(__RAND)

Join grpsize = ID

Select <stopping condition>

Top 1

INPUTCOUNT() AS smplsize, COUNT(*) AS grpsize
<grp-list>

*PICKPIVOT

…
n

1 0

0 1

1
1

… …

…

…

(ID, FLAG1, …, FLAGn)

1

GbAgg SUM(grpcard) AS dvcard, SUM(grpcard * grpsize) AS scard,
SUM(grpcard * FLAG1) AS grp1card, …

smplsize

Figure 3: Execution plan of probe query for estimating the
number of distinct values

The first (lowest) operator computes the group size for
different group expression values within each partition de-
fined by the RAND value. Similar to the option step-
wise for sort-based aggregation, we need to add an option
flush( <column list>) to the hash-based aggregation oper-
ator. When option flush is enabled, the operator performs
its normal aggregation and, in addition, outputs the current
state of aggregation whenever the value of the flush indica-
tor columns <column list> changes (but does not otherwise
change the state). The function INPUTCOUNT() returns

the number of input rows consumed so far by the operator.
We include this in every output row so we can tell which
tuples originate from the same subsample. The second ag-
gregation simply counts the number of groups of each size.

We now have the result we need but it consists of multiple
rows and we want the result as a single row, that is, we need
to pivot the result. The next two operators perform the
pivoting using the Rozenshtein method. The join operator
joins the result with a static table pickpivot that consist of
n rows with an ID column and n additional columns, labelled
flag1, flag2, and so on. Row i, i = 1, 2, · · ·n has the value i
in the ID column, one in column flagi, and zero in all other
columns. The join extends each row with n flag columns
and column flagi contains a one if the row represents groups
of size i. The group-by operator completes the pivoting by
constructing a single output row for each sample size.

The pivot step collected all the group cardinalities to-
gether, producing a single row for each sample size. The
stopping condition is then evaluated to determine whether
an estimate meeting the accuracy can be computed. Finally,
the TOP(1) operator closes the query after outputting the
first row satisfying the stopping condition.

In the same way as for selectivity estimation, stopping
conditions for distinct-value estimation should be tied to
the estimate’s confidence interval. Unfortunately, the cal-
culations required to compute confidence intervals for gen-
eral distinct-value estimators like Shlosser’s estimator [27]
or jackknife-style estimators [16] are quite complex and be-
yond what can be done in SQL. We currently use a stopping
condition that combines two factors.

1. Confidence interval of Poisson estimator: As long as
the sample is a small fraction of the population, the
Poisson estimator generally provides a stable estimate
and its confidence intervals are relatively easy to com-
pute [30, 25]. Hence, our first stopping condition is
that the 95% confidence interval of the Poisson esti-
mator is less than 10% of its point estimate.

2. Distance between Chao and Shlosser estimator: The
Chao estimator [6] is a lower-bound estimator while
the Shlosser estimator [27] tends to overestimate the
actual value. For larger sampling fractions, scanning
stops when the (relative or absolute) difference be-
tween these two estimates becomes less than a target
value.

Figure 4 illustrates the execution of the above probe query.
When the RAND column changes from 4711 to 4712,
the first group-by operator outputs two rows, (3,’a’,1) and
(3,’b’,2). There are two groups, one of size one and one
of size two, so the second group by operators outputs two
rows, (3,1,1) and (3,2,1), which the pivoting combines into
a single row. Scanning continues with the next cluster of
rows, with RAND value 4712, and added to the existing
state of the first group-by operator. When the end of the
cluster is reached, there are two groups of size 2 and two
groups of size one. The operator outputs two rows, (6,1,2)
and (6,2,2), which again are combined into a single row by
the pivoting. This process continues until the stopping con-
dition is satisfied.

3.4 Experiments
The following query against a 1GB TPC-H database demon-

strates the benefits of sample views and sequential sampling.
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Figure 4: Example execution of probe query for distinct-value estimation

SELECT c_nationkey, count(*)
FROM lineitem, orders, customer
WHERE l_receiptdate < DATEADD(day, 30, l_shipdate)

AND l_commitdate < DATEADD(day, 30, l_shipdate)
AND l_commitdate < DATEADD(day, 30, l_receiptdate)
AND l_receiptdate > ’1996-01-01’
AND l_commitdate > ’1996-01-01’
AND l_shipdate > ’1996-01-01’
AND l_quantity > 25
AND l_orderkey = o_orderkey
AND c_custkey = o_custkey

GROUP BY c_nationkey

The query contains a complex predicate on the lineitem

table. Columns l receiptdate and l commitdate are heavily
correlated but the regular cardinality estimation assumes
that they are independent. It estimates that only 1,830 out
of approximately 6 million lineitem rows satisfy the pred-
icate, which underestimates the actual number of 903,791
rows by more than two orders of magnitude.

Agg
count

Hash Join
c_custkey=o_custkey

Index Scan
customer

Index Seek
lineitem

Nested Loop
l_orderkey=o_orderkey

Index Seek
orders

Est: 1830 
Act: 903791

Index
Lookup

BuildProbe

`

Agg
count

Hash Join
c_custkey=o_custkey

Index Scan
customer

Index Seek
orders

Hash Join
l_orderkey=o_orderkey

Index Seek
lineitem

Est: 901935
(892346)

Act: 903791

BuildProbe

BuildProbe

(a) Original Plan (b) Using Sample Views

Figure 5: Query Plans

The query plan generated by the optimizer based on the
incorrect estimate is shown in Figure 5 (a). The plan makes
sense under the assumption that only a small number of
lineitem rows qualify. The few rows are joined to orders

by a nested-loop join. The result is still small, compared
with customer, and thus used to build a hash table while

the larger customer table probes the hash table. The join
result is aggregated to obtain the final result. However, the
actual number of qualifying lineitem rows is large, making
the nested-loop join a very poor choice.

To improve cardinality estimation we created a sample
view sv lineitem containing a 1% sample of lineitem (59,538
rows). This sample view was used to estimate the number
of qualifying lineitem rows, using both a full scan of the
sample and sequential sampling. Due to space limitation,
we do not list the probe queries. Table 1 summarizes the
cardinality estimates obtained and the number of sample
rows scanned.

Original
Using sample view

Full sample Sequential

Estimate 1830 901,935 892,346
Sampled rows N/A 59,538 5,974

Table 1: Estimated number of lineitem rows satisfying the
predicate (actual number is 903,791)

The estimates computed from the sample view are highly
accurate, no matter whether we do a full scan or use sequen-
tial sampling. Note that the sequential sampling stops after
scanning only 5,974 rows, which is about 1%% of the rows
in the lineitem table.

With the more accurate cardinality estimates available,
the optimizer produces a different plan, which is shown in
Figure 5 (b). A hash join between lineitem and orders is
used instead of a nested-loop join. Since the result is larger
than the customer table, the customer table is used as the
build input.

So far we have shown that using the sample view dramat-
ically improves the accuracy of the estimate, which affects
the choice of query plan. Table 2 summarizes the effects on
optimization and execution times.

The revised plan achieves a 4-fold speedup in execution
time. A full scan of the sample view increased the opti-
mization time by about 50% but the overhead is negligible
compared with savings in execution time. Sequential sam-



Original
Using sample view
Full Sequential

Optimization (secs) 0.095 0.153 0.120
Execution (secs) 14.462 3.891

Table 2: Optimization and execution times

pling cut the optimization overhead in half without losing
any benefit. The cost of sequential sampling does not nec-
essarily grow with the sample view size because scanning
stops as soon as the desired accuracy has been reached.

4. MAINTAINING SAMPLE VIEWS
To produce accurate estimates a sample view must con-

tain a statistically valid random sample of the view result.
As the data in the underlying base tables changes, we must
ensure that this property still holds. The simplest approach
is to treat sample views in the same way as regular materi-
alized views and maintain them incrementally. However, we
rejected this approach for two reasons.

1. Experiments showed that the overhead is simply too
high, especially if the view consists of multiple joins.
Even after applying a variety of tricks, we still saw
overhead of 5-10% for updating a single view joining
three tables.

2. Incremental view maintenance is performed as part of
the update transaction. The presence of sample views
would then impact overall system load, even during
peak times. We want to exploit “free cycles” during
low system load for maintenance activity.

Instead we propose a full refresh strategy, that is, the sam-
ple is not maintained but instead completely recomputed
when required. This immediately raises the question of when
to trigger a refresh. Our core idea is to tie refresh decisions
to the statistical validity of the sample. We use feedback
from running queries to check whether estimates computed
from the sample are still within statistical error bounds and
defer refresh as long as the sample statistically still repre-
sents the underlying data. Refresh decisions are not based
on simple heuristics but rely on well-proven process control
techniques based on sound statistical principles.

4.1 Quality Control Process
Our quality control process is illustrated in Figure 6 in

more detail.
During optimization of a query, the cardinality of some

subexpressions may be estimated from matching sample views.
Some, not necessarily all, of those subexpressions may be
present in the final execution plan. Our goal is to have ev-
ery such subexpression report back to its sample view the
actual number of rows so the accuracy of the estimate can
be assessed. A sample view V may have many different
queries returning feedback, some with low selectivity and
some with high selectivity. Estimation errors from different
queries cannot be compared directly so we first convert them
to a common scale. In this way, each sample view receives
a stream of normalized estimation errors during query exe-
cution. We apply standard statistical process control tech-
niques to the stream of normalized errors to detect when
the errors are no longer within statistical bounds, thereby
triggering refresh of the sample in the view.
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Figure 6: Quality control process

Feedback collection
When a cardinality estimate for a subexpression Ei is com-
puted from a sample view during optimization, we attach an
InfoPack structure to the subexpression. More precisely, it
is attached to Ei and all expressions equivalent to Ei. If Ei

or any expression equivalent to Ei appears in the final plan,
we attach the InfoPack to the operator in the execution plan
that corresponds to the root of Ei. During execution the op-
erator counts the number of tuples it outputs and, provided
that it has a valid count at the end, uses the information in
the InfoPack to report back to the appropriate sample view.

The InfoPack structure contains the following fields.

1. the ID of the sample view used to compute the cardi-
nality estimate

2. the version number of the sample used (explained in
Section 4.2)

3. a flag indicating the type of estimator used, f

4. the estimated number of rows produced by the opera-
tor, K̂

5. the actual number of rows produced by the operator,
K, (filled in after execution)

6. the number of rows from the sample read by the probe
query, n

If the operator has a valid row count when execution finishes,
the actual cardinality is filled in and the InfoPack is handed
over to the quality control component. A row count is not
valid unless the operator has seen the end of input, which
it may not do if, for example, the query is terminated early
by a user or by a top operator.

Normalizing estimation errors
Let S denote a random sample of size n drawn from the
result of view V (population) with Nv rows (Nv � n). The

cardinality estimate K̂ is a function of S , that is, K̂ = fe(S)

where fe is the estimator function. K̂ is a stochastic variable
with a well-defined probability density function (PDF) that
depends on the estimator fe and the sampling scheme. Our
sampling scheme is the simplest possible: random samples



of size n are drawn from a population of size Nv. Denote
the probability density function of K̂ for this scenario by
P (K̂ = x) = gfe(x,n, Nv) and the cumulative density func-

tion (CDF) by P (K̂ ≤ x) = Gfe(x,n, Nv).
As queries execute, we receive a stream R1, R2, · · · of ac-

tual cardinalities corresponding to estimates computed from
view V . Ri is not a simple value but a tuple consisting of
(Ki, K̂i, fi, ni) where Ki is the actual cardinality, K̂i is the
estimate, fi is a flag indicating which estimator was used,
and ni is the sample size used when computing the estimate.

The estimation errors are easy to compute, K̂i − Ki but,
unfortunately, they cannot be compared directly against
each other because the estimates may be based on differ-
ent estimators and different sample sizes.

We convert the errors to a common scale by mapping K̂i

through the estimator’s CDF, that is, we compute ŷi =
Gfi(K̂i, ni, Nv). Because the mapping is through the es-
timator’s CDF, ŷi is, by definition, uniformly distributed in
[0, 1] with expected value E(ŷi) = 0.5 and variance S2(ŷi) =
1/12. If the estimator is unbiased, then Gfi(Ki, ni, Nv) =

0.5. The normalized error is computed as ei = Gfi(K̂i, ni, Nv)−
Gfi(Ki, ni, Nv) = ŷi − 0.5. ei is uniformly distributed in
[−0.5, 0.5]. This error normalization process calibrates an
error relative to the accuracy of the estimator used.

To actually implement the normalization process we need
the cdfs for the estimators used. For selectivity (proportion)
estimation, the density function of the estimate is a binomial
distribution with parameters p = K/Nv and n, that is,

Bin(x, K/Nv, n) =

(
n

x

)
(K/Nv)x(1 − (K/Nv))n−x.

The function returns the probability that exactly x rows in a
random sample of n rows satisfy the residual predicate when
the actual fraction of all rows (the population) satisfying
the predicate is K/Nv. For mapping purposes we need the
cumulative binomial distribution

CumBin(x,K/Nv , n) =
x∑

i=0

Bin(i, K/Nv , n).

This formula is inefficient and not useful for actual computa-
tion. The cumulative binomial distribution can be expressed
in terms of the Incomplete Beta function (see [1], formula
26.5.24 on page 945), which is more efficient computation-
ally. The binomial distribution Bin(x, p, n) can also be ap-
proximated by a normal distribution Norm(x, np, np(1−p))
provided that np and n(1 − p) are not too small (np ≥ 10
and n(1 − p) > 10).

Figure 7 illustrates the normalization process for two dif-
ferent predicates, one with selectivity 10% and one with
55%. An exact estimate (K̂i = Ki) would result in ei =
(0.5 − 0.5) = 0. Overestimating the selectivity as 61%
when the actual selectivity is 55%, yields a normalized er-
ror of ei = (0.89 − 0.5) = 0.39. Underestimating it as 9%
when the actual rate is 10% produces a normalized error of
ei = (0.38 − 0.5) = −0.12.

For distinct-value estimators, the exact distribution is of-
ten not known but the expected value and variance usually
are. For many of the estimators, the distribution can be
approximated by a normal distribution.
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Figure 7: Normalization of observed estimation errors

Process control
Each sample view V receives a stream of normalized esti-
mation errors. As long as its sample remains a statistically
valid random sample of the underlying view, the normal-
ized errors are uniformly distributed in [−0.5, 0.5]. We ap-
ply standard statistical process control techniques, see [22],
to monitor whether the quality of the estimates computed
from the sample are still under control, that is, still within
statistically acceptable bounds.

To apply process control techniques one must decide what
variable to monitor and determine its probability distribu-
tion. Instead of monitoring the normalized errors ei directly,
we monitor the variable zi = 2|ei|. We take the absolute
value because we do not want negative and positive errors
to cancel each outer out. The variable |ei| is uniformly dis-
tributed in [0, 0.5] and multiplying it by two gives us a vari-
able that is uniformly distributed in [0, 1].

To smooth out random variations, we compute an expo-
nentially weighted smoothed average (EWMA) of the mon-
itored variable zi. When observation zi arrives, the average
is updated as follows

EEWMA := α ∗ zi + (1 − α) ∗ EEWMA.

The constant α is typically small, in the range of 0.05 or
less. The higher the value, the more sensitive the average is
to changes in the underlying data.

The purpose of process control is to trigger corrective ac-
tion when the exponentially smoothed average drifts out-
side of an a priori defined control interval. The interval can
be one-sided or two-sided depending on the process. The
control bounds are set so that the probability of remain-
ing within the control interval is high, in the order 0.99999
to 0.999999, as long as the process is statistically stable.
We use a one-sided interval because we only need to guard
against errors being too large.

It can be shown [22] that EEWMA has a normal dis-
tribution with, in our case, expected value 0.5 and stan-
dard deviation σEWMA := 2 ∗√(varuniform ∗ fEWMA) =

2 ∗√(1/12 ∗ α/(2 − α)). The factor fEWMA = α/(2 − α)
shows the dampening effect of the exponentially smoothing.
For example, with α = 0.04, we have σ = 0.082. If we want
the probability of remaining within the control interval to
be 0.99999, we set the control bound to 0.5 + 4.265*0.082
= 0.85.



Example
Figures 8 and 9 illustrate our quality control mechanism in
action for the following simple scenario. The same query
runs repeatedly. The selectivity of the query predicate was
estimated from a sample view so the query reports the ac-
tual cardinality each time it runs. At iteration 16, an up-
date transaction begins modifying the underlying base data
in a way that has significant impact on the selectivity of the
query. To demonstrate the effect more clearly, the queries
run in read-uncommitted mode. After the start of the up-
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Figure 8: Reaction of control mechanism to a sudden change
in data

date, the queries begin reporting larger and larger errors,
very quickly reaching the maximal value of 1.0. The ex-
ponentially smoothed average increases more slowly but as
soon as it crosses the control bound, a refresh of the sample
view is scheduled and (in this particular case) immediately
executed. Queries continue to run while the sample is being
refreshed and the average keeps on increasing. When the
refresh is finished, EEWMA is reset to its expected value of
0.5 and monitoring begins again. The query is also reopti-
mized and obtains a new estimate. Subsequent executions
(after step 31) actually report a more accurate estimate than
before the refresh.

Figure 9 shows how the actual selectivity of the query
predicate slowly changes are base data is updated. This
change is reflected in the sample only later when the sample
has been refreshed.

sample view

base data
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Figure 9: Actual query selectivity and estimate computed
from sample view

4.2 Sample refresh procedure
A sample refresh is initiated by putting the sample view

into refresh pending mode and creating a low-priority back-
ground job to carry out the refresh, see Figure 10. While a
view is in refresh pending mode, queries may still use it for
cardinality estimation (e.g. Qk in figure 10). However, the
cardinality derivation process should be made aware that
the estimates may not be accurate.

0.0

0.5

Qi Qj Qk

Refreshinitiate refresh

refresh pending mode

Qj Qj

version #1

version #2

Figure 10: Sample refresh procedure

The background job performing the refresh is divided into
two steps to minimize potential lock conflicts. In the first
step, the sample is computed in read-uncommitted mode
and temporarily stored in a staging table. A second step
deletes the old content of the sample view and quickly copies
in the sample from the staging table.

When a refresh completes, the version number of the sam-
ple is increased and the EEWMA is reset to its expected value
0.5. We do not force recompilation of queries when a sample
view is refreshed so queries compiled against an old version
of the sample view may still execute and produce feedback
information. Feedback from queries with an estimate based
on an old version of a sample is ignored. This is the rea-
son for including the sample version number in the InfoPack
structure.

4.3 Responsiveness of control system
The statistical quality control mechanism implements a

demand-driven refresh schedule. No longer is refresh activ-
ity triggered by heuristics based on the number of updates
or other simple metrics. Instead, the system adapts auto-
matically to changing data but with a certain delay. How
quickly the system responds depends on several factors.

• How rapidly and how much the data changes.

• How much the changes affect the cardinality of running
queries. Changes that are not relevant to the query
workload don’t matter.

• The accuracy of the estimators used. An estimator
with a tighter error distribution makes the control sys-
tem more sensitive to changes.

• The smoothing factor α. The lower the value, the
longer it takes for the system to react.

• The control bound. The higher the control bound,
the slower the system is to react (but the lower the
probability of a false alarm).



Figure 11 illustrates how selectivity changes are reflected
in the control variable zi, that is, in the input to the con-
trol system. The example query has a original selectivity
of 0.1 against a view of 1 million rows. Because observed
estimation errors are normalized using the CDF of the es-
timator, the sensitivity of the control variable to changes
in the selectivity depends on the effective sample size used
when computing the estimate. The larger the sample, the
tighter the distribution and the higher the sensitivity. Sup-
pose the data is updated and the actual selectivity of the
query changes to 0.11. If the estimate was computed from
a sample of 1000 rows, this error is translated into a z-value
of about 0.7. If the sample size was 10,000, the same error
is mapped into a z-value of 1.
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Figure 11: Sensitivity of control variable zi to selectivity
changes

The control system is driven entirely by query feedback so
its response time is measured in number of feedback reports
received, not in absolute time. This provides an abstract
aging model which is determined by the usage and not by
the real world time line; a sample view is only as old as the
number queries that have exploited it.

Figure 12 shows how the system responds to a sudden
change that is large enough to cause all feedback to be
mapped into z-values of one. As we saw from the previous
example, this does not necessarily require very large selec-
tivity changes; even a change of one or two percentage points
may be enough. How quickly the system responds depends
on the smoothing constant α and the control bound. In the
figure, the control bounds (the dashed lines) are set a 4.265
times the standard error, which corresponds to a risk of a
false alarm of 10−5. In this scenario a refresh is triggered
after 8 to 13 queries have reported, depending on the value
of α.

Figure 13 illustrates the response to a gradual change in
data and how it depends on the sample size. In this scenario
we have a data set consisting of 1,000,000 rows and a query
with a selectivity of 0.1, that is, 100,000 qualifying rows.
Between each report the data is modified so that 1,000 ad-
ditional rows qualify. So after 10 reports, there are 110,000
qualifying rows, after 20 there are 120,000 rows, and so on.
The actual selectivity figures are shown across the top of the
chart. The figure plots the effect of this gradual change on
the exponentially smoothed average (α = 0.04) for three dif-
ferent sample size. The larger the samples used, the higher
the accuracy of the estimates, and the more rapidly the sys-
tem reacts to data changes. For a sample size of 5,000, a
refresh is triggered when the selectivity has increased by
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Figure 12: Response of control system to a sudden data
change

only two percentage points, from 10% to 12%. This level
of sensitivity seems more than adequate; it is unlikely that
a cardinality change from 100,000 to 120,000 rows would
drastically affect the plan choice.
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4.4 Insufficient feedback
A sample view that does not receive sufficient feedback

from query execution may become stale without the qual-
ity control system noticing. There are several reasons why
sufficient feedback may not be forthcoming. If a sample
view is not used during query optimization at all, we do not
receive any feedback and have no evidence about the statis-
tical accuracy of the sample. However, even if a sample view
was used to compute an estimate, there are several reasons
why a query may not report any feedback to the view. The
subexpression for which the estimate was computed may not
be included in the final plan. Even if the subexpression is
included in the plan, it may not have a valid count to re-
port at the end because its evaluation was terminated early
(perhaps by a TOP operator).

If a view does not receive sufficient feedback to guard
against it becoming stale, we have two options, either force
an update or run (at low priority) artificially generated and
specifically tailored guard queries just to get feedback. De-
tails related to guard queries are omitted due to space limi-
tations.



5. RELATED WORK
To the best of our knowledge, ours is the first paper to

describe a practical method for sampling-based cardinal-
ity estimation for complex relational query expressions (e.g.
group-by over join). Neither are we aware of any other pro-
posal to exploit query feedback and statistical process con-
trol techniques to implement a demand-driven maintenance
strategy for samples.

Related work falls into two categories: techniques for im-
proving cardinality estimation in general and using sampling
in databases specifically. We briefly outline both categories.

Improving cardinality estimation
Improving cardinality estimation has been an active area of
research for many years. Many different techniques have
been proposed, especially for dealing with predicates over
correlated columns.

One research direction is focused on replacing single-column
histograms by alternative techniques better able to handle
correlated columns. The CORDS project investigates the
benefits of column group statistics using variations of mul-
tidimensional histograms [18], while other researcher have
proposed using other techniques such as wavelets for cardi-
nality estimation [21]. However, this approach is only help-
ful for selectivity estimation of predicates defined on a single
table. It does not extend to multi-table subexpressions and
therefore we do not consider this approach further.

Query feedback can be exploited in different ways to im-
prove cardinality estimation. One extreme–progressive query
optimization, e.g. [20]–monitors the number of rows pro-
duced by an operator and compares it to the number of es-
timated tuples. If a certain condition is satisfied, the query
undergoes a (partial) re-optimization. Drawbacks of this ap-
proach include the potentially high cost of reoptimizations
and the limited potential for online reoptimization of a query
without losing too much work.

The LEO project uses query feedback in a different way
[19]. Predicates together with actual cardinalities collected
during execution are stored in a query feedback warehouse.
During query optimization, the selectivity of a predicate is
computed by looking up actual cardinalities for parts of the
predicate and combining the available evidence into an es-
timate by applying the Maximum-Entropy Principle. This
approach may yield very accurate estimates if enough and
reliable evidence is available. However, the approach has
several drawbacks: the maximum entropy computation may
be expensive; if feedback from different points in time is
combined, the estimates may be highly unreliable; and the
problem of detecting and purging stale feedback remains un-
solved.

Our approach builds on the statistics-on-views approach
described in [11]. A statistics-only-view is a materialized
view that stores only statistics (histograms, in practice)
computed from the view result but not the actual result.
If a matching subexpression is found during optimization, a
new estimate is computed using the statistics from the view
and replaces the original estimate. Unfortunately, all statis-
tics must be computed at view creation time and cannot be
incrementally generated on demand when queries flow in. It
is obvious that sample views can also be used for computing
statistics and, furthermore, the statistics can be computed
on demand from the sample.

Using sampling
Sampling in database systems [23] is gaining more and more
attention both for approximate query answering and inter-
nally for query optimization.

An online sample is created for a specific task, for exam-
ple, histogram creation, and released afterwards. In prac-
tice, online sampling is usually limited to block-level sam-
pling over single tables (bi-level sampling: [14]). As shown
in [10] sampling cannot in general be pushed below a join,
making online sampling over more complex expressions pro-
hibitively expensive. Oracle’s Dynamic Sampling Mecha-
nism computes cardinality estimates using online sampling.
It can only be used for single-table predicates and relies on
block-level sampling. The user has to explicitly trigger the
mechanism using the dynamic sampling() hint. The limita-
tion to single-table predicates severely limits the usefulness
of this feature.

Offline samples, on the other hand, provide materialized
evidence and can be collected on individual tables [3] or on
the result of any query expression. Offline samples are either
used directly for the application, e.g. Aqua project [2], or
exploited to compute histograms or other types of synopses
[9]. There is a large body of research on maintenance tech-
niques for offline samples, for example, [24] (for Bernoulli
sampling schemes) or [12] (for reservoir sampling schemes).
Unfortunately, all techniques implicitly assume an imme-
diate update scheme; update policies driven by statistical
requirements of dependent sample synopses have not been
investigated.

In this paper we do not propose any new cardinality esti-
mators but focus on the infrastructure needed to exploit ex-
isting sample-based estimators in query optimization. There
is a vast statistical literature related to estimators. We re-
fer to [26] for a discussion of point estimators, e.g. Wilson
[29], and to [4] for a review of confidence intervals for pro-
portion estimates. To parameterize our sequential sampling
infrastructure, we benefitted from the work by Haas in [17]
and [13]. For distinct-value estimation, we did not propose
a specific estimator but showed how to compute, in a se-
quential fashion, the inputs required to apply a number of
well-known estimators, for example, Shlosser [27], Chao and
Chao-Lee [6, 7], Poisson-based estimators [30, 25], and jack-
knife estimators [16, 8]). [15] and [5] provide comprehensive
overviews of applicable distinct-value estimators.

6. CONCLUDING REMARKS
In this paper, we introduced sample views as a means to

augment traditional cardinality estimation techniques. We
outlined how regular view matching finds applicable sample
views, described generation of probe queries for selectivity
estimation and distinct value estimation by sequential sam-
pling and introduced the concept of quality assurance to
determine when to refresh sample views. Based on feedback
information gathered during query execution, we apply sta-
tistical process control techniques to implement a demand-
driven refresh policy. In summary, this paper presents a
practical approach to improving cardinality estimation very
significantly.

This paper reports initial results on sample views. There
are several promising directions for future work. So far we
have only used sample views for computing point estimates
but other statistics, such as histograms, can also be com-



puted from sample views. Sample views can also be ex-
ploited for approximate query answering. Finding ways to
exploit query feedback further, for example, to automati-
cally detect what sample views to create or discard, also
appears feasible.
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