
SCOPE Playback: Self-Validation in the Cloud

Ming-Chuan Wu, Jingren Zhou, Nicolas Bruno, Yu Zhang, Jon Fowler
Microsoft Corporation

Redmond, WA 98052-6399, USA
{mingchuw, jrzhou, nicolasb, yugzhang, jonfo}@microsoft.com

ABSTRACT
The last decade witnessed the emergence of various dis-
tributed storage and computation systems for cloud-scale
data processing. Scope is the distributed computation plat-
form targeted for a variety of data analysis and data mining
applications, powering Bing and other online services at Mi-
crosoft. Scope combines benefits of both traditional parallel
databases and MapReduce execution engines to allow easy
programmability. It features a SQL-like declarative scripting
language with .NET extensions, and delivers massive scala-
bility and high performance through advanced optimization.
Scope currently operates over tens of thousands of machines
and processes over a million jobs per month.
Such massive data computation platform presents new

challenges and opportunities for efficient and effective test-
ing and validation. Traditional approaches for testing data-
base systems are not always sufficient due to several factors.
Model-based query generation typically fails to provide cov-
erage of user-defined code, which is very common in Scope
scripts. Additionally, rapid release cycles in the platform-
as-a-service environment require tools to quickly identify po-
tential regressions, predict the impact of breaking changes,
and provide massive test coverage in a short amount of time.
In this paper, we describe a test automation tool, denoted
by Scope Playback, that addresses these new requirements.
Scope Playback leverages the Scope system itself in two
important ways. First, it exploits data about every job sub-
mitted to production clusters, which is automatically stored
by the Scope system. Second, the testing process itself
is implemented as a Scope script, automatically benefit-
ing from transparent and massive computation parallelism.
Scope Playback currently serves as one crucial validation
technique and ensures product quality during Scope release
cycles.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
H.2 [Information Systems]: Database Management

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DBTest’12, May 21, 2012 Scottsdale, AZ, U.S.A.
Copyright 2012 ACM 978-1-4503-1429-9/12/05 ...$10.00.

Keywords
Scope , Playback, Testing, Validation, Distributed Comput-
ing

1. INTRODUCTION
Companies providing cloud-scale data services have in-

creasing needs to store and analyze massive data sets, such
as search logs, click streams, and web graph data. For cost
and performance reasons, processing is typically done on
large clusters of hundreds or thousands of commodity ma-
chines. Scope (Structured Computations Optimized for
Parallel Execution) [1] is a distributed computation system
built for cloud-scale data analysis over tens of thousands of
machines at Microsoft, powering Bing and other online ser-
vices. Scope relies on a distributed storage system, named
Cosmos, for storing and analyzing massive data sets. The
storage system is an append-only file system optimized for
large sequential I/O. All writes are append-only and concur-
rent writers are serialized by the system. Data is distributed
and replicated for fault tolerance and compressed to save
storage and increase I/O throughput.

Cosmos Data Platform

Execution Engine

SCOPE Runtime

SCOPE Compiler SCOPE

Optimizer

SCOPE

Script

FrontEnd Services

Data Communication

...

Figure 1: Architecture of the Scope /Cosmos Platform

Figure 1 shows the system architecture of Scope/Cosmos
at a high level. The entire system runs as a service, serving
tens of thousands of Scope jobs daily.

1.1 The SCOPE System
The Scope system combines benefits from both tradi-

tional parallel databases and MapReduce execution engines
to allow easy programmability and deliver massive scala-

bility and high performance through advanced optimiza-
tion. It consists of the Scope language and its compiler,
the optimizer, the runtime and the execution engine. The
Scope language is a declarative scripting language, resem-
bling SQL, with integrated .NET extensions. The strong re-
semblance to SQL provides a single machine programming
abstraction so that its users can focus on application logic
rather than dealing with low-level details of distributed com-
putations. At the same time, it enables transparent and
systematic optimization. In addition to standard SQL con-
structs like joins, unions, and aggregates, users can easily de-
fine their own functions and implement their own versions
of relational operators: extractors (parsing and construct-
ing rows from a data source), processors (row-wise process-
ing), reducers (group-wise processing), combiners (combin-
ing rows from two inputs), and outputters (formatting and
outputting final results). This flexibility allows users to pro-
cess both relational and non-relational datasets and solve
problems that cannot be easily expressed in traditional SQL,
while at the same time retaining the ability to perform so-
phisticated optimization of user scripts.
A Scope script goes through a series of transformations

before it is executed on the cluster, as shown in Figure 2.
Initially, the Scope compiler parses the input script, un-
folds views and expands macro directives, performs syntax
and type checking, and resolves names. The resulting an-
notated abstract syntax tree (AST) is passed to the Scope
optimizer [4]. The optimizer returns an execution plan that
specifies the steps to efficiently execute the script. A query
plan is modeled as a dataflow graph: a directed acyclic graph
(DAG) with vertices representing processes and edges rep-
resenting data flow. Finally, code generation produces the
final data-flow program, detailing the vertex execution and
data dependencies among them, and assemblies containing
user defined code. This package is then sent to the clus-
ter, where the execution engine will take charge of schedul-
ing, resource allocation/rebalancing, and monitoring the job
progress.

SCOPE Script
Compiler

Annotated

AST

Optimizer
Execution

Plan

Code

Generation

Data Flow

Program and

Assemblies

Figure 2: Compilation of a Scope Script

1.2 Test Requirements and Challenges
Scope /Cosmos is the big-data analysis platform for vir-

tually all online services and various products at Microsoft.
Many business critical applications and data processing pipe-
lines rely on the functionality of the system. The number
of daily jobs has doubled every six months for the past two
years, and still continues to grow. Currently over a million
scripts are executed monthly on Scope production clusters,
processing several petabytes of data every day.
Analogously to many other online service providers, the

Scope system is evolving rapidly with technical innovations
and has frequent release cycles for customers to benefit from
the latest development. Typically we release new versions of
the system every 6 to 8 weeks. This strict requirement re-
sults in very short stabilization cycles, typically in the order

of days rather than weeks or months like is the case for tra-
ditional software. It is critical for the business to make sure
that the system functions and performs well from release to
release. In fact, in such a live service environment, stability
and correctness across releases are requirements rather than
features.

The precise meaning of stability and correctness depends
on each system component. In this paper, we focus on the
compiler and optimizer components of Scope . In this con-
text, correctness means that valid scripts can be compiled
and optimized into a valid execution plan. Any code de-
fect or regression may result in interruption of online service
pipelines, immediately causing monetary loss.

In turn, stability refers to functional backward-compatibil-
ity, compilation latency, and overall plan quality. When soft-
ware evolves, breaking changes are sometimes inevitable in
order to fix legacy design or implementation problems. A
goal of the testing infrastructure is to help identify individ-
ual scripts (and their corresponding owners) when breaking
changes are introduced in a new release. This information
enables us to implement an efficient engineering process for
introducing breaking changes while minimizing any business
impact.

We have originally –and exclusively– employed conven-
tional test methods, such as hand-crafted unit-tests, model-
based test-query generation [3], and QueryBuilder [2]. How-
ever, these tools do not provide sufficient test coverage on
the .NET extensions and MapReduce-like extensions of the
language. Such user-defined code is very common in Scope
scripts. Thorough testing various user-defined code is im-
portant to prevent regressions on pipelines that are deployed
into production.

1.3 SCOPE Playback
The goal of our testing infrastructure is to catch any cor-

rectness or stability issues early during release cycles. In this
paper, we introduce a test automation tool, called Scope
Playback, which was designed and implemented to meet the
zero regression requirement for the compilation and opti-
mization pipeline. As the system is running as a service, it
observes and logs precise query workloads. Scope Playback
leverages this information and validates the release under
development by playing back query compilation and opti-
mization with the previously submitted jobs. Additionally,
Scope Playback takes full advantage of the Scope system
itself to parallelize the test execution and automatically scale
out test validation in response to increases of test load. All
is done with minimum human intervention, and just hours
of test turnaround time.

The rest of the paper is organized as follows. In Section 2,
we present the design and implementation of the Scope
Playback tool. In Section 3, we show some performance
numbers and interesting statistics of our system. Finally,
we will describe future work and conclude in Section 4.

2. DESIGN AND IMPLEMENTATION
The basic idea of Playback is to replay all compilation

steps shown in Figure 2 on every previously submitted user
script in a given time frame using a given version of the
Scope compiler and optimizer. In the rest of this paper we
denote the version of Scope that we are evaluating as the
test candidate. As basic requirements, a Playback run needs

to cover at least a month of user scripts to provide sufficient
test coverage, and the turnaround time needs to be in the or-
der of hours to allow frequent validations at different stages
of release cycles. There are over a million Scope scripts
executed monthly. When counting both the scripts and as-
sociated resources such as pre-compiled user libraries, the
data associated with such workload totals over 15 terabytes
in size. Scope Playback therefore faces additional challenges
in terms of time and space compared to traditional test in-
frastructures. To tackle these challenges, Playback leverages
Scope itself to manage execution and achieve performance,
reliability, and scalability with massive data parallelism.

2.1 Job Repository
One crucial property of the Scope system is that it ob-

serves and logs the entire user workload on production clus-
ters as part of normal execution. Specifically, we maintain a
job repository which stores information for every Scope job
that was ever submitted to our production clusters. The job
information is stored as a Scope table1 with the following
normalized schema:

JobRepository(date,jobGUID,resourceName,content)

Each Scope job is uniquely identified by a jobGUID, and
consists of the following mandatory and optional resources:
a Scope script (mandatory), referenced Scope views2 (op-
tional), referenced libraries (optional), and auxiliary run-
time assemblies and data files (optional). In addition, in or-
der to replay the optimization precisely, we also clone meta-
data and statistics of all the input datasets as additional
job resources, and store them in the JobRepository table
(this practice allows us to replay jobs whose input datasets
are no longer available in the system). Each row in the
JobRepository table represents one job resource of a given
job identified by jobGUID. The table is partitioned and in-
dexed by date and jobGUID.
The job repository maintains a complete history of the

system workload, and can be used to understand how system
utilization evolves over time. In addition to Playback, the
job repository is also used for workload analysis tasks, such
as data usage patterns, data dependencies between jobs, and
full-text search on scripts, among others.

2.2 Playback using SCOPE

The main goal of Playback is to validate the compila-
tion/optimization pipeline of the Scope system. To com-
pile a given job from job repository, we need to reconstruct
the original environment where the script was compiled, and
then invoke the test candidate to compile the script. Con-
ceptually, using the JobRepository table, we have to group
the job data by jobGUID, and then pass each group to a
holistic custom aggregate function which processes a group
in its entirety. That aggregate function (i) reconstructs the
scripts and resources, and (ii) invokes the test candidate to
compile the script.
The REDUCE command in the Scope language provides a

flexible way to implement custom grouping and aggregation
and achieve the above goal. It takes as input a row-set

1The job information is actually stored as a structured stream in
the Scope system. A structured stream is similar to a table in
traditional DBMSs and can be partitioned and indexed properly.
2Similar to a SQL view, a Scope view consists of stored
Scope statements accessible as a virtual table.

1. class PlaybackReducer : Reducer {

2. ...

3. public IEnumerable<Row> Reduce(

4. RowSet input,

5. Row outRow,

6. string[] args)

{

// prepare a job folder for Playback

7. string jobFolder = null;

8. foreach (Row r in input.Rows) {

9. if (!Directory.Exist(jobFolder)) {

10. jobFolder=Directory.Create(r.jobGUID);

}

// save job resources to jobFolder

11. WriteToDisk(r.content, jobFolder);

12. }

// unpack the private SCOPE package

// invoke the private ScopeCompiler

// in that package to playback

13. Unpack(args[0]);

14. Invoke(args[0], out outRow);

15. yield return outRow;

}

}

Figure 4: Custom reducer for Scope Playback.

that has been grouped by the columns specified in the ON

clause, processes each group using the Reduce function of
the reducer class specified in the USING clause, and output
zero, one or multiple rows per group. The Reduce function
in the reducer class is called once per group. It takes three
parameters (lines 4 to 6 in Figure 4): the first one specifies
the input row-set, the second one the output row object,
and the optional third one the user specified argument in
the script. Figure 4 shows pseudo code for the Playback
reducer, named PlaybackReducer.

A sample Scope script that implements the Playback task
using PlaybackReducer is shown below3:

RESOURCE "SCOPE.v1.bin";

Jobs = SELECT * FROM JobRepository

WHERE date >= (DateTime.Today - 30) AND

date < DateTime.Today;

Results = REDUCE Jobs ON jobGUID

USING PlaybackReducer("SCOPE.v1.bin");

Failures = SELECT * FROM Results

WHERE status != "succeeded";

OUTPUT Failures TO "/test/PlaybackReport.log";

3Reducers can also specify the schema of the output. For simplic-
ity we omit such details in the description of PlaybackReducer,
and assume that it produces additional columns (e.g., status) that
provide information about each compilation and are filled out by
the Invoke function in line 14 of ScopePlayback.

SCOPE

Playback

Service

SCOPE

Compiler/

Optimizer

Job Queues

FrontEnd

Playback
Job

Playback

Script

SCOPE/Cosmos

Script

Template
...

Defect

Database
Job Repository

Test
Configuration

Figure 3: Scope Playback Workflow Diagram

The above script retrieves all the jobs from last thirty
days. Then, it groups the data by jobGUID. Rows of the same
group are passed to the PlaybackReducer.Reduce function
in the parameter input (line 4 in Figure 4). It first recon-
structs the job folder by saving all the resources into files
in the previously created job folder (lines 7 to 12). Next, it
unpacks the test candidate (line 13), specified in the argu-
ment to the PlaybackReducer ("SCOPE.v1.bin" in the above
example). Finally, it invokes the specified test candidate to
compile the script (line 14). The compilation status is passed
to outRow and returned to its caller (line 15).
In this example, the subsequent SELECT statement in the

script reports compilation failures only. In practice, all the
playback results are outputted to a file. One can compose
appropriate Scope scripts to meet different reporting needs.

2.2.1 Playback Automation
In order to keep the product free from regressions at any

time during development, we also implement a Playback ser-
vice to automate the process of submitting and monitoring
Playback jobs. Figure 3 shows the high-level workflow of
Scope job submissions, and running Scope Playback using
Scope .
Before we describe the Playback service, we explain how

user scripts are processed by the Scope system. When a
user submits a Scope job, the script with all its resources
are uploaded to the cluster (step Ê). Upon receipt, a front-
end service will invoke Scope compiler and optimizer to
compile the script. The final physical execution plan and the
generated runtime package are sent to the job queue (step
Ë). When computing resources become available, jobs will
be dequeued for execution according to job priorities (step
Ì). In the meantime, all the submitted jobs with all their
associated resource files are collected into the job repository
(step Í).
The Playback service runs inside our production clusters.

Based upon predefined intervals or events4, it automatically
kicks off Playback jobs. It reads a configuration file and

4One typical event that triggers the Playback job is whenever a
Scope daily build is dropped. At Microsoft, a build lab is respon-
sible for producing an executable binary for each product source
tree on a daily basis.

the Playback script template to generate a custom Playback
script which is then submitted to the cluster for execution,
just like any other user jobs. It goes through the same steps
to reach job queue and be dequeued for execution (steps
À to Â in the figure). Similarly, the Playback job will be
collected into the job repository (step Ã), so that in any
subsequent Playback run, we will also have test coverage on
the Playback job itself. Once a Playback job is scheduled,
the service will wait for the test results (step Ä), and for
any issues found, they will be entered into a defect tracking
database by an automatic bug filing system (step Å).

2.3 Dual and Multi-Playback
The previous section describes the basic Playback im-

plementation to validate functional backward-compatibility.
However, there are advanced scenarios that require some ex-
tensions to the previous design to help evaluate new feature
development. For instance, consider the task of finding out
which scripts result in a different execution plan after a new
optimization strategy is implemented. To achieve this goal
we need to compare the output plans of the optimizer be-
tween two different versions of Scope . For another example,
after introducing a new feature into the compiler, we would
like to know its impact on compilation time. To achieve this,
we need to compare compilation times between two Scope
versions.

To address these scenarios we extend the Playback tool
to take one or more test candidates. Specifically, the func-
tion Reduce of class PlaybackReducer in Figure 4 is slightly
extended as shown in Figure 5.

The parameters in args contains the names of test candi-
dates which are passed as parameters of PlaybackReducer
in the script. The number of runs equals the number of
test candidates (i.e., the size of the args array in line 13.a).
An additional array to hold the status of each compilation
is defined at line 13.b. The loop between lines 13.c and
14.b performs the following two steps for each test candi-
date defined in args. First, it unpacks the specified Scope
binaries (line 13.d). Then, it invokes the test candidate to
compile the script (line 14.a). Upon completion of the loop,
the virtual function ValidateResult is called to validate the
results (line 14.c). Note that PlaybackReducer is now an

1. class PlaybackReducer : Reducer {

2. ...

3. public IEnumerable<Row> Reduce(

4. RowSet input,

5. Row outRow,

6. string[] args)

{

... // line 7 ~ 12, same as previous

13.a int runs = args.Length;

13.b object[] status = new object[runs];

// looping through all the private SCOPE

13.c do {

// unpack the private SCOPE

13.d Unpack(args[runs]);

// invoke the private ScopeCompiler

14.a Invoke(args[runs], out status);

14.b } while ((--runs) > 0);

// custom logic to validate all results

14.c ValidateResult(status, out outRow);

15. yield return outRow;

}

}

Figure 5: Reducer Extensions for Dual Playback.

abstract class that can be parameterized by a specific im-
plementation of the virtual function ValidateResult.
The delayed binding of the actual ValidateResult imple-

mentation allows different test intents to reuse most of the
Playback infrastructure. For example, in order to under-
stand optimizer plan changes, one may define a new class
deriving from PlaybackReducer and override the function
ValidateResult to perform plan comparisons. The follow-
ing script snippet demonstrates how to identify optimizer
plan changes between two test candidates:

Results = REDUCE Jobs ON jobGUID

USING PlaybackOptimizerComparison(

"scope.v1.bin",

"scope.v2.bin");

#CS

public class PlaybackOptimizerComparison

: PlaybackReducer {

...

public ValidateResult(object[] results,

out Row outRow)

{

// plan comparison function

}

}

#ENDCS

3. PLAYBACK IN ACTION
As described in the previous section, Scope Playback re-

plays all compilation steps on previously submitted user

scripts using one or more test candidates. In this section
we show some results and experiences by using Scope Play-
back to validate our system.

In the past, we used a dedicated machine pool to run Play-
back as a stand-alone application (i.e., without leveraging
the Scope system itself). The input data was partitioned
and distributed to different machines manually. Then, we
launched the Playback application on each of those ma-
chines. The total test turnaround time was about 14 days.
Besides, it required heavy human intervention and moni-
toring to avoid unanticipated problems. As the test loads
increased, we had to manually tune the partition buckets,
increase the degree of parallelism, and add new machines
into the test pool. As a result of such long turnaround time
and heavy human intervention, it was very costly to do any
private Playback runs before feature integration.

Today, Scope Playback runs daily on the official Scope
build in all our production clusters. For each run, it covers
over a million customer jobs, reading over 15 terabytes of
compressed job data, and produces results in around 2.5
to 3 hours. During development, individual team members
also schedule private Playback runs before integrating the
features back into the main source tree. This validation
step helps developers quickly identify regressions that are
not caught by unit testing, and reduces stabilization time.

Our experiences show that Scope Playback not only re-
sults in a quick test turnaround time5, but also exhibits very
reliable test runs. The quick test turnaround time is a result
of the high degree of data parallelism, which is automatically
adjusted by the optimizer according to input characteristics.
Robust test runs are a result of scalability and transparent
fail-over provided by the Scope /Cosmos platform.

Figure 6 shows a fragment of the execution plan of one
instance of the Playback jobs in Scope . First, data from
JobRepository table is extracted and joined to an event
table, JobSubmittedEvent6, to obtain additional informa-
tion, such as the job owner, the environment which the job
was submitted to, and the job priority. Since event data
is typically small, the optimizer broadcasts the small event
table to JobRepository table to perform the join. As de-
scribed in Section 2, data in JobRepository is sorted on
jobGUID, a property leveraged by the optimizer to choose
a merge-based join variant. The joined results are then
partitioned by jobGUID so that all the rows with the same
jobGUID are sent to the same processing node to perform
the compilation step defined in PlaybackReducer. The re-
sults of PlaybackReducer is read by two consumers. The
first consumer aggregates the results and produces summa-
rized statistics about the all the jobs. The second consumer
filters out the successful runs, and computes error messages
and call stacks. Then, it repartitions the data by stackHash

(i.e., a hash on the error message and call stack) so that a
subsequent operator can remove duplicate instances of the
same issue before it outputs the code defects for the auto-
matic bug filing system.

At the time of this writing, and during the last 2-month
release cycle, there were 165 Playback runs. Among those,
92 runs were private runs (i.e., Playback jobs submitted by

5As a comparison, if we were to run Playback on a single machine,
it would take approximately 240 days to complete a single run.
6The JobSubmittedEvent is a system table that records job sub-
mission events, including the job GUID, the job owner, the sub-
mission time, the job priority, etc.

PlaybackReducer()
JOIN ON

jobId == jobGUID

Extractor

Extractor

Sorter

(jobId)

JobSubmittedEvent JobRepository

Job Statistics

Broadcast

...

Aggregation

Partition

(stackHash)

Filter/Projection

Merge

(stackHash)

... ...

RepartitionPartition

(jobGUID)

Merge

(jobGUID)

Repartition
...

Figure 6: Playback execution plan in Scope

individuals). Table 1 summarizes the test coverage and total
input data volume read by the Playback jobs. All the 165
runs cover over 100 million customer jobs and read over 1.5
petabytes of data.

Daily Runs Private Runs

of Runs 73 92
Test Coverage ∼ 75 million jobs ∼ 30 million jobs
Data Volume ∼ 1.1 PB ∼ 415 TB

Table 1: Statistics of Playback Runs in a Two-month
Release Cycle

We also observed that using Scope Playback to validate
features before integration reduces the bug count in the sta-
bilization period. The team is able to find out issues early
in the release cycle, or even before integrating changes into
the main source tree. Moreover, the regression in produc-
tion environments in the compiler areas has dropped down
to zero in the recent releases. The 100% test coverage on
customer jobs does deliver the promise of zero regression on
existing recurring jobs.
Another example of Playback usage is to manage break-

ing changes. As the Scope language evolves, whenever there
was a breaking change, it also helped us identify the scripts
and their owners. For example, when we had to align the
INNER JOIN syntax with standard SQL, Playback helped us
identify a single user using the non-standard syntax. We
were able to contact the individual and correct the script
proactively to avoid any impact to the customer’s produc-
tion pipeline.

4. CONCLUSIONS
Validating a cloud-scale distributed computation platform

efficiently and effectively is quite challenging. In this paper,
we present a test automation tool, called Scope Playback,
for testing the Scope system over tens of thousands of ma-
chines at Microsoft. Scope Playback leverages the Scope
system in unique ways. First, the system maintains a job
repository which contains a full collection of customer jobs
previously ran on production clusters. New features can be
validated by playing back query compilation and optimiza-
tion using such repository jobs. Second, Scope Playback
itself is written as a Scope script and relies on the sys-
tem to parallelize the test execution and automatically scale

out with the increases of the test loads. Not only the tool
benefits nicely from massive parallelism provided by the un-
derlying Scope system and is able to process millions of job
compilations in hours, but also the Playback jobs run with-
out human intervention, as the underlying system provides
transparent fail-over in face of failures. Together with an
automatic bug filing system, Scope Playback serves as a
fast and critical validation step in the Scope development.

One direction for future work is to extend the tool to cover
runtime validation, which requires execution of parts of orig-
inal jobs and comparing results. Given the proven flexibility
and scalability of the Scope system, another direction for
future work is to parallelize other time-consuming compo-
nents, such as source code building, unit-testing, etc., using
Scope . Finally, although the techniques in this paper are
described in the context of Scope , the concept of using the
cloud-scale service to validate its own development can be
applied to many other systems as well.

5. ACKNOWLEDGMENTS
We would like to thank the following individuals for their

contributions and support to the Scope Playback develop-
ment: Sherry Li, Bill Ramsey, Brad Sarsfield, Sushil Chor-
dia and Ed Triou. We would also like to thank Thomas
Hargrove for his contributions to the job repository, and all
the members of the Scope team for their support and col-
laboration.

6. REFERENCES
[1] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey,

D. Shakib, S. Weaver, and J. Zhou. SCOPE: Easy and
efficient parallel processing of massive data sets. In
Proceedings of VLDB Conference, 2008.

[2] S. Chordia, E. Dettinger, and E. Triou. Different query
verification approaches used to test entity sql. In
Proceedings of the first international workshop on
testing database systems, 2008.

[3] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton,
C. M. Lott, G. Patton, and B. Horowitz. Model-based
testing in practice. In Proceedings of 21st Annual
Conference on Software Engineering, 1999.

[4] J. Zhou, P.-Å. Larson, and R. Chaiken. Incorporating
partitioning and parallel plans into the SCOPE
optimizer. In Proceedings of ICDE Conference, 2010.

