
Advanced Partitioning Techniques
for Massively Distributed Computation

Jingren Zhou
Microsoft

jrzhou@microsoft.com

Nicolas Bruno
Microsoft

nicolasb@microsoft.com

Wei Lin
Microsoft

weilin@microsoft.com

ABSTRACT
An increasing number of companies rely on distributed data
storage and processing over large clusters of commodity ma-
chines for critical business decisions. Although plain MapRe-
duce systems provide several benefits, they carry certain lim-
itations that impact developer productivity and optimiza-
tion opportunities. Higher level programming languages
plus conceptual data models have recently emerged to ad-
dress such limitations. These languages offer a single ma-
chine programming abstraction and are able to perform so-
phisticated query optimization and apply efficient execution
strategies. In massively distributed computation, data shuf-
fling is typically the most expensive operation and can lead
to serious performance bottlenecks if not done properly. An
important optimization opportunity in this environment is
that of judicious placement of repartitioning operators and
choice of alternative implementations. In this paper we dis-
cuss advanced partitioning strategies, their implementation,
and how they are integrated in the Microsoft Scope system.
We show experimentally that our approach significantly im-
proves performance for a large class of real-world jobs.

Categories and Subject Descriptors
H.2 [Information Systems]: Database Management

Keywords
Scope, Partitioning, Distributed Computation, Query Opti-
mization

1. INTRODUCTION
An increasing number of companies rely on the results

of massive data computation for critical business decisions.
Such analysis is crucial in many ways, such as to improve ser-
vice quality and support novel features, to detect changes in
patterns over time, and to detect fraudulent activities. Usu-
ally the scale of the data volumes to be stored and processed
is so large that traditional, centralized database system so-
lutions are no longer practical or even viable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD Š12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

For that reason, several companies have developed dis-
tributed data storage and processing systems on large clus-
ters of thousands of shared-nothing commodity servers. Ex-
amples of such initiatives include Google’s MapReduce [5],
Hadoop [1] from the open-source community and used at Ya-
hoo, and Cosmos/Dryad [3, 12] at Microsoft. In the MapRe-
duce approach, developers provide map and reduce functions
in procedural languages like C++, which perform data trans-
formation and aggregation. The underlying runtime system
achieves parallelism by partitioning the data and processing
each partition concurrently using multiple machines. This
model scales reasonably well to massive data sets and has
sophisticated mechanisms to achieve load-balancing, outlier
detection, and recovery to failures, among others.

This approach, however, has its own set of limitations.
Users are required to translate their application logic to the
MapReduce model in order to achieve parallelism. For some
applications this mapping is very unnatural. Users have
to provide implementations for the map and reduce func-
tions, even for simple operations like projection and selec-
tion. Such custom code is error-prone and hardly reusable.
Moreover, for complex applications that require multiple
MapReduce stages, there are often many valid evaluation
strategies and execution orders. Having developers manu-
ally implement and combine multiple MapReduce functions
is equivalent to asking them to specify physical execution
plans directly in relational database systems, an approach
that became obsolete with the introduction of the relational
model over three decades ago. Moreover, optimizing com-
plex, multi-step MapReduce jobs is difficult, since it is not
usually possible to do complex reasoning over sequences of
opaque, primitive MapReduce operations.

To address this problem, higher level programming lan-
guages plus conceptual data models were recently proposed,
including Jaql [2], Scope [3, 24], Tenzing [4], Dremel [15],
Pig [18], Hive [21], and DryadLINQ [23]. These languages
offer a single machine programming abstraction and allow
developers to focus on application logic, while providing
systematic optimizations for the distributed computation.
These optimizations take advantage of a full view of the
application logic, and can perform sophisticated query opti-
mization strategies that are simply not possible otherwise.

In massive distributed computation, data shuffling is typ-
ically the most expensive operation and can lead to serious
performance bottlenecks if not done properly. A very impor-
tant optimization opportunity in this type of environment
is that of judicious placement of repartitioning operators
and choice of different implementation techniques. Com-

plex scripts and reasoning about properties of intermediate
results opens the door to a rich class of optimization oppor-
tunities regarding data partitioning. It is crucial to avoid
repartitioning unless absolutely necessary, and do so as ef-
ficiently as possible. Previous work focused on minimizing
the number of partitioning operations while executing com-
plex scripts [24]. However, independently on how much we
optimize input scripts, there are still scenarios that require
data shuffling. There are also different ways to perform data
shuffling, and each one is preferable under different condi-
tions. The optimal choice of shuffling operations depends
on many factors, including data and code properties, and
scalability requirements. It is valuable to integrate the rea-
soning with the query optimizer and systematically consider
alternatives with the rest of the query.
In this paper we describe advanced partitioning techniques

that leverage input data properties and optimize data move-
ment across the network. As a result, we are able to greatly
improve the shuffling efficiency, by either avoiding unneces-
sary repartitioning or partially repartitioning the input data
set. The techniques are applicable both at compilation time
and at runtime. We also design a novel partitioning strategy
which indexes intermediate partitioned results and stores
them in a single sequential file. This approach fundamen-
tally solves the scalability challenge for data partitioning and
efficiently supports an arbitrarily large number of partitions.
All the partitioning techniques are implemented into the

Scope system at Microsoft, which is running in production
over tens of thousands of machines. The query optimizer
of Scope considers different alternatives in a single opti-
mization framework and chooses the optimal solution in a
cost-based fashion. Experiments show that the proposed
techniques improve data shuffling efficiency by a few folds
for real-world queries. Although this paper uses Scope as
the underlying data and computation platform, the ideas are
applicable to any distributed system that relies on a query
optimizer and performs data shuffling.
The rest of the paper is structured as follows. In Sec-

tion 2 we review the necessary technical background to sup-
port the remaining sections. In Section 3 we describe the
implementation of partial repartitioning and its interaction
with the query optimizer. In Section 4 we discuss a scal-
able index-based partitioning strategy. Section 5 reports an
experimental evaluation of our strategies discussed on real-
world data. Section 6 discusses related work, and Section 7
concludes the paper.

2. PRELIMINARIES
Scope [3, 24] (Structured Computations Optimized for

Parallel Execution) is the distributed computation platform
for Microsoft’s online services targeted for large scale data
analysis. It incorporates the best characteristics of both
MapReduce and parallel database systems. The system runs
over large clusters of tens of thousands of machines, executes
tens of thousands of jobs daily, and it is on its way to be-
come an exabyte store. We start with an overview of Scope,
including the query language, query optimization, and dif-
ferent partitioning types. The reader can find more details
on these concepts in the literature [3, 24, 12].

2.1 Query Language
The Scope language is declarative and intentionally rem-

iniscing SQL. The select statement is retained along with

joins variants, aggregation, and set operators. Like SQL,
data is modeled as sets of rows composed of typed columns,
and every rowset has a well-defined schema. At the same
time, the language is highly extensible and is deeply inte-
grated with the .NET framework. Users can easily define
their own functions and implement their own versions of
relational operators: extractors (parsing and constructing
rows from a raw file), processors (row-wise processing), re-
ducers (group-wise processing), combiners (combining rows
from two inputs), and outputters (formatting and outputting
final results). This flexibility allows users to solve problems
that cannot be easily expressed in SQL, while at the same
time is able to perform sophisticated reasoning of scripts.

Figure 1(a) shows a very simple Scope script that counts
the different 4-grams of a given single-column string data set.
In the figure, NGramProcessor is a C# user defined operator
that outputs, for each input row, all its n-grams (n = 4
in the example). Conceptually, the intermediate output of
the processor is a regular rowset that is processed by the
SQL-like main query (note that intermediate results are not
necessarily materialized between operators at runtime).

2.2 Query Compilation and Optimization
A Scope script goes through a series of transformations

before it is executed in the cluster. Initially, the Scope
compiler parses the input script, unfolds views and macro
directives, performs syntax and type checking, and resolves
names. The result of this step is an annotated abstract syn-
tax tree, which is passed to the query optimizer. Figure 1(b)
shows an input tree for the sample script.

The Scope optimizer is a cost-based transformation en-
gine based on Cascades framework [9], and generates effi-
cient execution plans for input trees. Since the language is
heavily influenced by SQL, Scope is able to leverage existing
work on relational query optimization and perform rich and
non-trivial query rewritings that consider the input script in
a holistic manner. The Scope optimizer extends Cascades
by fully integrating parallel plan optimization and perform-
ing more complex structural data property reasoning, such
as partitioning and sorting of intermediate results.

The optimizer returns an execution plan that specifies the
steps that are required to efficiently execute the script. Fig-
ure 1(c) shows the output from the optimizer, which defines
specific implementations for each operation (e.g., stream-
based aggregation), data partitioning operations (e.g., the
repartition operator), and additional implementation details
(e.g., the initial sort after the processor, and the unfolding
of the aggregate into a local/global pair).

Finally, code generation produces the final algebra (which
details the units of execution and data dependencies among
them) and the assemblies that contain both user defined
code and runtime implementation of the operators in the
execution plan. Figure 1(c) shows dotted lines for the two
units of execution corresponding to the input script. This
package is then sent to the cluster, where it is actually exe-
cuted. Users can monitor the progress of running jobs, and
there are management utilities to submit, queue, and prior-
itize scripts in the shared cluster.

2.3 Data Partitioning
A key feature of distributed query processing is based on

partitioning data into smaller subsets and processing parti-
tions in parallel on multiple machines. This requires opera-

Get

(input.ss)

Process

(NGramProcessor)

Aggregate

({ngram}, count)

Output

(output.txt)

Get

(input.ss)

Process

(NGramProcessor)

Sort

(ngram)

Global Stream Agg

({ngram}, count)

Local Stream Agg

({ngram}, count)

Repartition

(ngram)

Output

(output.txt)

SV2

SV1

SV1 SV1 SV1 SV1 SV1

SV2SV2 SV2

(a) Scope script (b) Input tree (c) Output tree (d) Scheduled graph

Figure 1: Definition, Compilation, and Scheduling of a Simple Scope Script

tors for splitting a single input into smaller partitions, merg-
ing multiple partitions into a single output, and repartition-
ing an already partitioned input into a new set of partitions.
This can done by a single operator, the data exchange oper-
ator, that repartitions data from n inputs to m outputs [8].
After an exchange operator, the data is partitioned into m
subsets that are then processed independently and in par-
allel using standard operators, until the data flows into the
next exchange operator.
Exchange is implemented by one or two physical opera-

tors: a partition operator and/or a merge operator. Each
partition operator simply partitions its input while each
merge operator collects and merges the partial results that
belong to its result partition. Suppose we want to reparti-
tion n input partitions, each one on a different machine, into
m output partitions on a different set of machines. The pro-
cessing is done by n partition operators, one on each input
machine, which read its input and split it onto m local parti-
tions, and m merge operators, one on each output machine,
which collect the data for their partition from the n corre-
sponding local partitions. Figure 1(d) shows five partition
operators at the end of each SV1 vertex instance split their
input into three partitions each, and three merge operators
at the beginning of each SV2 vertex instance merge the five
pieces of a corresponding partition.

(a) Full Repartitioning (b) Initial Split (c) Full Merge

Figure 2: Different Types of Data Exchange

2.3.1 Exchange Topology
Figure 2 shows the main classes of exchange operators.

Full Repartitioning (Figure 2(a)) consumes n input parti-
tions and produces m output partitions, partitioned in a
different way. Every input partition contributes to every
output partition, resulting in n · m connections. In the ex-
ample of Figure 1(c), the plan uses full repartitioning on
the nGram column in SV1, so that the input, which is not
partitioned by nGram, can be aggregated correctly by SV2.
Initial Split (Figure 2(b)) is a special case of full partitioning

where there is a single input stream that is partitioned into
m streams, without merge operators. Finally, Full Merge
(Figure 2(c)) is a special case of full partitioning when there
is a single output stream, merged from n input streams with-
out partition operators. In this paper we explore alternative
implementations of exchange operators that are based on
additional topologies.

2.3.2 Partitioning Schemes
An instance of a partition operator takes one input stream

and generates multiple output streams. It consumes one row
at a time and writes the row to the output stream selected
by a partitioning function applied to the row in a FIFO
manner (so that the order of two rows r1 and r2 in the
input stream is preserved if they are assigned to the same
partition). There are several different types of partitioning
schemes. Hash Partitioning applies a hash function to the
partitioning columns to generate the partition number to
which the row is output. Range Partitioning divides the
domain of the partitioning columns into a set of disjoint
ranges, as many as the desired number of partitions. A row
is assigned to the partition determined by the value of its
partitioning columns, producing ordered partitions. Other
non-deterministic partitioning schemes, in which the data
content of a row does not affect which partition the row is
assigned to, include round-robin and random. The example
in Figure 1(c) uses hash partitioning.

2.3.3 Merging Schemes
An instance of a merge operator combines data from mul-

tiple input streams into a single output stream. Depend-
ing on whether the input streams are sorted individually
and how rows from different input streams are ordered, we
have several types of merge operations. Random Merge ran-
domly pulls rows from different input streams and merges
them into a single output stream, so the ordering of rows
from the same input stream is preserved. Sort Merge takes
a list of sort columns as a parameter and a set of input
streams sorted on the same columns. The input streams are
merged together into a single sorted output stream. Con-
cat Merge concatenates multiple input streams into a single
output stream. It consumes one input stream at a time and
outputs its rows in order to the output stream. That is,
it maintains the row order within an input stream but it

does not guarantee the order in which the input streams are
consumed. Finally, Sort-Concat Merge takes a list of sort
columns as a parameter. First, it picks one row (usually the
first one) from each input stream, sorts them on the values
on the sort columns, and uses the row order to decide the
order in which to concatenate the input streams. This is use-
ful for merging range-partitioned inputs into a fully ordered
output. In the example of Figure 1(c), the different parti-
tions are ordered by nGram due to the sort operator, so we
use the Sort Merge variant to ensure the right row ordering
when consumed by the global stream aggregate operator.

2.4 Job Scheduling
Scope relies onDryad [12] to schedule the compiled script

inside the cluster. The execution of a script can be modeled
as a graph, where each vertex represents an instance of a
computation unit, and each edge corresponds to data flow
between vertices 1. Figure 1(d) shows the execution graph
for the sample script, assuming that the input data is laid
out in five machines and the optimizer determines that data
would be better aggregated into three partitions.
Vertex scheduling is rather sophisticated and takes differ-

ent factors into consideration when deciding which vertices
to run next, and on which machine to place such vertices
(e.g., data locality, average execution time and memory con-
sumption). Additionally, the nature of the graph imposes
some natural scheduling constraints. A vertex can only start
when all its inputs are already finished processing. For in-
stance, in Figure 1(d), any SV2 vertex can only begin after
all SV1 vertices finish. This is required not only to avoid
producers and consumers running concurrently, but also be-
cause we need to simultaneously Sort-Merge SV2’s inputs.

2.4.1 Aggregation Trees
Vertex scheduling attempts to minimize the overall job

latency. One important aspect to achieve this goal is to
reduce recovery costs due to failures. Consider a merge op-
erator that consumes data from a very large number of par-
tition vertices (i.e., suppose in Figure 1(d) that there are
a thousand SV1 partition vertices connecting to each one
of the three SV2 vertices). The chance of a random failure
in SV2 while reading SV1 outputs increases with the num-
ber of input connections. Moreover, any such failure causes
the whole SV2 vertex instance to restart, wasting partial
work. To alleviate this problem, aggregates are typically
done using aggregation trees, which can be seen as check-
points during aggregation. When the number of input con-
nections to an aggregate vertex is beyond a certain limit, we
introduce partial aggregate vertices that operate over frag-
ments of the input partition vertices. This works well for
queries where merge operations interact with algebraic par-
tial aggregation, which reduces the input size and can be
applied multiple times at different levels without changing
query correctness. We can then aggregate the inputs within
the same rack before sending them out, reducing the overall
network traffic among racks. As an example, if the thresh-
old is 250 input connections and we have a thousand SV1
instances in Figure 1(d), for each one of the three SV2 in-
stances, we would introduce four partial aggregate vertices,
each working on one fourth of the SV1 instances, based on
the network topology.

1To simplify the presentation, we do not discuss mechanisms that
dynamically expand or contract the graph at runtime.

2.5 Structured Streams
In Scope, structured data can be efficiently stored as

structured streams. Like tables in traditional databases,
a structured stream has a well-defined schema that every
record follows. Additionally, structured streams can be di-
rectly stored in a partitioned way, which can be either hash-
or range-based over a set of columns. Data in a partition
is typically processed together (i.e., a partition represents a
computation unit). Each partition may contain a group of
extents, which is the unit of storage in Scope. In the ex-
ample of Figure 1(c), data is read from a structured stream
input.ss, which is not partitioned by nGram (and therefore
a repartition operator is needed). If the input structured
stream were partitioned by nGram already, the resulting plan
would consist of a single computation unit SV1, on which
the final partitioning operator is replaced by the output op-
erator. Relying on pre-partitioned data significantly reduces
latency by removing both the data exchange and the super-
fluous global aggregate operators.

2.5.1 Indexes for Random Access
Within each partition, a local sorting order is maintained

through a B+-Tree index. This organization not only allows
sorted access to the content of a partition, but also enables
fast key lookup on a prefix of the sorting keys. Such support
is very useful for queries that select only a small portion of
the underlying data, and also for more sophisticated strate-
gies such as index-based joins. In our example, if input.ss
were partitioned and sorted by nGram, we could not only re-
move SV2 as explained earlier, but also the sort operator in
SV1, with an additional improvement in performance.

2.5.2 Data Affinity
Scope does not require all the data that belongs to a

partition to be stored in a single machine. Instead, Scope
attempts to store all the data in a partition close together by
utilizing store affinity. Every extent has an optional affinity
id. All the extents with the same affinity id belong to an
affinity group. The system tries to place all the extents of an
affinity group on the same machine unless the machine has
already been overloaded. In this case, the extents are placed
in the same rack (or a close rack if the rack itself is over-
loaded). Each partition of a structured stream is assigned an
affinity id. As extents are created within the partition, they
get assigned the same affinity id, suggesting that they should
be stored together. Processing a partition can be done ef-
ficiently either on a single machine or within a rack. Store
affinity is a very powerful mechanism to achieve maximum
data locality without sacrificing uniform data distribution.

The store affinity functionality can also be used to asso-
ciate/affnitize the partitioning of an output stream with that
of a referenced stream. This causes the output stream to mir-
ror the partitioning choices (i.e., partitioning function and
number of buckets) of the referenced stream. Additionally,
each partition in the output stream uses the affinity id of the
corresponding partition in the referenced stream. Therefore,
two streams that are referenced not only are partitioned in
the same way, but partitions are physically placed close to
each other in the cluster. This layout significantly improves
parallel join performance, as data need not be transferred
across the network.

3. PARTIAL DATA REPARTITIONING
As described in Section 2.3, data partitioning typically

consists of one or two physical operators: a partition oper-
ator, which splits its input into local partitions, and/or a
merge operator, which collects and merges the local parti-
tions that belong to the corresponding output partition. In
absence of additional information, as illustrated in Figure 2,
every merge vertex needs to connect and read data from ev-
ery partition vertex. As we discuss in this section, however,
by carefully defining the partition scheme of the exchange
operator (e.g., number of partitions and partition bound-
aries), we can guarantee that certain local partitions would
be empty. Additionally, we can somewhat influence how
much data has to be transferred, and to which destination.
This general approach has several advantages during exe-

cution. First, by carefully defining partition boundaries, we
can drastically reduce data transfer between partition and
merge vertices by taking data locality into account. Second,
partition vertices need to reserve fewer memory buffers and
storage due to local partitions that are guaranteed to be
empty. Third, the job manager does not need to maintain
explicit connection state between partition and merge ver-
tices for which the local partitions are empty, which reduces
the footprint of the scheduler. Fourth, merge vertices do not
have to wait for all partition vertices to finish executing, but
only for those that actually contribute to the corresponding
partition. This is important because a single partition out-
lier can delay all merge vertices from starting, increasing
overall latency. Finally, fewer input connections to merge
vertices reduce the chance of failures, thus requiring fewer
intermediate aggregates (see Section 2.4.1), which improves
overall performance.
In this section we explore efficient alternatives to perform

data repartitioning that leverage properties of the input data
to be repartitioned. Depending on the partitioning scheme,
we discuss how to construct and implement data exchange
operators that are defined over effective partitioning bound-
aries and only require a subset of connections between par-
tition and merge vertices. Additionally, we discuss how to
integrate these alternatives during query optimization. To
illustrate the different partitioning techniques, we use the
simple script below:

SELECT a, UDAgg(b) AS aggB
FROM SSTREAM "input.ss"
GROUP BY a;

OUTPUT TO SSTREAM "output.ss"
[HASH | RANGE] CLUSTERED BY a;

The input in the script is a structured stream distributed
in the cluster. The script performs a user defined aggrega-
tion UDAgg on column a and outputs the result into another
structured stream, either hash- or range-partitioned by a.

3.1 Hash-based Partitioning
We consider the case in which the script writes a struc-

tured stream hash-partitioned by column a. We assume hash
partitioning is done by first applying a hash function to the
partitioning columns and then having the hash value mod-
ulo the number of output partitions to generate the partition
number to which the row goes. As long as the hash func-
tion and the number of output partitions are fixed, hash
partitioning is deterministic.

Get

(input.ss)

Stream Agg

({a}, UDAgg(b))

Repartition

(a)

Output

(output.txt)

SV2

SV1

Figure 3: Execution Plan for a Simple Script

Figure 3 shows an execution plan for the script. Assuming
that the input is not already partitioned by column a, the
plan reads the input in parallel and hash-repartitions the
data on column a (SV 1 in the figure), and then merges the
partitions, performs the user defined aggregate and outputs
the result (SV 2 in the figure). Note that in our example
UDAgg is not associative nor commutative, so we cannot use
local/global aggregates as in Figure 1(c)). If the input were
already partitioned by a, a different execution plan without
repartitioning would be preferable (i.e., read each partition,
perform the aggregation, and write results in parallel).

Output

(output.txt)

SV3

SV1

Get

(input.ss)

Stream Agg

({a}, UDAgg(b))

Repartition

(a,200)

Repartition

(a,50)

SV2

SV1

Figure 4: Partial Hash Repartitioning

Suppose that the input is indeed hash-partitioned by col-
umn a into 100 partitions. However, the user defined aggre-
gate is very expensive, so we choose to repartition the input
into 200 buckets. Additionally, the output of the aggregate is
smaller than the input, so we choose to additionally repar-
tition it into 50 buckets before the final output, in order
to avoid writing too many small fragments. The resulting
execution plan is shown in Figure 4. In principle, the execu-
tion plan looks rather expensive due to two full repartition
operators. However, in this scenario there are important op-
timization opportunities. In fact, repartitioning a 100-way
partitioned input into 200 partitions (by the same column)
can be done by locally splitting each of the original partitions
into two, without any network data transfer. Also, reparti-
tioning a 200-way input into 50 partitions can be done by
partially merging the input partitions. We next formalize
this approach, and characterize when it is effective.

3.1.1 Determining Data Flow Connections
Suppose that we want to hash partition an input T into

po partitions, and T is already hash-partitioned into pi par-
titions by the same columns. The naive execution plan con-
tains pi vertices P0, . . . Ppi−1, each one partitioning its in-
put into po local partitions, followed by po merge vertices

M0, . . . ,Mpo−1, each one reading and merging the i-th local
partition from each of the pi partition vertices. Interestingly,
for certain values of pi and po, some local partitions in Pi

vertices would always be empty and do not need to be read
by Mj vertices.

Example 1 Suppose that pi = 4 and po = 2 (i.e., we want
to partition 2-ways an input that is already 4-way parti-
tioned). Every row in P0 satisfies h(C) ≡ 0 mod 4, where h
is the hash function and C are the partitioning columns. Fig-
ure 5(a) shows the default partitioning strategy which con-
nects every input vertex with every output vertex. In this
case, we know that h(C) ≡ 0 mod 2 as well, and therefore
P0 would never generate a row satisfying h(C) ≡ 1 mod 2.
Thus, M1 does not need to read the empty local partition
produced by P0. In general, M0 only reads from P0 and P2,
and M1 from P1 and P3. Figure 5(b) shows the refined merge
graph. A similar strategy can be applied when pi = 2 and
po = 4. Figure 5(c) shows the refined partitioning graph.

P0 P1 P2 P3

M1M0

P0 P1 P2 P3

M1M0 M3M2M1M0

P0 P1

(a) Full Partitioning (b) Partial Merge (c) Partial Partitioning

Figure 5: Different Hash Partitioning Strategies

In general, merge vertex Mi (0 ≤ i < po) needs to read
from partition vertex Pj (0 ≤ j < pi) if there might be a
row in Pj for which its hash value modulo po is i. In other
words, if there exists an integer k such that k ≡ j mod pi
and k ≡ i mod po. By definition, this implies that there are
integers k1 and k2 such that k = k1 ·po+i and k = k2 ·pi+j,
and therefore k1 · po+ i = k2 · pi+ j, or

po · k1 + (−pi) · k2 = (j − i)

This is a linear diophantine equation of the form a·x+b·y=c,
which has integer (x, y) solutions if and only if c is a multiple
of the greatest common denominator of a and b. In our case,
there are solutions, and therefore Mi needs to reads from Pj

if and only if (j − i) is a multiple of gcd(po,−pi), or, more
concisely, if and only if

i ≡ j mod gcd(pi, po)

If pi and po are co-primes, then gcd(pi, po) = 1 and the op-
timized technique is the same as the traditional one (i.e., we
need to connect every partition and merge vertex instances).

3.2 Range-based Partitioning
The ideas in the previous section can also be applied to

range partitioning scenarios. Consider again the script in the
previous section when it writes a structured stream range-
partitioned by column a. Suppose now that the input in
the figure is range-partitioned by columns (a, b). Note that
this property does not imply the data being partitioned by a
alone, since two rows that share a values might be in different
partitions due to varying b values. In this case, the same plan
of Figure 3 can certainly be used, with a full repartitioning
on a. However, an input that is range-partitioned by (a, b)
can be repartitioned by a in a cheaper way by locally splitting
and merging the original partitions, as shown next.

1,A

1,A

1,B

1,B

1,C

1,D

2,A

2,D

2,E

3,A

3,B

4,A

1,A

1,A

1,B

1,B

1,C

1,D

2,A

2,D

2,E

3,A

3,B

4,A

P1=[(1,A)…(1,C))

P2=[(1,C)…(2,E))

P3=[(2,E)…max)

P’1=[1…2)

P’2=[2...3)

P’3=[3…max)

Figure 6: Refining Range Partitions from (a, b) to a

Example 2 Consider the data set at the left of Figure 6,
which is range-partitioned by columns (a, b) into three par-
titions. Partition P2, for instance, contains all rows with
values in the interval [(1, B), (2, D)) (note that the interval
is closed on left and open on right). As shown in the figure,
we can repartition this data set by column a without con-
necting each partition output with each merge input. The
precise connectivity map can be statically computed at com-
pile time given the original partitioning boundaries. Note
that the output partition P ′

1 receives data from input parti-
tions P1 and P2. While P1 is fully contained into P ′

1, we
need to filter rows in P2 with a < 2 to avoid incorrect re-
sults. Compared to the initial physical partitions Pi, we call
P ′
i as logical partitions, each of which conceptually reads one

or more physical partitions with optional filtering predicates.
The end result is that P ′

i is range-partitioned on column a.

In general, partial range-based repartitioning can be ap-
plied whenever the input and output partition schemes share
a common column prefix (otherwise, there is no choice but
to connect each partition vertex with every merge vertex).
The general approach consists of two steps. First, we need
to determine the range boundaries for each output parti-
tion. With this information, we can then generate code that
determines the output partition for each incoming row, and
determine which partition and merge vertices are connected.
We next discuss these steps in detail.

3.2.1 Determining Partitioning Boundaries
The main goal of query optimization is to minimize the re-

sulting job latency. In the context of range partitioning, and
especially with respect of boundary determination, there are
two main aspects that contribute to overall latency. First,
the resulting partitions need to be evenly distributed. Any
skewed partition is likely to introduce outliers during exe-
cution, as a partition that is significantly larger than the
average increases the latency of the overall job (and likely
propagates skewed partitions to subsequent execution ver-
tices). Second, the cost of the repartitioning operator itself
is important, which is directly proportional to the amount
of network data transfer. As a consequence, we should try
to align input and output partition boundaries as much as
possible. This way, we avoid splitting input partitions in
multiple large fragments that are sent across the network.

Suppose that we want to repartition data on columns C,
where each partition is roughly of size T . When the input
is already partitioned by columns C′ (where C and C′ share
a common prefix), the input partitioning metadata infor-
mation itself can be viewed as a (coarse) histogram B over

columns C′, with each partition representing a bucket in
the histogram2. We assume that buckets maintain the num-
ber of rows that are included in its boundary, that bucket
boundaries are closed on left and open on right, and that
the last range on right is a special maximum value that is
larger than any other valid value. The information from such
histograms can help the system choose partition boundaries.
Some very common column types (e.g., strings or binary

columns) are not amenable to interpolation, which limits
what we can infer about value distributions inside a his-
togram bucket. Specifically, in this case we know all bucket
boundaries but we cannot interpolate and generate inter-
mediate values within input buckets. Under this natural
restriction, Algorithm 1 describes a greedy approach to de-
termine partition boundaries that are compatible with C
and would result in partitions of size around T .

Algorithm 1: PartitionBoundaries(C, T, B)

Input: Columns C, Partition size T, Buckets B
Output: Partition boundaries P

/* Assume that C and B.cols share common prefix CP
and for each 1 < i <|B|: B[i-1].hi = B[i].lo */

/* Output is partitioned by CP, which implies C,
and each partition size is around T */

CB = ∪i[ΠCP B[i].lo, ΠCP B[i].hi) // project B on CP
idx = 0;
while idx < |CB| do

actLo = CB[idx].Lo;
actSize = CB[idx].Size;
idx++;
while actLo = CB[idx].Lo OR

CB[idx].size / 2 < T - actSize do
actSize += CB[idx].size;
idx++;

end
P = P ∪ [actLo, CB[idx-1].hi);

end

return P;

First, we project the histogram buckets onto the com-
mon prefix between input and output partitioning columns.
Then, we walk the projected buckets and accumulate such
buckets into new output partitions. We keep accumulating
buckets into a new partition as long as (i) the lower bound
of the bucket is the same as the current lower bound of the
partition (which can happen when we project the original
bucket boundaries onto the common prefix), and (ii) the
resulting bucket is as close as possible to the target size T .
Note that due to bucket granularity and the need to collapse
together buckets that share the same lower bounds, the re-
sulting partitions might not exactly match the expected size
T . This data skew is known at compile time and taken into
account during optimization, as we discuss later.
In some cases, however, there is additional information

that we can leverage. For instance, if the input data comes
from a structured stream, the optional local B+-tree-like
index provides detailed distribution of values within each
input partitions. Also, there could be a histogram obtained
from statistics on the relevant columns. Finally, for column
types that are amenable to interpolation (e.g., integer or
float), a uniform data distribution within each partition can

2Input partitioning metadata is obtained directly for base struc-
tured streams, and propagated throughout query plans analo-
gously to other properties such as cardinality information.

Repartition

(a)

Coordinator

StatCollector

(a)

Source

Figure 7: Getting Partition Boundaries at Runtime

be assumed. In these cases, we can additionally leverage
such value distribution and further improve the quality of
the resulting partitions by slightly extending Algorithm 1.

Partition boundaries can be chosen not only at compile
time but also at runtime. If the optimizer detects poten-
tially unbalanced partition boundaries, it also considers an
alternative plan that uses a more expensive repartitioning
operator at runtime but results in good-quality partition
boundaries. Figure 7 shows how to achieve this goal, by
using additional computation stages. We first intercept the
input rowset and compute a histogram on the partitioning
columns (StatCollector operator in the figure). This interme-
diate information is aggregated by a Coordinator, which ob-
tains the global histogram for the partitioning columns. The
coordinator then computes the global partition boundaries
as before, and broadcast them to the actual partition ver-
tices, which additionally receive the input to be partitioned,
and are executed in the traditional way. The optimizer con-
siders this alternative along with the ones defined in the
previous section and chooses the one that is the cheapest in
estimated costs, considering both the local partitioning cost
and the increase in latency by unbalanced partitions.

3.2.2 Determining Data Flow Connections
Once the partition boundaries are calculated, it is straight-

forward to determine which output partition and input merge
vertices should be connected to each other. Suppose that
[POi

lo, POi
hi) is the i-th partition range boundary (i.e., it

corresponds to the i-thmerge vertex in the execution graph).
We should connect this merge vertex with a partition vertex
defined over the input range [PIjlo, P Ijhi) whenever:

ΠCP [POi
lo, POi

hi) ∩ΠCP [PIjlo, P Ijhi) ̸= ∅

where CP is the longest common prefix between the out-
put and input partitioning columns, and the projection of a
range with columns C is defined as follows:

ΠCP [lo, hi) =

{
[lo, hi) ifCP = C
[ΠCP (lo),ΠCP (hi)] otherwise

Additionally, we add a filter predicate that keeps incoming
rows in the appropriate range unless we can guarantee that
all input rows qualify, which happens whenever:

ΠCP [PIjlo, P Ijhi) ⊆ [POi
lo, POi

hi)

The range predicate can be implemented by exploiting an
index if available, or otherwise by scanning an input par-
tition and removing extra rows on the fly. This choice is
known at compile time and incorporated into the cost model.

3.3 Optimizer Integration
As discussed in Section 2, structured streams are parti-

tioned when stored in the cluster. The structured stream
partitioning scheme might or might not be compatible with
that of subsequent repartition operators. Defining the par-
titioning scheme as well as which columns to partition on is
part of the physical data design problem, which is crucial in
traditional database systems and is also gaining importance
in distributed computation engines. Partitioning choices are
generally made based on usage patterns, as there is no op-
timal physical design independent of a workload.
In this section, we discuss how to integrate different parti-

tion strategies into the optimization framework, particularly
in the presence of structured streams, and identify some op-
timization opportunities. The optimizer considers all the
alternatives in a uniform framework and chooses the opti-
mal solution based on the estimated costs. The optimizer
search space increases by adding new partitioning strategies.
The exact overhead heavily depends on queries and physical
design but is reduced by effective cost-based pruning. Over-
all, we only observed marginal increase in compilation time
in the cluster due to these extensions. We also note that
our environment has relaxed requirements on optimization
time compared to traditional database systems, so a slight
increase in optimization time is acceptable.
We enhance the traditional optimizer cost model [24] in

two main directions. First, in addition to CPU and I/O
cost, each operator estimates network transfer based on the
amount of data to be shuffled. Second, we adjust the impact
of partition skew by explicitly charging each operator the
cost of the largest partition it needs to process. We omit
details due to space constraints.

3.3.1 General Repartitioning Opportunities
The Scope optimizer chooses to repartition data based

on requirements from subsequent operators. For instance, a
group-by operator would cause the optimizer to require its
input to be partitioned by a subset of the grouping columns.
To determine the number of partitions, the optimizer con-
siders the total data size that needs to be processed, and also
the cost to process each row. The goal of this estimation is to
obtain partitions that are processed in a reasonable amount
of time (partitions should not be too large, which increases
recovery time, nor too small, which increases scheduling and
vertex start-up overhead).
If the input is partitioned by a different but compatible

set of columns, the optimizer considers partial partitioning
strategies besides the full repartitioning alternative. Addi-
tionally, if the input is partitioned by the right columns but
with a different number of partitions (or different ranges
for range partitioning), the optimizer considers alternatives
that, while not optimal with respect to partition size, might
result in a faster repartitioning and cheaper overall plan cost.
For instance, suppose that the optimizer determines that the
number of partitions should be 100. However, the input is
already hash-partitioned by the right columns into 45 parti-
tions. The optimizer would also consider an alternative with
90 partitions, which would result in slightly larger partitions
but a more efficient repartition operation.

3.3.2 Opportunities for N-ary Operators
Operators that receive multiple inputs, such as union and

join variants, have an important requirement: all their in-

puts need to be partitioned in the same way to prevent
wrong results. For instance, suppose we are joining two
inputs R and S on columns (R.a,R.b,R.c) = (S.d, S.e, S.f).
The result would be correct whenever we partition both in-
puts on any subset of these columns, as long as we use the
same subset on each input (modulo join equality). Other-
wise, rows that would join might end up in different parti-
tions and we would miss rows in the result. We next discuss
some optimization opportunities for n-ary operators:

Pushing partition schemes from one input to others. If
a join input is already partitioned by a subset of the join
columns, we attempt to use such partitioning scheme for the
other input. That way, if the other input is partitioned in a
compatible way (e.g., same columns but different number of
partitions for hash partitioning, or common column prefix
for range partitioning) we might be able to use a cheaper
partial repartition operator on the remaining inputs, leading
to a better plan overall.

Heuristic range partitioning. Suppose that all inputs of an
n-ary operator are range-partitioned by the same columns,
but with different ranges. If these inputs are defined over dif-
ferent domains of data, there might not be a single partition
among inputs to push to the others without resulting in large
partition skew. To address this scenario, the optimizer ad-
ditionally obtains a common partitioning scheme that takes
into account the overall distribution of inputs. We first col-
lect all histogram buckets from each input, union them to-
gether, and use a slightly refined version of Algorithm 1 to
obtain the overall required partition boundaries. Finally, we
push this partitioning requirement to each input.

Broadcast optimization. When one side of the join is very
large and the other is small, it is common to rely on a broad-
cast join variant, where the small input is sent to all par-
titions of the large input. As the size of the small input
increases, this strategy loses its competitive advantage. In-
terestingly enough, if both inputs are partitioned in such a
way that there is a common prefix between the partitioning
and join columns, we can improve the traditional broadcast
join optimization and handle larger“small inputs”as follows.
We project the partition boundaries from the big input on
the common prefix as the required partition boundaries for
the small input. Rather than sending the whole small in-
put to each partition of the large input, we determine, for
each partition p in the large input, all the partitions in the
small input that have rows which might join with rows in p.
In this situation, we might send data from the small input
multiple times to different partitions from the big input but
avoid the expensive full repartitioning altogether.

3.3.3 Eliminating Repartitioning
An extreme case of repartitioning optimization happens

when the optimizer is able to remove a partitioning operator
completely leveraging additional data properties. Suppose
that we want to partition the input data on column a into
100 partitions, and the input is already hash-partitioned by
column b on the same number of partitions. If there is a
functional dependency b → a, then we know that the input
is also partitioned by column a and we completely eliminate
a repartition operation. As another example, if the input
is partitioned by (a, b) but we can determine that b is a
constant (e.g., perhaps due to some filter operation), the
input is effectively partitioned by a.

It is crucial to note, however, that while these schemes
correctly partition data by column a, they are not the same
partitions that we would obtain by directly hash partitioning
by a alone. To illustrate this point, suppose that a = b+ 1,
and so b → a. Every row belongs to partition h(b) mod 100,
which is not the same as h(a) mod 100 = h(b+1) mod 100.
In some scenarios we can leverage this partitioning scheme
(e.g., if the partitions are consumed by a group-by opera-
tor), but not in other scenarios (e.g., if the partitions are
consumed by an n-ary operator that requires the same par-
titioning scheme on all its inputs). The optimizer is aware
of the context of each partitioning request and can deter-
mine when fully eliminating a partitioning operation based
on functional dependencies or constraints is possible.

3.3.4 Other Considerations
Skewed partitions in input structured streams or interme-

diate results during query execution can have a very negative
impact on query performance. A partition that is signifi-
cantly larger than average increases the overall job latency.
On the other hand, too many small partitions may increase
the number of vertices and overall scheduling overhead. Sim-
ilar to Algorithm 1, we consider refining partition boundaries
both at compilation time and at runtime. In this case, the
refined partitions are still partitioned by the same columns
but with more even distribution.
Finally, Algorithm 1 assumes the input and the output

partition columns share a common prefix. The same con-
cept applies to string prefix optimization. That is, if the
input data is range-partitioned by a string column s, we can
partially partition the data by a prefix of column s.

4. INDEXED-BASED PARTITIONING
Consider again the example of Figure 1, but suppose that

there are several terabytes of input data (and therefore sev-
eral thousand SV1 vertex instances). In that case, we need
to fully repartition the input into, say, ten thousand par-
titions (i.e., ten thousand SV2 vertices). Each SV1 ver-
tex needs to partition its output into ten thousand different
streams, which are later read and merged by SV2 vertices.
When the number of partitions is very large, this procedure
presents some scalability challenges. In this section we intro-
duce an alternative way to repartition data that leverages
structured stream technology (see Section 2.5 for details),
has similarities with the duality between sorting and hash-
ing that was discussed in [10], and can be applied to both
range- and hash-based partitioning schemes.
In the example in Figure 1, rows arrive to the repartition

operator sorted by nGram. However, the hash function ef-
fectively randomizes the partition that each row belongs to.
To avoid constant random writes to local storage for each
partitioned value, we need to keep one buffer in memory for
each partition and flush the buffer when it gets full. For a
large number of partitions, the combined memory require-
ments for such buffers start interfering with those of other
operators. More importantly, the underlying store is opti-
mized for large volumes of data and sequential access. This
goal is achieved by reserving a minimum amount of sequen-
tial space in disk for each stream (in the order of megabytes)
and making it the append and compression unit. This means
that we would have to reserve a very large amount of space
in the local disk volume to support all the local partitions,

which not only decreases performance, but wastes significant
amount of storage for the duration of the job.

An alternative approach, which we call index-based parti-
tioning, can be used to significantly improve I/O efficiency.
Suppose that we want to repartition a rowset by column a
(Figure 8(a) shows the traditional way of implementing this
operation). For each partition vertex, instead of writing to
a different stream per partition, we change the operation
as follows (see Figure 8(b)). First we introduce a new com-
puted column, called pa, to the input rowset that needs to be
partitioned. The value of such column is equal to p(a), the
partition number that would be assigned to the correspond-
ing row with value a (e.g., for hash-based partitioning into
N partitions with hash function h, p(a) = h(a) mod N , and
for range-based partitioning p(a) is the index of the bucket
that contains value a).

Then, we insert a stable sort operator on column pa. A
stable sort operator sorts the input rowset by pa and keeps
the original row order in case of ties. Therefore, the output
of such sort contains all input rows grouped together by
the partition they belong to, and within each partition the
rows satisfy an ordering consistent to the original one. This
is very important as the optimizer can continue to exploit
the original input ordering for the following operations. In
other words, this approach produces the same result as if
we actually created all partitions in the default way and
concatenate them together in order of the partition number.

Finally, we store this“partitioned”result locally as a struc-
tured stream, with a B+-tree index on column pa. The
merge operation stays the same, but reading data from this
structured stream with a specific key value. Instead of lo-
cating the corresponding file and streaming all the rows, we
perform a key lookup of the partition number on the B+-tree
and return all relevant rows.

...

Partition(a)

Merge

...

Local Output

Merge

Stable Sort(pa)

Compute pa=p(a)

(a) Traditional partitioning. (b) Indexed partitioning.

Figure 8: Scalable Indexed-based Partitioning

The indexed-based approach as discussed above operates
outside of the optimizer. That is, after the optimizer de-
termines that repartitioning is required, we can decide in
a post-processing step whether to implement the operator
in the traditional or index-based manner. This choice is
necessary because each alternative might be the faster one.
On one hand, index-based partitioning improves I/O effi-
ciency for partition operators. At the same time, it performs
B+-tree lookups to return the corresponding partitions, and
more importantly, it introduces an additional stable sort op-
eration. This is especially wasteful when the stable sort is
placed directly or indirectly on top of another sort operation,
due to the following equivalence:

Stable-Sortb(Sorta(R)) ≡ Sortb,a(R)

We incorporate index-based partitioning into the opti-
mizer in Scope in a principled way. Particularly, we enhance
the set of enforcer rules [9] in the Scope optimizer. Every

time we enforce a partitioning request, we generate both a
traditional repartitioning operator and an indexed-based al-
ternative. The indexed-based alternative consists of a com-
pute scalar operator for a new column p as in Figure 8(b)
directly below the index-based partitioning operator (note
that we do not explicitly insert a stable sort on p as in the fig-
ure). Instead, the index-based partitioning operator requires
its input to be sorted by (p,X) where X is the sort require-
ment (if any) of the original partitioning operator. We then
let the optimizer explore different alternatives, by relying
on transformation rules that, for instance, exploit the sort
equivalence described above, take advantage of functional
dependencies (since p is functionally determined by the par-
titioning columns) and reorder operators (e.g., pushing the
compute scalar operator and corresponding sorts down the
tree). This approach lets the optimizer choose, in a cost-
based manner, the most efficient execution plan including
both alternatives in Figure 8, but other options as well.

5. EXPERIMENTAL EVALUATION
We implemented all the advanced partitioning techniques

and their optimization in Scope, which is deployed on pro-
duction clusters consisting of tens of thousands of machines
at Microsoft. Tens of thousands of jobs are executed daily,
reading and writing tens of petabytes of data in total, and
powering different online services.
In this section, we perform experimental evaluation of dif-

ferent techniques and report results in a small test cluster of
a hundred machines. Each machine has two six-core AMD
Opteron processors running at 1.8GHz, 24 GB of DRAM,
and four 1TB SATA disks. All machines run Windows
Server 2008 R2 Enterprise X64 Edition. The results cor-
relate very well with observations we made on production
clusters consisting of thousands of machines. Due to con-
fidential data/business information, we report performance
trends rather than actual numbers for all the experiments.

5.1 Partial Partitioning
In the context of web data analytics, it is common to

calculate aggregates of raw data at different granularities
(e.g., averages per domain, per host, and so on). Con-
sider a large structured stream that contains information
about web pages. A typical schema for this data set is
shown in Table 1, where each page URL is decomposed into
the (reversed) domain, (reversed) host, top-level-directory,
and URL-suffix columns. The data is range-partitioned and
sorted by (domain, host, top-level-directory) in a structured
stream, so that related pages are clustered together. Due
to very skewed domain distributions, we cannot partition
the data by domain alone, or we would get partitions with
very large number of rows (the same trend is observed when
partitioning by (domain, host)).
Consider now a query that groups the input table by do-

main and host values, and performs several user-defined ag-
gregates over the remaining columns 3:

SELECT domain, host, Agg(col1), ..., Agg(coln)
FROM SSTREAM "WebPages.ss"
GROUP BY domain, host

3This is a simplified version of a family of pipelines that are very
common in the context of web-experiments. A large fraction of
our production cluster utilization goes into executing pipelines
that use this pattern in one way or another.

Since the input is partitioned by a superset of the grouping
columns, we need to repartition the input to the group-by
operator. Figure 9 shows the results of evaluating this query
under two alternative execution plans: one which performs
a traditional full repartition on columns (domain, host), and
another that applies the partial repartitioning approach dis-
cussed in Section 3.2. We can see in Figures 9(a) that using
partial repartitioning significantly improves query latency
by a 3.5x speedup. We also calculate the total work for each
query by adding up latencies for each vertex. As shown in
Figure 9(b), partial repartitioning reduces the total work by
over 7 times. The improvement in latency is less than that
on total work, because the strategy that uses partial reparti-
tioning sometimes requires reading slightly larger partitions
due to boundary alignment and overlap (see Algorithm 1).

To understand the performance gain, Figure 9(c) shows
the fraction of I/O incurred by the new alternative, com-
pared with the traditional full repartitioning, in both data
write and data read, respectively. The traditional approach
has to read and write the whole data set when performing
a full repartitioning, and then read the repartitioned data
again. In contrast, the new approach avoids an intermediate
write/read operation and directly reads the right partitions,
using an appropriate filter that is evaluated efficiently by
exploiting the underlying index. Besides the savings in I/O,
the new approach has significant fewer vertices (e.g. no ex-
plicit partition and merge vertices) and does not have the
heavily connected scheduling graph between the partition
and merge vertices as in the full repartitioning case, both of
which greatly improve scheduling efficiency at runtime.

5.2 Optimizing N-ary Operators
We next show a more complex example of partial range

partitioning in the case of a N-ary operation, where obtain-
ing the right partition boundaries is crucial for performance.
This scenario is similar to the previous one, with an impor-
tant difference. Rather than having a single input stream,
we have four sources of data, each one obtained in a different
period of time over a different domain. Although each data
source is range-partitioned by the same columns, the cor-
responding partition boundaries are different due to input
sources being inherently biased in different ways. The mod-
ified query, which unions together all input sources before
aggregating the result, is shown below:

SELECT domain, host, Agg(col1), ..., Agg(coln)
FROM (

SELECT * FROM T1 UNION ALL
SELECT * FROM T2 UNION ALL
SELECT * FROM T3 UNION ALL
SELECT * FROM T4
)

GROUP BY domain, host

Figure 10 shows three different execution alternatives: par-
tial repartitioning, or PR (which uses the technique described
in Section 3.3.2 to obtain a global set of bucket boundaries),
full partitioning, or FR (which performs the traditional par-
titioning), and partial repartitioning without boundary merge,
or PRN (which, instead of considering all inputs for choosing
partitioning boundaries, uses the partitioning boundaries of
one input to partially repartition the others).

Figures 10(a-b) show that PR improves both the latency
and total work of the query by a 6x factor compared to FR.
Specifically, Figure 10(c) shows that PR incurs in around

Domain Host Top-level-directory URL-suffix Data
com.microsoft www download/ en/default.aspx?WT.mc id=MSCOM HP US Nav Downloads ...
com.microsoft windows products/ home ...
com.bing www videos/ browse?FORM=Z9LH6 ...
...

Table 1: Sample Information for a Web-pages Structured Stream

0

100

200

300

400

Partial Repartitioning Full Repartitioning

T
im

e
 U

n
it

s

0

10000

20000

30000

40000

Partial Repartitioning Full Repartitioning

T
im

e
 U

n
it

s

0%

10%

20%

30%

40%

50%

60%

70%

Data Written Data Read

I/
O

 r
e

la
ti

v
e

 t
o

 F
u

ll
 R

e
p

a
rt

it
io

n
in

g

(a) Latency (b) Total Work (c) Data Write and Data Read

Figure 9: An Aggregation Query over Web-pages

0

100

200

300

400

500

Partial Repartitioning Full Repartitioning Partial Repartitioning/No

Boundary Merge

T
im

e
 U

n
it

s

0

2500

5000

7500

10000

Partial Repartitioning Full Repartitioning Partial Repartitioning/No

Boundary Merge

T
im

e
 U

n
it

s

0.00%

25.00%

50.00%

75.00%

100.00%

Partial Repartitioning Partial Repartitioning/No Boundary

Merge

I/
O

 r
e

la
ti

v
e

 t
o

 F
u

ll
 P

a
rt

it
io

n
in

g

(a) Latency (b) Total Work (c) Total Data I/O

Figure 10: A Union-All Query on Web-pages

20% total I/O compared to FR. The ratio is smaller than
50% because the FR alternative needs to perform interme-
diate aggregate stages as described in Section 2.4.1.
It is also interesting to discuss the relative performance of

the PRN strategy. Although the total I/O for PRN is less
than 80% compared to that of FR, the total work and la-
tency are much worse for PRN. In particular, the latency of
PRN is 7 times longer than that of FR. This non-intuitive
behavior is explained when looking more carefully at the
input data. When reusing the partition boundaries of one
input to repartition and union all inputs together, we intro-
duce a big source of data skew. Some partitions are much
smaller and others much larger than the average. While this
observation does not significantly affect the total amount of
work done, it substantially increases latency. It illustrates
the importance of optimizing partitioning boundaries in or-
der to improve the overall query performance.

5.3 Indexed-based Partitioning
To measure the benefits of indexed-based partitioning, we

executed a script that requires repartitioning on a single
column, and vary the number of output partitions from 250
to 4,000. Figure 11 shows the average latency of a parti-
tioning vertex, normalized to the time it takes the tradi-
tional technique to do a 250-way repartitioning. We can
see in the figure that traditional partitioning performance
degrades visibly when increasing the number of partitions,
due to increased random I/Os resulting in poor I/O perfor-
mance. Not shown in the figure, but also important, is the
fact that the amount of wasted storage due to reserved and
unused disk also increases with the number of partitions. On
the other hand, we can see that indexed-based partitioning
has a longer, fixed start-up cost due to the additional sort by

partition id, and it is worse than the traditional approach
for fewer than 500 partitions. However, the performance
of the index-based approach is almost independent on the
number of partitions (it slightly increases when adding more
partitions due to a larger index structure in the structured
stream). Indexed-based partitioning achieves parity with
the traditional approach at around 500 partitions and is al-
ready 1.6x faster when using 4,000 partitions.

0

0.5

1

1.5

2

2.5

3

250 500 1000 2000 4000

N
o

rm
a

li
ze

d
 A

v
e

ra
g

e
 L

a
te

n
cy

p
e

r
P

a
rt

it
io

n
 V

e
rt

e
x

Number of Partitions

Original Repartition

Indexed-based Repartition

Figure 11: Partitioning Scalability

6. RELATED WORK
The last decade witnessed the emergence of various so-

lutions for massive distributed data storage and computa-
tion. Distributed file systems, such as Google File Sys-
tem [7], Hadoop Distributed File System [1], and Microsoft
Cosmos [3], provide scalable and fault-tolerant storage so-
lutions. Google’s MapReduce [5] provides a simple abstrac-
tion of common group-by-aggregation operations where map
functions correspond to groupings and reduce functions cor-
respond to aggregations. Microsoft’s Dryad [12] provides
additional flexibility where a distributed computation job
is represented as a dataflow graph, and supports scripting
languages that allow to easily compose distributed data-flow
programs. These programming models help developers write

distributed applications, but require dealing with implemen-
tation details to achieve good performance.
To tackle these shortcomings, high level programming lan-

guages plus conceptual data models were recently proposed,
including Jaql [2], Scope [3, 24], Tenzing [4], Dremel [15],
Pig [18], Hive [21], and DryadLINQ [23]. Regardless of the
language differences, their declarative nature hides system
complexities from the users and can benefit from an opti-
mizer to generate efficient execution plans.
Scope relies on a cost-based query optimizer [24] that

considers performance tradeoffs of the entire system, in-
cluding language, runtime, and distributed store. It lever-
ages database optimization techniques and also incorporates
unique requirements derived from the context of distributed
query processing. Scope also supports data in both unstruc-
tured and structured formats. Rich structural properties
and access methods from structured streams provide many
unique opportunities for efficient physical data design and
distributed query processing. Previous work [24] mentioned
“refined partitioning” and “refined merge” but didn’t offer
the details. To the best of our knowledge, this is the first
paper to discuss advanced partitioning strategies, based on
input data properties and index strategies, and fully inte-
grate the reasoning into a uniform optimization framework.
Many of the core optimization techniques that the Scope

optimizer implemented originated from early research in par-
allel databases [6, 13] and traditional databases [11, 14, 16,
17, 19, 20, 22]. The Scope optimizer enhances previous
work in several ways, such as by fully integrating parallel
plan optimization and reasoning with more complex prop-
erties derivation relying on structural data properties. Our
work in this paper enables the optimizer to consider addi-
tional partitioning strategies and come up with more effi-
cient query execution plans.

7. CONCLUSION
Massive data analysis in cloud-scale data centers plays

a crucial role in making critical business decisions and im-
proving quality of service. High-level scripting languages
free users from understanding various system trade-offs and
complexities, support a transparent abstraction of the un-
derlying system, and provide the system great opportunities
and challenges for query optimization. Data shuffling is the
most expensive operation in such environment. Its judicious
placement and implementation techniques play a vital role
in the effectiveness and efficiency of cloud-scale query execu-
tion. We describe several advanced partitioning techniques
to significantly improve data shuffling efficiency and inte-
grate such complex reasoning into the query optimizer to
generate much more efficient query plans. The system in-
telligently exploits the input data properties and performs
partial partitioning by moving a only small subset of the
input data set whenever possible. A novel index-based par-
titioning strategy is also used for the system to efficiently
support a massive data partitioning operation that generates
thousands of partitions. The techniques are incorporated in
Scope, running over data clusters of tens of thousands of
machines, and have proven to be effective, greatly improv-
ing query performance for a wide range of real-world jobs.

8. REFERENCES
[1] Apache. Hadoop. http://hadoop.apache.org/.

[2] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin,
M. Eltabakh, C.-C. Kanne, F. Ozcan, and E. J. Shekita.
Jaql: A scripting language for large scale semistructured
data analysis. In Proceedings of VLDB Conference, 2011.

[3] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. SCOPE: Easy and
efficient parallel processing of massive data sets. In
Proceedings of VLDB Conference, 2008.

[4] B. Chattopadhyay, L. Lin, W. Liu, S. Mittal, P. Aragonda,
V. Lychagina, Y. Kwon, and M. Wong. Tenzing: A SQL
implementation on the mapreduce framework. In
Proceedings of VLDB Conference, 2011.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In Proceedings of OSDI
Conference, 2004.

[6] D. DeWitt and J. Gray. Parallel database systems: The
future of high performance database processing.
Communications of the ACM, 36(6), 1992.

[7] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file
system. In Proceedings of SOSP Conference, 2003.

[8] G. Graefe. Encapsulation of parallelism in the Volcano
query processing system. In Proceeding of SIGMOD
Conference, 1990.

[9] G. Graefe. The Cascades framework for query optimization.
Data Engineering Bulletin, 18(3), 1995.

[10] G. Graefe, A. Linville, and L. Shapiro. Sort versus hash
revisited. IEEE Transactions on Knowledge and Data
Engineering, 6(6), 1994.

[11] G. Graefe and W. J. McKenna. The Volcano optimizer
generator: Extensibility and efficient search. In Proceeding
of ICDE Conference, 1993.

[12] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from sequential
building blocks. In Proc. of EuroSys Conference, 2007.

[13] A. Jhingran, T. Malkemus, and S. Padmanabhan. Query
optimization in DB2 parallel edition. Data Engineering
Bulletin, 20(2), 1997.

[14] H. Lu. Query Processing in Parallel Relational Database
Systems. IEEE Computer Society Press, 1994.

[15] S. Melnik, A. Gubarev, J. J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis. Dremel:
Interactive analysis of webscale datasets. In Proceedings of
VLDB Conference, 2010.

[16] T. Neumann and G. Moerkotte. A combined framework for
grouping and order optimization. In Proceedings of VLDB
Conference, 2004.

[17] T. Neumann and G. Moerkotte. An efficient framework for
order optimization. In Proceedings of ICDE, 2004.

[18] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: A not-so-foreign language for data
processing. In Proceedings of SIGMOD Conference, 2008.

[19] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access path selection in a relational
database management system. In Proceedings of SIGMOD
Conference, 1979.

[20] D. Simmen, E. Shekita, and T. Malkenus. Fundamental
techniques for order optimization. In Proceedings of
SIGMOD Conference, 1996.

[21] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Antony, H. Liu, and R. Murthy. Hive – a
petabyte scale data warehouse using Hadoop. In
Proceedings of ICDE Conference, 2010.

[22] X. Wang and M. Cherniack. Avoiding sorting and grouping
in processing queries. In Proc. of VLDB Conference, 2003.

[23] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson,
P. K. Gunda, and J. Currey. DryadLINQ: A system for
general-purpose distributed data-parallel computing using a
high-level language. In Proc. of OSDI Conference, 2008.

[24] J. Zhou, P.-Å. Larson, and R. Chaiken. Incorporating
partitioning and parallel plans into the SCOPE optimizer.
In Proceedings of ICDE Conference, 2010.

