
Efficient Maintenance of Materialized Outer-Join Views

Per-Åke Larson
Microsoft Research

palarson@microsoft.com

Jingren Zhou
Microsoft Research

jrzhou@microsoft.com

Abstract

Queries containing outer joins are common in data
warehousing applications. Materialized outer-join views
could greatly speed up many such queries but most database
systems do not allow outer joins in materialized views. In
part, this is because outer-join views could not previously
be maintained efficiently when base tables are updated.
In this paper we show how to efficiently maintain general
outer-join views, that is, views composed of selection, pro-
jection, inner and outer joins. Foreign-key constraints are
exploited to reduce maintenance overhead. Experimental
results show that maintaining an outer-join view need not
be more expensive than maintaining an inner-join view.

1 Introduction
Queries containing outer joins are common in OLAP ap-

plications, typically joining a fact table with some number
of dimension tables followed by aggregation. Outer-join
queries are also used for constructing tree-structured objects
(e.g. XML) from data stored in flat tables. Outer joins are
needed so we can also retain objects that lack some subob-
jects.

Materialized views can speed up query processing
greatly, but to realize the benefits two subproblems must
be solved: view matching and incremental view mainte-
nance. The goal of view matching is to determine, at op-
timization time, whether and how part or all of a query can
be computed from a view. Incremental view maintenance
is required to efficiently bring a view up to date when base
tables are updated.

View matching and efficient incremental view mainte-
nance algorithms for SPJG views, that is, views composed
of selection, projection and inner joins with an optional
group-by on top, are well understood. Our goal is to ex-
tend view support to SPOJG view, that is, allow views to
also contain outer joins.

We introduced a view matching algorithm for outer-join
views in a previous paper [6]. In this paper, we introduce an
efficient incremental maintenance procedure. We show that
maintenance can be divided into two steps: computing and
applying a primary delta and a secondary delta. The first
step is very similar to maintaining an inner-join view. The
second step is a “clean-up” step and we show how to per-
form this step efficiently. We also describe how foreign key
constraints can be exploited to reduce maintenance over-
head.

Example 1 Suppose we create a view, oj view, as shown
below. The view consists of outer joins of the tables part,
lineitem and orders from the TPC-H database [10]. Recall
that p partkey is the primary key of part and o orderkey
is the primary key of orders. There is a foreign key con-
straint between lineitem and part, and also one between
lineitem and orders.

create view oj view as
select p partkey, p name, p retailprice, o orderkey,

o custkey, l linenumber, l quantity, l extendedprice
from part full outer join

(orders left outer join lineitem on l orderkey=o orderkey)
on p partkey=l partkey

We first analyze what types of tuples the view may con-
tain. The join between orders and lineitem may output tu-
ples of two types: {orders, lineitem} and {orders}. Each
lineitem tuple joins with exactly one orders tuple (be-
cause of the foreign key from l orderkey to o orderkey)
and produces an {orders, lineitem} tuple. orders-only
tuples are orphaned orders (no matching lineitem tuples),
which occur in the result null-extended on all lineitem
columns.

Now consider what happens with the tuples in the sec-
ond join. Because of the foreign key from lineitem to
part, every {orders, lineitem} tuple will join with a part
tuple, producing a {part, orders, lineitem} tuple. All or-
phaned order tuples are null extended on the join column
l partkey so they will not join with any part tuples. How-
ever, the full outer join retains the orphaned order tuples.
Similarly, a part may not join with any lineitem tuples
but such orphaned part tuples are retained by the outer
join. In summary, the view may contain tuples of three
types:{part, orders, lineitem}, {orders}, and {part}.

Now suppose we insert new tuples into the part table.
The view can then be brought up to date simply by in-
serting the new tuples, appropriately extended with nulls,
into the view. Nothing more is required because the foreign
key constraint between lineitem and part guarantees that
a new part tuple cannot join with any lineitem tuples. If
it did, the joining lineitem tuples would have violated the
foreign key constraint. Insertions into the orders table can
be handled in the same way.

Next consider insertions into the lineitem table.
Suppose the new lineitems are contained in a table
new lineitems. The view can then be updated using the
following sequence of statements.

1

select p partkey, p name, p retailprice, o orderkey,
o custkey, l linenumber, l quantity, l extendedprice

into #delta1
from new lineitems, orders, part
where l orderkey = o orderkey and l partkey = p partkey

insert into oj view -- apply primary delta --
select * from #delta1

delete from oj view -- apply secondary delta --
where l linenumber is null
and (p partkey in (select p partkey from #delta1) or

o orderkey in (select o orderkey from #delta1))

The first statement computes the set of tuples to be in-
serted into the view and saves them in a temporary table.
The second statement adds the new tuples into the view.
The new lineitem tuples may cause some orphaned part
or orders tuples to be eliminated from the view. The third
statement deletes all orphaned part and orders tuples, if
any, that cease to be orphans because of the insertions

Two earlier papers [2, 5] describe algorithms for incre-
mental maintenance of outer join views. However, the al-
gorithm in [2] is significantly more expensive than ours and
the algorithm in [5] is incorrect. Oracle [8] supports ma-
terialized outer-join views but with many restrictions and
only a limited class of outer-join views are incrementally
maintainable. We discuss related work in more detail in
Section 8.

The rest of the paper is organized as follows. Section 2
contains preliminary material and introduces concepts used
in later sections. The overall maintenance procedure is de-
scribed in Section 3. We show how to efficiently compute
the primary delta in Section 4 and the secondary delta in
Section 5. Foreign-key constraints are considered in Sec-
tion 6. We report experimental results in Section 7 and de-
scribe related work in Section 8. Due to space limitations,
we have state our results without proofs. Derivations and
proofs can be found in [7].

2 Preliminaries

We assume that base tables and views satisfy the follow-
ing restrictions: every base table has a unique key that does
not contain nulls; a view can reference the same table only
once (no self-joins); every view outputs a unique key (no
duplicates) ; and all predicates of a view are null-rejecting
(defined below).

2.1 Definitions and Notation
The selection operator is denoted in the normal way as

σp where p is a predicate. A predicate p referencing some
set S of columns is said to be strong or null-rejecting if it
evaluates to false on a tuple as soon as one of the columns
in S is null. Projection (without duplicate elimination) is
denoted by πc where c is a list of columns. Borrowing from
SQL, we use the shorthand T.∗ to denote all columns of
table T . We also need an operator that removes duplicates,
which we denote by δ.

A schema S is a set of columns. Let T1 and T2 be tables
with schemas S1 and S2, respectively. The outer union,

denoted by T1 � T2, first null-extends (pads with nulls) the
tuples of each operand to schema S1∪S2 and then takes the
union of the results (without duplicate elimination).

A tuple t1 is said to subsume a tuple t2 if they are defined
on the same schema, t1 agrees with t2 on all columns where
they both are non-null and t1 contains fewer null values than
t2. The operator removal of subsumed tuples of T , denoted
by T↓, returns the tuples of T that are not subsumed by any
other tuple in T .

The minimum union of tables T1 and T2 is defined as
T1 ⊕ T2 = (T1 � T1)↓. It can be shown that minimum
union is both commutative and associative.

Let T1 and T2 be tables with disjoint schemas S1 and S2,
respectively, and p a predicate referencing some subset of
the columns in (S1 ∪ S2). The left semijoin is defined as
T1 ��ls

p T2 = {t1|t1 ∈ T1, (∃ t2 ∈ T2|p (t1, t2))}, that is,
a tuple in T1 qualifies if it joins with some tuple in T2. The
left anti(semi)join is T1 ��la

p T2 = {t1|t1 ∈ T1, (� t2 ∈
T2|p (t1, t2))}, that is, a tuple in T1 qualifies if it does not
join with any tuple in T2. The left outer join is T1 ��lo

p T2 =
T1 ��p T2 ⊕ T1. The right outer join is T1 ��ro

p T2 =
T1 ��p T2 ⊕ T2. The full outer join is T1 ��fo

p T2 = T1 ��p

T2 ⊕ T1 ⊕ T2.
We will make use of a special predicate null(T) that

evaluates to true if a tuple is null-extended on table T .
null(T) can be implemented in SQL as “T.c is null” where
c is any column of T that does not contain nulls, for exam-
ple, a column of a key. When applying null and ¬null to
a set of tables T = {T1, T2, · · · , Tn}, we use the short-
hand notation n(T) =

∧
Ti∈T null(Ti) and nn(T) =∧

Ti∈T ¬null(Ti).
2.2 Join-Disjunctive Normal Form

Our derivation of view maintenance expressions builds
on the join-disjunctive normal form for SPOJ expressions
introduced by Galindo-Legaria [1]. We briefly describe the
normal form by an example, but refer the reader to [1, 6] for
more details and algorithms.

Example 2 We will use the following view as a running
example throughout the paper

V1 = (R ��fo
p(r,s) S) ��lo

p(r,t) (T ��fo
p(t,u) U). (1)

All four tables have a unique key and all predicates are
null-rejecting. The notation p(r, s) means a predicate over
columns from tables R and S, and similarly for the other
predicates.

We convert the view expression to normal form bottom
up. We first rewrite the join between R and S and the join
between T and U in terms of inner joins and minimum
union, which results in

V1 = (σp(r,s)(R× S)⊕R⊕ S) ��lo
p(r,t)

(σp(t,u)(T × U)⊕ T ⊕ U).

To convert the remaining outer join, we “multiply” the
two input expressions, that is, we consider every combi-
nation of a term from the left operand and a term from

the right operand. Tuples from σp(t,u)(T × U) may join
with tuples from σp(r,s)(R × S) producing tuples that sat-
isfy σp(r,s)∧p(r,t)∧p(t,u)(T ×U ×R× S). Similarly, tuples
from σp(t,u)(T ×U) may join with tuples from term R, pro-
ducing a term σp(r,t)∧p(t,u)(T × U × R). However, tuples
from σp(t,u)(T × U) do not join with tuples from term S
because tuples from the S term are null extended on R and
the join predicate p(r, t) is null rejecting.

We continue the “multiplication” process with other
terms and, because the join is a left outer join, also add the
terms from the left input. This produces the following nor-
mal form of the view

V1 = σp(r,s)∧p(r,t)∧p(t,u)(T × U ×R× S)⊕
σp(r,t)∧p(t,u)(T × U ×R)⊕ σp(r,t)∧p(r,s)(T ×R× S)⊕
σp(r,t)(T ×R)⊕ σp(r,s)(R× S)⊕R⊕ S

As illustrated by this example, an SPOJ expression E
over a set of tables U can be converted to a normal form
consisting of the minimum union of terms composed from
selections and inner joins (but no outer joins). More for-
mally, the join-disjunctive normal form of E equals

E = E1 ⊕ E2 ⊕ · · · ⊕ En

where each term Ei is of the form

Ei = σpi(Ti1 × Ti2 × · · · × Tim)

Ti1 , Ti2 · · · Tim
is a subset of the tables in U . Predicate

pi is the conjunction of a subset of the selection and join
predicates found in the original form of the query.

The derivation of the normal form and a conversion al-
gorithm, can be found in [6]. The algorithm is straightfor-
ward and traverses the operator tree once. It exploits null-
rejecting predicates and foreign keys to reduce the number
of terms. For a tree consisting of N full outer joins, the nor-
mal form may contain 2N + N terms in the worst case. In
practice, it normally contains far fewer terms.

2.3 The Subsumption Graph
Suppose the complete set of operand tables for an SPOJ

expression is U . Each term in the normal form is defined
over a unique subset S of U and hence produces tuples that
are null extended on U − S. We call the tables in subset S
the term’s source tables.

A tuple produced by a term with source table set S
can only be subsumed by tuples produced by terms whose
source set is a superset of S, see Lemma 2 in [6]. The sub-
sumption relationships among terms can be modeled by a
DAG, which we call the subsumption graph.

Definition 2.1 Let E = E1⊕···⊕En be the join-disjunctive
form of an SPOJ expression. The subsumption graph of E
contains a node ni for each term Ei in the normal form
and the node is labeled with the source table set Si of Ei.
There is an edge from node ni to node nj , if Si is a minimal
superset of Sj . Si is a minimal superset of Sj if there does
not exist a node nk in the graph such that Sj ⊂ Sk ⊂ Si.

The subsumption graph for V1 is shown in Figure 1(a).

{T,U,R,S}

{T,U,R}

{T,R}

{T,R,S}

{R,S}

{R} {S}

{T,U,R,S}D

{T,U,R}D

{T,R}D

{T,R,S}D

{R,S}I

{R}I

(a) Subsumption (b) Maintenance (update T)

Figure 1. Subsumption and maintenance
graphs for view V1

2.4 Net Contribution of a Term

The minimum-union operators in the join-disjunctive
normal form have two functions: to eliminate subsumed tu-
ples and to union the remaining tuples. If we first eliminate
subsumed tuples from every term, we can replace the min-
imum unions by outer unions. The resulting form clearly
shows what terms are affected by an update and how.

Subsumption among terms are not arbitrary; when
checking whether a tuple of a term is subsumed, it is suf-
ficient to check against tuples in (immediate) parent terms.
The following lemma shows how to eliminate subsumed tu-
ples from a term.

Lemma 1 Let Ei be a term with source set Ti in the nor-
mal form E of an SPOJ expression. Then the set of tuples
generated by Ei that are not subsumed by any other tuples
in E can be computed as

Di = Ei ��la
eq(Ti) (Ei1 � Ei2 � · · · � Eim)

where Ei1 , Ei2 , · · ·Eim
are the parent terms of Ei and

eq(Ti) is an equijoin predicate over columns forming a key
of Ei.

We call Di the net contribution of term Ei because the tu-
ples of Di are not subsumed by any other tuples and thus
appear explicitly in the view result.

Theorem 1 Let E be an SPOJ expression with normal form
E1 ⊕ E2 ⊕ · · · ⊕ En. Then

E = E1 ⊕ E2 ⊕ · · · ⊕ En = D1 �D2 � · · · �Dn

where each Di is computed from Ei as defined in Lemma 1.

We call the form D1 � · · · � Dn the net-contribution
form of the expression. Because the terms are connected by
(outer) unions, there is no interaction among net contribu-
tions from different terms so each term can be maintained
independently from other terms.

3 View Maintenance Procedure

This section describes our overall maintenance proce-
dure. We consider only with insertions or deletions; an up-
date is treated as a deletion followed by an insertion.

3.1 Terms Affected by an Update
Consider a view V and suppose one of the its base tables

T is modified. This may change the net contribution of a
term Di only if T occurs in the expression defining Di. By
inspection of the expression for Di with source table set Ti,
it is immediately apparent that the change may affect the
result in one of three ways:

1. Directly, which occurs if T is among the tables in Ti;
2. Indirectly, which occurs if T is not among the tables in

Ti but it is among the source tables of at least one of
its parent nodes;

3. No effect, otherwise.
Based on this classification of how terms are affected, we
create a view maintenance graph as follows.

1. Eliminate from the subsumption graph all nodes that
are unaffected by the update of T .

2. Mark the remaining nodes by D or I depending on
whether the node is affected directly or indirectly.

The maintenance graph for view V1 when updating T is
shown in Figure 1(b).

A node n in the maintenance graph may have multiple
parents. We denote the set of parents by par(n). Some of
the parents may be directly affected, denoted by pard(n),
and some of them may be indirectly affected, denoted by
pari(n). If node n is directly affected, pari(n) = ∅. If
node n is indirectly affected, pard(n) ≥ 1. The equality
par(n) = pard(n) ∪ pari(n) holds by definition.

3.2 Maintenance Procedure
Suppose table T has been updated and we need to main-

tain a view V that references T . We first compute the main-
tenance graph and classify the terms as directly affected,
indirectly affected and unaffected. Without loss of gener-
ality, assume that the view has n terms, of which terms
1, 2, · · · , k are directly affected, terms k+1, k+2, · · · , k+
m are indirectly affected, and terms k + m + 1, k + m +
2, · · · , n are not affected. We can then rewrite the view ex-
pression in the form

V = V D � V I � V U where

V D = �k
i=1Di, V I = �k+m

i=k+1Di, V U = �n
i=k+m+1Di.

From this form of the expression it is obvious that to update
the view we need to compute two delta expressions

∆V D = �k
i=1∆Di, ∆V I = �k+m

i=k+1∆Di.

We call ∆V D the primary delta and ∆V I the secondary
delta.

In summary, maintenance of a view V after updates to
one of its underlying base tables is performed in two steps.

1. If there are directly affected terms, compute the pri-
mary delta ∆V D and apply it to the view.

2. If there are indirectly affected terms, compute the sec-
ondary delta ∆V I and apply it to the view.

If the update is an insert (delete), the primary delta is in-
serted into (deleted from) the view and the secondary delta
is deleted from (inserted into) the view. In the following
sections, we describe how to efficiently compute the pri-
mary delta and the secondary delta, respectively.

3.3 Aggregation Views
An aggregated outer-join view is simply an outer-join

view with a group-by on top. Maintaining an aggregated
outer-join view is not much more complex then maintaining
a non-aggregated view. ∆V D for the non-aggregated part
of the view is computed in the same way. The result is then
aggregated as specified in the view definition and applied to
the view in the same way as for aggregated inner-join views.
The view needs to contains both a regular row count and a
not-null count for every table that is null-extended in some
term. New rows are created as needed. Any row whose row
count becomes zero is deleted. If the not-null count for ta-
ble T becomes zero, all aggregates referencing a column in
T are set to null.

Next we compute ∆V I , aggregate the result and apply it
to the view. However, we may have to compute ∆V I from
base tables as we shall see in Section 5.3 because it may not
be possible to extract a required term from the aggregated
view. Tuples from different terms that have been combined
into the same group can no longer be separated out. Such
computation may incur additional overhead. Further dis-
cussion of aggregation views and additional simplification
rules are described in [7].

4 Computing the Primary Delta
Suppose table T has been updated and we need to main-

tain a view V that references T . Every term Ei in V D has
T as one of its source tables, so no tuples in V D are null
extended on T . Conversely, all tuples in V I and V U are
null extended on T because the terms in V I and V U do
not reference T . A tuple that is null-extended on a table T
cannot subsume a tuple that is not null-extended on T . It
follows that a tuple generated by a term in V D can only be
subsumed by a tuple generated by another term in V D so
we can rewrite V D as

V D = �k
i=1Di = ⊕k

i=1Ei.

V D = ⊕k
i=1Ei contains all terms that produce tuples con-

taining real tuples from table T . We now show a simple
conversion of the original (non-normalized) view expres-
sion into an expression equal to V D that can then trivially
be converted into an expression for computing ∆V D.

Example 3 Suppose table T has been updated and V1

needs to be maintained. We derive expressions for V D
1 and

∆V D
1 through a series of transformations of expression (1).

The original operator tree is shown in Figure 2(a). We tra-

fofo

lo

T UR S

p(t,u)

p(r,t)

p(r,s)
fofo

R ST U

p(r,s)

p(r,t)

p(t,u)

ro

fo

S RT U

p(r,s)

p(r,t)

p(t,u)
lo fo

R ST U

p(r,s)

p(r,t)

p(t,u)
lo

(a) V1 (b) V1 (c) V D
1 (d) ∆V D

1

(original) (commuted)

Figure 2. Transforming V1 to ∆V D
1

verse the path from T to the root of the tree. On each join

operator encountered we commute the inputs, if needed, so
that the input expression referencing T is on the left. The
only operator affected is the root operator where we swap
the inputs and change the join from a left outer to a right
outer join. The resulting operator tree is shown in Fig-
ure 2(b). This transformation converts the expression to

V1 = (T ��fo
p(t,u) U) ��ro

p(r,t) (R ��fo
p(r,s) S). (2)

Now consider the operators on the leftmost path in Fig-
ure 2(b). The join T ��fo

p(t,u) U may produce three types of
tuples: TU , T and U . All U -only tuples are null extended
on T and, hence, can never become part of V D

1 because no
tuples in V D

1 are null extended on T . Tuples of type TU
and T will, if they survive the next join, become part of V D

1

because they contain “real” T tuples. We can eliminate the
U -only tuples by changing the join to a left outer join.

The next join on the path is ��ro
p(r,t). After the modifica-

tion, its left input produces only tuples destined for V D
1 . Its

right input may produce tuples of types RS, R and S. Be-
cause the join is a right outer join, it preserves unmatched
tuples from the right input. However, they are null extended
on T and, hence, cannot become part of V D

1 . We can elimi-
nate the unmatched tuples by changing the join from a right
outer to an inner join, as shown in Figure 2(c).

The modified expression produces exactly the same tu-
ples as the original expression for all terms containing ac-
tual T tuples, that is, all terms in V D

1 , and no tuples that are
null extended on T . Furthermore, none of the retained tu-
ples were ever subsumed by a tuple in a term eliminated by
modifying the joins. It follows that the modified expression
exactly computes V D

1 , that is,

V D
1 = (T ��lo

p(t,u) U) ��p(r,t) (R ��fo
p(r,s) S). (3)

The leftmost path in Figure 2(c) contains only a left outer
join and an inner join. As explained further below, an ex-
pression for ∆V D

1 can be obtained simply by substituting
∆T for T in expression (3), that is,

∆V D
1 = (∆T ��lo

p(t,u) U) ��p(r,t) (R ��fo
p(r,s) S). (4)

The corresponding operator tree is shown in Figure 2(d).

The simple procedure for constructing expressions for
V D and ∆V D illustrated in this example generalizes to ar-
bitrary SPOJ views. The general algorithm follows.

Algorithm: Construct ∆V D expression
Inputs: Original view expression V , updated table T .
Output: Expression for computing ∆V D.

1. Traverse the operator tree for V along the path from T
to the root. On any join operator encountered, apply
commutativity rules to ensure that the input
referencing T is on the left.

2. Traverse the path from T to the root of V . Convert
any full outer join operator encountered to a left outer
join and any right outer join operator to an inner join.

3. Substitute T by ∆T .

Step 1 is a normal rewrite of the view expression and
does not change the result. Step 2 modifies the expression
so that it discards all tuples that cannot become part of V D.
After Step 2, the operators on the path from T to the root
consists only of selects, inner joins and left outer joins and
the delta expression is always the left input. The correct-
ness of Step 3 follows from the following delta propagation
rules.

σp(e1 ±∆e1) = σpe1 ± σp∆e1

(e1 ±∆e1) ��p e2 = e1 ��p e2 ±∆e1 ��p e2

(e1 ±∆e1) ��lo
p e2 = e1 ��lo

p e2 ±∆e1 ��lo
p e2

where ± stands for either a set union or a set difference.
The rules for selects and inner joins are obvious. The rule
for left outer join can be found in [2].

4.1 Conversion to a Left-Deep Tree
In many cases, only a few tuples are inserted or deleted

at a time and only a small number of tuples are affected in
the view. The expression for ∆V D produced by the algo-
rithm above are not always efficient for such cases because
it may contain subexpressions joining two or more base ta-
bles. Joining two base tables may produce a large interme-
diate result even though the final result is small. We show
how to convert the expression to a left-deep join tree that
avoids this problem.

Ideally, the optimizer should consider this conversion au-
tomatically but current optimizers are deficient in this area.
We introduce two new associativity rules for outer joins
(rules 4 and 5 below). These additional rules make it possi-
ble to always convert the delta expression to a left-deep tree
provided that all join predicates are binary, that is, refer-
ence only two tables.

Example 4 When T is updated, our algorithm produces the
following expression for ∆V D

1

∆V D
1 = (∆T ��lo

p(t,u) U) ��p(r,t) (R ��fo
p(r,s) S). (5)

fo

S RT U

p(r,s)

p(r,t)

p(t,u)
lo

S

R

U

p(r,s)

p(r,t)

p(t,u)
lo

lo

T

(a) Bushy tree (b) Left-deep tree

Figure 3. Converting ∆V D
1 to a left-deep tree

The operator tree is shown in graphical form in Fig-
ure 3(a). This expression is potentially very expensive to
compute. Suppose ∆T is very small, containing only a few
tuples. Then the join ∆T ��lo

p(t,u) U is likely to produce
a small result. This small result is the left input to the fi-
nal join ��p(r,t) so the final result is also likely to produce a
small result. However, the right operand is a join involving
base tables only, namely, R ��fo

p(r,s) S. This join may be ex-
pensive to compute and will produce a result that is at least
as large as the maximum of R and S.

We can eliminate the potentially large intermediate re-
sult by converting the operator tree to a left-deep tree, that
is, a tree where the right operand of every join is a single
base table, possibly including a select. This can be done
by exploiting associativity rules for inner and outer joins.
Applying this transformation to expression (5) produces

∆V D
1 = ((∆T ��lo

p(t,u) U) ��p(r,t) R) ��lo
p(r,s) S (6)

The corresponding operator tree is shown in Figure 3(b).
Using this expression, the intermediate results are likely to
stay small if ∆T is small.

In the expression for ∆V D, the operators on the path
from the updated table to the root (the leftmost path) are
limited to selection, inner join and left outer join. We con-
vert the tree to a left-deep tree by repeatedly applying the
following simple procedure: for any join operator on the
leftmost path whose right operand references more than one
table, pull the top operator of the right operand into the main
path by applying one of the associativity rules listed below.
The rules assume that all join predicates are null-rejecting
and reference only two tables but they are not required to be
equijoins. The notation p(1, 2) means a predicate that ref-
erences columns in e1 and in e2, and similarly for p(2, 3).

We need a new but simple operator called the null-if op-
erator and denoted by λc

p where p is predicate and c a list of
column. For every tuple that satisfies p, the operator sets the
value of all columns in c to null; all other tuples are passed
through unchanged. The operator can implemented using a
project with the case statement of SQL. A null-if operator
may create duplicates, which need to be eliminated.

Associativity rules for left outer join

(1) e1 ��lo
p(1,2) (σp(2)e2) = δ λe2.∗

¬p(2)(e1 ��lo
p(1,2) e2)

(2) e1 ��lo
p(1,2) (e2 ��fo

p(2,3) e3) = (e1 ��lo
p(1,2) e2) ��lo

p(2,3) e3

(3) e1 ��lo
p(1,2) (e2 ��lo

p(2,3) e3) = (e1 ��lo
p(1,2) e2) ��lo

p(2,3) e3

(4) e1 ��lo
p(1,2) (e2 ��ro

p(2,3) e3) =

δ λe2.∗,e3.∗
¬p(2,3) ((e1 ��lo

p(1,2) e2) ��lo
p(2,3) e3)

(5) e1 ��lo
p(1,2) (e2 ��p(2,3) e3) =

δ λe2.∗,e3.∗
¬p(2,3) ((e1 ��lo

p(1,2) e2) ��lo
p(2,3) e3)

Note that all joins added to the main path are inner joins
and left outer joins. The null-if operators fix up tuples that
are supposed to be null-extended and duplicates, if any, thus
created are eliminated. To the best of our knowledge, rules
1, 4 and 5 are new.

5 Computing the Secondary Delta
The secondary delta can be computed efficiently from

the primary delta and either the view or base tables – we
consider both options. When possible, it is usually cheaper
to use the view but the optimizer should choose in a cost-
based manner. Recall that the base tables have already been
updated and the primary delta has been applied to the view.

Every term in a view has a unique set of source tables and
is null-extended on all other tables in the view. We denote
the source tables of term Ei by Ti and the set of tables on
which it is is null-extended by Si.

5.1 Extracting Term Deltas from ∆V D

The primary delta ∆V D contains the union of the deltas
for all directly affected terms. However, we need the deltas
for individual terms to compute the secondary delta. Each
term is defined over a unique set of tables and null extended
on all others so tuples from a particular term are easily iden-
tified and can be extracted from ∆V D by a combination of
null and ¬null predicates.

Example 5 ∆V D
1 contains the deltas for four directly af-

fected terms, see Figure 1(b). Consider, for example,
the TRS-term. Non-subsumed tuples from this term are
uniquely identified by the fact that they are composed of
real tuples from T , R, and S but are null extended on U .
Hence, ∆DTRS can be extracted from ∆V D

1 as follows

∆DTRS = π(TRS).∗σnn(TRS)∧n(U)∆V D
1

where nn(TRS) = ¬null(T)∧¬null(R)∧¬null(S) and
n(U) = null(U).

∆DTRS contains only the delta of the net contribution.
∆ETRS contains the complete delta of the term, includ-
ing both subsumed and non-subsumed tuples. Tuples in
∆ETRS are composed of real tuples from T , R, and S and
may or may not be null extended on U . Hence, ∆ETRS can
be extracted from ∆V D

1 as follows

∆ETRS = δ π(TRS).∗σnn(TRS)∆V D
1

The duplicate elimination (δ) is necessary because a TRS
tuple may have joined with multiple U tuples.

Theorem 2 Consider a view V defined over tables U . Let
Ei be a term in V D defined over tables Ti, and Di its net
contribution. Then ∆Di and ∆Eican be computed as

∆Di = πTi . ∗ σnn(Ti)∧n(U−Ti)∆V D

∆Ei = δ πTi . ∗ σnn(Ti)∆V D

where nn(Ti) =
∧

t∈Ti
¬null(t) and n(U − Ti) =∧

t∈(U−Ti)
null(t).

5.2 Computing ∆V I Using the View
We first consider how to compute ∆V I from the primary

delta and the view. After applying the primary delta, the
state of the view is V + ∆V D or V − ∆V D. ∆Di denotes
the change in the net contribution of the indirectly affected
term Ei.

Insertions: After an insertion, ∆Di can be computed
from the view and the primary delta by the expression

∆Di = σnn(Ti)∧n(Si)(V + ∆V D) ��ls
eq(Ti) σPi∆V D

Pi =
∨

Ek∈pard(Ei)

nn(Tk)

Ti denotes the source table set of Ei and Si the set of tables
on which Ei is null extended. Ek ranges over all directly
affected parents of Ei and Tk denotes the source table set of
Ek. eq(Ti) denotes an equijoin condition between the key
columns of Ti in the left operand and in the right operand.

This expression makes sense intuitively. The first part
selects from the view all orphaned (non-subsumed) tuples
of term Ei, that is, the tuples in Di. The second part extracts
from the primary delta all tuples added to a parent term of
Ei. The complete expression thus amounts to finding all
currently orphaned tuples of the term and deleting those that
cease to be orphans because of the insert.

Example 6 Continuing with our running example, we need
to compute ∆DRS and ∆DR. DRS is null extended on T
and U and the TRS-term is its only parent, so ∆DRS can
be computed as

∆DRS = σnn(RS)∧n(TU)(V1 + ∆V D
1) ��ls

eq(RS) σnn(TRS)∆V D
1

DR is null extended on S, T and U and it has one directly
affected parent, the TR-term so ∆DR can be computed as

∆DR = σnn(R)∧n(STU)(V1 + ∆V D
1) ��ls

eq(R) σnn(TR)∆V D
1

Deletions: After a deletion, ∆Di can be computed from
the view and the primary delta using the expression

∆Di = (δ πTi.∗ σPi∆V D) ��la
eq(Ti) (V −∆V D)

where Pi is the same as for the insertion case.
This expression also makes sense intuitively. The first

part extracts from the primary delta the tuples deleted from
parents of term Ei, projects them onto the tables of term Ei,
and eliminates duplicates. This produces the potentially or-
phaned tuples of Ei. The anti-semijoin then discards every
tuple that is still included in a parent tuple. This leaves the
actual new orphans to be inserted.

Example 7 After deletions from table T , the delta of the
indirectly affected terms of V1 can be computed as follows.

∆DR = (δ πR.∗ σnn(TR)∆V D
1) ��la

eq(R) (V1 −∆V D
1)

∆DRS = (δ π(RS).∗ σnn(TRS)∆V D
1) ��la

eq(RS) (V1 −∆V D
1)

Column availability: If a view does not output the
columns required by the expressions above, then the ex-
pression cannot be used and ∆Di has to be computed us-
ing base tables. The join predicates require access to the
key columns of the referenced tables. For insertions, tuples
are extracted from the view using a combination of null
and ¬null predicates against source tables. However, the
view may not output a non-null column for each of the ref-
erenced source table. Even so, it may still be possible to
extract the required tuples from the view. The exact con-
ditions when extraction is still possible are derived in [6].
The key observation is that the view must expose enough
non-null columns to uniquely distinguish the required tu-
ples from tuples of all other terms.

5.3 Computing ∆V I from Base Tables
If the view does not output all required columns, the

delta of a term cannot be computed from the view and the
primary delta. If so, the term delta has to be computed from
base tables, ∆T , and the primary delta. As before, we as-
sume that the update has already been applied to table T and
thus only the new state of the table is available. We denote
the new state of the table by T±; T± = T + ∆T after an
insertion and T± = T − ∆T after a deletion.

Before proceeding we need to introduce some additional
notation. Let Ei = σpi

(Si1 × · · · × Sim
) be an indirectly

affected term under consideration. Ei has r directly affected
parents pard(Ei) = {Ei1, · · · , Eir}, r ≥ 1 and s, s ≥ 0,
indirectly affected parents pari(Ei). Let Ek be one of the
parent terms. Because Ek is a parent of Ei, we know that
its source set contains Si = {Si1 , · · · , Sm}, and some other
tables Rk = {Rk1 , · · · , Rkn

}. Furthermore, if the parent is
directly affected, it references T but not if it is indirectly
affected. We split the expression for Ek into three parts:

Ek = σpk(Si1 × · · · × Sim ×Rk1 × · · · ×Rkn × T)

= σpi(Si1 × · · · × Sim)︸ ︷︷ ︸ ��q(Si,Rk,T) σq(Rk)(Rk1 × · · · ×Rkn)︸ ︷︷ ︸
��q(Rk,T) σq(T)(T)︸ ︷︷ ︸ ← missing for indirectly affected terms

The new predicates are constructed from pk as follows:
q(Rk) contains every conjunct of pk that references only
tables in Rk; q(T) contains every conjunct of pk that ref-
erences table T only; q(Si,Rk, T) contains every conjunct
that references at least one table among Sk and at least one
table among Rk ∪ {T}; and q(Rk, T) contains every con-
junct of pk that references at least one table in Rk and T .
∆Di can be computed from the last two parts of Ek and the
primary delta.

Insertions After an insertion, ∆Di can be computed as

∆Di = (δ πTi.∗ σQi∆V D) ��la
qi1 E′

i1 · ·· ��la
qir

E′
ir

where Qi, E′
ip, and qip, p = 1, 2, · · · , r are defined as

Qi = nn(Si) ∧ n(∪Ek∈pari(Ei)Rk)

E′
ip = σq(Rip)(Ri1 × · · · ×Rin) ��q(Rip,T) (σq(T)T

± ��la
eq(T) ∆T)

qip = q(Si,Rip, T)

Example 8 After an insertion into table T , the tuples to be
deleted from view V1 can be computed as

∆DR = (δ π(R).∗ σnn(TR)∧n(S)∆V D
1) ��la

p(r,t) (T± ��la
eq(T) ∆T)

∆DRS = (δ π(RS).∗ σnn(TRS)∆V D
1) ��la

p(r,t) (T± ��la
eq(T) ∆T)

Let’s see if the expression for ∆DR makes sense. The ex-
pression δ π(R).∗ σnn(TR)∧n(S)∆V D

1 extracts all R tuples
in the primary delta that that did not join with any S tu-
ples. These R tuples are no longer orphans but some of
them may have been before the insertion. The expression
T± ��la

eq(T) ∆T represents all tuples in T before the inser-
tion. An extracted R tuple satisfies the anti-semijoin if it

does not join with any of the old T tuples, that is, if it were
an orphan. All such prior orphans should be deleted from
the view.

Deletions: After a deletion, ∆Di can be computed as

∆Di = (δ πTi.∗ σQi∆V D) ��la
qi1 E′

i1 · ·· ��la
qir

E′
ir

where Qi, E′
ip and qip, p = 1, 2, · · · , r are defined as

Qi = nn(Si) ∧ n(∪Ek∈pari(Ei)Rk)

E′
ip = σq(Rip)(Ri1 × · · · ×Rin) ��q(Rip,T) (σq(T)T

±)

qip = q(Si,Rip, T)

Example 9 Applying the formula above, we find that ∆DR

and ∆DRS of our example view V1 can be computed as

∆DR = (δ π(R).∗ σnn(TR)∧n(S)∆V D
1) ��la

p(r,t) T±

∆DRS = (δ π(RS).∗ σnn(TRS)∆V D
1) ��la

p(r,t) T±

Again, let’s analyze the expression for ∆DR. The expres-
sion δ π(R).∗ σnn(TR)∆V D

1 extracts from the primary delta
all deleted R tuples that do not join with an S tuple. These
are the potential new R-only orphans. Any new orphan that
does not join with a tuple remaining in T after the deletion
is an actual orphan and is inserted into the view.

6 Exploiting Foreign Keys
In our first example, we exploited foreign-key con-

straints to conclude that the view could be maintained af-
ter insertion of a part tuple simply by inserting the new
tuple into the view. The techniques we have developed so
far would not recognize this opportunity. In this section we
show to exploit foreign-key constraints to further simplify
computation of the primary delta and the secondary delta.

However, the optimization described in this section can-
not be applied under the following circumstances.

1. When an update is logically decomposed into a delete
and an insert for the purpose of view maintenance.
(The tuples in T may be only modified and there are
no actual deletions and insertions.)

2. The constraint is declared with cascading deletes.
3. The constraint is deferrable and the insert/delete state-

ment is part of a multi-statement transaction.

6.1 Simplifying ∆V D Computation
Example 10 Consider our running example view V1 but
with a slight modification. We add a foreign key constraint
from column U.fk to column T.pk where T.pk is a primary
key of T , and assume that the join predicate p(t, u) equals
T.pk = U.fk. The view definition then becomes

V1 = (R ��fo
p(r,s) S) ��lo

p(r,t) (T ��fo
pk=fk U).

and our algorithms generate the primary delta expression

∆V D
1 = ((∆T ��lo

pk=fk U) ��p(r,t) R) ��lo
p(r,s) S (7)

Because of the foreign key constraint, no tuples in ∆T will
join with tuples in U . Let t ∈ ∆T be a tuple that has been
inserted into T . Tuple t has a unique pk value so there can-
not exist a tuple u ∈ U that references t. If such at tuple
u existed, it would violate the foreign-key constraint. The
same reasoning can be applied to a tuple t that is deleted
from T . If a tuple u existed, it would violate the foreign-
key constraint after the deletion.

As no tuples in ∆T join with U , the outer join
∆T ��lo

pk=fk U simply passes through the tuples from ∆T
and can therefore be eliminated. Doing so reduces the ex-
pression to

∆V D
1 = (∆T ��p(r,t) R) ��lo

p(r,s) S

None of the other joins reference the discarded table U so
no further modifications are needed.

Let Fi, i = 1, · · · ,m be a foreign key constraint from
a table Si to the updated table T that matches a join in the
expression for ∆V D. To simplify the operator tree based on
the foreign key constraints, call the procedure SimplifyTree
below with inputs ∆V D and S = {S1, · · · , Sm}.

Procedure: SimplifyTree(Tree DT , Set of Tables S)
Traverse DT from the leftmost leaf to the root. At each
operator node n, do the following

1. If n is an inner join or a select with a predicate that is
null-rejecting on a table s ∈ S, set DT = ∅ and
return.

2. If n is a left outer join with a predicate that is
null-rejecting on a table s ∈ S, eliminate node n and
connect its left input to its parent. Let R denote the
set of tables of the right input expression. Add R to S.

6.2 Simplifying ∆V I Computation
Foreign key constraints can also be exploited to reduce

the number of affected terms and potentially reduce the cost
of computing ∆V I . The following theorem summarizes
how to use foreign-key constraints to detect additional terms
that are unaffected by an update.

Theorem 3 Consider a directly affected term with base Si

in the normal form of a SPOJ view and assume that a table
T ∈ Si is updated by an insertion or deletion. The net
contribution of the term is unaffected if Si contains another
table R with a foreign key referencing a non-null, unique
key of T , and R and T are joined on this foreign key.

We exploit this theorem to eliminate directly affected
nodes and their edges from the maintenance graph. Elim-
ination of directly affected nodes may leave an indirectly
affected node without incoming edges, that is, without af-
fected parents. Any such nodes can also be eliminated. We
call the resulting graph the reduced maintenance graph.

Example 11 This optimization does not simplify the com-
putation of ∆V I

1 for our modified running example. Con-

sider instead view V2 defined as follows

V2 = σpcC ��fo
ck=ock (σpoO ��fo

ok=lok L)

= σpc∧po∧ck=ock∧ok=lok(C ×O × L)⊕
σpc∧po∧ck=ock(C ×O)⊕
σpo∧ok=lok(O × L)⊕ σpcC ⊕ σpoO ⊕ L

The maintenance graph for updates to O in Figure 4(a)
shows two indirectly affected terms so ∆V I

2 = ∆DC �
∆DL.

{C, O, L}D

{C, O}D

{O}D

{O, L}D

{C}I {L}I

{C, O}D

{O}D{C}I

(a) Original graph (b) Reduced graph

Figure 4. V2 Maintenance graphs (update O).

Now assume that there is foreign key constraint from
L.lok to O.ok. Then an insertion into O will not affect
nodes OL, and COL. Eliminating these two nodes, leaves
node L without a parent so it is also eliminated. This leaves
the reduced graph shown in Figure 4(b), which has only one
indirectly affected term so ∆V I

2 = ∆DC .

7 Experimental Results
We ran a series of experiments on Microsoft SQL Server

2005 Beta2 to evaluate the cost of maintaining outer join
views. The experiments were performed on a workstation
with two 3.2 GHz Xeon processors, 2GB of memory and
three SCSI disks. All queries were against a 10GB version
(SF=1) of TPC-H database.

View maintenance was implemented using insert and
delete triggers that called stored procedures. The stored pro-
cedures followed the steps in our maintenance algorithm for
outer-join views. We also compared the maintenance cost
for a outer join view with the maintenance cost for the corre-
sponding core view, which is the view obtained by replacing
all outer joins with regular inner joins.

For each experiment, we measured the maintenance
costs both with a warm buffer pool and with a cold buffer
pool. The trends are quite similar so we only report the re-
sults with a cold buffer pool.

In the first experiment, we created an outer join view
of the tables customer, orders, lineitem, part, as shown
below. The corresponding core view contained inner joins
of the four tables with the same join predicates. Both views
had the same indexes.
create view V3 as
select l orderkey, l linenumber, l quantity,

l extendedprice, l shipdate, l returnflag,
o orderkey, o orderdate, o clerk,
c custkey, c nationkey, c mktsegment,
p partkey, p type, p retailprice

from ((select * from lineitem, orders
where l orderkey=o orderkey and
o orderdate between ’1994-06-01’ and ’1994-12-31’) lo

right outer join customer
on c custkey = o custkey)

full outer join part
on l partkey=p partkey and p retailprice < 2000

create unique clustered index V4 clu on
V4(c custkey, p partkey, l orderkey, l linenumber, o orderkey)

create index V4 idx on
V4(p partkey, c custkey, l orderkey, l linenumber, o orderkey)

Term COLP COL C P

Cardinality 5208168 131702 184224 789131
Rows affected 4863 128 323 346

Table 1. Terms in view V3 and rows affected
when inserting 60,000 lineitem rows

The normal form of view V3 contains four terms with the
cardinalities shown in Table 1. Because of the foreign key
constraint between lineitem and orders, insertion or dele-
tion of order rows does not affect the view. When inserting
(or deleting) customer rows, due to a foreign key constraint
between orders and customer, we only need to add (or
delete) the customer in the view. The resulting maintenance
overhead for the view is very small and not reported here.
Inserting or deleting customer rows or part rows has no ef-
fect on the core view.

However, updating lineitem can affect all four terms.
The last line in Table 1 shows the number of rows affected
when inserting 60, 000 rows into lineitem. The mainte-
nance steps for V3 after an insertion into lineitem are listed
below. The table Inserted contains all the rows that were
inserted into the lineitem table. Maintaining the view in
case of deletion is similar but we omit the details due to
lack of space.
Q1: Compute primary delta
insert into #delta1
select l orderkey, l linenumber, l quantity,

l extendedprice, l shipdate, l returnflag,
o orderkey, o orderdate, o clerk,
c custkey, c nationkey, c mktsegment,
p partkey, p type, p retailprice

from ((select * from inserted, orders, customer
where l orderkey=o orderkey and
c custkey = o custkey and
o orderdate between ’1994-06-01’ and ’1994-12-31’) lo

left outer join part
on l partkey=p partkey and p retailprice < 2000

Q2: Apply primary delta
insert into V3
select * from #delta1

Q3: Update term C
delete from V3
where o orderkey is null and l orderkey is null
and p partkey is null
and c custkey in (select c custkey from #delta1)

Q4: Update term P
delete from V3
where c custkey is null and o orderkey is null
and l orderkey is null
and p partkey in (select p partkey from #delta1)

Figure 5 compares the maintenance cost of view V3 with
those of the corresponding core view when inserting 60,
600, 6,000 and 60,000 rows, respectively. The costs for the
outer-join view are virtually the same as for the core view –
the overhead for fixing up the P and C terms is very low.

0

40

80

120

160

200

60 600 6000 60000

LINEITEM Records Inserted

E
la

p
se

d
 T

im
e

(s
ec

o
n

d
s)

Core View Outer Join View Outer Join View (GK)

0

50

100

150

200

250

60 600 6000 60000

LINEITEM Records Deleted

E
la

p
se

d
 T

im
e

(s
ec

o
n

d
s)

Core View Outer Join View Outer Join View (GK)

(a) Insertion (b) Deletion

Figure 5. Maintenance costs for V3

The results for Griffin’s and Kumar’s (GK) algorithm [2]
are also shown in Figure 5. Their maintenance expressions
are quite complex. Their performance is similar to ours
when the number of insertions is very small, but deteriorates
dramatically with more insertions. For deletions their per-
formance is much worse than ours. Gupta’s and Mumick’s
algorithm [5] was not included in the experiment because it
may produce an incorrect result.

These experiments show that our algorithms generate
very efficient maintenance expressions. As a consequence,
maintaining an outer-join view need not be more expensive
than maintaining an inner-join view.

8 Related Work
It is well understood how to incrementally maintain

views with inner joins. References [4] and [3] provide good
overviews of the large body of work in this area. Much work
has also been done on optimization of outer-join queries; for
details see [9] and its references.

We are aware of only two earlier papers that describe al-
gorithms for incremental maintenance of outer-join views.
Griffin’s and Kumar’s algorithm [2] produces maintenance
expressions of the correct form but they are incomplete be-
cause the predicates of the semi and anti-semi joins used
are not specified. Getting the predicates right is not triv-
ial. The experiments reported in Section 7 showed that their
approach is significantly more expensive than ours. Their
algorithm consistently produces maintenance expressions
that are more complex and more expensive than ours. The
main reasons are that (a) their expressions may involve joins
of base tables only and may produce large intermediate re-
sults; (b) their expressions never exploit the view itself, ev-
erything is computed from base tables and (c) null-rejecting
predicates and foreign keys are not exploited to deduce what
terms are unaffected so (empty) deltas for many terms may
be computed unnecessarily.

Gupta’s and Mumick’s algorithm [5] assumes than each
directly affected tuple can subsume at most one indi-
rectly affected tuple, which is incorrect. We can illus-
trate the problem using view oj view from the introduc-
tory section. The view contains tuples of three types only:
{part, orders, lineitem}, part, and orders. Suppose we
insert a new lineitem tuple. This causes insertion of a new
{part, orders, lineitem} tuple into the view. However, the

new tuple may force removal of both an orphaned part tu-
ple and an orphaned orders tuple from the view. This hap-
pens if the new lineitem tuple is the first line item of the
order and nobody has ordered this particular part before.
Gupta’s and Mumick’s algorithm would modify one of the
tuples but not delete the other one, leaving the view in an
incorrect state. It wrongly assumes that that the view also
contains {part, lineitem} and {orders, lineitem} terms.
This flaw in the algorithm appears to be fundamental and
not easily fixable.

9 Conclusion
We introduced an efficient incremental maintenance pro-

cedure for materialized outer-join views. Efficient incre-
mental maintenance expressions are constructed for such
views. The expressions are composed of regular algebraic
operators – no new operators are needed. Exploiting a nor-
mal form and subsumption graphs enables us to precisely
identify which terms are affected and how to maintain them,
and therefore avoid unnecessary work. If foreign key con-
straints are available, they are also exploited to simplify
maintenance. Experimental results show that maintaining
an outer-join view is not necessarily more expensive than
maintaining an inner-join view.

One direction for future work is to investigate even more
efficient ways to compute ∆V I . It may be possible to com-
bine (parts of) the computations for the different terms, for
example, by exploiting outer joins or by saving and reusing
partial results.

References

[1] C. Galindo-Legaria. Outerjoins as disjunctions. In SIGMOD
Conference, 1994.

[2] T. Griffin and B. Kumar. Algebraic change propagation for
semijoin and outerjoin queries. SIGMOD Record, 27(3):22–
27, 1998.

[3] A. Gupta and I. S. Mumick. Maintenance of materialized
views: Problems,techniques, and applications. Data Engi-
neering Bulletin, 18(2), 1995.

[4] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintain-
ing views incrementally. In SIGMOD Conference, 1993.

[5] H. Gupta and I. S. Mumick. Incremental maintenance of
aggregate and outerjoin expressions. Information Systems,
31(6), 2006.

[6] P.-Å. Larson and J. Zhou. View matching for outer-join
views. In VLDB Conference, 2005.

[7] P.-Å. Larson and J. Zhou. Maintenance of materialized
outer-join views. Technical Report (to appear), Microsoft
Research, 2006.

[8] Oracle Corp. Oracle Database Data Warehousing Guide
10g Release 2, 2006. http://download-west.oracle.com
/docs/cd/B19306 01/server.102/b14223/basicmv.htm.

[9] J. Rao, H. Pirahesh, and C. Zuzarte. Canonical abstraction
for outerjoin optimization. In SIGMOD Conference, 2004.

[10] Transaction Processing Performance Council. TPC
Benchmark H, (Decision Support), Revision 2.3.0, 2005.
http://www.tpc.org/tpch/spec/tpch2.3.0.pdf.

