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Abstract 
The rapid progress in the creation and circulation of deepfaked media has led to the need for countering the 
same. While existing implementations have constantly been improving in detecting deepfakes globally, 
little effort is being taken into considering the effects of deepfake detectability in different affinity groups 
differentiated by race, sex, etc. To deal with this, this paper discusses in length a robust deepfake detection 
system, that improves upon previous implementations that is trained on an unbiased global dataset, and a 
comparative analysis performed on deepfake videos of people differing in affinity groups such as race and 
sex. The system utilizes two streams for the detection. The first stream analyzes the semantic details of the 
given face in question, while the other analyzes the noise features using Spatial Rich Model (SRM) filters. 
By passing multiple frame inputs simultaneously, it also accounts for the temporal features of the video in 
question. Results of the experiment indicate differences in deepfake detectability of different affinity 
groups. 

1. Introduction 
Deep learning has been successfully applied to unravel various complex problems starting from 
big data analytics to computer vision and human level control. Although the benefits are high, it 
has also been employed to make software which will cause threats to privacy, democracy and 
national security. Deepfake (from ‘deep learning’ and ‘fake’) is a technique that, using deep 
learning, can superimpose facial images of a target to any media of a source person to create media 
of the target doing or saying things the source person does. Deepfake algorithms can create fake 
images and videos that humans cannot distinguish from authentic ones. These models are used to 
examine facial expressions and movements of a person and synthesize facial images of another 
person making analogous expressions and movements. Deepfake methods normally require a large 
amount of image and video data to train models to create photo-realistic images and videos. The 
proposal of technologies that can automatically detect and assess the integrity of digital visual 
media is therefore indispensable. 
 
Figure 1.1 shows an example of how deepfakes work. The first image shows the donor person, 
who in the case of a deepfake attack will be the victim. The second image is the target person, 
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where the donor person’s face will be superimposed upon. The last image showcased the final 
deepfake result. As one can see, the third image, although is a synthetic fake image generated, 
looks very realistic to the naked eye. If the first two images weren’t there, it would be hard to know 
that the third image is a fake. 
 

 
Figure 1.1 Example of a Deepfaked Image 

 
Even though there are positive uses of deepfakes such as creating voices of those who have lost 
theirs or updating episodes of movies without reshooting them, the number of malicious uses of 
deepfakes largely dominates that of the positive ones, a prevalent use being tampering of 
evidence/faking evidence. Another example is compromising the credibility of the media the 
general public loses their trust in journalism and other forms of reliable sources of news, like create 
sexually compromising videos to blackmail people, or building fake-news campaigns to 
manipulate public opinion. In the long run, it may also reduce trust in journalism, including serious 
and reliable sources. Finding the truth in the digital domain therefore has become increasingly 
critical and there is a need in society to detect deepfakes.  
 
There have been numerous methods proposed to detect Deepfakes. Over the years, we have seen 
improvements in the methodologies employed using deep learning. However, it is noticeable that 
there is minimum work done in studying and observing the trends of deepfake detection based on 
different affinity groups such as race, sex, etc. It is well known that in the field of facial detection 
there are some disparities when it comes to detecting people from different affinity groups. The 
same can be considered as the hypothesis for the deepfake detection problem. 
 
The primary purpose of this project is to deal with the deepfake problem from a new angle. While 
work in deepfake have been purely technical, there haven’t been any analytical angles based on 
inferences being undertaken. By performing an analysis and observing the effects of deepfake 
detection with various affinity groups, we can hope to obtain new information that can be further 
used to train better models to better deal with the observed results. Additionally, we can also 
identify errors in training that we have been employing previously to better train existing systems 
to yield better results. 
 
The proposed system describes a new deep learning-based method that can effectively distinguish 
deepfaked media from the real ones, and using this system to perform a comparative analysis of 
deepfake detection taking actors from different affinity groups (based on race and sex), and find if 
there are any significant observations.  
 
The link for the project files can be found here. 
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2. Methods 
The proposed system is one that utilizes a dual stream network: one stream which takes in a regular 
facial image to extract the semantic features of the image and another stream which converts the 
facial image into a noise map by passing it through a series of SRM filters, and passes it through 
the deep learning model. The system takes in video inputs and hence there is a module to extract 
time separated frames from the video to account for the temporal features of the input. Figure 2.1 
shows the overall system architecture of the proposed system (the pink color indicates that 
modifications were made from previous implementations). 
 

 
Figure 2.1 Overall Architecture Diagram 

 
The proposed method has the following modules: 

1. Frame Selection 
2. ROI Extraction 
3. Dual Stream Network Construction 
4. Deepfake Classification 

 
The proposed system includes the Frame Selection module to generate the frames from the input 
video by sampling with a certain number. The obtained frames are further pre-processed using 
libraries to generate images that have been aligned and cropped (ROI Extraction). The system has 
two streams which would be fused towards the end to generate a combined result to obtain the 
final results (Dual Stream Network Construction). The outputs from the first stage would be sent 
as input to the two streams in the system. Once the outputs are obtained from each stream, a 
weighted average would be taken to obtain the final confidence value along with the classification 
of the type of input (Deepfake Classifier). 
 

2.1. Frame Selection 
The Frame Selection module can also be considered as the preprocessing module of the proposed 
system. As the name suggests, this module is responsible for the selection of important frames in 
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order to account for the spatial features of each frame and the temporal information between the 
frames for the overall video. Figure 2.2 shows the sequential flow of the module. 
 

 
Figure 2.2 Frame Selection 

 
To understand the flow of this module better, Pseudocode 1 explains the working of the module 
from the input to the output. 
 
Pseudocode 1 Frame Selection 

 
 

 
Figure 2.3 Sample Example of the Frame Selection Algorithm 

 
The user initializes the number of segments the video must be split into (‘K’) and the number of 
subsegments that must be considered for frame sampling (‘T’). From each of these subsegments a 
frame is randomly sampled using a generator function, The K segments will be parallelly processed 
to account for the temporal data, while the T subsegments will be processed together and will not 
account for the time sensitive information. Figure 2.3 shows an example where K=3 and T=1. 
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Figure 2.4 Sample Videos from Dataset 

 
The dataset consists of videos of length varying from 10 seconds to 50 seconds (Figure 2.4 shows 
examples). Due to the variable length when the module splits the video, it must be ensured that it 
extracts valuable information regardless of the length. Hence, 8 is chosen as the number of 
segments K. In doing so, segments having lengths of approximately 1-6 seconds are obtained, 
which is the right amount of length to account for the temporal details. 
 

 
Figure 2.5 Segmentation and Frame Selection 

 
For the sake of computational complexity, the number of subsegments is set to 1, and thus, the 
module only extracts 1 from each segment. Figure 2.5 shows a simplistic real time example of the 
working of the Frame Selection module.  
 
2.2. ROI Extraction 
Passing the entire frame as a network may provide a lot more unnecessary features for the network 
to handle. Hence to make the network more effective, this module identify and extract the Region 
of Interest. For a Deepfake application, the region of interest would be the face. Hence this module 
is aptly named the ROI Extraction module. Figure 2.6 shows the sequential flow of the module. 
 

Figure 2.6 ROI Extraction 
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Pseudocode 2 Face Detection, Extraction & Alignment 

 
 
To extract the ROI, the module utilizes face detection and image cropping methods such as image 
alignment and image extraction. For the Face Detection, Dlib library is used. To be more specific, 
the Max Margin Object Detection (MMOD) Face Detector is utilized for detecting the faces from 
the videos. The system then bounds the face with a viable rectangle based on the identified facial 
features. If the rectangles are not viable (i.e., partial or overlapping), it is discarded. There 
detections are then cropped and matched to the input size of the main networks. The working of 
this module can be better understood by understanding Pseudocode 2. 
2.2.1 Face Detection 
As mentioned above, the model uses the Dlib MMOD Face Detector in order to identify the facial 
landmarks of the given video. This face detector is used in particular as it yields better results with 
video frames compared to other face detectors. It also gives 68 different facial landmarks that can 
be used for the alignment of the facial image in the next step. 
 
On detecting a face, using the facial features and the artifacts identified by the Face Detector. The 
model then places a rectangular box over the identified faces, to mark the boundaries of the 
extraction. However, the face is not extracted just yet, but only after it is passed to the next 
submodule. Figure 2.7 shows the rectangle being drawn on the identified face. 
 

 
Figure 2.7 Rectangle to Show Detected Face 
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2.2.2 Face Extraction and Alignment 
The model uses the facial artifacts that were found from the previous step and using those, the 
system aligns the face and crops it in a symmetric manner. In the proposed system, the line of the 
eye is made to be exactly horizontal (parallel to the top and bottom edge of the image). 
 
All the extracted faces are saved onto the project directory along with all intermediate outputs 
(such as the frames, the rectangle drawn to identify the face, etc.). Figure 2.8 shows the final output 
of the ROI Extraction module. 
 

 
Figure 2.8 Face Extraction/Alignment 

 
2.3. Dual Stream Network Construction  
After ROI Extraction, the extracted faces are fed into the Dual Stream Network Construction 
module. The two streams are as follows: 

1. RGB Stream – it directly uses the extracted faces as inputs which learns semantic features 
of the input image. The extracted facial images act as the input for this stream and there is 
no additional preprocessing required. Figure 2.9 shows the sequential flow of the RGB 
Stream network. 

 

 
Figure 2.9 RGB Stream Construction 

 
2. SRM Stream – SRM inputs are SRM noise maps learned through SRM filters applied on 

the extracted faces. Therefore, some SRM filters must be defined which would be best 
suited for this problem, and use that to acquire the noise map, which will be passed to the 
model. Figure 2.10 shows the sequential flow of the SRM Stream network. 

 

Figure 2.10 SRM Stream Construction 
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Figure 2.11 Dual Stream Network Construction (Overview) 
 
The network for both is similar, however, the inputs and features extracted vary. Both streams are 
trained individually (due to GPU limitations) with both the training set and the validation set. Once 
both networks have been trained, the two streams are fused and when it is passed to the classifier 
both models play a role in the final classification. 
2.3.1. RGB Stream 
Once the ROI Extraction module extracts the faces from all segments of the video, it is all placed 
together in a single folder. This is then passed as the RGB Stream Network input. Figure 2.12 is 
an example of the RGB input. 
 

 
Figure 2.12 Input for RGB Stream 

 
This stream is named the RGB stream simply to differentiate between the SRM stream. RGB is 
used to indicate that the pixels of this image correspond to the original RGB channel image without 
any further processing. 
2.3.2. SRM Stream 
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Figure 2.13 SRM Filters to Obtain Noise Maps 

 
The RGB Stream is duplicated and each image is passed through a series of filters known as 
learnable SRM filters. The model uses the SRM filters shown in Figure 2.13 as they have been 
proven to be effective in identifying the noise features that differentiate between real and face 
images. These were selected using Han et al. method as a reference. 
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Figure 2.14 Applying the SRM Filters 

 
As shown in Figure 2.14, the noise map of the facial image is obtained. This process is repeated 
for all the extracted faces present from the input video passed to the proposed system. The system 
saves the noise maps again in a folder similar to the RGB Stream. This is now the input of the 
SRM Stream Network, as shown in Figure 2.15. 
 

 
Figure 2.15 Input for SRM Stream 

 
2.3.3. Model Construction  
This step involves the creation of the model that is planned to use in the proposed system. 
XceptionNet pretrained on ImageNet is used as the backbone network for both the RGB model 
and the SRM model. Both stream networks are trained in a similar fashion, with the only difference 
being the input. Figure 2.16 shows the structure of XceptionNet. 
 

 
Figure 2.16 XceptionNet Architecture 
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XceptionNet consists of 14 convolutional blocks, which can be divided into three sections. The 
first 4 blocks are a part of the Entry flow. This is responsible for simplifying the image for the 
computer to better understand the objects present in the network. The next 8 blocks are a part of 
the Middle flow which is primarily responsible for extracting the features required for the problem 
at hand. The last 2 blocks are a part of the Exit flow, and their primary goal is to reduce the features 
extracted into simpler numerical values that can be interpreted more easily for classification/ 
human understanding. 
 
For the proposed system, the Entry flow is frozen, as the model is not being trained to recognize 
the objects in the picture better. Training this section will be time consuming for less benefit. 
Hence, the focus is on training both the Middle flow and the Exit flow. The first 36 layers of 
XceptionNet (that is, the first 4 blocks) are frozen to achieve the same. 
 
As XceptionNet was initially trained on ImageNet, the final output layer consists of 1000 nodes 
representing the 1000 classes of the ImageNet database. That layer must be removed and add a 
new output layer with simply 1 node, to accommodate the binary classification problem. 
2.3.4. Model Training 
Creating the dataset for the training of the modules must be known. For that the videos of the 
FaceForensics++ dataset is used, and applied with both the Preprocessing (Frame Selection, with 
3 segments) and ROI Extraction to obtain facial images. The models are trained with these images. 
For the RGB network the images are fed as is, while for the SRM network the SRM filters are 
applied before passing it through the network. 
The system then places the real and deepfake image data in separate folders under a folder called 
data. This important for flow from directory. The pixel values in the image data exist in the range 
between 0 and 255. large integer coefficients like this complicate gradient descent when using 
typical learning rates so the next step is to scale the data by a factor of one divided by 255 that way 
the pixel values fall into the range from zero to one. Then instantiate the image data generator that 
rescales the images and instantiate generator to feed images through the network. 
 
The training is implemented on this model using the following parameters: 

• Adam Optimizer (learning rate = 0.001) 
• Batch Size = 32 
• Epochs = 10 
• Training Steps per Epoch = 160 
• Validation Steps per Epoch = 40 

 
The following values are set because of the dataset size. It divides into 200 batches of size 32 (160 
batches belonging to training while 40 belonging to validation). Each batch will run in one step of 
an epoch and hence why the following values are set. 32 is set as the batch size as it makes training 
the model a lot faster and it stops at 10 epochs because it is observed that after that, there were 
indications of overfitting. 
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2.4. Deepfake Classification 
After training the model, the network can be put to the test using the videos from the testing set. 
One video is tested at a time in the Deepfake Classification module. The CNN Classifier has the 
trained weights loaded and the extracted face images from the ROI Extraction module are passed 
as input to the Classifier. The entire sequential flow of the Deepfake Classification module is seen 
in Figure 2.17. 
 
For the classification, each segmented frame values are taken and is passed individually through 
the Classifier to find out the model output of that particular facial image. This process is repeated 
for all the other segmented frames for both the streams in the system. For each stream, all the 
values are aggregated for a segmentally fused value. Equation 2.1 shows the segmental fusion for 
the RGB Stream, while Equation 2.2 shows the segmental fusion for the SRM Stream. Equation 
2.3 shows the two-stream fusion in a simplistic manner. 
 

  
Figure 2.17 Deepfake Classification 

 
𝐹! = 𝐹((𝐼!"⊙𝑊!), (𝐼!#⊙𝑊!), … , (𝐼!$ ⊙𝑊!))     (2.1) 
𝐹% = 𝐹((𝐼%"⊙𝑊%), (𝐼%#⊙𝑊%), … , (𝐼%$ ⊙𝑊%)     (2.2) 
𝑃 = 𝐻(𝜎(𝐹!), 𝜎(𝐹%))         (2.3) 

 
FR – RGB Segmental Fusion 
FS – SRM Segmental Fusion 
P – Two Stream Fusion 
⊙ – Convolution Function 
σ – Sigmoid Function 

 
Fusion between the two streams happens by the Weighted Sum method with the RGB stream 
getting a weightage of 1, and the SRM stream getting a weightage of 1.5. The model then classifies 
the output based on the final confidence value. Equations 2.4 and 2.5 show us the weighted sum 
of both streams for the problem statement that is deepfake detection. This added weightage is given 
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to the SRM stream as the noise maps generated by the SRM filters capture more detail and noise 
interference when it comes to tampering with the image. 
 

𝐻(𝐹! , 𝐹%) = (𝐹! × 𝑤!) + (𝐹% × 𝑤%)       (2.4) 
𝑤! = 1,𝑤% = 1.5 

𝐻(𝐹! , 𝐹%) = (𝐹! × 1) + (𝐹% × 1.5) = 𝐹! + 1.5𝐹%     (2.5) 
 
For the classification,  the fully trained and tested models for both the RGB stream and the SRM 
stream are required. 
2.4.1. RGB Stream 
For the RGB stream, as the number of segments is set as 8, all 8 images from the segments are 
passed into the model, and acquire the confidence values for each picture passed through the 
model. The system then needs to display the model outputs for each of the 8 segments’ facial 
image. It can do this using the pyplot function in python and simply print the image along with 
model confidences under it. Figure 2.18 shows an example of the individual confidence values of 
the RGB stream. 
 

 
Figure 2.18 RGB Stream Confidence Values 
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2.4.2. SRM Stream 
Similar to the RGB stream, the same is done for the SRM stream. As the number of segments is 
set as 8, all 8 images from the segments are passed into the model, and acquire the confidence 
values for each picture passed through the model. The system then needs to display the model 
outputs for each of the 8 segments’ facial image. It can do this using the pyplot function in python 
and simply print the image along with model confidences under it. Figure 2.19 shows an example 
of the individual confidence values of the SRM stream. 
 

 
Figure 2.19 SRM Stream Confidence Values 

 
2.4.3. Dual Stream Fusion 
The model first needs to aggregate the individual streams’ confidence value. This can be achieved 
by taking simple averaging. Once the system has the segmentally fused value of both the RGB and 
SRM stream, it now does the weighted sum to aggregate those two values to finally obtain the final 
confidence value for classifying the input video. Equation 2.5 is used to obtain the two-stream 
fusion value. If the final value is greater than 0.5, then it is classified as real, else it is a deepfaked 
video. Hence, the prediction on the video is made using this final confidence value. 
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3. Experiments 
Now that we have gone into depth on the methodology of the proposed system, now it is time to 
describe the experiments that we will be conducting. 
 
We first talk about the datasets used in this project. In summary, we use the FaceForensics++ 
dataset to train and test the proposed system, and use the DeeperForensics 1.0 dataset (derivative 
of FaceForensics++) to conduct our affinity group-based experiments. 
 
We then discuss the performance of the proposed dual stream network, and compare it with 
previous methodologies to see how it performs in comparison. 
 
Then we conduct two experiments based on affinity groups. In the first experiment, we take an 
equal sample of actors from different races and sexes who have been superimposed onto news 
videos (DeeperForensics 1.0), and compare the detectability of deepfakes among the various 
groups. For the second experiment, we dive deeper into the disparity between sexes and this time, 
we also account for the difference in source person. That is, we check for the sex of both the source 
and the target actors of the deepfaked video, and try to see if there are any disparities within the 
groups. 
 
3.1. Dataset Description 
3.1.1. FaceForensics++ 
For the implementation of the proposed system, the network models were trained and tested with 
the FaceForensics++ Dataset. FaceForensics++ is a forensics dataset consisting of 1000 original 
video sequences that have been manipulated with five automated face manipulation methods 
namely:  

1. DeepFakes 
2. Face2Face 
3. FaceSwap 
4. NeuralTextures 
5. FaceShifter  

In other words, each of the 1000 real videos have been manipulated by these 5 face manipulation 
methods. Giving the total of 5000 deepfaked videos (1000 of each type). Table 3.1 shows the 
number of videos under each type. Note that although there are 5 different manipulation 
techniques, they are all deepfaked media and hence the model should also classify them as 
deepfake as well. 
 

Table 3.1 Dataset Description 
Manipulation Technique Classification No. of Videos 
No manipulation Real 1000 
DeepFakes Deepfake 1000 
Face2Face Deepfake 1000 
FaceSwap Deepfake 1000 
NeuralTextures Deepfake 1000 
FaceShifter Deepfake 1000 
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The data has been sourced from 977 YouTube videos and all videos contain a trackable mostly 
frontal face without occlusions which enables automated tampering methods to generate realistic 
forgeries. Figure 3.1 shows a few sample snapshots from the FaceForensics++ Dataset. The dataset 
can be accessed from the below link: 
 
https://www.kaggle.com/sorokin/faceforensics 
 

 
Figure 3.1 Sample Snapshots from the FaceForensics++ Dataset 

 
3.1.2. DeeperForensics 1.0 
DeeperForensics 1.0 is a derivative of FaceForensics++, where the owners of the dataset got 100 
actors of varying ethnicities and affinity groups to record under different emotions, lighting and 
circumstances. This dataset consists of over 60000 videos, 10 times larger than any comparable 
dataset. This dataset accounts for the diversity that is typically lacking in other datasets. That is, 
for each of the 1000 videos, there are an additional 60 deepfakes created based on different actors 
chosen at random. 
 
Given the fact that we know the actors who were superimposed onto the source video, we can then 
use the actor information such as their race and sex, to divide the dataset into videos of deepfake 
based on different groups of people. This dataset has both sexes (Male and Female) and has actors 
from four broad racial categories (Caucasian, Asian, Brown, Black). We use this to our advantage 
for the affinity group based comparative analysis. 
 
The actor information is anonymous, so manual tagging for the skin tone was necessary. However, 
the sex information was provided by the dataset. Once we mapped all actors to the skin tone, we 
then form groups and we can use this for the analysis. Figure 3.2 shows how the dataset was created 
using the actors hired. The dataset can be accessed from the below link: 
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https://github.com/EndlessSora/DeeperForensics-1.0 
 

 
Figure 3.2 DeeperForensics 1.0 Dataset 

 

3.2. Performance Evaluation of Network 
3.2.1. Evaluation Metrics 
The output obtained from the proposed system can be categorized into four categories (assume 
that Deepfake video is ‘negative’ and Real video is ‘positive’): 

1. Real predicted as Real (TP) 
2. Deepfake predicted as Deepfake (TN) 
3. Real predicted as Deepfake (FN) 
4. Deepfake predicted as Real (FP) 

 
Using this as reference, the Classifier model has been evaluated using the following performance 
metrics: 
 
Accuracy:  the proportion of true results (both true positives and true negatives) among the total 
number of cases examined (Equation 3.1). 
 
        𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 &'(&)

&'(&)(*'(*)
        (3.1) 

 
Precision: (also called positive predictive value) - the fraction of relevant instances among the 
retrieved instances (Equation 3.2). 
 
     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 &'

&'(*'
                    (3.2) 

 
Recall: (also known as sensitivity) - the fraction of the total amount of relevant instances that were 
actually retrieved (Equation 3.3). 
 
        𝑅𝑒𝑐𝑎𝑙𝑙 = 	 &'

&'(*)
                    (3.3) 

 
F1-score: - the weighted harmonic means of the test's precision and recall (Equation 3.4). 
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    𝐹"	𝑆𝑐𝑜𝑟𝑒 = 2 ×	'+,-./.01×!,-344
'+,-./.01(!,-344

=	 #&'
#&'(*'(*)

                  (3.4)            
                             
The four aforementioned evaluation metrics are a standard for any binary classification problem. 
 
3.2.2. RGB Network 
After training the RGB model, the training and validation losses are identified for each epoch that 
the model trained for, and it is plotted in terms of a graph. As you can see from Figure 3.3 the 
losses decrease every epoch and tapers towards the end. If the model was trained for more epochs, 
there would not be any significant differences in the reduction of loss. 
 

 
Figure 3.3 Losses vs. Epochs for RGB Model 

 
With the use of the sklearn classification report, the performance measures mentioned above can 
be calculated. Figure 3.4 shows a snapshot of the classification report generated for the RGB 
model. 
 

 
Figure 3.4 Classification Report for RGB Model 

 
Additionally, a confusion matrix can be plot for the same as well. To visually understand it better, 
it can be plot in the form of a heatmap. By doing so, simply visualizing the diagonals of the matrix, 
it confirms that the model is working as it was intended. Figure 3.5 shows the confusion matrix 
heatmap plotted for the RGB model. The correctly predicted boxes are darker, while the incorrectly 
predicted boxes are lighter in shade. 
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Figure 3.5 Confusion Matrix for RGB Model 

 
The accuracy is also calculated manually to confirm the robustness of the model. Using Equation 
3.1 the RGB model gives an accuracy of 89.42% which a good accuracy percentage. 
3.2.3. SRM Network 
After training the SRM model, the training and validation losses are identified for each epoch that 
the model trained for, and it is plotted in terms of a graph. As you can see from Figure 3.6 the 
losses decrease every epoch and tapers towards the end. If the model was trained for more epochs, 
there would not be any significant differences in the reduction of loss. 
 

 
Figure 3.6 Losses vs. Epochs for SRM Model 

 
With the use of the sklearn classification report, the performance measures mentioned above can 
be calculated. Figure 3.7 shows a snapshot of the classification report generated for the SRM 
model. 
 

 
Figure 3.7 Classification Report for SRM Model 
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Additionally, a confusion matrix can be plot for the same as well. To visually understand it better, 
it can be plot in the form of a heatmap. By doing so, simply visualizing the diagonals of the matrix, 
it confirms that the model is working as it was intended. Figure 3.8 shows the confusion matrix 
heatmap plotted for the SRM model. The correctly predicted boxes are darker, while the incorrectly 
predicted boxes are lighter in shade. 
 

 
Figure 3.8 Confusion Matrix for SRM Model 

 
The accuracy is also calculated manually to confirm the robustness of the model. Using Equation 
3.1 the SRM model gives an accuracy of 90.88% which a better accuracy percentage. 
3.2.4. Analysis  
Table 3.2 consists of all the necessary performance metrics that the model has tabulated. From this 
it can be seen that the model has very good accuracy and can be used in real world applications. 
One area of improvement must be the Deepfake Recall, which indicates that some Deepfaked 
videos are being identified as real. Although this count is low, it is important to consider in the 
future. 
 

Table 3.2 Evaluation Metrics Obtained from Proposed Architecture 
Implementation Accuracy Precision 

(Real) 
Precision 

(Deepfake) 
Recall 
(Real) 

Recall 
(Deepfake) 

F1-Score 
(Real) 

F1-Score 
(Deepfake) 

RGB Stream 89.42% 87.89% 91.07% 91.43% 84.40% 89.63% 89.20% 
SRM Stream 90.88% 90.02% 91.79% 91.97% 89.80% 90.98% 90.78% 
RGB+SRM* 91.07% 90.24% 91.93% 92.10% 90.03% 91.16% 90.97% 

*The scores were aggregated by weighted sum (1:1.5, RGB: SRM) 
 
From the given table, it can be seen that while the individual Stream Networks are quite robust on 
their own, the fusion of the two streams provides far better robustness and added flexibility. It is 
for this reason that the dual stream methodology was employed in this implementation. As it is 
easier to visualize data in the form of charts, Figure 3.9 shows the performance metrics of both the 
streams individually (blue and orange) and together (grey).  
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Figure 3.9 Evaluation Metrics from Proposed Architecture 

 
Evidently, the grey bar is the tallest with respect to all performance measures. It is also noticeable 
that the SRM stream on its own, performs better than the RGB stream on its own, which further 
supports the reasoning for adding more weightage to the SRM stream outputs. 
 
In order to understand how well a system works, it must be compared to other similar applications 
and methodologies to view how the proposed system is an improvement. When compared to the 
previous implementations and solutions to the Deepfake detection problem, the proposed 
methodology has shown considerable improvements in terms of accuracy, and general 
interpretability of the CNN model. As shown in Table 3.3, the proposed system is compared you 
with nine existing implementations. 
 

Table 3.3 Comparison of Proposed System with Existing Methods 
Methodology Frames Extracted Accuracy (%) 
Bayar and Stamm 1 70.01 
MesoNet 1 75.65 
I3D 8 81.42 
XceptionNet 1 85.49 
TSM 24 (i.e., 3x8) 86.07 
CapsuleNet 8 88.04 
TwoStream-LightCNN 8+8 87.86 
TwoStream-Res101 8+8 88.21 
TwoStream-Xception (previous) 8+8 90.36 
Proposed System 8+8 91.07 

 
The table also showcases the number of frames extracted for the implementation of the 
methodology. It is evident that choosing 8 frames to be extracted was the right call, and is backed 
by successful previous implementations. In order to visualize the improvement in the method, 
Figure 3.10 depicts the information in Table 3.3 in the form of a bar graph. As you can see below, 
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out implementation (towards the end in orange) has the highest accuracy of 91.07%. Although the 
improvement is not that much higher than the previous method, as the trend of the bar graph may 
show, an increase by even 1% is significant. 
 

 
Figure 3.10 Comparative Analysis of Accuracy 

 
Additionally, the model can be successfully deployed to detect deepfakes created by more 
techniques. While previous implementations have only shown success in detecting morphed faces 
created by DeepFakes, Face2Face and FaceSwap, the proposed methodology additionally 
differentiates well for Neural Textures and FaceShifter as well. This was shown when seeing the 
test cases pass through the model. 
 
3.3. Comparative Analysis of Different Affinity Groups 
3.3.1. Experiment 
For the first experiment, as mentioned earlier, we take equal deepfake videos from various affinity 
groups and pass them through the Deepfake Detection system, and see how many are correctly 
identified as deepfake. Here, we consider only the affinity group of the source actor irrespective 
of the target actor. We are able to do this due to the knowledge of each individual actor 
superimposed onto a video from the FaceForensics++ dataset (known as the DeeperForensics 1.0 
dataset). We don’t have the same information for the target actor, as the source videos are from 
FaceForensics++ dataset, which does not contain such information and is harder to tag manually. 
 
We consider two different attributes when distributing the actors between the affinity groups: 

• Race/Skin Tone: 
o Caucasian 
o Asian 
o Brown 
o Black 

• Sex/Gender: 
o Male 
o Female 
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While the actors were tagged with their respective sex, the same cannot be said for the race. Hence, 
manual tagging was performed for all 100 actors. 
 
Using the two categories, we can form eight affinity groups (simply a cross product of the elements 
of each attribute). We randomly sample 500 videos for each category from the DeeperForensics 
dataset for a total of 4000 deepfaked videos. These videos were then passed through the network 
and classified as either Deepfake or Real. For a correctly classified video, the classification must 
be Deepfake. 
 
We then note down the results of the prediction in the form of percentage correctly identified as 
deepfake. As the number of videos of each group is the same, we will have comparable results. 
3.3.2. Results 
All 4000 videos have been passed through the network and the following results were obtained 
based on the eight different affinity groups as shown in Table 3.4: 
 

Table 3.4 Prediction Accuracy of the Different Affinity Groups 
             Race 
Sex Caucasian Asian Brown Black Total 

Male 92.2 90.2 95.2 94 92.9 
Female 91 85.2 88.6 91.4 89.05 
Total 91.6 87.7 91.9 92.7 90.975 

*All values are in % 
 

To better understand these results, let us take a glance at Figure 3.11. It is the graphical 
representation of the prediction accuracy of each of the eight affinity groups. As shown, the group 
that had the highest prediction rate were ‘Brown Male’ with 95.2%, while the group with the lowest 
prediction rate were ‘Asian Female’ with 85.2%. That is a 10% gap in prediction accuracy among 
the two groups. 
 

 
Figure 3.11 Prediction Accuracy of the Different Affinity Groups 
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Taking just race as the differentiating attribute, we obtain the graph as shown in Figure 3.12. The 
values were obtained by considering both Male and Female groups as one single group for each 
race. As we can observe, the group that had the highest prediction rate were ‘Black’ with 92.7%, 
while the group with the lowest prediction rate were ‘Asian’ with 87.7%. It is also worth noting 
that the other two groups have values above 91% (i.e., closer to the highest value than the lowest 
value). In other words, the lowest racial group is significantly lower than the other groups. 
 

 
Figure 3.12 Prediction Accuracy of the Different Races 

 
Similar to above, we can take just sex as the differentiating attribute. Figure 3.13 shows the graph 
obtained by considering all males and females in the video list as two separate groups. As we can 
see the ‘Male’ group has a higher prediction accuracy of 92.9% than that of the ‘Female’ group 
which has a prediction accuracy of 89.05%. While this disparity isn’t as large as one would prefer, 
it is still a significant difference worth noting. 

 

 
Figure 3.13 Prediction Accuracy of the Different Sexes 
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3.3.3. Inferences 
To make meaningful inferences, we must first understand what the results are indicating, and come 
up with valid reasons that would account for the result obtained. 
 
The very first observation that can be made is that, for each race on its own, the Male sex has a 
higher prediction rate than that of the Female sex. In fact, with the exception of the ‘Asian Male’ 
group, all other Male groups have higher prediction rates than any Female groups. Even taking sex 
as the differentiating attribute, it is obvious that the Male group has a higher prediction rate than 
that of the Female group. When a group has a better prediction rate, it is understood that it is easier 
to identify a deepfake video of videos using people from that affinity group. Hence, we can infer 
that on average, deepfake videos of Males are typically easier to identify as fake than those of 
Females. 
 
Now let us consider the difference in race. In almost all situations, we can observe that ‘Asian’ 
affinity observes a lower prediction rate. Whether it is on a general level, or even considering just 
Males and Females individually, we can observe that the prediction rate of the Asian race is 
significantly lower than the other races. We can infer that on average, deepfake videos of Asians 
are typically harder to identify as fake than those of other races. 
 
Other observable results which are significant are as follows: 

• When considering all Male groups, the Brown affinity group had the highest prediction 
rate, followed by the Black race and Caucasian race. 

• When considering all the Female groups, the Black affinity group had the highest 
prediction rate, followed by the Caucasian race and Brown race. 

• When considering all groups with race being the differentiating attribute, the Black affinity 
group had the highest prediction rate, followed by the Caucasian race and Brown race. 

 
A valid conclusion that can be made from the following observations and results is that facial 
attributes play a major role in determining whether a video is deepfake or not, and when there is 
more differences in facial attributes, it is easier to detect deepfakes. 
 
This conclusion can be proven by seeing that Male deepfake videos are easier to identify as fake 
than Female deepfake videos. Typically for Males, the differentiating facial features are usually, 
facial hair, facial structure, skin texture, etc., while for Females, the differentiating facial features 
are usually their makeup and face shape. This is because, typically Females have makeup when 
appearing in reporting news, and skin texture doesn’t play a role,  but rather the style of makeup. 
They also lack facial hair such as mustaches and beards, which vary a lot with Males, but since it 
is nonexistent with Females, there isn’t much of a differentiating factor. Hence, we observe better 
prediction rates for Men. 
 
A similar conclusion can be drawn when considering race. Typically speaking, in comparison, 
there are significantly lesser Asian people with varying facial features. Women typically wear 
similar make up and have similar facial structure, while men usually don’t don any facial hair, 
making it one less differentiating feature to help detect the deepfake. Meanwhile, among other 
races, especially Brown and Black people, there is a lot more difference in facial structure and 
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facial hair. Hence it is safe to assume that such differentiating features play a huge role in detecting 
deepfakes. 
 
Hence, from this experiment we learn that the distinctive facial features of the actors determine 
how easily the videos can be identified as deepfake. 
 

3.4. Comparative Analysis of Sex-Based Deepfake Mappings 
3.3.1. Experiment 
For the second experiment, as mentioned earlier, we take equal deepfake videos from the two 
different sexes of actors, and then similarly pass them through the Deepfake Detection system, and 
see how many are correctly identified as deepfake. Unlike the last experiment, we take into 
consideration both actors in a Deepfaked video: the source actor and the target actor. While it was 
difficult to manually tag the race of the target actors in the FaceForensics++ dataset, it is much 
simpler to tag the sex/gender of the reporter. Hence, by doing that, we now have information of 
both the source and target actor, with respect to their sex. The actors of the DeeperForensics 1.0 
dataset were already tagged with the corresponding sexes. 
 
Using the information of both the source and the target actor, we can form four different categories 
(simply the cross product of the sex information of the two actors). We randomly sample 250 
videos of each category from the DeeperForensics dataset for a total of 1000 deepfaked videos. 
We do this by sampling 50 random real videos of the from the FaceForensics++ dataset for each 
sex of the target actor and then we sample 5 actors for each video from each sex of the source 
actor. These videos were then passed through the network and classified as either Deepfake or 
Real. For a correctly classified video, the classification must be Deepfake. 
 
We then note down the results of the prediction in the form of percentage correctly identified as 
deepfake. As the number of videos of each group is the same, we will have comparable results. 
3.3.2. Results 
All 1000 videos have been passed through the network and the following results were obtained 
based on the eight different affinity groups as shown in Table 3.5: 
 

Table 3.5 Prediction Accuracy of the Different Affinity Groups 
                       Source Actor Sex 
Target Actor Sex Male Female Total 

Male 88.8 96.4 92.6 
Female 93.2 86 89.6 
Total 91 91.2 91.1 

*All values are in % 
 

To better understand these results, let us take a glance at Figure 3.14. It is the graphical 
representation of the prediction accuracy of each of the categories. As shown, the group that had 
the highest prediction rate were ‘Male (source) superimposed on Female (target)’ with 96.4%, 
while the group with the lowest prediction rate were ‘Female (source) superimposed on Female 
(target)’ with 86%. That is a 10.4% gap in prediction accuracy among the two groups. 
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Figure 3.14 Prediction Accuracy of the Sex-Based Deepfake Mappings 

 
In order to better visualize these particular results, Figure 3.15 shows a heatmap representation of 
the values shown in Table 3.5. As we can see, the prediction accuracy for categories with 
mismatching sex between the source actor and the target actor (i.e., ‘Male (source) superimposed 
on Female (target)’ and ‘Female (source) superimposed on Male (target)’) were significantly 
higher than that of matching sex between the source actor and target actor (i.e., ‘Male (source) 
superimposed on Male (target)’ and ‘Female (source) superimposed on Female (target)’). 
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Figure 3.15 Heatmap of the Sex-Based Deepfake Mappings 

 
3.3.3. Inferences 
Similar to the first experiment, to make meaningful inferences, we must first understand what the 
results are indicating, and come up with valid reasons that would account for the result obtained. 
 
The most obvious observation that can be made, is as mentioned before, when the source actor and 
target actor have mismatching sexes. That is when a Female was superimposed and a Male and 
vice versa. This means, that when the sexes were mismatched, it is easier to detect that the video 
was deepfake, when compared to when the sexes were matched. 
 
It should also be noted, that in both the matching and mismatching scenarios, when a Male actor 
(source) was used to superimpose onto any person, the prediction rate was higher than when a 
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Female actor was used. This was also observed in the previous experiment when Males group have 
a higher prediction rate than that of Females. 
 
Comparing again to the first experiment, we can draw this conclusion from the fact that distinctive 
facial features play a major role in determining whether a video is deepfake or not. When 
superimposing a male onto a female, there will obviously be a mismatch in the basic facial 
structure. This is the same vice versa as well. It is especially easier to detect deepfakes when a 
male actor has been superimposed onto a female actor. We have previously already established 
that males in general have more differentiating facial features than females. Hence, mapping a 
male onto a female could result in facial hair on a face that is shaped similar to a woman, making 
it more likely to be predicted as fake. Meanwhile, when the sex is matched, the facial structure 
tends to be similar and is harder to detect as fake. However, male videos are easier to detect as 
fake than females do to the existence of more differentiating facial features, for example, facial 
hair, prominent facial structure, etc. 
 
Another interesting result to note, is that there is almost no difference when comparing any actor 
superimposed onto Male targets and any actor superimposed onto Female targets. This result 
indicates that the target person does not matter when it comes to detecting deepfake videos. This 
makes sense, as deepfake videos, don’t retain or retain very minute original details of the target 
actor. Deepfakes are the superimposition of one’s face onto another completely hiding the previous 
face, with the source face. 
 
Hence the observations we can learn from this experiment are as follows: 

• When the source and target actors are not from similar affinity groups, it is easier to detect 
as deepfake. 

• When an affinity group has more distinctive facial features, it is easier to identify as 
deepfake. 

• The features or information of the target actor has little to do with determining whether the 
video is deepfake or not. 

4. Conclusion 
In conclusion we were able to conduct experiments in the field of deepfakes that provided useful 
results that can be used to improve on detection methods in future works. We were able to create 
and train a system that is on par, if not better than the state-of-the-art system currently available. 
We utilized two network streams to account for both the semantic and finer details of deepfakes. 
We established the significant role of the source actor for a deepfake video and the lack of 
significance of the target actor. We also were able to establish how differentiating facial features 
of various affinity groups contributes to better detection of deepfake videos. 
 
Future work on this project can be to put to use the information gained from this experiment, to 
compile new datasets that will account for the discrepancies and lower prediction rates that were 
observed with the various affinity groups. We can also experiment with new training methods that 
account for these discrepancies as well. Additionally, we can expand upon these experiments to 
be more specific to individual countries based on their cultural, political and social differences as 
well. This can be done provided that there are new datasets available with enough information to 
be more specific. 



 28 

References 
[1] Maksutov, V. O. Morozov, A. A. Lavrenov and A. S. Smirnov, (2020), "Methods of Deepfake 

Detection Based on Machine Learning," 2020 IEEE Conference of Russian Young Researchers in 
Electrical and Electronic Engineering (EIConRus), 2020, pp. 408-411, doi: 
10.1109/EIConRus49466.2020.9039057. 

[2] Bayar and M. C. Stamm, (2016), “A deep learning approach to universal image manipulation 
detection using a new convolutional layer,” in Proc. 4th ACM Workshop Inf. Hiding Multimedia 
Security, 2016, pp. 5–10. 

[3] Han, X. Han, H. Zhang, J. Li and X. Cao, (2021), "Fighting Fake News: Two Stream Network for 
Deepfake Detection via Learnable SRM," in IEEE Transactions on Biometrics, Behavior, and 
Identity Science, vol. 3, no. 3, pp. 320-331, July 2021, doi: 10.1109/TBIOM.2021.3065735. 

[4] Malolan, A. Parekh and F. Kazi, (2020), "Explainable Deep-Fake Detection Using Visual 
Interpretability Methods," 2020 3rd International Conference on Information and Computer 
Technologies (ICICT), 2020, pp. 289-293, doi: 10.1109/ICICT50521.2020.00051. 

[5] Z. Yang, J. Ma, S. Wang and A. W. -C. Liew, (2021), "Preventing DeepFake Attacks on Speaker 
Authentication by Dynamic Lip Movement Analysis," in IEEE Transactions on Information 
Forensics and Security, vol. 16, pp. 1841-1854, 2021, doi: 10.1109/TIFS.2020.3045937. 

[6] Cozzolino, G. Poggi, and L. Verdoliva, (2017), “Recasting residual-based local descriptors as 
convolutional neural networks: An application to image forgery detection,” in Proc. 5th ACM 
Workshop Inf. Hiding Multimedia Security, 2017, pp. 159–164. 

[7] H. A. Khalil and S. A. Maged, (2021), "Deepfakes Creation and Detection Using Deep Learning," 
2021 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), 2021, 
pp. 1-4, doi: 10.1109/MIUCC52538.2021.9447642. 

[8] H. H. Nguyen, J. Yamagishi, and I. Echizen, (2019), “Capsule-forensics: Using capsule networks 
to detect forged images and videos,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 
(ICASSP), Brighton, U.K., 2019, pp. 2307–2311. 

[9] J. Hu, X. Liao, W. Wang and Z. Qin, (2021), "Detecting Compressed Deepfake Videos in Social 
Networks Using Frame-Temporality Two-Stream Convolutional Network," in IEEE Transactions 
on Circuits and Systems for Video Technology, doi: 10.1109/TCSVT.2021.3074259. 

[10] J. Yang, A. Li, S. Xiao, W. Lu and X. Gao, (2021) "MTD-Net: Learning to Detect Deepfakes 
Images by Multi-Scale Texture Difference," in IEEE Transactions on Information Forensics and 
Security, vol. 16, pp. 4234-4245, 2021, doi: 10.1109/TIFS.2021.3102487. 

[11] M. C. El Rai, H. Al Ahmad, O. Gouda, D. Jamal, M. A. Talib and Q. Nasir, (2020), "Fighting 
Deepfake by Residual Noise Using Convolutional Neural Networks," 2020 3rd International 
Conference on Signal Processing and Information Security (ICSPIS), 2020, pp. 1-4, doi: 
10.1109/ICSPIS51252.2020.9340138. 

[12] M. Weerawardana and T. Fernando, (2021), "Deepfakes Detection Methods: A Literature 
Survey," 2021 10th International Conference on Information and Automation for Sustainability 
(ICIAfS), 2021, pp. 76-81, doi: 10.1109/ICIAfS52090.2021.9606067. 

[13] Y. Li et al., (2021), "DeepFake-o-meter: An Open Platform for DeepFake Detection," 2021 IEEE 
Security and Privacy Workshops (SPW), 2021, pp. 277-281, doi: 10.1109/SPW53761.2021.00047. 

[14] Y. Nirkin, L. Wolf, Y. Keller and T. Hassner, (2021), "DeepFake Detection Based on 
Discrepancies Between Faces and their Context," in IEEE Transactions on Pattern Analysis and 
Machine Intelligence, doi: 10.1109/TPAMI.2021.3093446. 

[15] Z. Joseph and C. Nyirenda, (2021), "Deepfake Detection using a Two-Stream Capsule Network," 
2021 IST-Africa Conference (IST-Africa), 2021, pp. 1-8. 

 
 


