
 1

Frame Similarity Detection and Frame Clustering

Using Variational Autoencoders and K-Means on News

Videos From Different Affinity Groups

Omer Fahri Onder

Department of Computer Science

Columbia University

oo2218@columbia.edu

Directed Research Report – Spring 2021

Advisor: Prof. John R. Kender

May 13, 2021

Abstract
Keyframe extraction and analysis is a helpful domain to analyze a video

and its content. In this report, we experiment with a new method to find

similarities between frames, extract keyframes based on context by clustering

similar frames in news videos from two different affinity groups(English and

Chines) and the same context(AlphaGo). Previously, manual and VGG-19

encoding-based approaches were used to analyze similarity for the "Tagging

and Browsing Videos According to the Preferences of Differing Affinity

Groups" project1. However, in light of the emerging popularity of Variational

Autoencoders in frame extraction[3,4], we are developing a new way based on a

simple, fully Convolutional Variational Autoencoder and K-Means to improve

on the previously used methods. We also analyze the Variational Autoencoder's

ability to capture affinity groups as contextual information in this report.

1 Introduction

1.1 Background and Previous Work

Initially, the project on "Tagging and Browsing Videos According to the

Preferences of Differing Affinity Groups" used a manual approach for

identifying essential frames and matching them across videos. As this approach

has been quite demanding, there had been studies by other students[1]. Xu

Han[1] has developed an automated unsupervised method to find these frames

1
 "Tagging and Browsing Videos According to the Preferences of Differing

Affinity Groups" is an NFS Information and Intelligent Systems sponsored project

to analyze the preferences of

 2

using a VGG-19[2][3] and hashing tool for encoding the frames and using L1,

L2, and cosine distances to find the most similar frames. However, the VGG

network used in this work is a pre-trained model for general purposes. Thus the

model used for this approach cannot learn task-specific features, and in some

cases, it does not provide desirable matches. The finetuning of this model

would require manual labeling, which is very costly.

The proposed method has been inspired by the excellent work of Xu Han and

started as an improvement for the encoding approach with a Variational

Autoencoder(VAE), which is trained on task-specific videos.

1.2 Literature Study

The keyframe extraction using clustering has been a common area of research

for video representation and video analysis for a while. In 2005, Yang and

Lin[4] proposed an algorithm based on statistical modeling. Their paper uses

an automated method by using a statistical model as thresholding for clustering

and finding more critical content.

Although their method is quite impressive, over the years, there has been

improvement newer studies on image representation with the emergence of

Deep Learning methods such as Variational Autoencoders(VAEs). VAE

autoencoders are Deep Neural Networks trained to extract abstract information

by first encoding an input such as a video frame into a latent space, then

decoding the latent variables back to their original form. This method can learn

to create a representation space without supervision.

Figure 1: Representation of a generic Autoencoder.

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-

vae.html

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

 3

Both Pei et al.[6] and Yang et al.[7] have developed used this benefit of VAEs

to develop task-specific frame extraction networks. Pei et al. use stacked VAEs

to detect keyframes for action detection, while Yang et al.[7] developed a

sophisticated algorithm with semi-supervision to extract video highlights.

In their approach, Yang et al. use Recurrent Autoencoders to encode the

frames and semi-supervision based on reconstruction error to detect outliers

between these frames.

As can be seen from the above examples, VAEs are potentially beneficial tools

for extracting information from video frames without supervision and catch

differences between these new embeddings. This study uses this benefit to skip

the manual labeling that the VGG-19 model would require.

2 Methodolody

2.1 Data

We have collected videos from a single context to analyze the differences

between different affinity groups: News reports on AlphaGo, and two groups:

Chinese news videos and English news videos.

The English videos are all recently collected from YouTube, while Chinese

videos are collected by previous research assistants, mainly from Bilibili and

other Chinese video channels.

There are a total of 10 training and 2 test videos for both affinity groups. The

training data are used to train the VAE, the clustering, and the Z-

normalization distribution model.

The frames are sampled with a frequency of 1 frame per 2 seconds. The videos

are rescaled to (240, 426, 3), then each sampled frame is cropped to get the

input shape of (240, 400, 3) to match the input and output dimension of VAEs.

 4

2.2 Variational Autoencoder(VAE) architecture

For the Variational Autoencoder(see Figure 2), we

constructed a fully convolutional Autoencoder. The

encoder is a stack of 2D Convolutional operations followed

by Max Pooling operations. The Convolutional Layers in

the decoder follow the same parameters as the encoder’s,

but it uses Transpose Convolutional instead of

Upsampling to minimize loss of information. The

bottleneck of the network has 128 filters which mean 128

different feature maps are detected.

The model is trained on the selected frames from data

processing for both input and targets which have the

same shape of (240,400,3).

The loss for the model is pixelwise mean squared error

and the model is trained using Adam optimizer with a

learning rate of 0.0001.

After training the network, we use Global Max pooling to

get the highest value for each feature map to get our

embeddings, reducing each feature map into a single

vector of features. We keep the new model with Global

Max Pooling as for embedding model.

We trained three separate models with the same

parameters: 1 for English news videos only, 1 for Chinese

news Videos only, and 1 for both English and Chinese

news videos.

2.3 Frame Similarity Analysis

For this part, we use the approach previously used by Xu Han[1]. We check the

L2 distance and Cosine similarity on the embedding vector with 128 variables

to detect similar frames.

However, we mainly use similarity analysis on a video to see the similar frames

in each video.

Figure 2: VAE architecture.

Global Max Pool

 5

2.4 Frame Clustering

We trained K-Means[8] clustering models for each test video with 2 to 18

clusters for similar frame clustering.

For clustering, we have also tried different approaches to normalize the data.

1. Using the sigmoid activation function in the deepest Convolution layer

of the VAE to automatically map the values between 0 and 1.

2. Using Z-normalization mapping based on distribution of the training

data which is then used to normalize the test data.

We used the elbow method to choose the optimal number of clusters [9], which

is a heuristic method of picking the cluster when the within-cluster sum square

starts to converge(bend like an elbow).

Lastly, we trained a cluster with 2 and 3 clusters on the combination of all test

videos to see if a simple clustering algorithm can separate videos based cultural

affinity.

3 Results

3.1 VAE results

After the training, the model reached 61% pixel-wise accuracy on all three

models, which does not tell enough information about the model to evaluate it.

However, from Figure 3, we can see that the model could reconstruct many

features to an abstract level, like the text box at the bottom of the human face

on the screen at the back and the reporter’s face.

Figure 3: VAE qualitative evaluation: Input on the left and output on the right.

 6

3.2 Similarity Results

As shown in Figure 4 there is a high similarity between frames that are closer

to each other in terms of their timestamp. This is likely because these frames

are from the same shots or moving shots. There is a correlation between some

frames that are not close to each other, likely the shots with reporters.

When we check the most similar frames, we can see that the most similar

frames are almost identical; however, the most dissimilar from, although very

similar to each other in terms of the color scheme, very different from each

Figure 5: Examples picked from Xu Han[1] that were at the highest

similarity with very different content but very similar color scheme.

a. Cosine similarity b. Frames with highest similarity and lowest similarity.

Figure 4: Frame similarity analysis in a Chinese news video.

 7

other based on the content of the frames.

Comparing our result with the previous work[1], where the VGG19 + hashing

would sometimes give a high similarity result based on the color scheme and

some geometrical similarity, we can say that the VAE approach has shown

promise in similarity detection.

3.3 Clustering

Based on the elbow method, we see that the

K-Means algorithm would start to converge

around 2-4 clusters per minute of a news

video.

The model trained on news from both groups

performed better on clustering frames from

Chinese Videos.

On the other hand, when we combined all

the test videos for a more comprehensive

analysis on the VAE model trained on news

from both affinity groups, we found that the

clusters are well separated between their

original videos or similar frames across

videos(see Appendix 1).

We have also tested if a clustering algorithm

trained on the combined test data can

perform well enough to separate the frames

into their affinity groups. Surprisingly the

simple K-Means algorithm could divide the

frames into two separate groups based on their affinity.

(a)

(b)

Figure 6: Cluster analysis on a one

minute Chinese new video(a) and on an

English news video(b).

 8

When we experimented with the same method with 3 clusters instead of 2, the

clusters were divided into Only English frames, only Chinese frames, and a

mixture of both.

As can be seen from Figure 7, cluster 0 exclusively belong to Chinese news

videos while cluster 2 exclusively belongs to English news videos except for two

frames. Cluster 1 are frames that share commonality between these two types

of affinity groups.

4 Conclusion

A pretrained VGG model is lacking in capturing task-based context

information unless trained with new data to tune it for the new context.

However, training a VGG model would generally require supervision and

extensive labeling of video frames; on the other hand, Autoencoders can be

trained with just the training data alone. Using this benefit of Autoencoder, we

tried to improve previous similar frame detection algorithms and develop a

frame clustering pipeline.

Figure 7: The cluster appointment result for each frame for K-Means

clustering with K=3. The highlighted blue numbers represent the

assignment of frames from English Videos. The non-highlighted frames

belong to Chinese news videos. The values(0,1,2) are the cluster index.

 9

The simple, fully Convolutional Autoencoder has performed very well in

capturing contextual information and using it in the context to separate frames

that have similar geometric or color schemes. Moreover, the frame clustering

created meaningful clusters for each news video, especially for the Chinese news

videos.

This framework was also able to group the frames into 3, separating some

frames into clusters exclusive to their affinity group, exceeding our initial

expectations.

We can conclude that the clustering pipeline based on VAE can improve on the

previous similar frame searching method and open a new research direction for

the "Tagging and Browsing Videos According to the Preferences of Differing

Affinity Groups" project.

4.1 Possible Future Work

1. Other types of VAE: For a better embedding, a VAE with a bottleneck

with fully connected(dense) layer could be used.

2. Gausian Mixture in VAE for clustering: With a gaussian constraint, the

embedding space result from VAE can be also used for clustering.

3. Affinty group clustering research: The last finding from the experiment

can start a new research direction.

 10

References

[1] H. Xu , “Identifying Near-duplicate Frames from Two Sets of Videos,” Tagging

and Browsing Videos According to the Preferences of Differing Affinity Groups.

[2] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-

Scale Image Recognition,” International Conference on Learning

Representations, 2015.

[3] K. Team, “Keras documentation: VGG16 and VGG19,” Keras. [Online].

Available: https://keras.io/api/applications/vgg/. [Accessed: 14-May-2021].

[4] S. Yang and X. Lin, “Key frame extraction using unsupervised clustering based

on a statistical model,” Tsinghua Science and Technology, vol. 10, no. 2, pp.

169–173, 2005.

[5] D. P. Kingma and M. Welling, “An Introduction to Variational

Autoencoders,” Foundations and Trends R in Machine Learning, pp. 1–18,

2019.

[6] X. Pei, H. Fan, and Y. Tang, “An Unsupervised Feature learning and clustering

method for key frame extraction on human action recognition,” 2017 IEEE 7th

Annual International Conference on CYBER Technology in Automation,

Control, and Intelligent Systems (CYBER), Aug. 2017.

[7] H. Yang, B. Wang, S. Lin, D. Wipf, M. Guo, and B. Guo, “Unsupervised

Extraction of Video Highlights via Robust Recurrent Auto-Encoders,” 2015

IEEE International Conference on Computer Vision (ICCV), Oct. 2015.

[8] “sklearn.cluster.KMeans¶,” scikit. [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.cluster.KMeans.html. [Accessed:

13-May-2021]

[9] “Determining The Optimal Number Of Clusters: 3 Must Know Methods,”

Datanovia, 21-Oct-2018. [Online]. Available:

https://www.datanovia.com/en/lessons/determining-the-optimal-number-of-

clusters-3-must-know-methods/. [Accessed: 13-May-2021].

 11

Appendices

Appendix 1: 15 Clusters Result on Combined Test Videos

Some clusters may be missing.

4.1.1 --------- GROUP: 6 ---------

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 12

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 13

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 14

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

4.1.2 --------- GROUP: 8 ---------

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 15

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 16

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 17

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 18

4.1.3 --------- GROUP: 10 ---------

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 19

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 20

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 21

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

4.1.4 --------- GROUP: 12 ---------

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 22

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 23

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 24

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 25

4.1.5 --------- GROUP: 0 ---------

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 26

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 27

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 28

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

4.1.6 --------- GROUP: 11 ---------

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 29

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 30

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

4.1.7 --------- GROUP: 14 ---------

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 31

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 32

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 33

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 34

4.1.8 --------- GROUP: 3 ---------

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 35

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 36

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 37

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

4.1.9 --------- GROUP: 7 ---------

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 38

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 39

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 40

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 41

4.1.10 --------- GROUP: 5 ---------

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 42

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 43

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 44

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

4.1.11 --------- GROUP: 13 ---------

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 45

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 46

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 47

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 48

4.1.12 --------- GROUP: 9 ---------

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 49

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 50

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 51

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 --------- GROUP: 1 ---------

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 52

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 53

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

Clipping input data to the valid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).

 54

 55

4.1.13 --------- GROUP: 2 ---------

 56

 57

 58

4.1.14 --------- GROUP: 4 ---------

 59

 60

 61

