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Abstract 
Keyframe extraction and analysis is a helpful domain to analyze a video 

and its content. In this report, we experiment with a new method to find 

similarities between frames, extract keyframes based on context by clustering 

similar frames in news videos from two different affinity groups(English and 

Chines) and the same context(AlphaGo). Previously, manual and VGG-19 

encoding-based approaches were used to analyze similarity for the "Tagging 

and Browsing Videos According to the Preferences of Differing Affinity 

Groups" project1. However, in light of the emerging popularity of Variational 

Autoencoders in frame extraction[3,4], we are developing a new way based on a 

simple, fully Convolutional Variational Autoencoder and K-Means to improve 

on the previously used methods. We also analyze the Variational Autoencoder's 

ability to capture affinity groups as contextual information in this report. 

1 Introduction 

1.1 Background and Previous Work 

Initially, the project on "Tagging and Browsing Videos According to the 

Preferences of Differing Affinity Groups" used a manual approach for 

identifying essential frames and matching them across videos. As this approach 

has been quite demanding, there had been studies by other students[1]. Xu 

Han[1] has developed an automated unsupervised method to find these frames 

 
1
 "Tagging and Browsing Videos According to the Preferences of Differing 

Affinity Groups" is an NFS Information and Intelligent Systems sponsored project 

to analyze the preferences of   
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using a  VGG-19[2][3] and hashing tool for encoding the frames and using L1, 

L2, and cosine distances to find the most similar frames. However, the VGG 

network used in this work is a pre-trained model for general purposes. Thus the 

model used for this approach cannot learn task-specific features, and in some 

cases, it does not provide desirable matches. The finetuning of this model 

would require manual labeling, which is very costly.  

The proposed method has been inspired by the excellent work of Xu Han and 

started as an improvement for the encoding approach with a Variational 

Autoencoder(VAE), which is trained on task-specific videos.  

1.2 Literature Study 

The keyframe extraction using clustering has been a common area of research 

for video representation and video analysis for a while. In 2005, Yang and 

Lin[4] proposed an algorithm based on statistical modeling.  Their paper uses 

an automated method by using a statistical model as thresholding for clustering 

and finding more critical content. 

Although their method is quite impressive, over the years, there has been 

improvement newer studies on image representation with the emergence of 

Deep Learning methods such as Variational Autoencoders(VAEs). VAE 

autoencoders are Deep Neural Networks trained to extract abstract information 

by first encoding an input such as a video frame into a latent space, then 

decoding the latent variables back to their original form. This method can learn 

to create a representation space without supervision.    

 

Figure 1: Representation of a generic Autoencoder.   

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-

vae.html 

 

 

 

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
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Both Pei et al.[6] and Yang et al.[7] have developed used this benefit of VAEs 

to develop task-specific frame extraction networks. Pei et al. use stacked VAEs 

to detect keyframes for action detection, while Yang et al.[7] developed a 

sophisticated algorithm with semi-supervision to extract video highlights.  

In their approach, Yang et al. use Recurrent Autoencoders to encode the 

frames and semi-supervision based on reconstruction error to detect outliers 

between these frames.  

As can be seen from the above examples, VAEs are potentially beneficial tools 

for extracting information from video frames without supervision and catch 

differences between these new embeddings. This study uses this benefit to skip 

the manual labeling that the VGG-19 model would require. 

2 Methodolody 

2.1 Data 

We have collected videos from a single context to analyze the differences 

between different affinity groups: News reports on AlphaGo, and two groups: 

Chinese news videos and English news videos.  

The English videos are all recently collected from YouTube, while Chinese 

videos are collected by previous research assistants, mainly from Bilibili and 

other Chinese video channels. 

There are a total of 10 training and 2 test videos for both affinity groups.  The 

training data are used to train the VAE, the clustering, and the Z-

normalization distribution model. 

The frames are sampled with a frequency of 1 frame per 2 seconds. The videos 

are rescaled to (240, 426, 3), then each sampled frame is cropped to get the 

input shape of (240, 400, 3) to match the input and output dimension of VAEs.  
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2.2 Variational Autoencoder(VAE) architecture 

For the Variational Autoencoder(see Figure 2), we 

constructed a fully convolutional Autoencoder. The 

encoder is a stack of 2D Convolutional operations followed 

by Max Pooling operations. The Convolutional Layers in 

the decoder follow the same parameters as the encoder’s, 

but it uses Transpose Convolutional instead of 

Upsampling to minimize loss of information. The 

bottleneck of the network has 128 filters which mean 128 

different feature maps are detected. 

The model is trained on the selected frames from data 

processing for both input and targets which have the 

same shape of (240,400,3).  

The loss for the model is pixelwise mean squared error 

and the model is trained using Adam optimizer with a 

learning rate of 0.0001.  

After training the network, we use Global Max pooling to 

get the highest value for each feature map to get our 

embeddings, reducing each feature map into a single 

vector of features. We keep the new model with Global 

Max Pooling as for embedding model.  

We trained three separate models with the same 

parameters: 1 for English news videos only, 1 for Chinese 

news Videos only, and 1 for both English and Chinese 

news videos. 

2.3 Frame Similarity Analysis 

For this part, we use the approach previously used by Xu Han[1]. We check the 

L2 distance and Cosine similarity on the embedding vector with 128 variables 

to detect similar frames.  

However, we mainly use similarity analysis on a video to see the similar frames 

in each video.  

 

Figure 2: VAE architecture. 

Global Max Pool 
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2.4 Frame Clustering 

We trained K-Means[8] clustering models for each test video with 2 to 18 

clusters for similar frame clustering.  

For clustering, we have also tried different approaches to normalize the data.  

1. Using the sigmoid activation function in the deepest Convolution layer 

of the VAE to automatically map the values between 0 and 1.  

2. Using Z-normalization mapping based on distribution of the training 

data which is then used to normalize the test data.  

We used the elbow method to choose the optimal number of clusters [9], which 

is a heuristic method of picking the cluster when the within-cluster sum square 

starts to converge(bend like an elbow).  

Lastly, we trained a cluster with 2 and 3 clusters on the combination of all test 

videos to see if a simple clustering algorithm can separate videos based cultural 

affinity. 

3 Results 

3.1 VAE results 

After the training, the model reached 61% pixel-wise accuracy on all three 

models, which does not tell enough information about the model to evaluate it.  

However, from Figure 3, we can see that the model could reconstruct many 

features to an abstract level, like the text box at the bottom of the human face 

on the screen at the back and the reporter’s face. 

  

Figure 3: VAE qualitative evaluation: Input on the left and output on the right. 
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3.2 Similarity Results 

As shown in Figure 4 there is a high similarity between frames that are closer 

to each other in terms of their timestamp. This is likely because these frames 

are from the same shots or moving shots. There is a correlation between some 

frames that are not close to each other, likely the shots with reporters.  

 

When we check the most similar frames, we can see that the most similar 

frames are almost identical; however, the most dissimilar from, although very 

similar to each other in terms of the color scheme, very different from each 

 

 

Figure 5: Examples picked from Xu Han[1] that were at the highest 

similarity with very different content but very similar color scheme.  

     

a. Cosine similarity    b. Frames with highest similarity and lowest similarity. 

Figure 4: Frame similarity analysis in a Chinese news video.  
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other based on the content of the frames.  

Comparing our result with the previous work[1], where the VGG19 + hashing 

would sometimes give a high similarity result based on the color scheme and 

some geometrical similarity, we can say that the VAE approach has shown 

promise in similarity detection.  

3.3 Clustering 

Based on the elbow method, we see that the 

K-Means algorithm would start to converge 

around 2-4 clusters per minute of a news 

video.  

The model trained on news from both groups 

performed better on clustering frames from 

Chinese Videos.  

On the other hand, when we combined all 

the test videos for a more comprehensive 

analysis on the VAE model trained on news 

from both affinity groups, we found that the 

clusters are well separated between their 

original videos or similar frames across 

videos(see Appendix 1).  

We have also tested if a clustering algorithm 

trained on the combined test data can 

perform well enough to separate the frames 

into their affinity groups. Surprisingly the 

simple K-Means algorithm could divide the 

frames into two separate groups based on their affinity.  

(a) 

(b) 

Figure 6: Cluster analysis on a one 

minute Chinese new video(a) and on an 

English news video(b).  
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When we experimented with the same method with 3 clusters instead of 2, the 

clusters were divided into Only English frames, only Chinese frames, and a 

mixture of both. 

As can be seen from Figure 7, cluster 0 exclusively belong to Chinese news 

videos while cluster 2 exclusively belongs to English news videos except for two 

frames. Cluster 1 are frames that share commonality between these two types 

of affinity groups.  

4 Conclusion 

A pretrained VGG model is lacking in capturing task-based context 

information unless trained with new data to tune it for the new context. 

However, training a VGG model would generally require supervision and 

extensive labeling of video frames; on the other hand, Autoencoders can be 

trained with just the training data alone. Using this benefit of Autoencoder, we 

tried to improve previous similar frame detection algorithms and develop a 

frame clustering pipeline. 

 

Figure 7: The cluster appointment result for each frame for K-Means 

clustering with K=3. The highlighted blue numbers represent the 

assignment of frames from English Videos. The non-highlighted frames 

belong to Chinese news videos. The values(0,1,2) are the cluster index. 
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The simple, fully Convolutional Autoencoder has performed very well in 

capturing contextual information and using it in the context to separate frames 

that have similar geometric or color schemes. Moreover, the frame clustering 

created meaningful clusters for each news video, especially for the Chinese news 

videos.  

This framework was also able to group the frames into 3, separating some 

frames into clusters exclusive to their affinity group, exceeding our initial 

expectations.  

We can conclude that the clustering pipeline based on VAE can improve on the 

previous similar frame searching method and open a new research direction for 

the "Tagging and Browsing Videos According to the Preferences of Differing 

Affinity Groups" project. 

4.1 Possible Future Work 

1. Other types of VAE: For a better embedding, a VAE with a bottleneck 

with fully connected(dense) layer could be used.  

2. Gausian Mixture in VAE for clustering: With a gaussian constraint, the 

embedding space result from VAE can be also used for clustering. 

3. Affinty group clustering research: The last finding from the experiment 

can start a new research direction.  
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Appendices 

Appendix 1: 15 Clusters Result on Combined Test Videos 

Some clusters may be missing.  
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