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Abstract

Keyframe extraction and analysis is a helpful domain to analyze a video
and its content. In this report, we experiment with a new method to find
similarities between frames, extract keyframes based on context by clustering
similar frames in news videos from two different affinity groups(English and
Chines) and the same context(AlphaGo). Previously, manual and VGG-19
encoding-based approaches were used to analyze similarity for the "Tagging
and Browsing Videos According to the Preferences of Differing Affinity
Groups" project'. However, in light of the emerging popularity of Variational
Autoencoders in frame extraction[3,4], we are developing a new way based on a
simple, fully Convolutional Variational Autoencoder and K-Means to improve
on the previously used methods. We also analyze the Variational Autoencoder's
ability to capture affinity groups as contextual information in this report.

1 Introduction

1.1  Background and Previous Work

Initially, the project on "Tagging and Browsing Videos According to the
Preferences of Differing Affinity Groups" used a manual approach for
identifying essential frames and matching them across videos. As this approach
has been quite demanding, there had been studies by other students|[l]. Xu

Han[1] has developed an automated unsupervised method to find these frames

! "Tagging and Browsing Videos According to the Preferences of Differing
Affinity Groups" is an NFS Information and Intelligent Systems sponsored project
to analyze the preferences of



using a VGG-19[2|[3] and hashing tool for encoding the frames and using L1,
L2, and cosine distances to find the most similar frames. However, the VGG
network used in this work is a pre-trained model for general purposes. Thus the
model used for this approach cannot learn task-specific features, and in some
cases, it does not provide desirable matches. The finetuning of this model
would require manual labeling, which is very costly.

The proposed method has been inspired by the excellent work of Xu Han and
started as an improvement for the encoding approach with a Variational

Autoencoder(VAE), which is trained on task-specific videos.

1.2 Literature Study

The keyframe extraction using clustering has been a common area of research
for video representation and video analysis for a while. In 2005, Yang and
Lin[4] proposed an algorithm based on statistical modeling. Their paper uses
an automated method by using a statistical model as thresholding for clustering
and finding more critical content.

Although their method is quite impressive, over the years, there has been
improvement newer studies on image representation with the emergence of
Deep Learning methods such as Variational Autoencoders(VAEs). VAE
autoencoders are Deep Neural Networks trained to extract abstract information
by first encoding an input such as a video frame into a latent space, then
decoding the latent variables back to their original form. This method can learn

to create a representation space without supervision.
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Figure 1: Representation of a generic Autoencoder.
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Both Pei et al.[6] and Yang et al.[7] have developed used this benefit of VAEs
to develop task-specific frame extraction networks. Pei et al. use stacked VAEs
to detect keyframes for action detection, while Yang et al.[7] developed a
sophisticated algorithm with semi-supervision to extract video highlights.

In their approach, Yang et al. use Recurrent Autoencoders to encode the
frames and semi-supervision based on reconstruction error to detect outliers
between these frames.

As can be seen from the above examples, VAEs are potentially beneficial tools
for extracting information from video frames without supervision and catch
differences between these new embeddings. This study uses this benefit to skip

the manual labeling that the VGG-19 model would require.

2 Methodolody

2.1 Data

We have collected videos from a single context to analyze the differences
between different affinity groups: News reports on AlphaGo, and two groups:
Chinese news videos and English news videos.

The English videos are all recently collected from YouTube, while Chinese
videos are collected by previous research assistants, mainly from Bilibili and
other Chinese video channels.

There are a total of 10 training and 2 test videos for both affinity groups. The
training data are used to train the VAE, the clustering, and the Z-
normalization distribution model.

The frames are sampled with a frequency of 1 frame per 2 seconds. The videos
are rescaled to (240, 426, 3), then each sampled frame is cropped to get the
input shape of (240, 400, 3) to match the input and output dimension of VAEs.



2.2 Variational Autoencoder(VAE) architecture

Conv2D

Figure 2: VAE architecture.

For the Variational Autoencoder(see Figure 2), we

constructed a fully convolutional Autoencoder. The

encoder is a stack of 2D Convolutional operations followed

by Max Pooling operations. The Convolutional Layers in

the decoder follow the same parameters as the encoder’s,

but it wuses Transpose Convolutional instead of

Upsampling to minimize loss of information. The

bottleneck of the network has 128 filters which mean 128

different feature maps are detected.

The model is trained on the selected frames from data

Embedding
Global Max Pool —>

processing for both input and targets which have the

same shape of (240,400,3).

The loss for the model is pixelwise mean squared error

and the model is trained using Adam optimizer with a

learning rate of 0.0001.

After training the network, we use Global Max pooling to

get the highest value for each feature map to get our

embeddings, reducing each feature map into a single

vector of features. We keep the new model with Global
Max Pooling as for embedding model.

We trained three separate models with the same

parameters: 1 for English news videos only, 1 for Chinese
news Videos only, and 1 for both English and Chinese

news videos.

2.3 Frame Similarity Analysis

For this part, we use the approach previously used by Xu Han[1]. We check the
L2 distance and Cosine similarity on the embedding vector with 128 variables
to detect similar frames.

However, we mainly use similarity analysis on a video to see the similar frames

in each video.



2.4 Frame Clustering

We trained K-Means|8] clustering models for each test video with 2 to 18
clusters for similar frame clustering.
For clustering, we have also tried different approaches to normalize the data.
1. Using the sigmoid activation function in the deepest Convolution layer
of the VAE to automatically map the values between 0 and 1.
2. Using Z-normalization mapping based on distribution of the training
data which is then used to normalize the test data.
We used the elbow method to choose the optimal number of clusters [9], which
is a heuristic method of picking the cluster when the within-cluster sum square
starts to converge(bend like an elbow).
Lastly, we trained a cluster with 2 and 3 clusters on the combination of all test
videos to see if a simple clustering algorithm can separate videos based cultural

affinity.

3 Results

3.1 VAE results

0 50 100 150 200 250 300 350 0 50 100

Figure 3: VAE qualitative evaluation: Input on the left and output on the right.

After the training, the model reached 61% pixel-wise accuracy on all three
models, which does not tell enough information about the model to evaluate it.
However, from Figure 3, we can see that the model could reconstruct many
features to an abstract level, like the text box at the bottom of the human face

on the screen at the back and the reporter’s face.



3.2 Similarity Results
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Figure 4: Frame similarity analysis in a Chinese news video.

As shown in Figure 4 there is a high similarity between frames that are closer
to each other in terms of their timestamp. This is likely because these frames
are from the same shots or moving shots. There is a correlation between some

frames that are not close to each other, likely the shots with reporters.

When we check the most similar frames, we can see that the most similar
frames are almost identical; however, the most dissimilar from, although very

similar to each other in terms of the color scheme, very different from each

Chahg'c»A rover expected to land in January

Figure 5: Examples picked from Xu Han[l| that were at the highest

similarity with very different content but very similar color scheme.



other based on the content of the frames.

Comparing our result with the previous work|1l|, where the VGG19 + hashing

would sometimes give a high similarity result based on the color scheme and

some geometrical similarity, we can say that the VAE approach has shown

promise in similarity detection.

3.3 Clustering

Based on the elbow method, we see that the
K-Means algorithm would start to converge
around 2-4 clusters per minute of a news
video.

The model trained on news from both groups
performed better on clustering frames from
Chinese Videos.

On the other hand, when we combined all
the test videos for a more comprehensive
analysis on the VAE model trained on news
from both affinity groups, we found that the
clusters are well separated between their
original videos or similar frames across
videos(see Appendix 1).

We have also tested if a clustering algorithm
trained on the combined test data can
perform well enough to separate the frames
into their affinity groups. Surprisingly the
simple K-Means algorithm could divide the
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minute Chinese new video(a) and on an

English news video(b).

frames into two separate groups based on their affinity.



When we experimented with the same method with 3 clusters instead of 2, the
clusters were divided into Only English frames, only Chinese frames, and a

mixture of both.
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Figure 7: The cluster appointment result for each frame for K-Means
clustering with K=3. The highlighted blue numbers represent the
assignment of frames from English Videos. The non-highlighted frames

belong to Chinese news videos. The values(0,1,2) are the cluster index.

As can be seen from Figure 7, cluster 0 exclusively belong to Chinese news
videos while cluster 2 exclusively belongs to English news videos except for two
frames. Cluster 1 are frames that share commonality between these two types

of affinity groups.

4  Conclusion

A pretrained VGG model is lacking in capturing task-based context
information unless trained with new data to tune it for the new context.
However, training a VGG model would generally require supervision and
extensive labeling of video frames; on the other hand, Autoencoders can be
trained with just the training data alone. Using this benefit of Autoencoder, we
tried to improve previous similar frame detection algorithms and develop a

frame clustering pipeline.



The simple, fully Convolutional Autoencoder has performed very well in
capturing contextual information and using it in the context to separate frames
that have similar geometric or color schemes. Moreover, the frame clustering
created meaningful clusters for each news video, especially for the Chinese news
videos.

This framework was also able to group the frames into 3, separating some
frames into clusters exclusive to their affinity group, exceeding our initial
expectations.

We can conclude that the clustering pipeline based on VAE can improve on the
previous similar frame searching method and open a new research direction for
the "Tagging and Browsing Videos According to the Preferences of Differing

Affinity Groups" project.

4.1 Possible Future Work

1. Other types of VAE: For a better embedding, a VAE with a bottleneck
with fully connected(dense) layer could be used.

2. Gausian Mixture in VAE for clustering: With a gaussian constraint, the
embedding space result from VAE can be also used for clustering.

3. Affinty group clustering research: The last finding from the experiment

can start a new research direction.
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Appendices

Appendix 1: 15 Clusters Result on Combined Test Videos

Some clusters may be missing.
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da

ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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Clipping input data to the wvalid range for imshow with RGB da
ta ([0..1] for floats or [0..255] for integers).
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