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Abstract

Videos, particularly news videos, are likely to contain similar frames if they share
the same topics. To determine the similarity between a pair of videos, it is essential
to first accurately identify key frames. Objection detection offers a viable way to
accomplish this task. This paper will demonstrate a system that automate the video
similarity comparison process using object detection.
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1 Introduction

In the era of internet and portable devices, videos are one of the most popular carriers to convey
information. News videos, in particular, have clear topics. Reporters from different news agencies
usually appear at the same locations during the same event. It is also common for some news
agencies to relay others’ footage when their reporters cannot access scenes in time. As a result,
news videos reporting the same event may contain similar frames even if the sources are distinct.

The interest of this paper is to study the similarity between news videos, especially the ones
coming from distinct cultural backgrounds. Comparing videos frame by frame and pixel by pixel is
straightforward, but this process consumes an enormous amount of computation power. Consider
a 3-minute long video and extract one frame per second, producing 180 frames in total. Comparing
two such videos will result in 180 x 180 = 32,400 comparisons, not to mention longer videos. It is
possible to utilize visual feature extractor such as VGG-NETS [6] and then compute the distance
between each pair of vectors to reduce the computation cost during comparison. However, this
optimization is trivial when the number of comparisons is huge. Feeding each image through a
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feature extractor also takes a significant amount of time. In addition, pixel by pixel comparison
is too strict for determining similarity. Given the same scene shot at two different angles, the two
frames may be very different in terms of pixel arrangements. Pixels or low-level features thus are
not ideal for general similarity comparison.

To reduce the number of comparisons, it is vital to first extract key frames from each video. A key
frame is a shot that can best represent a scene or a segment of a video. The other frames can be
seen as ”duplicates” since they are only slightly different from the key frames. With key frames,
the number of comparisons can drop drastically. A 3-minute long video may only contain 10 key
frames, and it will only require 10 x 10 = 100 comparisons between two such videos.

The question now is how to extract key frames quickly and accurately. Manual labelling is the most
reliable way to accomplish this task, but this method is infeasible when a study like cross-cultural
analysis requires a substantial amount of videos. To automate the extraction process, one solution
is to utilize semantic information or high-level features contained in frames. Objects along with
their positions and sizes are examples of such features. YOLO [5], a real-time object detector,
is ideal for extracting these high-level features fast without sacrificing much accuracy. A system
can identify key frames by comparing object features between frames and then aligns different sets
of key frames to determine the similarity. This paper will cover all these steps in the following
sections.

2 Methods

2.1 Data

There are in total 108 videos in the database. Most of the videos are news reports and they
cover a range of different topics or events. These videos are separated into three sets for different
experiments:

1. 50 videos are about AlphaGO, a go-playing computer program that competed with human
players

2. 50 are about Change’e 5, a Chinese lunar explorer launched in 2020

3. The rest of the 8 cover events such as the crash of Malaysia Airlines Flight 370 (MH370),
Coronavirus, and 2020-2021 Thailand protests

All videos are downloaded from YouTube using the YouTube Data API [8], YouTube’s official
searching API, and the youtube-dl [9], a third-party YouTube video downloader. The former
returns a list of video ids given a query and the latter follows this list to download corresponding
videos. Note that the YouTube Data API requires a developer key.

This paper attempts to limit search results to news videos only, but at this moment the YouTube
Data API does not support filters that can fulfil this requirement. As a workaround, this paper
limits the video duration to 4 minutes, a length corresponding to the short video category considered
by the API. There is an additional constraint to limit the spoken language in videos to English.

After downloads complete, each video is then split one frame per second using FFmpeg [1], a
command-line based video and audio editor. As a result, the 108 videos generate around 25 thou-
sand frames in total. Below are some examples by topics:
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Figure 1: AlphaGO example frames

A

and it landed on the Moon’s

near side on Dec. 1,2020

evronews

Figure 3: MH370 example frames
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Figure 5: Thailand protest example frames

2.2 Object Detection

The object detection task contains two sub-tasks:
e Localization: where an object lies on an image
e (Classification: what category that an object belongs to

To accomplish these two sub-tasks, an object detector requires three modules in the following
sequence:

1. aregion extractor to propose bounding boxes or locations where objects of interest may exist
2. an feature extractor to extract visual features from each region,

3. and a classifier to predict the class or label of each identified objects.
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Figure 6: Three modules of an object detector. R-CNN (Regions with CNN features) im-
plements this workflow.

YOLO (You Only Look Once) [5] is a real-time object detector that unifies all these three
components into a single model. It divides images into regions, predicts bounding boxes and
probabilities for each region, and then labels objects appearing in bounding boxes with confidence
higher than a predetermined threshold. This paper uses 0.6 as the confidence threshold.

Comparing with other object detectors such as R-CNN (Regions with CNN features) , YOLO
claims to be faster without sacrificing too much accuracy. Since the goal of this paper is to build a
system that automatically determines video similarity, the implementation and training of a YOLO
model is out of the scope of this paper. Instead, this paper adopts an existing Keras implementation
(the 3rd version of YOLO), keras-yolo3 [3], on GitHub.

Final detections

Class probability map

Figure 7: YOLO workflow



YOLO is trained on COCO (Microsoft Common Objects in Context) [4], an image dataset
designed for object detection. COCO contains 330K images and 80 categories of daily objects such
as people, dogs, and airplanes.

Dataset examples

Figure 8: COCO dataset examples

COCO allows YOLO to detect overlapping objects and even infer labels from object parts. For
example, YOLO considers a hand or leg as a single person. YOLO does make mistakes when the
objects are uncommon. Figures below draw predicted bounding boxes and labels on input frames:

100
200 ¢ 1
300
400
500

600 Police in Bangkok use wated cannon and tean gds

700

0 200 400 600 800 1000 1200

Figure 9: YOLO predictions of overlapping objects
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Figure 10: YOLO predictions of object parts
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Figure 11: YOLO mistakes on uncommon objects



2.3 Video Segmentation

A video consists of at least one segment. A news video for example may switch between two
cameras, one in the studio and the other on the scene. Each switch marks the start or the end of
a segment since scenes change drastically.

A key frame is a frame that best summarizes a video segment. All the other frames in the same
segment only differ slightly from the key frame. A frame at start and one in the middle may carry
the same amount of information. For simplicity, this paper considers the very first frame of each
segment as a key frame.

This paper divides videos based on changes in
e object positions
e or object counts

among key frames.

2.3.1 IoU-Based Segmentation

IoU (Intersection Over Union) is a metric that measures the overlap between two objects or specif-
ically their bounding boxes.

Area of Overlap

loU =
Area of Union

Figure 12: IoU (Intersection Over Union) metric

The IoU-based segmentation goes through two stages to determine the similar score of each
frame pair:

1. For each object present in the first frame, find the closest object with the same label existing
in the second frame in terms of Euclidean distance.

2. Obtain the two corresponding bounding boxes given by YOLO and compute the IoU score.

The final similarity score is the average IoU score. If this score is lower than a threshold, the two
frames belong to different segments. The second frame, or the one with a later timestamp, becomes
the key frame of the new segment. This paper uses 0.6 as the threshold.



2.3.2 Frequency-Based Segmentation

The frequency-based segmentation focuses on variations in object counts. Such differences may
indicate a change of scene. This paper puts frames into distinct bins in terms of their object
counts. Frames in the same bin have the same or similar numbers of a specific object. For example,
frames containing three or four people belong to the same bin while two frames having one and two
people respectively fall into different bins. The choice of bins will be explained in the experiment
section. If two frames appear in different bins, a new segment appears with the second frame, or
the one with a later timestamp, as its key frame.

2.3.3 Segmentation Output

Running each segmentation method above will generate a JSON list of key frames sorted in chrono-
logical order. An example (output by the IoU-based segmentation) may look like the following:
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Figure 13: Example segment 1: frame 7 and 11

Figure 14: Example segment 2: frame 12 and 18



3 Experiments

3.1 YOLO Performance

Since the adopted YOLO implementation is not official, it is essential to determine its perfor-
mance in the first place. The official one is written in Darknet that has compatibility issue during
experiments described in this paper.

This experiment runs the implementation over the third video set with 8 videos or 1076 frames
in total. Time to load the pre-trained weight is excluded. Results show that this implementation
takes around 3.5 seconds to process an individual frame, or equivalently 0.27 frame per second. The
implementation outputs bounding boxes along with their confidences and labels simultaneously. A
4-minute long video (maximum video length in this paper) will take around 15 minutes. This paper
considers segmentation as a preprocessing process, whose results can be reused during the video
comparison stage. Hence, the performance is acceptable.

3.2 Most Significant Object

Not all objects are helpful to indicate a scene change. Whether or not there is a bottle on a
desk probably does not matter. In addition, focusing on the most significant object(s) reduces the
workload during video comparisons.

This experiment uses the first two sets of videos, 50 about AlphaGo and 50 about Chang’e 5.
Through data exploitation, the results show that people are the most common objects in both
topics. The counts are dominating. All later experiments thus only consider people for simplicity.

AlphaGo: Top 10 Objects Ordered by Counts
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Figure 15: Top 10 most common objects in AlphaGo videos
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Change5: Top 10 Objects Ordered by Counts
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Figure 16: Top 10 most common objects in Chang’e-5 videos

3.3 Bin Selections for Frequency-Based Segmentation

3.3.1 Frequency Distribution of People

This experiment uses the 100 videos from the first two video sets again to generate a frequency
distribution for each of the two topics. Both distributions demonstrate the same pattern:

1. a big jump between counts of frames containing zero and one person,

2. frames with a single person dominate both distributions,

3. a noticeable difference between counts of frames containing one and two people,

4. and a long tail for each distribution.

Following this pattern, it is rather clear to separate frames having zero, one, and two people into
distinct bins. However, it is hard to group the other frames due to their relatively low frequencies

and varying distributions over different topics.
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Figure 17: Frequency distribution of people in AlphaGo videos
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Figure 18: Frequency distribution of people in Chang’e-5 videos

3.3.2 Roles of People

To confirm the bin selections above and determine the rest of the bins, this part of experiment
explores 10 of the 100 videos to understand the relationship between the counts and roles of people

in frames. Below are some observations:

e () person: background scenes and non-human objects describe the overall events and topics

12



e 1 person: usually appears during an interview or announcement; people are the topic focus

e 2 people: indicate interactions such as conversations; people and their interactions tell the
event

e > 3 people: people become part of scenes; both background scenes and people present
describe the topics

That is, people are primary information sources when there are one or two of them. Background
scenes and other objects have higher weightings in story-telling if zero or more than two people
appear. The observations above suggest 4 bins, which agree with the previous bin selections.
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Figure 21: Frames with two people
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according to a strict and scientific experiment design,
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Figure 22: Frames with three or more people

3.4 Comparison of Segmentation Methods

This experiment aims to determine which of two segmentation methods extracts key frames/video
segments with a higher accuracy.

3.4.1 Ground Truth

The ground truth are also JSON lists of key frames. The split choices are arbitrary, usually based on
scene or object size changes. 11 AlphaGo videos are manually labelled to perform this experiment.

3.4.2 Evaluation

Dynamic Time Warping (DTW) is a metric measuring the similarity between two temporal se-
quences . It tries to match the two sequences with minimal cost under four constraints [7]:

1. Each index from a sequence must match with at least one index from the other sequence.
2. The very first indices of both sequences must match with each other.
3. The very last indices of both sequences must match with each other.

4. The mapping of indices from the first sequence to the second must be monotonically increas-
ing.

Since the lists of key frames are sorted in chronological order, they can be seen as temporal
sequences, making DTW an ideal evaluation metric.

For the cost function d(x,y), this paper uses a “one-dimensional” IoU function inspired by the
standard /two-dimensional one. That is, this cost function considers intersections and overlaps
between temporal segments instead of object bounding boxes. A lower cost indicates a better
accuracy /performance.

14



A DTW implementation may look like the following [7]:

int DTWDistance(s: array [1..n], t: array [1..m]) {
:= array [0..n, 0..m]

for := 0 ton
for := 0 tom
DTW[i, jl := infinity
DTW[O, 0] := 0

for := 1 ton
for =1 tom
1= d(slil, t[jD)
DTW[i, j] := cost + minimum(DTW[i-1, j 1], // insertion

DTW[i , j-11, // deletion
DTW[i-1, j-11) // match

return DTW[n, m]

3.4.3 Results

Video ID | IoU-Based Cost | Frequency-Based Cost | Video Description

1 38.5 26.4 News report and interview

2 54 32.3 Explanation of Go strategies
3 19 1 Explanation of Go strategies
4 33 16.9 News report

5 27.6 19.1 News report

6 28.2 27.6 Documentary and interview
7 105 107 Documentary

8 40 47 Go match

9 30 31 Interview

10 22 30.2 Interview

11 17 35.7 Documentary Trailer

Video 1 to 6 favors the frequency-based segmentation while video 7 to 11 shows the IoU-based
segmentation a better method. However, video 8 and 11 are uncommon comparing to the other
videos:

e Video 8: The primary camera focuses on hand movements on a Go board, not people as in
a typical news videos.

e Video 11: Since this video is a trailer, scenes change rapidly. A scene usually lasts one or
two frames. This trait makes video 11 different from standard news videos.

Excluding these two special cases, the results favor the frequency-based segmentation as it
performs better in 3 more videos than the IoU-based one.
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Figure 23: Example frame from video 8.

Conclusion

This paper demonstrates a system that automates video segmentation and similarity comparison
using object detection. Experiments show that people are the most common objects regardless
of topics and the frequency-based segmentation outperforms the IoU-based method. The system
can follow exactly the same steps as in the evaluation section to compute similarity scores for
different videos. Future work can examine frequency distribution of people or other objects in
depth. Distribution variations may provide hints to cultural differences.

All codes are available on |GitHubl
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