
 
 

Lee 1 

Cross Culture Analysis via Media News Videos 

Kathleen Lee, Supervisor: John. R. Kender 

Columbia University 

 
Introduction  

Online video-sharing platforms, such as YouTube, are increasingly allowing the cross-border 

flow of media content. More specifically, these media-sharing websites are becoming an 

evolving news medium as they growingly share more diverse international news on their 

platforms. As a global media-sharing platform, websites like YouTube allows both professionals 

and amateur producers to participate in the content production of the news videos. In this regard, 

these platforms provide various insights into the heterogeneous audience group, revealing their 

cultural values and openness, as they share and comment on various news topics. Using this 

trend of consumption and production of news videos on media-sharing platforms, this study aims 

to examine the difference in cultural responses to particular events by extracting visual and 

semantic features from news videos.   

 Previous research on this subject have concluded that ‘AlphaGo’ is a topic covered 

internationally in many media-sharing websites. AlphaGo’s 4-1 victory in Seoul, South Korea, in 

March 2016, was in fact watched by over 200 million people worldwide [1]. With this in mind, 

we chose ‘AlphaGo’ as the topic of study to analyze the cultural difference toward the subject 

between the United States and China. YouTube was used to retrieve news videos covering 

‘AlphaGo’ in the United States since it is the most popular platform for media consumption on 

the web in the US, with more than one billion viewers every day. Unlike in the US, there is no 

one singular online video platform widely-used in China, so news videos were collected from 



 
 

Lee 2 

various sources including and not limited to Bilibili, Iqiyi, Tencent Videos, and Youku. Audio 

was extracted from these collected videos and transcribed into transcript text using Natural 

Language Processing pipelines and libraries available in Python.  

Some of the problems that I improved upon from the previous work were filtering search 

queries and implementing better categorization of words within the transcript. The previous 

search queries for ‘AlphaGo’ videos failed to remove advertisement and irrelevant videos. As a 

solution, I aimed to create a list of whitelisted words that would indicate whether a video was 

relevant or not. These whitelisted words were generated by extracting keywords from the 

transcripts. Finding keywords would also better categorize words within the transcript when 

generating image-text pairs. Depending on the word distribution in the transcript, for a news 

video that runs for 5 minutes, there were about an average of 300 image-text pairs available. We 

wanted to narrow down the words to a few keywords in order to extract images based on those 

keywords to highlight any cultural differences between the two countries video sources.  

 
Related Work 
 

In my initial research to find a way to extract only the key content within a video, I came 

across a paper produced by Carnegie Mellon University School of Computer Science which 

discusses a method for ‘Video Skimming for Quick Browsing based on Audio and Image 

Characterization’ [2].  In the paper, it discusses how the extraction of significant information is 

made possible through the language processing of the transcript. In particular, the method of 

language analysis they focused on is the technique known as TF-IDF (Term Frequency Inverse 

Document Frequency) to identify keywords and their relative important in the video source. As 

the name suggests, a high TF-IDF score indicates the importance of the word in the video. Words 



 
 

Lee 3 

that frequently appear in the transcript but are rare in the corpus are given the highest weights 

and categorized as a ‘keyword’ in the transcript.  

 To test whether this condition could be applied to our study, I found the most important 

words in the transcripts by calculating the total frequency of each word. An example of the result 

is shown in Figure 1.  

 

Figure 1: Sample of Total Frequency of Words from Transcripts 

 from All Video Sources Collected  

 
As Figure 1 shows, the words that appear most frequently in the transcripts were determinants 

and prepositions. Nouns such as company and people names, which may be more significant for 

our analysis, had a lower frequency count. Looking at this result, we concluded that TF-IDF may 

be technique we can use to determine keywords in our transcripts. 

 
 
 
 
 



 
 

Lee 4 

Data Preparation  
 
Reuters Corpus  
 

To have an accurate depiction of keywords used in news articles, I aimed to collect a 

corpus with a large set of news articles. My first attempt was to use the Reuters Corpus Volume I 

(RCV I), which is an archive of over 800,000 manually categorized newswire stories made 

available by Reuters, Ltd. [3]. Reuters is the largest international text and television news 

agency, which has an editorial division that produces more than 11,000 stories in 23 languages a 

day. I believed that this corpus would be a great source to get a substantial amount of news 

articles in multi-languages. The RCV I archive consists of all and only English language stories 

that were published between August 20, 1996 and August 19, 1997 [3]. I believed it was 

appropriate for our study since it contains content that ranges from English language 

international newswire to economic and political stories. The original dataset was formatted in 

XML which I converted to TXT when reading through the files.  

 One problem I encountered after extracting keywords from the video transcripts using the 

Reuters corpus was that the word ‘AlphaGo’ did not appear in the keywords. Below is one 

transcript example from which I got keywords:  

 

South Korea top class go player isidora continues go strong matched Google AI computer 

alphago Korean Maxim cop Lee defeated fellow Dent Pro Song June two wins take cut 

total recordbreaking five wins Korean go Grand Masters championships creative tactical 

moves reminiscent previous landlord match alphago Rayleigh seem well within reach 

regaining top go players seat Curry last ring never domestically November 

 



 
 

Lee 5 

Figure 2 shows the keyword result for this transcript. As you can see, although the word 

‘alphago’ appears in the transcript, it does not appear in the keyword result.   

 

Figure 2: Keywords Based on TF-IDF Score Using Reuters Corpus  
 
I concluded this was due to the fact that the term ‘alphago’ did not exist during 1996 and 1997. 

Thus, the frequency of the word ‘alphago’ in the corpus was zero and the TF-IDF score was 

undefined. A solution to this problem was to add or change the corpus to a more recent set of 

news articles. Specifically, a corpus set that contains news articles published beyond 2016.  

 

New York Times Corpus  

A more recent corpus of news articles I found was The New York Times Annotated Corpus 

compiled by the Linguistic Data Consortium at the University of Pennsylvania [4]. The New 

York Times Annotated Corpus contains over 1.8 million articles written and published by the 

New York Times between January 1, 1987 and June 19, 2007 [4]. This corpus was not readily 



 
 

Lee 6 

available online so I gained access to it through the Natural Language Processing lab at 

Columbia University under the supervision of Professor Julia Hirschberg. The original data was 

formatted in XML which I converted to TXT when reading through the files. Although this 

corpus contained more recent articles published than Reuters, it still did not contain articles 

published after 2016.  Therefore, I decided it was necessary to collect more articles from the 

New York Times published within the last five years.  

 

News Scraping from the New York Times  

News scraping is the process of extracting data, in particular news articles, from the web. To 

automate this process of downloading articles from the New York Times, I used the Python 

package BeautifulSoup. BeautifulSoup parses the HTML/CSS components of the individual web 

page and uses the hyperlink to select specific components of the web page. I extracted news 

articles from https://spiderbites.nytimes.com/, which is an archive of free news articles published 

by the New York Times organized by year and month as shown in Figure 3 and 4. I mainly 

focused on collecting articles published within 2014 to 2019.  

 

 
Figure 3: Collection of New York Times Articles Organized by Year  

 



 
 

Lee 7 

 
 

 
Figure 4: Collection of New York Times Articles Published in  

2018 Organized by Month  

 

Articles within each month were divided into four parts. I created a Python script such that it 

iterates through each of the parts and collects the links to the article pages. I achieved this by 

storing all article reference links that has the <a href= “> tag that were within the <ul 

id=”headlines”> div, as shown in the highlighted section of Figure 5 below.  

 

Figure 5: Collection of New York Times Articles Published in  

January 2018 (the First of Four Parts) and HTML page 



 
 

Lee 8 

To find the exact HTML class that includes the title, body paragraph, and advertisements of the 

articles, I manually examined each of the article’s HTML source page. From there, I noticed that 

articles titles were given the class ‘headline’ as shown in Figure 6. Like this, I individually 

parsed the HTML classes and found that the dates were given class ‘css-1w5cs23 epjyd6m2’, the 

body paragraph given ‘’css-1i2y565’, and lastly advertisements had the class ‘'css-1soubk3 

epkadsg3'. This method allowed me to filter the articles before downloading them by removing 

all classes that contained advertisement words. I then formatted the article data into XML file. 

Using this method, I collected over 200,000 additional news articles from the New York Times 

to add to the corpus.  

 

Figure 6: HTML Page for a New York Times Article Showing Title Class 

 
 
Implementation Details  
 
Data Pre-processing  

 In order to pre-process the newspaper article data, I used several Natural Language Tool 

Kit (NLTK) libraries, which is a Python platform available to use for natural language 

processing, and the sklearn library, which is an open-source machine learning tool available in 

Python. First, I converted all the newspaper articles to TXT files. Since all of the New York 



 
 

Lee 9 

Times articles were in XML format, I had to parse the file to obtain the <title> <date> <body> 

<p> blocks of strings. I then saved the strings to a TXT file so I can access it again later without 

needing to parse the XML file again. Next, I removed stopwords from the data. Stopwords are 

common words used in sentences which usually include a large number of prepositions, 

pronouns, conjugations, and many others. Stopwords can also include blacklisted words, such as 

words related to advertisements. I believed that removing stopwords are necessary in order to 

focus on words that were most relevant to the context, rather than on prepositions. Checking for 

the most commonly used words in the transcripts, I found that the following should be added to 

the stopwords: {the, of, a, and, to, in, for, that, in, we, on, with, as, this}. 

Additionally, I added several advertisement words I found in the description section of the 

videos, such as [‘http’, ‘https’, ‘com’, ‘wired’, ‘tumblr’, ‘facebook’, ‘instagram’, 

‘www’, ‘youtube’,'weibo','twitter','wiki']. Furthermore, I imported stopwords from the 

nltk.corpus library.   

 Next, I pre-processed the data by removing redundant text-components and normalizing 

the transcripts. Redundant text-components include punctuations, URL links, and stopwords. 

Normalizing data includes two parts: stemming, which cleans the text by removing suffixes, and 

lemmatization, which finds the root of the word. First, I removed punctuations from the words 

and converted them all to lower case. I then removed tags such as "&lt;/?.*?&gt;" and 

removed digits and special characters like ‘\W’, which are words following the character “\” 

like in a URL. I then used PorterStemmer() and WordNetLemmatizer() to get the base form of 

the word. The functions return the input word unchanged if it cannot be found in WordNet to 

prevent any incorrect or misspelled root words. I created a word cloud shown in Figure 7 using 



 
 

Lee 10 

the word cloud library to visualize the most frequently used words in the corpus after pre-

processing.  

 

Figure 7: Word Cloud of Most Frequently Used Words 

in Corpus After Pre-Processing 

 

Before running the article data through a machine learning algorithm to calculate the TF-IDF 

score of individual words, we needed to tokenize the long string of article text into a list of 

words. I used CountVectorizer() from the sklearn library to tokenize the text and convert the list 

of words to a matrix of integers by the process of vectorization. I created an instance of the 

CountVectorizer class and then used the fit_transform function to learn and build the vocabulary 

of known words. The parameters passed into the CountVectorizer() function are max_df, which 

specifies to ignore words that have a document frequency higher than the given threshold, and 

max_features which determines the number of columns in the matrix [5]. The functions are 

shown below.  

 

 



 
 

Lee 11 

 

from sklearn.feature_extraction.text import CountVectorizer 
import re 
 

cv=CountVectorizer(max_df=0.8,stop_words=STOPWORDS, max_features=10000, 
ngram_range=(1,3)) 
word_count_vector=cv.fit_transform(corpus) 

 
An encoded vector is returned with a length of the entire vocabulary. Here is a segment of 10 

words in the word count vector.  

list(cv.vocabulary_.keys())[:10] 

['liverpool','ousts','manchester''united','stunning','solo','goal', 

'philippe','coutinho','helped'] 

 

Tf-IDF Vectorizer  

The next step is to refine the word counts using the TF-IDF vectorizer from sklearn. Word 

counts obtained using countVectorizer() contains large counts of common words rather than 

focusing on the context specific words in the corpus. We use the TF-IDF vectorizer to penalize 

words that appear frequently across the document and highlight words that are more relevant to 

the context. The TF-IDF consists of two parts – TF (term frequency) and IDF (Inverse document 

frequency), which are defined as follows:  

 

𝑇𝐹	 =
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	𝑜𝑓	𝑡ℎ𝑒	𝑤𝑜𝑟𝑑	𝑖𝑛	𝑎	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡
𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑤𝑜𝑟𝑑𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡	 

𝐼𝐷𝐹	 =
𝐿𝑂𝐺(𝑡𝑜𝑡𝑎𝑙	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠)

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠	𝑡ℎ𝑎𝑡	𝑐𝑜𝑛𝑡𝑎𝑖𝑛	𝑡ℎ𝑎𝑡	𝑤𝑜𝑟𝑑	 

 

 



 
 

Lee 12 

 

 

from sklearn.feature_extraction.text import TfidfTransformer 
 
tfidf_transformer=TfidfTransformer(smooth_idf=True,use_idf=True) 
tfidf_transformer.fit(word_count_vector) 
 
# get feature names 
feature_names=cv.get_feature_names() 
 
# fetch document for which keywords needs to be extracted 
doc = corpus 
 
#generate tf-idf for the given document 
tf_idf_vector=tfidf_transformer.transform(cv.transform([doc])) 

 
 
Based on the TF-IDF scores, we can extract the words with the highest scores to obtain the 

keywords for that transcript. I sorted the tf_idf_vector, which contains the word and the 

corresponding tf-idf values, and then passed it through a function that extracts the top n words 

from the vector. For this research, I selected the top n = 15 words to use as keywords.  

 
Keywords Result  
 
The keywords extracted for one transcript is show below. The transcript was number 16 among 

the collected AlphaGo videos.  

=====Body=====well familiar chessplaying computer deep blue famously get Garry Kasparov years ago 
ancient game Go known significant challenge artificial intelligence overwhelming complexity makes 
intuitive game new program beat challenge huge match go project expected take place worlds long 
time ago Grandmaster human alphago computer program developed Google reports development makes 
milestone AIup ancient game Go product singled board game computers crack due complexity rules 
simple though gain territory grid placing capturing black white stones placed almost indefinite 
number combinations belief Mason change US tech giant Google says computer fiftyfifty chance beat 
strongest players world quit artificial intelligence program called alphago developed Google 
londonbased company deepmind Google says alphago trying learn like human observing others play 
repeatedly predicting outcome game well using instincts make best move Uncharted situations gut 
instinct makes alphago advanced compared previous software programs including IBM trust 
supercomputer deep blue Russian chessKasparov I learn use generalpurpose algorithm interpret 
games patterns Google says alphago already defeated European Potter Champion fleece five times 
five tournaments October cofounder deepmind Dennis house Obby says ultimate goal alphago 
development Supply solve realworld problems future I may CT scan grain image image best kind 
treatment decadeslong Korean champion Potter Grandmaster isidora sold March The Winning Side 



 
 

Lee 13 

awarded million US dollars prize money whatever outcome one thing sure thecoming match mustard 
development artificial intelligence news 
 
=====Keywords===== 
alphago 0.44 
google 0.238 
game 0.198 
artificial 0.164 
says 0.158 
deepmind 0.152 
computer 0.14 
intelligence 0.134 
development 0.133 
grandmaster 0.133 
makes 0.129 
program 0.123 
go 0.117 
complexity 0.114 
potter 0.112 
 
Collecting all of the keywords found in each transcript, I compiled them into a whitelist. Figure 8 

shows the top 20 keywords included in the whitelist.  

 
  Figure 8: Top 20 Keywords Used in AlphaGo Youtube Video Transcripts  
 
 
 
 
 
 



 
 

Lee 14 

Extract Image Frames for Keywords in Video  
 
To better understand the relationship between the keywords and the video source, I extracted 

images at the given timestamp of each of the keywords using an OpenCV library called 

VideoCapture. Through this, I wanted to see if there were any interesting alignments between 

keyword and their corresponding images. The images extracted from transcript number 16 are 

shown below. Since many of the keywords appeared multiple times in the transcript, the images 

were grouped together by keywords for better comparison.   

 

Alphago  

 

 
Artificial  

 
 
 
 
 



 
 

Lee 15 

Complexity  
 

 
 
Computer  

 
 
Deepmind  

 
 
 
 
 
 
 
 
 



 
 

Lee 16 

Development  

 
 
Go  

 
 
Intelligence  

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Lee 17 

Conclusion and Future Work 
 
Considering that the corpus had over 1.8 million newspaper articles, I could not use all of the data 

to extract keywords from the transcripts. I used a sample of the New York Times annotated 

corpus, namely articles from 2004 and 2005, along with the more recent articles that I collected 

through news scraping to get the TF-IDF value. One future work would be to test out different 

samples of the corpus to see which sample provides the best set of keywords. 

An issue I noticed was that the transcript had a lot of misspelled or incorrect words, since speech-

to-text algorithms are often not completely accurate. The lemmatization during pre-processing 

could not find the root word for these misspelled words so left them as they originally were. This 

cause many words to be miscounted when calculating TF-IDF scores. Another future work would 

be to improve upon the speech-to-text conversion of the video audio to transcript to ensure that all 

words are spelled correctly.  

Observing the result from the image extraction, we can note that many of the frames are images of 

news anchors, journalists, and the game go board. Currently, the image is extracted almost 

instantaneously at the timestamp, perhaps with the different of +/−	0.5 seconds. Future work 

would be to expand the timestamp to at most +/- 2 seconds to see if better connections can be 

made between the keywords and the images. Currently, it seems as though the keywords do not 

necessarily provide better association for the images. Future work could include gathering videos 

that have more on-site coverage of the topic rather than discussion between anchors and 

journalists.  

 
 
 
 
 
 



 
 

Lee 18 

References  
 
1. “AlphaGo.” DeepMind, deepmind.com/research/alphago/. 

2. Smith, Michael A, and Takeo  Kanade. “Video Skimming for Quick Browsing Based on 

Audio and Image Characterization.” 30 July 1995, doi:10.1.1.33.1714&. 

3. Lewis, David  D, et al. “RCV1: A New Benchmark Collection for Text Categorization 

Research.” Journal of Machine Learning Research 5, 4 Apr. 2004, pp. 361–397. 

4. Sandhaus, Evan. “The New York Times Annotated Corpus.” Linguistic Data Consortium, 17 

Oct. 2008, catalog.ldc.upenn.edu/LDC2008T19. 

5. Vivek, Sowmya. “Automated Keyword Extraction from Articles Using NLP.” Medium, 

Analytics Vidhya, 17 Dec. 2018, medium.com/analytics-vidhya/automated-keyword-

extraction-from-articles-using-nlp-bfd864f41b34. 

 


