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Abstract

Our goal is to identify near-duplicate frames from different videos. Nearly
duplicate frames are frames that not exactly the same, but only differs in minor
aspects such as the camera angle, the distance and the displayed texts, etc. Other
than that, they contain almost the same content and describe the same scenes,
people or events. This could associate texts from the videos and thus be useful to
the further analysis. One important factor is that the process of finding such frame
pairs should ideally be done automatically and involve as little manual inspections

as possible.

Introduction

When we focus on videos from Chinese sources and English sources on the same

topic, they usually contain frames that describe the same event or idea. Claire used



a VGG-19 network in order to find near-duplicate frames. However, a great
amount of manual inspection is involved. The work in this report mainly aims to
improve the process and reduce the effort needed from humans while increasing
the performance of finding near-duplicate frames. Below is an example of such

frames.
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Figure 1. Near-duplicate frames

As we can see, the two frames contain the same background and the same person
talking. The difference is the posture of him talking and the subtitles shown at the

bottom.



Methods

Previous Method

In previous work, the task of finding near-duplicate frames mainly relies on
manual inspection. In other words, we watched the videos and tried to see whether
there are similar frames among the videos from different sources. This was

obviously not very efficient, and thus needs to be improved.

Frame Sampling

To begin with the improvement, we first gather the frames from the videos. The
most straightforward way to do this is sampling the videos at a constant rate. This
could be easily done with the help of the open-source package, OpenCV

(https://opencv.org). The following screenshot shows an example of frame

sampling on a set of videos.


https://opencv.org/
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Figure 2. Screenshot of constant rate frame sampling

This breaks a video into many frames. This will of course discard some
information, but in most cases key-frames will not be lost as long as the sampling

rate 1s not too low. In the example shown the sampling rate is 5 seconds per frame.

VGG-19 Network

After breaking videos into individual frames, we can now focus directly on frames

instead of videos. The VGG-19 network is a very handful tool in many applications



working with pictures and pre-trained versions on very large datasets can be found
on the web. The network includes several convolution layers and before the final
output it contains several fully connected layers. In our applications we do not use
the last layer’s result since it would not be very meaningful as we are not working
on a classification problem. Instead, we extract the output of one of the

intermediate layers and treat it as a feature vector of the input frame.

With more detail, we tried the last convolution layer and the second to last layer of
the entire network. The reason of choosing them is that convolution layers extract
information related to the vision features of the frame, while the fully connected

layers are believed to relate to conceptual features more.

Hashing

Besides VGG-19, we also tried another method to “featurize” a frame, which is
hashing. Unlike cryptographic hashing, which gives substantially different results
even if the input differs by a tiny bit, the hashing we would expect here has to give
similar outputs whenever the input is similar. Then we can tell from the results

whether two frames are similar.



We use a Python package named ImageHash (https://pypi.org/project/ImageHash/)

to complete this. It outputs a number for each frame, which can be used to compare
frames. A demo of pHash (perceptual hashing) can be found at

https://www.phash.org/demo/ and is shown below.
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Figure 3. Demo of pHash using similar frames
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Figure 4. Demo of pHash using very different frames

Distance Function

Using either VGG-19 or hashing, we have converted frames into a vector or a
number. The next step is then specify a way to determine whether two frames are
similar. For this step, we tried several distance functions to determine how similar

two frames are.



L1 Distance: This is the simplest distance function we used. For two vectors, take
the sum of the absolute differences of each entry. For a single number, simply take
the absolute difference between them. This is the only distance function among the

ones used for hashing.

L2 Distance: Instead of taking the sum of absolute differences of each entry, take

the sum of the square of the absolute differences.

Cosine Angular Distance: Using the Euclidean dot product formula, one can
calculate the angle between two vectors. The cosine of that angle is then defined as
the angular distance. One advantage of this method is that the result is on a

normalized scale.

Removing Similar Frames within the Same Set

From the screenshot shown in Figure 2, it is not too difficult to see that a large
number of similar frames exist in the result of frame sampling. This is due to the
fact that the video contains almost the same content in a period of time. Frame

sampling will capture many copies of those contents. This will cause many



duplications in our final results. Thus before trying to capture near-duplicate
frames from two sets of videos, we first need to eliminate similar frames within the

same set. We use average hashing

(http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html),
which is a simple hashing method based on pixels to remove such similar frames

within the same set of videos. Whenever the result of aHash of a frame has a L1

distance less than some threshold to another frame within the same set, the frame is

discarded. The result after this step is shown below.
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Figure 5. Screenshot of frame sampling after removing similar frames


http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html

As we can see, this simple method turned out to be quite effective, and it greatly
reduced the number of frames in a set of videos, enhancing the performance of the

model.
Finding Near-duplicate Frames from Two Sets of Videos

After setting up all the previous tools, we can finally start to actually work on
finding the near-duplicate frames. For a single topic, we gather a set of Chinese
videos and a set of English videos. For each set of videos, sample the frames at a
constant rate and remove duplicate ones using aHash with L1 distance. Then using
VGG-19 with the last convolution layer or second last fully connected layer, or
using hashing, convert the frames into vectors or numbers. Finally, compare each
frame in one set and each frame in the other and rank the candidate frame pairs
according to a distance function. Part of the result is shown below to demonstrate

what it looks like.

["av1007072", 0, "4QeYcKD7dFk", 845000, 0.03997420386806122],
["av1007072", 0, "OWT7HMQbCF14", 240000, 0.04034107040385553],
["av23040459", 220000, "4QeY cKD7dFk", 845000, 0.05797681805467925],

["av23040459", 220000, "OW7HMQbCF14", 240000, 0.06383399460236752],



["av6174767", 420000, "OW7HMQbCF14", 240000, 0.06935971250464631],
["av1007072", 0, "02X6CIKHQKI", 260000, 0.07072534716776036],
["av6174767", 420000, "4QeYcKD7dFk", 845000, 0.07147299200659595],
["av23040459", 230000, "4QeYcKD7dFk", 845000, 0.07166437959896402],
["av37679601", 45000, "4WV-NGcMMLA", 245000, 0.07228764384710153],
["av23040459", 110000, "4QeYcKD7dFk", 845000, 0.07290208102437418],
["av23040459", 230000, "OW7HMQbCFI14", 240000, 0.07404724761609144],
["av23040459", 220000, "OW7HMQbCF14", 170000, 0.07511728212693856],
["av23040459", 110000, "OW7HMQbCF14", 240000, 0.07587277694013275],
["av1007072", 0, "OW7HMQbCFI14", 170000, 0.07826463803966736],
["av30883884", 35000, "4QeYcKD7dFk", 845000, 0.07929353963351285],
["av1007072", 0, "OW7HMQbCF14", 230000, 0.08031203941843484],
["av23040459", 225000, "4QeYcKD7dFk", 845000, 0.08230764993918332],
["av30883884", 35000, "OW7HMQbCF14", 240000, 0.08392521897574544],
["av23040459", 230000, "OW7HMQbCFI14", 170000, 0.08475736368962533],
["av1007072", 0, "8WLZ8PHBnx8", 140000, 0.08516623588881521],
["av23040459", 220000, "OW7HMQbCF14", 230000, 0.08576342209524666],
["av23040459", 225000, "90IB991QtPo", 265000, 0.08579177686667606],

["av1007072", 0, "4WV-NGcMMLA", 5000, 0.08600741163059768],



["av23040459", 110000, "OW7HMQbCF14", 230000, 0.08637908775793253],
["av6174767", 420000, "OW7HMQbCFI4", 230000, 0.08670055250849396],
["av23040459", 110000, "OW7HMQbCF14", 170000, 0.08670147268675714],
["av1007072", 0, "90IB991QtPo", 5000, 0.08674405701895739], ["av6174767",
420000, "OW7HMQbCF14", 170000, 0.08815459543267735], ["av1007072", 0,
"SLbolYeLIGk", 35000, 0.08824427961102915], ["av1007072", O,
"2LfnHgs7ZBk", 5000, 0.08826902007402276], ["av1007072", 0,
"8SWLZ8PHBnx8", 85000, 0.08955250748280663], ["av23040459", 225000,
"OW7HMQbCF14", 240000, 0.0895954143517177], ["av23040459", 110000,
"02X6CIKHQKI", 260000, 0.09019344484542155], ["av6174767", 420000,
"02X6CIKHQKI", 260000, 0.09083248493326701], ["av23040459", 110000,
"4WV-NGcMMLA", 5000, 0.09088503944438073], ["av23040459", 220000,
"901B991QtPo", 265000, 0.09133901935121425], ["av6174767", 420000,
"4WV-NGcMMLA", 5000, 0.09145786464277246], ["av1007072", O,
"0XUZ-ZN21pI", 85000, 0.09150083791630045], ["av23040459", 15000,
"4QeYcKD7dFk", 845000, 0.0917947542372095], ["av23040459", 220000,
"02X6CIKHQKI", 260000, 0.09182617310739155], ["av23040459", 15000,
"OW7HMQbCF14", 240000, 0.09192202342874406], ["av23040459", 220000,

"4WV-NGcMMLA", 5000, 0.09196132547559317]



The entries stand for the Chinese video identifier, the frame identifier, the English
video identifier, the frame identifier and the distance. The first few pairs are shown
below. The left column are frames from Chinese videos and the right column from

English. Each row is a candidate near-duplicate pair.



-

Figure 6. Top 5 near-duplicate candidate pairs



Removing Noise

From the results above, we see that the pairs found by the process are not very
interesting. Some frames are easily matched with others and contain little useful
information. Currently, this problem is solved by manually removing additional

frames from the sets of videos to be processed and could be improved in future

work. The result after such manual noise removal is shown in the following.
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Figure 7. Top 3 near-duplicate candidate pairs after noise removal

Comparisons

In the previous sections, there are many choices left in the process of finding
near-duplicate frames. When converting frames into vectors or numbers, we could
use the last convolution layer of VGG-19 or its second to last fully connected
layer. We could also use hashing. When comparing the frames to determine
whether they are similar, we have several choices of distance functions. In the
previous results, we used the last convolution layer of VGG-19 and angular
distance. In this section, comparisons will be made to see the difference between

different choices.



Distance Functions

While keeping other factors fixed (the last convolution layer of VGG-19), we

compare the results of choosing L1 distance, L2 distance and angular distance.

Angular Distance

The result of using angular distance 1s shown below.
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Figure 8. Top 3 near-duplicate candidate pairs using angular distance

L1 Distance

The result of using L1 distance is shown below.
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Figure 9. Top 3 near-duplicate candidate pairs using L1 distance

L2 Distance

The result of using L2 distance is shown below.
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Figure 10. Top 3 near-duplicate candidate pairs using L2 distance

From the results above and the results of several other sets of videos, we conclude
that the choice of distance function does not have a large impact on the results, and
therefore we can choose any one of them or our purpose. We chose angular

distance since it is naturally normalized.

Method of Featurizing Frames

We now compare the effect of choosing different methods of converting frames
into vectors or numbers. Since only L1 distance can be applied on hashing and the
choice of distance function does not matter much, we choose L1 distance as the

distance function for the purpose of this comparison.



VGG-19 Last Convolution Layer

The result of using the last convolution layer of VGG-19 is shown below.

Source: CCTV
January 3, 2019
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Figure 11. Top 5 near-duplicate candidate pairs using the last convolution layer of

VGG-19

VGG-19 Second to Last Fully Connected Layer

The result of using the second to last fully connected layer is shown below.
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Figure 12. Top 5 near-duplicate candidate pairs using the second to last fully

connected layer of VGG-19

aHash

The result of using aHash is shown below.
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Figure 13. Top 3 near-duplicate candidate pairs using aHash

pHash

The result of using pHash is shown below.

Figure 14. Top 3 near-duplicate candidate pairs using pHash



dHash

The result of using dHash is shown below.

Figure 15. Top 3 near-duplicate candidate pairs using dHash



wHash

The result of using wHash is shown below.
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Figure 16. Top 3 near-duplicate candidate pairs using wHash



From the results above, we see that VGG-19 performs better than hashing, while
using the last convolution layer or using the second to last fully connected layer
have similar performance. In other data we have tested, the results are similar, and

using the last convolution layer yields slightly better results.

Possible Improvements

Although the process shown greatly increased performance and efficiency
compared to previous methods, it still has many downsides and some of the

improvements that should be made in future work.

Removing Noise

Using aHash successfully removed most of the similar frames within the same set
of videos. However, the frames that contain very little information but are very
easy to match other frames, such as frames totally black, can greatly harm the
results. This ideally should also be automated, but now it is done by manual

inspection and should be improved.



Result Format

Currently, the format of the results is in json. The results are then manually
inspected and the corresponding frames are then observed. This is very inefficient.
It will be much more efficient if a better interface is built and used to observe the

results.

Conclusion

In short, we developed an automated process to identify near-duplicate frames

from two different set of videos. The process is summarized in the following:
1. Download a set of Chinese videos and a set of English videos on the same
topic.
2. Perform frame sampling at a constant rate
3. Remove similar frames using aHash within the same set of videos.
4. Remove frames that contain little information.
5. Choose a method of featurizing frames and a distance function.

6. Calculate the distance between each frame of one set and each frame of the

other set.

7. Rank the candidate pairs of frames and observe the top few pairs.



