
Identifying Near-duplicate Frames from 

Two Sets of Videos 

Xu Han (xh2379@columbia.edu) 

Abstract 

Our goal is to identify near-duplicate frames from different videos. Nearly 

duplicate frames are frames that not exactly the same, but only differs in minor 

aspects such as the camera angle, the distance and the displayed texts, etc. Other 

than that, they contain almost the same content and describe the same scenes, 

people or events. This could associate texts from the videos and thus be useful to 

the further analysis. One important factor is that the process of finding such frame 

pairs should ideally be done automatically and involve as little manual inspections 

as possible. 

 

Introduction 

When we focus on videos from Chinese sources and English sources on the same 

topic, they usually contain frames that describe the same event or idea. Claire used 



a VGG-19 network in order to find near-duplicate frames. However, a great 

amount of manual inspection is involved. The work in this report mainly aims to 

improve the process and reduce the effort needed from humans while increasing 

the performance of finding near-duplicate frames. Below is an example of such 

frames. 

 

Figure 1. Near-duplicate frames 

 

As we can see, the two frames contain the same background and the same person 

talking. The difference is the posture of him talking and the subtitles shown at the 

bottom. 

 



Methods 

Previous Method 

In previous work, the task of finding near-duplicate frames mainly relies on 

manual inspection. In other words, we watched the videos and tried to see whether 

there are similar frames among the videos from different sources. This was 

obviously not very efficient, and thus needs to be improved. 

 

Frame Sampling 

To begin with the improvement, we first gather the frames from the videos. The 

most straightforward way to do this is sampling the videos at a constant rate. This 

could be easily done with the help of the open-source package, OpenCV 

(https://opencv.org). The following screenshot shows an example of frame 

sampling on a set of videos. 

https://opencv.org/


 

Figure 2. Screenshot of constant rate frame sampling 

 

This breaks a video into many frames. This will of course discard some 

information, but in most cases key-frames will not be lost as long as the sampling 

rate is not too low. In the example shown the sampling rate is 5 seconds per frame. 

 

VGG-19 Network 

After breaking videos into individual frames, we can now focus directly on frames 

instead of videos. The VGG-19 network is a very handful tool in many applications 



working with pictures and pre-trained versions on very large datasets can be found 

on the web. The network includes several convolution layers and before the final 

output it contains several fully connected layers. In our applications we do not use 

the last layer’s result since it would not be very meaningful as we are not working 

on a classification problem. Instead, we extract the output of one of the 

intermediate layers and treat it as a feature vector of the input frame. 

 

With more detail, we tried the last convolution layer and the second to last layer of 

the entire network. The reason of choosing them is that convolution layers extract 

information related to the vision features of the frame, while the fully connected 

layers are believed to relate to conceptual features more. 

 

Hashing 

Besides VGG-19, we also tried another method to “featurize” a frame, which is 

hashing. Unlike cryptographic hashing, which gives substantially different results 

even if the input differs by a tiny bit, the hashing we would expect here has to give 

similar outputs whenever the input is similar. Then we can tell from the results 

whether two frames are similar. 



 

We use a Python package named ImageHash (https://pypi.org/project/ImageHash/) 

to complete this. It outputs a number for each frame, which can be used to compare 

frames. A demo of pHash (perceptual hashing) can be found at 

https://www.phash.org/demo/ and is shown below. 

 

Figure 3. Demo of pHash using similar frames 

 

https://pypi.org/project/ImageHash/
https://www.phash.org/demo/


 

Figure 4. Demo of pHash using very different frames 

 

Distance Function 

Using either VGG-19 or hashing, we have converted frames into a vector or a 

number. The next step is then specify a way to determine whether two frames are 

similar. For this step, we tried several distance functions to determine how similar 

two frames are. 

 



L1 Distance: This is the simplest distance function we used. For two vectors, take 

the sum of the absolute differences of each entry. For a single number, simply take 

the absolute difference between them. This is the only distance function among the 

ones used for hashing. 

 

L2 Distance: Instead of taking the sum of absolute differences of each entry, take 

the sum of the square of the absolute differences. 

 

Cosine Angular Distance: Using the Euclidean dot product formula, one can 

calculate the angle between two vectors. The cosine of that angle is then defined as 

the angular distance. One advantage of this method is that the result is on a 

normalized scale. 

 

Removing Similar Frames within the Same Set 

From the screenshot shown in Figure 2, it is not too difficult to see that a large 

number of similar frames exist in the result of frame sampling. This is due to the 

fact that the video contains almost the same content in a period of time. Frame 

sampling will capture many copies of those contents. This will cause many 



duplications in our final results. Thus before trying to capture near-duplicate 

frames from two sets of videos, we first need to eliminate similar frames within the 

same set. We use average hashing 

(http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html), 

which is a simple hashing method based on pixels to remove such similar frames 

within the same set of videos. Whenever the result of aHash of a frame has a L1 

distance less than some threshold to another frame within the same set, the frame is 

discarded. The result after this step is shown below. 

 

Figure 5. Screenshot of frame sampling after removing similar frames 

 

http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html


As we can see, this simple method turned out to be quite effective, and it greatly 

reduced the number of frames in a set of videos, enhancing the performance of the 

model. 

Finding Near-duplicate Frames from Two Sets of Videos 

After setting up all the previous tools, we can finally start to actually work on 

finding the near-duplicate frames. For a single topic, we gather a set of Chinese 

videos and a set of English videos. For each set of videos, sample the frames at a 

constant rate and remove duplicate ones using aHash with L1 distance. Then using 

VGG-19 with the last convolution layer or second last fully connected layer, or 

using hashing, convert the frames into vectors or numbers. Finally, compare each 

frame in one set and each frame in the other and rank the candidate frame pairs 

according to a distance function. Part of the result is shown below to demonstrate 

what it looks like. 

 

["av1007072", 0, "4QeYcKD7dFk", 845000, 0.03997420386806122], 

["av1007072", 0, "0W7HMQbCFl4", 240000, 0.04034107040385553], 

["av23040459", 220000, "4QeYcKD7dFk", 845000, 0.05797681805467925], 

["av23040459", 220000, "0W7HMQbCFl4", 240000, 0.06383399460236752], 



["av6174767", 420000, "0W7HMQbCFl4", 240000, 0.06935971250464631], 

["av1007072", 0, "02X6ClKHQKI", 260000, 0.07072534716776036], 

["av6174767", 420000, "4QeYcKD7dFk", 845000, 0.07147299200659595], 

["av23040459", 230000, "4QeYcKD7dFk", 845000, 0.07166437959896402], 

["av37679601", 45000, "4WV-NGcMMLA", 245000, 0.07228764384710153], 

["av23040459", 110000, "4QeYcKD7dFk", 845000, 0.07290208102437418], 

["av23040459", 230000, "0W7HMQbCFl4", 240000, 0.07404724761609144], 

["av23040459", 220000, "0W7HMQbCFl4", 170000, 0.07511728212693856], 

["av23040459", 110000, "0W7HMQbCFl4", 240000, 0.07587277694013275], 

["av1007072", 0, "0W7HMQbCFl4", 170000, 0.07826463803966736], 

["av30883884", 35000, "4QeYcKD7dFk", 845000, 0.07929353963351285], 

["av1007072", 0, "0W7HMQbCFl4", 230000, 0.08031203941843484], 

["av23040459", 225000, "4QeYcKD7dFk", 845000, 0.08230764993918332], 

["av30883884", 35000, "0W7HMQbCFl4", 240000, 0.08392521897574544], 

["av23040459", 230000, "0W7HMQbCFl4", 170000, 0.08475736368962533], 

["av1007072", 0, "8WLZ8PHBnx8", 140000, 0.08516623588881521], 

["av23040459", 220000, "0W7HMQbCFl4", 230000, 0.08576342209524666], 

["av23040459", 225000, "9OlB99lQtPo", 265000, 0.08579177686667606], 

["av1007072", 0, "4WV-NGcMMLA", 5000, 0.08600741163059768], 



["av23040459", 110000, "0W7HMQbCFl4", 230000, 0.08637908775793253], 

["av6174767", 420000, "0W7HMQbCFl4", 230000, 0.08670055250849396], 

["av23040459", 110000, "0W7HMQbCFl4", 170000, 0.08670147268675714], 

["av1007072", 0, "9OlB99lQtPo", 5000, 0.08674405701895739], ["av6174767", 

420000, "0W7HMQbCFl4", 170000, 0.08815459543267735], ["av1007072", 0, 

"5LbolYeLlGk", 35000, 0.08824427961102915], ["av1007072", 0, 

"2LfnHgs7ZBk", 5000, 0.08826902007402276], ["av1007072", 0, 

"8WLZ8PHBnx8", 85000, 0.08955250748280663], ["av23040459", 225000, 

"0W7HMQbCFl4", 240000, 0.0895954143517177], ["av23040459", 110000, 

"02X6ClKHQKI", 260000, 0.09019344484542155], ["av6174767", 420000, 

"02X6ClKHQKI", 260000, 0.09083248493326701], ["av23040459", 110000, 

"4WV-NGcMMLA", 5000, 0.09088503944438073], ["av23040459", 220000, 

"9OlB99lQtPo", 265000, 0.09133901935121425], ["av6174767", 420000, 

"4WV-NGcMMLA", 5000, 0.09145786464277246], ["av1007072", 0, 

"0XUZ-ZN21pI", 85000, 0.09150083791630045], ["av23040459", 15000, 

"4QeYcKD7dFk", 845000, 0.0917947542372095], ["av23040459", 220000, 

"02X6ClKHQKI", 260000, 0.09182617310739155], ["av23040459", 15000, 

"0W7HMQbCFl4", 240000, 0.09192202342874406], ["av23040459", 220000, 

"4WV-NGcMMLA", 5000, 0.09196132547559317] 



 

The entries stand for the Chinese video identifier, the frame identifier, the English 

video identifier, the frame identifier and the distance. The first few pairs are shown 

below. The left column are frames from Chinese videos and the right column from 

English. Each row is a candidate near-duplicate pair. 

 

 

 



 

 

 

Figure 6. Top 5 near-duplicate candidate pairs 

 



Removing Noise 

From the results above, we see that the pairs found by the process are not very 

interesting. Some frames are easily matched with others and contain little useful 

information. Currently, this problem is solved by manually removing additional 

frames from the sets of videos to be processed and could be improved in future 

work. The result after such manual noise removal is shown in the following. 

 

 



 

Figure 7. Top 3 near-duplicate candidate pairs after noise removal 

 

Comparisons 

In the previous sections, there are many choices left in the process of finding 

near-duplicate frames. When converting frames into vectors or numbers, we could 

use the last convolution layer of VGG-19 or its second to last fully connected 

layer. We could also use hashing. When comparing the frames to determine 

whether they are similar, we have several choices of distance functions. In the 

previous results, we used the last convolution layer of VGG-19 and angular 

distance. In this section, comparisons will be made to see the difference between 

different choices. 

 



Distance Functions 

While keeping other factors fixed (the last convolution layer of VGG-19), we 

compare the results of choosing L1 distance, L2 distance and angular distance. 

 

Angular Distance 

The result of using angular distance is shown below. 

 

 



 

Figure 8. Top 3 near-duplicate candidate pairs using angular distance 

 

L1 Distance 

The result of using L1 distance is shown below. 

 

 



 

Figure 9. Top 3 near-duplicate candidate pairs using L1 distance 

 

L2 Distance 

The result of using L2 distance is shown below. 

 

 



 

Figure 10. Top 3 near-duplicate candidate pairs using L2 distance 

 

From the results above and the results of several other sets of videos, we conclude 

that the choice of distance function does not have a large impact on the results, and 

therefore we can choose any one of them or our purpose. We chose angular 

distance since it is naturally normalized. 

 

Method of Featurizing Frames 

We now compare the effect of choosing different methods of converting frames 

into vectors or numbers. Since only L1 distance can be applied on hashing and the 

choice of distance function does not matter much, we choose L1 distance as the 

distance function for the purpose of this comparison. 

 



VGG-19 Last Convolution Layer 

The result of using the last convolution layer of VGG-19 is shown below. 

 

 

 



 

 

Figure 11. Top 5 near-duplicate candidate pairs using the last convolution layer of 

VGG-19 

 

VGG-19 Second to Last Fully Connected Layer 

The result of using the second to last fully connected layer is shown below. 

 



 

 

 

 



Figure 12. Top 5 near-duplicate candidate pairs using the second to last fully 

connected layer of VGG-19 

 

aHash 

The result of using aHash is shown below. 

 

 

 



Figure 13. Top 3 near-duplicate candidate pairs using aHash 

 

pHash 

The result of using pHash is shown below. 

 

 

 

Figure 14. Top 3 near-duplicate candidate pairs using pHash 



 

dHash 

The result of using dHash is shown below. 

 

 

 

Figure 15. Top 3 near-duplicate candidate pairs using dHash 

 



wHash 

The result of using wHash is shown below. 

 

 

 

Figure 16. Top 3 near-duplicate candidate pairs using wHash 

 



From the results above, we see that VGG-19 performs better than hashing, while 

using the last convolution layer or using the second to last fully connected layer 

have similar performance. In other data we have tested, the results are similar, and 

using the last convolution layer yields slightly better results. 

 

Possible Improvements 

Although the process shown greatly increased performance and efficiency 

compared to previous methods, it still has many downsides and some of the 

improvements that should be made in future work. 

Removing Noise 

Using aHash successfully removed most of the similar frames within the same set 

of videos. However, the frames that contain very little information but are very 

easy to match other frames, such as frames totally black, can greatly harm the 

results. This ideally should also be automated, but now it is done by manual 

inspection and should be improved. 

 



Result Format 

Currently, the format of the results is in json. The results are then manually 

inspected and the corresponding frames are then observed. This is very inefficient. 

It will be much more efficient if a better interface is built and used to observe the 

results. 

Conclusion 

In short, we developed an automated process to identify near-duplicate frames 

from two different set of videos. The process is summarized in the following: 

1. Download a set of Chinese videos and a set of English videos on the same 

topic. 

2. Perform frame sampling at a constant rate 

3. Remove similar frames using aHash within the same set of videos. 

4. Remove frames that contain little information. 

5. Choose a method of featurizing frames and a distance function. 

6. Calculate the distance between each frame of one set and each frame of the 

other set. 

7. Rank the candidate pairs of frames and observe the top few pairs. 


