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Understanding Cultural Differences in News

Videos via Image-Text Embedding

Yicun Liu, Supervisor: John R. Kender

Columbia University

Abstract. In our time, international events are widely covered around

the globe, and most of them are available as news videos from different

cultural perspectives. However, searching for another culture’s response

upon a specific event can be potentially challenging, as there usually exist

language boundaries and user-preference disparities between one culture

and another. In this report, we aim to capture the cultural difference

by detecting the culture-specific tags: given a short video clip about a

global event, we aim to retrieve the most relevant textual tags under

another culture from the corresponding speech sequence. To achieve this

goal, we first extract the visual and multilingual features by state-of-

the-art neural models and then map them onto a joint latent embedding

space through canonical correlation analysis (CCA) and its variations.

To bridge the gap between different languages, we only extract the text

features using native text models trained in that language. As temporal

information is critical for video understanding, we propose several pos-

sible ways to embed the time stamp into the joint space. We show that

for our dataset about ‘AlphaGo vs. Human’ news event, culture-specific

tags can be significantly divergent.

Keywords: Multimodal Embedding, Video-Text Retrieval, Canonical

Correlation Analysis, CCA

1 Introduction

Web-archived news videos are growing substantially on media sharing platforms,

and a considerable amount of them are focusing on the coverage of international

events. As the largest content sharing platform, YouTube nowadays has over 1
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2 Y. Liu

million hours of uploaded news video per week, sharing media coverage of do-

mestic and international events in more than 100 languages [1, 2]. Among them,

eye-catching international events like health epidemics, elections, terrorists, fi-

nancial incidents, natural disaster, and sports games usually draw the most

attention across the globe. Even though the event covered might overlap, news

videos can entail unique information of the audience group, revealing the cul-

tural preferences, living behaviors and user patterns in different regions of the

world. Nevertheless, due to the flood of the massive media contents available

online, the video selection step and interpretation step can be heavy work and

exploiting the cultural difference is nearly impossible to conduct manually.

Researchers to date have long realized this dilemma, and there already ex-

ists a considerable amount of work focusing on digesting the media content and

providing users with a more concise summary of the contents. Early research

takes frame segments and extracts visual features from frames to conduct scene

based classification [3]. Aroused by the more abstract classification task, there is

some later research work focusing on automatically synthesizing text summary

for short videos [4]. As speech is also the main resource for information in news

videos, solely relying on visual features for news video understanding could be

less effective. Multimodal models are then introduced in [5], utilizing both visual

and semantic features sources for generating video description. As the compar-

ison, cultural difference received less attention in previous research, although

news videos indeed provide a fair testbed for understanding the attitudes and

biases of different cultures towards the same international event. In the field

of information retrieval, researchers have long been interested in summarizing

similarities and differences among related documents [6]. In particular, Nakasaki

[7] analyzed the text portion of multimedia pages, and conduct a cross-cultural

comparison on the expressed facts and opinions. Lin [8] also observed signifi-

cant cultural difference towards one common concept or term on social media.

However, there exists only limited work using temporally relevant visual and

language features to exploit cultural differences, and no comprehensive study of

this topic has appeared.

Prior to our work, Tsai made the first attempt in the detection of cultural spe-

cific tags from news videos, which is similar to regular image-text retrieval tasks

[9]. Each time we use a few keyframes from an international event to conduct a
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Visual Feature Extractor
    (Inception-ResNet)

Text Feature Extractor
         (fastText)

p : I , Tc c c
Image-Text Sequence
        of culture c

   Speech 
Recognition

       Frame
Decomposition

fcv

fcl

Ic
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source 
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f Icv c

f Tcl c

Embedding
   Space
  Learning
  (DCCA)

Joint Embedding 
         Space
 

S

proj  f TS
cl c

proj  f IS
cv c

Data Preparation Feature Extraction Multimodal Joint Embedding

Fig. 1. Overview of the proposed pipeline. The total pipeline includes three major
steps: 1. Data preparation, which includes crawling and converting video to image-
text sequence pair pc. 2. Feature extraction, which includes using pretrained expert
network to extract the visual and language features. 3. Multimodal joint embedding,
which aims at learning a shared space S where the projection of different features can
be maximumly correlated.

query, and we need to find the most appropriate textual tags in the background

culture. International news event appearing as videos in different cultures, only

near-duplicate key-frames, and short video descriptions are considered in the

embedding space. For non-English descriptions, they should be translated into

English to extract text features. While this design is quite straightforward, there

also exist certain limitations. First, video descriptions can be very short and

less informative in the cultural analysis, like the fact that most descriptions on

YouTube are under 100 words. Moreover, descriptions mainly serve as a plain

summary of the news event and are usually mixed with noisy texts like the

YouTube channel’s advertisements. The word choices in video descriptions are

more informative and objective, compared with the word choices in the editorial

and criticism in the news video. Second, such an embedding process takes no

account of the chronological order in the video, which could serve as a criti-

cal hint to link the text (speech) and imagery together. Intuitively, one shared

imagery only corresponds to the speech near its occurrence. Without taking

temporal information into consideration, the intrinsic mapping between image

and text could be entirely out of order, leading to less accurate results in the

overall retrieval task. Third, using auto-translation to convert descriptions from

non-English to English could introduce deficiency for comprehension.
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4 Y. Liu

To conquer the limitations as mentioned above, we propose to conduct cul-

tural analysis purely on the imagery and speech available in news videos. For

speech, we used speech recognition package to convert speech into text transcript

and encoded it by native language embedding models. For imagery, according to

the time stamps in the text transcript, we choose the key-frames which are cen-

tered by the nearby texts. There are several benefits in doing that: 1. It is easy

to find that speech sequences in the news video is significantly lengthier than

video descriptions, and they usually include subjective editorial and criticism,

which is more revealing for our task of cross-cultural analysis. For a news video

of approximately 3 minutes in length, there are typically 300-500 words, com-

pared with less than 100 words in the video description. 2. This approach ensures

that speech sequences and image sequences are chronologically aligned, and the

temporal association between the text and image can be effectively encoded in

the multimodal embedding. 3. Despite the advances in machine translation, the

vast divergence between one language and another can still lead to inevitable

cases of less accurate translation, even for human interpretation. In our method,

through native word embedding models, we can bypass the language gaps and

encode multilingual texts into language feature vectors with unified size.

With features vectors for imagery and text at hand, the next critical prob-

lem is how to construct an effective metric to calculate the semantic similarity

between multimodal data, in our case is the text features and visual features. Be-

fore us, there are merely research in multimodal learning from an inter-cultural

perspective. One popular solution is to learn a mapping to project the language

features and visual features into a joint embedding space, where vectors from

various modalities can be compared side by side. Previously, there exists work

approaching this problem by learning a linear transformation [10] or using rank-

ing loss [11, 12]. For each image in the training step, they use a single-directional

ranking loss that applies a margin-based penalty to any incorrect annotations

which are ranked higher than the correct one. Later work proposed bi-directional

ranking loss to add additional guarantee for the rank of the sentences instead

of individual words, where correct sentences should be ranked higher than the

incorrect ones. Although the ranking loss approach is proved to perform well, it

requires additional negative sampling to matching the positive sampling, which

is not suitable for our cross-cultural analysis task. Another alternative is canon-
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ical analysis based embeddings, which search for linear (CCA) [13] or non-linear

(KCCA) [14] projections to maximize the correlation between features from dif-

ferent modalities. Followed by recent work in [9], we propose to use CCA to

construct the joint latent space for our cultural analysis task. We assume that

we have two pairs of image-text feature vectors from two different cultures, and

we aim to find a joint latent space where the projections of the two image-text

pairs lead to the maximized correlation.

The main contributions of our work can be summarized as follows:

• We reproduce the results of prior research in [9], which aims at detecting

cultural-specific tags in several international events (AirAsia, Ebola, etc.).

We rewrite and reorganize a majority portion of the code to best fit the

current DL frameworks and website APIs. Additionally, we prepare a new

dataset focusing on the feedback of ‘AlphaGo vs. Human’ in both the US

and China.

• We exploit several potential drawbacks of the previous method, illustrating

why the original speech is preferred in the cross-cultural comparison task. As

an improvement, we propose to utilize chronological ordering as the linkage

of speech and image and use native language embedding models to bridge the

multilingual gap and bypass the mistranslation error in the previous setting.

• We investigate the performance of language and visual models and propose

to replace them with more powerful frameworks (Inception-ResNet and fast-

Text). Furthermore, we propose several ways for future improvement, con-

sidering alternatives of CCAs for constructing the latent embedding space

and more efficient encoding of the temporal information.

2 Related Work

2.1 Video Analysis and Image-text Matching

The blooming of online video contents has long drawn the interest of researchers.

In the multimedia field, analyzing and digesting the video contents is one of the

core research topics. Early research on video analysis mostly focuses on effectively

categorize videos or generating a concise summary for users. Traditional video

classification task is constructed by three steps: (1) Extract local visual features
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6 Y. Liu

that describe a region or patch (2) Combine extracted local features into a

fixed-size video descriptor (3) Apply classifier to train on the resulting ‘bug of

patches.’ Early work usually used hand-crafted feature extractor and dictionary-

based K-Means to quantize the accumulated features over the duration of video

[15]. Later on, Karpthy first introduced CNN-based video classification on a

large-scale dataset containing over 1 million videos over 487 classes [3]. The

method took advantage of local spatiotemporal information in their network

design, which achieved significant boost comparing with feature methods. There

is further improvement in [16] to handle full-length video. As the unsupervised

alternative of video classification, video clustering has also received significant

attention, Wang proposed semantic-based clustering of tagged videos [17] based

on sparse and incomplete tags, which is common in data from stream provider.

There are also efforts in generating video summary in [18, 19], which aimed at

automatically selecting key-frames and utilized LSTM [20] to model the variable-

range temporal dependency among video frames. There are also other research

concentrating on analyzing more fine-grained visual attributes in videos: activity

analysis [21], scene understanding [22] and consumer analysis [23].

Nevertheless, analyzing videos solely based on visual features can be less ef-

fective. As an example, for news videos covering the same international news,

news imagery can be shared by multiple media channels, where the speech and

comments play a more crucial role to determine the cultural preference. In some

scenarios, it is of great interest to know the relationship between images and its

descriptions. The image-text matching task is later proposed with an emphasis

on retrieval of the most relevant text given an image, or finding the most appro-

priate image given the text descriptions. Completing the matching task usually

involves two components [24]: (1) A shared embedding space for to represent

language and visual features (2) A metric to fuse the features in the embedding

space and calculate the similarity score. The proposed methods achieve impres-

sive accuracy in MSCOCO dataset, but it is designed to operate in single image

and text description instead of consecutive frames and speech sequence in videos

which generally have a much longer duration.
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2.2 Multimodal Representation Learning

CCA-based Method A popular baseline in multimodal representation learn-

ing is the Canonical Correlation Analysis (CCA), which constructs a linear trans-

formation to maximize the correlation between two projected vectors from the

two views [13]. As an improvement, a kernelizable, non-linear version of CCA

(KCCA) is then introduced in [14], which aims at finding the maximized corre-

lated non-linear projection in the reproducing kernel Hilbert space. Not limited

to its simplicity, CCA works surprisingly well for most language and image em-

bedding task [25], capable of competing with many state-of-the-art methods if

the multimodal input features are properly generated.

The main shortcoming of CCA and KCCA is its high memory cost and testing

speed. Upon testing, it is required to load the entire dataset to compute the

covariance matrix, which consumes a considerable amount of time for inference.

To alleviate that problem, a deep learning paralleled version of CCA (DCCA) is

introduced in [26], which does not require an inner product and does not require

to reference the training data in the testing step. As a parametric method, its

training speech scales with the dataset and inference speech is always constant.

This property provides DCCA a dominating advantage when handling large-

scale dataset. Additionally, the proposed DCCA framework in [26] includes a

non-saturating sigmoid function based on the cube root.

Apart from DCCA, there also exist other deep learning variations. Wang pro-

posed deep variational canonical correlation analysis (DVCCA) [27], which adds

a lower bound of the data likelihood by parameterizing the posterior probability

of the latent variables. Deep generalized canonical correlation analysis (DGCCA)

is proposed by Benton [28], which is a deep version of GCCA [29] and targets

at learning non-linear transformation of an arbitrary number of views. Unlike

standard CCA, the number of views in the generalized version is not fixed thus

suitable for multimodal learning of many views.

Ranking-based Method The ranking loss is a widely used technique for opti-

mizing many multimodal embedding models. Early research work like WSABIE

[10] and DeVISE [12] applied single-directional ranking loss in the training step

of the linear transformation for visual and language features. Both framework

also introduces a margin-based penalty to any incorrect annotations when get
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8 Y. Liu

ranked higher than correct ones when describing an image. There are also work

associating the bi-directional ranking loss, which adds the missing link in the

opposite direction [30, 31]. Such design enforces to a stronger guarantee to the

ranking order: for any annotation, the corresponding image should get ranked

higher than those unrelated images.

Classification-based Method Learning the similarity between multimodal

features can also be formulated as a typical classification problem. For example,

given a visual feature x and a language feature y, the core idea is to answer

whether or not x and y matches each other [32]. Similar to many classification

tasks, there is also a soft assignment of the matching decision [32], which includes

a softmax function to predict whether the input image and question match

with each other. A two-branch network is later introduced using classification

loss to match visual and lingual features for zero-shot learning [33]. To train

a similarity measurement network (as a branch of the two-branch network),

Wang [24] proposed to use the non-exclusive logistic regression loss to replace

in the ranking loss, treating each phrase-regio pair as an independent binary

classification problem.

2.3 Multilingual Query and Cultural Differences

Despite the exponential growth rate of the online social media contents, the

query method of the large volume of multimedia data is still unequally devel-

oped. Research shows that people tend to annotate the multimedia sources by

their native languages and it is difficult for ordinary people to conduct a cross-

lingual query in the multimedia effectively. Not only does the differences between

different languages forms such boundary, but also the divergent user habits and

preferences for increases the cultural gap. For example, when searching for news

video covering an international event, US audiences tend to find such video on

a media channel (e.g., CNN) on YouTube. However, in China, people tend to go

to localized video sharing website (e.g., Bilibili or iQiYi) in search of such news

videos. In real-world cases, most people are unfamiliar about such user habit in

another country or culture, thus leads to low efficacy to conduct the multilingual

query.



360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

ECCV

#***

ECCV

#***

COMS 6901 E 029 Term Report 9

Previously, there also existed some research work in the multilingual query.

Popescu [34] first propose a multilingual dataset on FLICKR image (MLFLICKR

Dataset), which builds a cross-lingual query platform on FLICKR. First, they

translate the query into different languages and further verified the return results

by determining whether or not they are visually similar. Bergsma later observed

that users tend to naturally tag their images when posting online [35]. The tags

that are used initially provides the perfect link between the language part and the

visual part. This discovery enables them to generate tag translations by finding

tag-image pairs that share a high level of similarity in the corresponding visual

part. Bao [36] proposed Omnipedia, which is a unified framework to retrieve

the Wikipedia insights from another language. The contents retrieved includes

text, images, hyperlinks and videos in Wikipedia in 25 languages. Clough [37]

indicated that for cross-language image retrieval task, the actual language used

in textual tags should not affect the overall accuracy of the retrieval. It was

also suggested in [37] that users from different cultures tended to spread their

attention differently when viewing the image associated with texts of their native

language. Similar research conducted in [38] revealed more cultural differences

in the image tagging task: US people tend to assign the first tag to the primary

object to the image, while Chinese people are more likely to assign the first tag

describing the overall relationship between objects and the atmosphere of the

image.

2.4 Multimodal News Event Analysis

For news event tracking and analysis, there exist a bunch of work relying on mul-

timodal features. Early work in [39] proposed a constraint-driven co-clustering

algorithm (CCC), which utilized the near-duplicate key-frame constraints on top

of the text, to mine topic-related stories and the outliers. Li [40] proposed a mul-

timodal topic and-or graph (MT-AOG) to jointly represent textual and visual

elements of news stories and their latent topic structures. Their framework is

designed to describe the hierarchical composition of news topics by semantic el-

ements like people, places involved, and model contextual relationships between

elements in the hierarchy. Jou [41] took a step further, extracting who, what,

when, and where from news data. Wang [42] proposed to integrate multimodal

features using the conditional random field (CRF) to segment the news stories.
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Tsai [43] exploited background statics from YouTube for news event understand-

ing, like the metadata, video category, location, comments and user preference

to establish a PARAFAC co-clustering model and mine the latent factors.

In social event analysis, Cai [44] proposed a spatial-temporal multimodal

TwitterLDA model which uses five Twitter cues including text, image, location,

timestamp, hashtag and modeled topics as location-specific distributions. Chen

[45] created a Visual-Emotional LDA (VELDA) model which associates images

and texts both visually and emotionally for image retrieval. Up until now, few

work [9] considers cultural differences in multimodal news analysis, and very few

of them explicitly model the temporal information in their framework.

3 Data Preparation

In this section, we will briefly discuss how to prepare the dataset for the cultural

analysis task. Before us, there is few publicly available dataset dedicated for

cross-cultural news video analysis, and the only AirAsia/Ebola dataset in [9]

has been gradually outdated. Thus, we decide to collect a new dataset based

on the ‘AlphaGo vs. Human’ news event for our further analysis. We choose

the AlphaGo event based on the consideration that it has been drawing a lot of

public attention worldwide, and none of the previous datasets are tech relevant.

Note that some of the technical parts of the crawling and refinement will be

omitted, and this section only serves as an overview of our data preparation

process.

3.1 News Videos Collection

User Patterns In the original work carried out in [9], Tsai proposed to collect

news videos in the US and China, using YouTube and Baidu search respectively.

Currently, in the US, YouTube has over 170 million users, and over 300 million

videos are being watched every day. There are plenty of well-known mass media

account registered on YouTube, keeping a daily routine of uploading news videos

covering domestic and international events. For US audience in the cultural

study, YouTube could be the largest and most convenient source for us to collect

news videos.
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Fig. 2. Near-duplicate keyframes across cultures with different texts. The upper pair is
the near-duplicate keyframes about the AirAsia flight news. The lower pair is the near-
duplicate keyframes about the AlphaGo vs.Human. We also includes the translated
English version (from Chinese) from auto translator for comparison. It can be noticable
that the translation has some lsight issue, such as tranlate Chines word ‘diliutian(day
6)’ to ‘6th’, omitting the ‘tian’ character.

In China, the top popular video sharing websites include Tencent, Youku,

iQiYi and Bilibili. The operation pattern of Tencent, Youku, iQiYi is closer

to traditional content sharing website, whereas Bilibili focuses more on young-

age users, with particular emphasis on social interaction within its user group.

There are in total of over 600 million users of the four major video sharing

websites, where Tencent has the largest user community, and Bilibili offers the

most original video contents. Similar to YouTube, there also exists some media

accounts on these mainstream video sharing platforms, which includes mass

media accounts covering all domestic and international news event and smaller

media accounts with the special focus on a specific group of users sharing the

same interest.

Availability and Crawling Difficulty YouTube provides user-friendly APIs

for people to download and analyze the videos, metadata, comments, and statis-

tics. As for the video sharing websites in China, only Bilibili provides developer

APIs similar to YouTube, while the rest of the sites can only be crawled by man-

ually crafted downloaders. We find that the design of the other websites updates

frequently so that the legacy web crawler used by Tsai in [9] has been outdated
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and does not work for concurrent website layouts. Fortunately, there exists a

bunch of helpful off-the-shelf third-party packages that can be used for spidering

videos and metadata from these sites [46]. Also, utilizing a search engine to find

Chinese news videos by keywords can also be possible, but the source of the

videos can be quite broad and a unified API or toolkit supporting all the web-

sites is still absent. In our case, we decide first to write query script on the four

major websites to obtain the URL of each video, and then we pass the collected

URLs to a third-party toolkit [46] to finish the downloading process. As for the

video description, we also write a customized script for manual download from

the four websites.

Search Query In our initial trial, we directly use ‘AlphaGo News’ and its

corresponding Chinese version as the keyword for search in both English and

Chinese websites. The returned results include both news coverage and the live

videos of the games where AlphaGo competed with Go players named Lee Sedol

and Ke Jie. We then limit the length of the video to be less than 5 minutes,

expecting the modified search query can filter out the live game videos. This

simple modification works well for the top returned results, where the search

engines in YouTube or Chinese websites listed them as the ‘most relevant’ results.

However, we still observed some unmatched video as we enlarge the query range

from 500 to 5000 and allow the websites listed those ‘less relevant’ videos. To

refine the search query, we crawled the video descriptions for the top 100 videos

and collected the most frequent words into a whitelist, and we also established

a blacklist containing the unique words in the unmatched videos. Each time we

conduct a query on a specific website, we use both the whitelist and blacklist

to check the description of the returned video and decide whether or not to

filter this video. With this strategy, it can automatically filter out most of the

unmatched videos. After that, we also conduct a manual check of the video topics

to ensure that relevance of the downloaded videos.

3.2 Data Cleaning and Preprocessing

Speech Recognition With source files of the downloaded videos, the next

step is to convert videos files into time series of image and text. We convert

all the downloaded video file into mp4 standard and extract its audio file of

wav format. The next step is to obtain the transcripts of the audio files and
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split them into separate words according to standard NLP pipeline. Although

we find that some videos indeed comes with the original subtitles, the majority

of the downloaded videos do not come with audio text. To solve that problem,

we propose to use Google’s speech recognition model to convert the wav files

into text files. The speech recognition service supports more than 20 languages,

delivering very high-quality recognition and robust to different levels of noise. We

find that for the news audio, a majority of the audio is recorded in the newsroom

or public interview, which leads to impressive accuracy of recognition in both

Chinese and English. For text files obtained, we remove all the boilerplate or

other linguistically insignificant content including the name entities.

Word Tokenization The job of tokenization, or word segmentation is rather

straightforward for English, where it is mainly based on the spacing and punc-

tuation. However, for languages does not require spacing between words, word

segmentation can be a challenge. In Chinese, in a long sentence, there might be

several possible ways for segmentation, and the final choice largely depends on

the semantic meaning of the sentence. There also exists several popular meth-

ods for the task of Chinese word segmentation. Stanford Word Segmentor [47]

supports multilingual word segmentation, including segmentation options for

Chinese. There also exists Chinese word segmenter [48] making use of lexicon

features. With external lexicon features, the segmenter segments more consis-

tently and also achieves higher F measure when we train and test on the bakeoff

data. We also test the performance of the news segmentation on the neural based

method [49], and we find that it outperforms the former two methods, especially

for those unusual word pairings and trendy words. Additionally, we remove some

of the name entities for both of the Chinese and English words, because the rare

name entities are usually poorly encoded in most standard word2vec models.

Stemming and Lemmatization We use the NLTK package to conduct the

stemming and lemmatization for English. Because Chinese words do not have

such variations like English, words after tokenization can be directly used.

Temporally Linked Image-Text Pair We use OpenCV package to decom-

pose the video into a sequence of consecutive frames. According to the times-

tamp in the audio transcript, we use a sliding window of five seconds to create
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an image-text pair. For each time interval of five seconds, we uniformly sampled

n frames to be the imagery, in association with the texts in the transcripts to

construct an image-text pair. Such an approach ensures that the imagery and

text are chronologically linked together. If there is no text appearing on the

transcript for that 5 seconds interval, we drop the frames and jump to the next

word in the transcript, and use its timestamp as the beginning anchor of the next

interval. The total number of available image-text pairs largely determines by

the word distribution in the transcript. On average, for a news video of 5-minute

duration, there will be more than 300 image-text pairs available.

Near-Duplicate Keyframe Pair To prepare for the training and testing set

for our task, we need to find the near-duplicate keyframe in news video from

another culture. We establish the set of the near-duplicate keyframes by first

selecting an image-text pair in culture A, and then we conduct a greedy search

for all the image-text pair in culture B to find the most similar frame. For

example, in the AlphaGo vs. Human event, many news videos in the US and

China share a similar keyframe, showing the interview of the Go player after

the game versus AlphaGo, which can be counted as near-duplicate frames. In

our design, we calculate the cosine similarity between visual feature vectors as

the distance measurement. We keep only the cross-cultures pairs whose distance

is below a threshold τ . This method works quite well over 90% accuracy. After

automatic detection, we conduct a manual double check on the keyframes pair

to ensure there are no incorrect pairs in our dataset.

3.3 Overview of Cultural Datasets

In the previous work conducted by Tasi [9], three datasets are proposed, based

on the international news event Ebola Virus, AirAsia Flight 8501 and Zika Virus.

We additionally add AlphaGo vs. Human news event to study cultural difference

towards advanced technology and its relationship with human beings. All of the

four news events are long-termed (2 months to 1 year).

AirAsia Flight 8501 There are in total 1000 videos and metadata, in approx-

imately 1:1 (China: US) ratio, in a date range from 12/28/14 to 01/15/15. In

total 4300 keyframes of the US and 2000 keyframes of China are available.
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Ebola Virus There are in total 3100 videos and metadata, in approximately

1:3 (Europe: US) ratio, in a date range from 8/21/14 to 11/30/14. In total 27000

keyframes of the US and 9000 keyframes of Europe are available.

Zika Virus There are in total 1700 videos and metadata, in approximately 7:10

(South Africa: US) ratio, in a date range from 12/01/15 to 02/15/16. In total

61000 keyframes of US and 44000 keyframes of South Africa are available.

AlphaGo vs. Human There are in total 400 videos and metadata, in approx-

imately 1:1 (China: US) ratio, in a date range from 03/09/16 to 03/23/17. In

total 1000 keyframes of the US and 600 keyframes of China are available.

4 Methods

4.1 Problem Formulation

In this work, we focus on a special type of multimodal retrieval task: image-text

retrieval in the multi-cultural setting. As introduced in the previous section, we

use the timestamp in audio and video to create multiple text-image pairs, where

the texts and images in each pair are temporally linked together. Each text-

image pair contains a text sequence and an image sequence, and both sequences

may contain an arbitrary number of texts or images.

For a news video vc from a specific cultural c, we first create multiple image-

text pairs. In each valid s second time interval, we define a image-text pair

pc : (Ic, T c). The image sequence Ic stands for n uniformly sampled frames

in that time interval. The text sequence T c stands for words within that time

interval. We use Ick to denote the k-th frame of the image sequence, and we use T c
k

to denote the k-th word of the text sequence. Note that the length of the image

sequence Ic is set to be n, the actual number of n can be manually determined

(in our case, we uniformly sample 10 frames within that time interval), and the

length of the text sequence T c depends on the speech rate and actual situation

in the original news video. In the real-world case, the length of T c is usually

around 10 to 20 words.

We formulate the our cross cultural image-text retrieval task as follows: given

a image-text pair pm : (Im, Tm) from culture m, our goal is to detect the most

suitable text tag tn from another culture n to describe the image sequence Im.
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4.2 Intra-Modal Feature Extraction

The intuitive idea is to convert the images sequence Ic into a visual feature

vector Fv(Ic), where Fv denotes the visual feature extractor. Similarly, we need

to convert text sequence T c into a language feature vector Fl(T
c), where Fl

denotes the textual feature extractor. With two intermediate feature vectors in

their modalities, we aim to bridge the gap between modalities and learn the

transformation functions to map the visual features and text features into a

joint embedding space S. In the embedding space S, cross-modal features can be

compared by their corresponding projections onto that space Fv(Ic) → S, and

Fl(T
c) → S. For simplicity, we abuse the notation a little bit and use the right

arrow → to denote projection function projS.

Visual Features The most common choice for visual embedding is to use the

feature maps from the last few layers of many advanced image classification

models. A bunch of previous work [9, 24, 43, 50] used the second last layer of

VGG-19 or VGG-16 model [51], which is a fully connected layer. The standard

procedure is to use weights pretrained on large-scale image classification dataset.

For each image, it is proposed first resize the image to 256 × 256 and randomly

cropped in ten different ways into 224 × 224: ten four corners, the center, the

mirrored version by flipping the x-axis. The classification network encodes the

inputted image, and the output dimension of the two FC layers on the image

side are 2048 and 512.

In order to obtain better quality visual features specific for our task, we made

two modifications: 1. We use more advanced classification architecture Inception-

ResNet proposed in [52] to replace the older VGG model. This architecture

entails residue block to link the high-level and low-level features and is proved

to have a higher score in the visual feature extraction task. 2. We propose to

enlarge the spatial size of the image to 512 × 512, which is the image size in

ImageNet. We think in the image-text retrieval task across culture, larger image

size ensures the near-duplicate keyframes to be closer to entirely-duplicate, which

can lead to more convincing performance for learning the joint embedding space.

For an image sequence of n frames, we flatten n feature vectors into the averaged

feature vector for simplicity. We find that for short duration of the time interval,

averaging the visual feature vectors generally will not jeopardize the performance
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of feature embedding. In the near-duplicate keyframe detection task, even if we

use averaged feature vector, the accuracy of detection is nearly the same as using

single feature vector.

Textual Features Usually, there exists a language gap between two cultures

(e.g., the US and China), and how to conduct multilingual text embedding should

be carefully considered. Intuitively, we can first translate the texts from all other

languages towards the main language a, and then we can use the text embedding

model for language a to handle all the scenarios. In previous work of Tsai [9],

all the non-English texts are first translated into English, and then she used

an English word2vec model to obtain the textual features for all languages.

Although using machine translation can be an effective method to bridge the

multilingual gap, error in translation can never be avoidable. There are always

difficult words for a language translation model, where it cannot find direct

word-to-word translation but using word-to-phrase instead. In order to conduct

better image-text retrieval, we propose to use multilingual language embedding

models instead of translating other languages into English.

We propose to use fastText [53, 54] to conduct native language embedding

task. This framework supports multilingual text embedding for 157 languages,

where the model for each language is trained on large-scale corpus like Wikipedia.

To validate its performance, we select the Chinese language as the testbed to

compare the performance with other state-of-the-art methods [55]. The fastText

model works surprisingly well, which is close to the other models. The language

features generated by fastText is the feature vector of 256 entries. For a text

sequence containing n words, we flatten n feature vectors into the averaged

feature vector.

4.3 CCA-Based Multimodal Embeddings

Canonical Correlation Analysis To start with, we consider a two-culture

setting: there are a cultures m and and a culture n. Within each culture we have

many many image-text pairs, here we denote two sets of image-text pairs as Pm

and Pn, where pm = (Im, Tm), pm ∈ Pm and pn = (In, Tn), pn ∈ Pn. Given

the original image sequence Im and text sequence Tm, we use the two feature

extractor to convert them into visual-textual feature pairs fn : (Fv(Im),Fl(T
m))
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and fn : (Fv(In),Fl(T
n)), where Fv denotes the visual feature extractor and Fl

denotes the textual feature extractor.

We assume that the Im and In are near-duplicate keyframe pairs sharing

similar imagery, which is denoted as (In, Im). Then we extend the near-duplicate

keyframe pairs to its corresponding texts {(Im, Tm), (In, Tn)}. Our goal is to

find a joint embedding space S where the projection of the two pairs can be best

associated.

If use correlation of the projected vectors to represent the association, the

method is actually equal to the design of canonical correlation analysis (CCA)

[13]. Given two sets of random vectors, CCA aims at find a linear combination

of the two vectors {v1, v2} to represent the joint embedding space S, and the

correlation of the projected vectors should be maximized:

argmax
S

corr(projSv1, projSv2), S ∈ span(v1, v2)

Two-Way Embeddings Assume that we have two near duplicate images sand

we find their corresponding texts {(Im, Tm), (In, Tn)}. To apply CCA on our

cross culture analysis task, {(Im, Tm), (In, Tn)} can be further represented as

the three ordinary pairs that exploit already known image-image and image-text

matching:

{Im, Tm}, {In, Tn}, {Im, In}

The former two pairs indicate the linkage inside culture m and culture n, and

the third pair indicate that Im and In should be near-duplicated. We use the

three pairs as input to CCA.

Let X ∈ RDx be the collection of the left elements of those three types pairs,

and let Y ∈ RDy be the collection of the right elements of those three types of

pairs. The objective of CCA is to find ux ∈ RDx and uy ∈ RDy such that the

projection of X, Y onto ux and uy are maximally correlated:

(u∗x, u
∗
y) = argmax

ux,uy

corr(uTXX,u
T
y Y )

= argmax
ux,uy

uTx
∑

xy uy√
uTx

∑
xx uxu

T
y

∑
yy uy

(1)
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where
∑

xy is the covariance matrix between the two views, and
∑

xx and∑
yy is the covariance matrix within each view. For CCA problem, the op-

timal k-dimensional projection mappings are provided as a closed form solu-

tion by the rank-k singular value decomposition (SVD) of the Dx ×Dy matrix∑− 1
2

xx

∑
xy

∑− 1
2

yy , as proved by Johnson in [56].

Deep CCA The major drawback of CCA is that it needs to store all of the

training set while testing, which costs a significant amount of memory. Another

problem is that CCA only applies linear combination thus performs poorly on

two vectors with a non-linear relationship. To alleviate such problems, deep

canonical correlation analysis (DCCA) [26] is proposed to capture the hidden

non-linear relationship of the data. DCCA also does not require the training

set upon testing, which also improves the time consumption of single testing to

constant. In the DCCA model, we aim at learning the two branches of deep neural

networks f and g to extract features from view X and view Y respectively. The

two-branch neural network is constrained by its final objective function, which

maximizes the correlation between the outputs of the two-branch network. The

objective function can be expressed as:

(W∗
f ,W

∗
g, u
∗
f , u
∗
g) = argmax

u∗
f ,u

∗
g

corr(uTf f(X), uTg g(Y ))

where W∗
f and W∗

g denotes the optimal weights learned by network f and g. Such

multivariate optimization problem has no closed form solution, but the optimal

solution can be approximated by gradient descent approach. The weights W∗
f

and W∗
g can be trained following standard deep learning pipeline, using backward

propagation of the loss term.

For our task, we do not need to train the two embedding branch network f

and g from scratch, which directly transforms the original image/text data to the

shared embedding space. The reason for not doing that is mainly because model

visual and language features explicitly by existing expert networks (e.g., VGG

and word2vec) can achieve better results for feature representation. Instead, we

propose to utilize the expert embedding frameworks to first extract visual and

language features, then we pass the intermediate features to f and g, and learn

the joint embedding. The language and the visual expert network can fully utilize
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the large-scale dataset (e.g., ImageNet and multilingual Wikipedia text dataset)

and benefited by the high-quality features using transfer learning. The modified

objective function for our task can be expressed as:

(W∗
f ,W

∗
g, u
∗
f , u
∗
g) = argmax

u∗
f ,u

∗
g

corr(uTf f(Fv(Ic)), uTg g(Fl(T
c)))

The Fl denotes the expert language feature extractor, which is fastText in our

case. The Fv denotes the expert visual feature extractor, which is Inception-

ResNet in our case. The Fv(Ic) and Fl(T
c) denotes the intermediate features

outputted by the expert feature extractors. When training, we load the pertained

weights of Fv and Fl and only update weights for f and g. Considering the

criteria to select near-duplicate keyframes have already guaranteed the similarity

of the visual features, we only use the two cross-modal pairs {Im, Tm}, {In, Tn}
to train the f and g.

Generalized Version of CCA Limited by the definition of the covariance,

both CCA and DCCA can only handle inputs of two modalities. As an exten-

sion to handle an arbitrary number of modals, generalized canonical correlation

analysis (DCCA) is proposed in [29], with its deep learning version DGCCA

later proposed in [28]. The objective of GCCA is to find a shared representation

G of J (J ≥ 2) different views with maximum inter-correlation. The objective

function can be written as:

U∗j = arg min
Uj∈Rdj×r,G∈Rr×N

J∑
j=1

||G− UT
j Xj ||F , where GGT = Ir

where N is the number of datapoints (in our case is 3), dj is the dimension of the

j-th view, r is the dimension of the learned representation, and Xj ∈ Rdj×N is

the data matrix for the j-th view. We can first find the eigen-decomposition of a

N×N matrix to solve GCCA, where the N×N matrix scales quadratically with

the sampled size and leads to extreme memory consumption. Unlike CCA and

DCCA, which only learn projections or transformations on each of the views,

GCCA also learns a view-independent representation G that best reconstructs

all of the view-specific representations.
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Fig. 3. Schematic Illustration of DGCCA, which is originally proposed in [28]. The fj
denotes the j-th (branch) of the network to project j-th input data entity Xj into the
GCCA joint embedding space. Our objective function aims at maximize the total sum
of the inter-input correlation, which calculates the correlation between each of pair of
the two inputs.

Deep Generalized CCA For the gradient descent version of GCCA, the

key idea is to construct a embedding network with J branches. Now we need

to replace the data matrix X in the previous GCCA objective function with

the feature matrix f(X), where f denotes the network with J-branches. The

objective function becomes:

U∗j = arg min
Uj∈Rdj×r,G∈Rr×N

J∑
j=1

||G− UT
j fj(Xj)||F , where GGT = Ir

where fj(Xj) indicates applying j-th branch of the network on the j-th input.

For optimization, we define Cjj = f(Xj)f(Xj)
T ∈ Roj×oj to be the scaled

empirical covariance matrix of the j-th network output. We define Pj = f(Xj)
T

C−1jj f(Xj) ∈ RN×N to be the corresponding projection matrix of the data. Then

the reconstruction error should be expressed as follows:

e =

J∑
j=1

||G−UT
j fj(Xj)||2F =

J∑
j=1

||G−Gfj(Xj)
TC−1jj fj(Xj)||2F = rJ−Tr(GMGT )

where minimizing the obejective function equals to maximizing Tr(GMGT ),

with the sum of eigenvectors L =
∑r

i=1 λi(M). Taking derivation of L based on



945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

ECCV

#***

ECCV

#***

22 Y. Liu

fj(Xj), we have:
∂L

∂fj(Xj)
= 2(UjG− UjU

T
j fj(Xj))

Thus, the gradient is the difference between the r-dimensional auxiliary repre-

sentation G embedded into the subspace spanned by the columns of Uj (the first

term) and the projection of the actual data in fj(Xj) onto the subspace (the

second term).

Three-Way Embeddings Assume the near-duplicate image pairs can be viewed

as equal, the previous near-duplicate image-text pair {(Im, Tm), (In, Tn)} can

be simplified to {Imn, Tm, Tn}, where Imn = Im = In. For the objective func-

tion of GCCA, now the data matrix of X involves three inputs {Imn, Tm, Tn}.
The objective function of DGCCA becomes:

U∗j = arg min
Uj∈Rdj×r,G∈Rr×N

||G− UT
j f

v(Imn)||F + ||G− UT
j f

l
m(Tm)||F

+ ||G− UT
j f

l
n(Tn)||F , subject to GGT = Ir

(2)

where f lm stands for language embedding model for a language m and fv stands

for visual embedding model for imagery. Therefore, by training the common

representation for the triplets {Imn, Tm, Tn}, we can embed the three inputs

into the joint embedding space. Using the same strategy as in DCCA, we first

load the pretrained weights from expert networks (fastText(Eng), fastText(Chi),

Inception-ResNet) to obtain the intermediate features, then optimize the weights

in the three branches: fv, fnl and fml to obtain the final joint embedding.

4.4 Temporal Relationship Reasoning

Why Encode Temporal Dependency In the previous work [9] of a similar

task, only keyframes and video descriptions are used. For imagery, each time only

one frame is encoded, and there is no concern temporal relationship among the

selected keyframes. For descriptions, there is no explicit timeline like the audio

file, so she randomly selects n tags and averaging the language features vectors for

embedding. For our baseline CCA-based model in section 4.3, one improvement

is that we use speech sequence and image sequence for the encoding job. The

temporal information is encoded implicitly because the image-text pair in our
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Fig. 4. Illustration of LSTM unit from [18]. The memory cell is modulated jointly by
the input, output and forget gates to control the knowledge transferred at each time
step. The � denotes element-wise products.

dataset guarantees that in the original news video image are text are chronolog-

ically close to each other. Nevertheless, such loose constraints can be potentially

dangerous because there is no guarantee for the intra-chronological-order within

a visual or language sequence. For example, for a sentence of three words ‘Tom

eats an apple’, if we encode this sentence using word2vec and flatten the feature

vectors, the vectors could represent 16 different results ‘Tom eat(s) an apple’,

‘an apple eat(s) Tom’, ... etc. On the other hand, pooling the visual/text feature

vectors could be harmful for the accurate feature representation, features after

pooling will be more ambiguous, and inferring original visual/text from features

becomes more difficult after such temporal-pooling operations. For visual repre-

sentation, this problem could be as equal severe as the frame numbers increases,

uniformly sample the keyframes might omit important frames, and temporal

order between consecutive frames are vital for the overall video understanding

(hence, if the frames are completely out of order, even human beings are difficult

to summarize the news in the videos).

LSTM-based Sequence Encoder A popular approach for encoding video/speech

sequence is to use the Long-Short-Term-Machine (LSTM) [20], which has been

used for video summarization [18] and visual question answering (VQA) [57].

LSTM is a bionically designed recurrent neural network that is adept at modeling

long-range feature dependencies. The dependency can be continuous attributes

such as time. At the core of the LSTM, there exist some memory cells c which en-

code, at every time step, the knowledge of the inputs that have been observed up

to that step. The cells are then modulated by non-linear gates, which are usu-
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Fig. 5. Illustration of the data matrix H and query matrix Q to encode sequence of
multimodal information according to the temporal order. This time-based sequence
encoding method is originally used for VQA task in [57]. Slightly differnt from the
(question) text-image query in QVA, the query matrix Q in our task is directly the
image features of the near-duplicate frame/sequence.

ally constructed by logistic (sigmoid) functions. The gates determine whether

the LSTM should keep the information (if the gates return 1) or discard them

(if the gates return 0). There are three gates: the input gate (i) controlling

whether the LSTM considers its current input (xt), the forget gate (f) allowing

the LSTM to forget its previous memory (ct), and the output gate (o) decides

the amount of the memory to transfer to the hidden states (ht). Together, they

provide LSTM with the capability to learn complex long-term dependencies. In

particular, the forget date serves as a time-varying data-dependent on/off switch

to selectively incorporating the past and present information. This design makes

LSTM extremely suitable for encoding temporal sequences such as videos and

speeches.

We propose to use separate LSTM networks to encode the visual and tex-

tual sequences, respectively, to capture the temporal dependency within each

sequence. The inputs to the LSTM units are intermediate image/text features

from the expert feature extraction network. Let d denote the size of the hidden

state of the LSTM unit; The temporally encoded text and images are repre-

sented by H ∈ R2d×T×2, where T denotes the maximum length of the sequence.

The query is represented as a matrix Q of concatenated bi-directional LSTM

outputs, i.e., Q ∈ R2d×M , where M is the maximum length of the query.

Intra-Sequence Temporal Constraint Inspired by work in VQA [57] to

maintain the temporal consistency, we introduce the temporal correlation matrix
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C ∈ RT×T as a constraint to ensure the data matrix H and query matrix Q

is encoded chronologically. Let hi = H:i: ∈ R2d×2 to denote the visual/text

representation for the i-th timestep in the multimodal data matrix H. The entry

Cij is calculated by:

Cij = tanh

K∑
k=1

wT
c (wT

h · sim(hik, hjk) +Q:M )

where K is the number of modalities, in our case, K = 2. The operator : is a

slicing operator to extracts all elements from a dimension, where hi1 = H:i1

sim(hik, hjk) denotes the similarity between the two-modal features. The wc ∈
R2d×1 and wh ∈ R4d×2d are parameters to learn.

5 Experiments

5.1 Implementation Details

In the previous work [9], we have three datasets: Ebola Virus, Zika Virus, Air

Asia Flight 8501. We collect additional dataset based on the feedback of the US

and Chinese people on ‘AlphaGo vs. Human’ news event. For speech recognition,

we use the pretrianed model provided by Google Speech Recognition to convert

English and Chinese speech sequences into text sequences. We use standard NLP

pipelines provided by NLTK to remove the stop words, and then preprocess the

texts extracted by WordNet’s Lemmatizer. Then we extract image-text sequence

pair using a 5 second sliding window, the sampling rate for keyframes is set to

be 2 frames per second. For visual feature embedding, we resize the images into

584× 584 and conduct random cropping and flipping to generate resulted input

frame of 512×512. We use feature outputed by the last two fully connected layer

in Inception-ResNet model and load existing weight pretrained on ImageNet.

For near-duplicate keyframes, we set the threshold τ to be 20 to 45, and we

observe that threshold at around 30 can already satisfy the requirement of very

similar keyframes. For text embedding, we use the pre-trained word2vec model

on multilingual the Wikipedia dataset to conduct the language embedding. To

learn the joint embedding space, we modified the previous DCCA code based

on MATLAB and reimplemented the pipeline on PyTorch. We use Adam [58]



1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

ECCV

#***

ECCV

#***

26 Y. Liu

optimizer with parameter of β1 = 0.9 and β2 = 0.999. The initial learning rate

is set to be 1e−2, and the learning rate should automatically decrease by 10%

after every 5 epoch.

Query Recall@1 Recall@5 Recall@10

Ebola Virus
US images query EU tags 8.2 29.8 40.3
EU images query US tags 9.5 29.5 44.1

AirAsia Flight
US images query CN tags 7.6 18.8 29.1
CN images query US tags 9.3 23.3 36.4

Zika Virus
US image query SA tags 11.8 31.2 54.1
SA images query US tags 9.6 32.9 52.7

AlphaGo vs. Human
US images query CN tags 10.1 25.4 41.3
CN images query US tags 11.6 27.2 45.9

Table 1. Performance of intra-culture image-text queries. The Ebola, AirAsia, Zika
dataset is bsaed on prior work in [9], and AlphaGo vs. Human is our new dataset.

5.2 Experimental Results

For each news event, we generate two culture-specific image-text embedding

space for two different cultures. For AirAsia Flight 8501 and AlphaGo vs. Hu-

man, one for the US and one for China. For Ebola Virus, one for the US and one

for Europe. For Zika Virus, one for south Africa and one for the US. For each

culture-specific joint embedding space, we randomly select 1000 images with the

tags, or 10% or the dataset, whichever is smaller as the testing set. Each time of

the query, we randomly select a keyframe from culture A to query the text tags

in culture B. For performance evaluation, we use Recall@1, Recall@5, Recall@10

as the testing metric. For AlphaGo event, we achieved 45.9% in Recall@10, which

is slightly higher than the previous results. Further ablation study needs to be

carried to determine which proposed component leads to significant accuracy

boost.

6 Conclusion and Future Work

In this report, we exploit the image-text retrieval task to discover the text tag-

ging differences in cross-cultural and multilingual news videos. Based on the prior

work conducted in [9], we propose several improvement ideas for visual/textual
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feature extraction and bridge the language gap using speech recognition and na-

tive text embedding models. We also particularly study on the temporal encoding

method to extract image-text sequence. We use implicit encoding method to en-

sure the image and language features are chronologically related in our analysis.

Furthermore, we rewrite most of the code in [9] to adopt the developing envi-

ronments, transforming the entire pipeline to the native Python environment,

which is much easier to use, update and deploy.

For our feature work, several potential improvements can be explored: 1.

Conduct an ablation study based on controlled variants to analyze the perfor-

mance of our proposed components. 2. Apply the newest deep generalized CCA

and conduct three-way embeddings. 3. Explore other methods covered in the

related work (ranking-based, metric-learning based, classification based, etc.) to

learn a better joint embedding space learning. 4. Enforce strict constraints on

intra-sequence chronological order or use the explicit encoding of the temporal

information (as proposed in section 4.4). 5. Extend our dataset to more news

events and culture groups. Because there are 150+ multilingual native language

embedding models available, we may able to gather more cross-cultural feedbacks

based on other languages.
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