Cross Culture Analysis
Andy (sc4426@columbia.edu), Gary (xh2379@columbia.edu)

Introduction

Our main goal is to distinguish cultural differences in video news which focus on
topics between multiple countries, let’s say, China and United States, which have
cultural backgrounds in contrast. The differences include the anchors’ gestures, the
text content of the news, the way they convey a perspective, the perspectives they
have on same incident, etc.

In this project, the topic we mainly focus on is AlphaGo. The reason we think it is
an appropriate topic to research on is because AlphaGo is a topic which people all
around United States and China would show interests on. More specifically,
AlphaGo, which is developed by Google, would definitely attract people’s
attention since the firm (Google) is a long-last red-hot company who possess the
most advanced technologies. While the chess game “Go” is originally from China
and it should be very popular in the place of its origin. To sum up, we think the
epic duel between the Google developed AlphaGo and the genius Chinese player
should attract enough attention for us to study.

Web Scraping
US Videos

We start our work by collecting data with web scraping. We mainly focus on the
videos on Youtube for Alphago-related news from United States, since Youtube is
currenlyt the most popular video platform. Another reason Youtube would be the
best choice is that there exist plenty of APIs and SDKs which allow us to simplify
the scraping works. However, it is another world in China since Youtube is not
popular in the area. Hence, we separate the scraping task in aid of fitting to
different cultural environments.

pytube

The whole scraping task is implemented with Python. We take advantage of the
Python package called pytube to download videos from Youtube. The package
supports not only videos, but extracting audio files and metadata such as
descriptions, title, video length, etc. This package really simply our works since we
do not have to crawl into the html on Youtube by ourselves with this package.
However, Pytube can only be used in one specific video. In other words, we need
to know which video we want to scrape first. To solve this problem, it is necessary
for us to get the video IDs.

Youtube API

The official Youtube API provides services which we can implement to solve the

problem mentioned above. There is a “Search” API which we can use it by sending
requests, which include the query we want to search. In this project, our results are
mainly generated from the query “Alphao News US”, in the way which we can
focus on the video news from media companies from United States. The response
contains list of video objects. The video objects contains ID, thumbnails, metadata,
etc. The order of the list should be the same as we exactly search on Youtube’s
website. In conclusion, the Youtube API also simplify our scraping works by
providing a simple gateway to get the results we need in the search list page on
Youtube (before the video page).

https://python-pytube.readthedocs.io/en/latest/
https://developers.google.com/youtube/v3/docs/search/list

To sum up, we use the techniques mentioned above to do the scraping on Youtube
videos. First, query “Alphago News US” with Youtube API and get the video IDs
in the result. Then put the video IDs into pytube sdk to download the videos and
metadata.

We download 500 videos with titles and queries from Youtube and extract the
features from them. The methodologies of feature extracting will be discussed later
on. We have not met any downloading limitation so far, which might happen in

some cases when we are trying to send large amount of requests to other websites.

Query
("Alphago News US")

Youtube API

video id video id video id

pytube pytube pytube

|

h 4 h J v h 4

v (" ™\
videos, videos, videos, videos,
metadata metadata metadata metadata
e

Chinese Videos

For Chinese videos, there is not a single dominating video source such as Youtube.
Therefore, we decide to use several websites as our sources such as Bilibili
(https://www.bilibili.com), Iqiyi (https://www.igiyi.com) and Tencent Videos
(https://v.gg.com). Unlike Youtube, which is very friendly to provide official APIs
for easy downloading, the Chinese video websites mentioned above require more

work to scrape and download. Details are discussed in the following sections.

HTML Parsing — Obtaining URLs

All of the 3 websites mentioned provide a searching entry for users to input
keywords. After making a query with some keywords, the first step for obtaining
Chinese videos from those websites is to parse the HTML files returned by the
sites in order to fetch the URLSs for the videos. Following is a demonstration of
doing so using the browser Safari.

https://www.bilibili.com/
https://www.iqiyi.com/
https://v.qq.com/

Step 1: Make a query for videos.

< [im) & www.bilibili.com ol W=l

Y M'g

) | ‘ ZEM: RREARELHFINARAREER! th #8

Alphago Q
ALPHA
HO #E EE O EY BR O OSE MR B BF RE MY IE BR O BR BMT Ariae
ALPHA TEC
CAPTAIN ALPHA
ALPHAGO
LUNA'S ALPHABET

(i m I B ALPHAEUS MR
% = L/// = 2 ALPHARD T
= v : .

Sy L
=)
BHER

LA 3936058 BTIRA: 59397

Lextiih: HEBISASupE [MMD] /\F#-B; (5] WBEA53URR08-
BHEREER? = PR HEE

ik REIEIEE, RIEEYEAPD 7

Step 2: After seeing the results, open the page source by choosing Develop in the
menu bar followed by clicking Show Page Resources.

@& safari File Edit View History Bookmarks [EENERIN Window Help @ @ @012306) 2= 20%(%) [IABc SunDec30 5:3855PM Q @
®

> = l Ssp::;:::ri With > Source=banner_search ¢ ul) B=B
e - e v "
MacBook Pro » w
Service Workers »
L L Experimental Features »
Enter Responsive Design Mode ~¥R
FE SR 90+ #| Show Snippet Editor 7 =8 i AR 4 Jist o

Show Extension Builder

Connect Web Inspector X8l
BERE RNRH 4
= " Show JavaScript Console X#EC

FAEHF

1094 TF 10-309%k Show Page Source N 8U
Show Page Resources X 8A

Xy @@ EmEx =8 It OB BR SRA 8k SUE KEm:E

Start Timeline Recording NO®8T
Start Element Selection 0%8C

Empty Caches XBE

Disable Images

Disable Styles

Disable JavaScript

Disable Extensions

Disable Site-specific Hacks
Disable Local File Restrictions
Disable Cross-Origin Restrictions

ANEHERAE FIEH
MAphaGosEF BERARIR

FE_Alp

B _#t 0 Zerc WebRTC >

Allow JavaScript from Smart Search Field
Allow JavaScript from Apple Events |
Allow Remote Automation

FESAENEE Allow Unsigned Extensions
o 1' Get Safari Technology Preview J
[ERa%] [hxERFit] [AlphaGoa %385] & &) s mE [uER] FHEHZ SEOEBGMEMAR XTF

[BESM7] AlphaGo AT ... FARUBNT RS] AlphaGo Zero X{f§ —F HMalphagoid B AlphaGolt iR BEREEH

D305t ©20 © 201 4 036 © 2016-07-30

8-08-12 o2

Step 3: Different websites have different ways to store the URL links of the
resulting videos, and in this step we need to inspect how the URLSs can be obtained.
Bilibili uses avid as a unique identifier for its videos and the URL simply consists

of ‘https://www.bilibili.com/video’ plus the avid. We see that each video is
wrapped in a <li class="video matrix"> tag and the avid is in a <span class="type

avid"> tag.

Em] & search.bilibili.com/all?keyword=Alphago&from_source=banner_search (¢} i @ e
R
Carey AR 99+ &Rl o o HiEO E4=0 iEW o ::) 1 s
EOd ®msss BNR6 B3HE BSKE iSEis
09T 10309k 30-609F 605ELLE
SHR mE EEAEX Eel TR SR OBR O BNE O £E O RE Ny s EBER Bl 2Rk BE BYEl WERE -
AlphaGo Zero %3 [ELTERER] #z—F 3 - AlphaGo BT E# PESHEHES, Y ANEHE ATE FET
ZHtH vs AlphaGo 4 5 [&_AlphaGo (BI&ENE MAphaGoR T ERARE
017 1 3 D 2017-05-28
B ZeroHer O _#E
x T N [T ¢ O Oys1 0: & Q- Sea
E Elements @ Network @ Debugger D Resources @ Timelines £ storage [aa] Canvas Consale @ Search i g
0 Q 0

LTS Documents 5 b < > «al
¥ 5 all — search.bilibili.com ¥

> Beacons
» | Fonts

» | Images

» | Scripts

» | Sockets

> Stylesheets
~

fm=search& 5eid=10517041229369712740" target="_blank" class="up-name">ZeroHero</div=</div></1i><1i class="video matrix"=<a href='

48.adline clearfix">av14575134&if+\FFif<a title="fIi§ - AlphaGo BAEE" href="//ww

Tencent has its resulting videos’ information stored in <div class="result item
result item h quickopen" ...> tags and the URL can be found in the

tag inside.

0o & v.qq.com/x/search/2q=Alphago&stag=0&smartbox_ab= e] o
BTMAER (9 2RER ERBEHE 2RiEE fatil s B Lt BR
O (e Q2R
LEES g v
AlphaGo
il @: 2018-05-09 * W HE
P : AlphaGo — AWAELRE

i [: 2018-02-06

228
fl:c-5i5... 3: ZREFEA...

gk 53 =

BiE PIL HZ < >

AlphaGo Zero %3 Master (1/20)
" i [&): 2017-12-06
A= lm ¢ O Dyes 0s & o
Console (@] search + &

53 Elements @ Network {7} Debugger [Resources @ Timelines S storage [canvas

Documents 0 < > < search 1 EE0
17 ERREIR Sportstod
22 SREHRIRIER CompetitionMod, case:TER

¥) search— v.qg.com

> [Fonts
9 23 BRXFRIE HumanRelationshipMod, case: BA9ILF, HBMOTR

» | Frames 20 -

> | Images

> scripts

> Stylesheets <div class="result_item result_item h _quickopen" data-suggest="id=vidf2n91lbpl0xc718dataType=236MD=%06%10vid 2n9
<a href="http://v.youku. con/v_show/id_XMzUSNTEZMIKOMA==,html" Class="figure result_figure" target="_blank" data-paytype="e" _stat="video

© Fiter 0:15:58

Page =

Iqiy1 stored the information in <li class="list item" ...> tags and the URL is in a
<a ... href:

...> subtag.

m iqiyi.com/so/q_ = 1232 & ul) §=0
mEE 2FEN 2WEE 2RESE B VP 1 eV R TEESE EHR
P~ I+ i
(» 2 EEIZ,}%? Alphago Q E2R
_ SO.IQIYI.COM
1ol E: 3 RHRSE WANRE ES>

185" Alphago " HHEIL 4.775 M BB =5 = ASHE-
EMANAKSEZF: 4355 VS AlphaGo 518 (HHIDM) T
18): 2017-06-1 5% H—tHRRD_1939 =
ERANARETS: 15 VS AlphaGo £18 (HITDH)
g B3>
FURERMA 200 B x1xa =5
RS
51%: AlphaGot2stiR B wsz iy
BN —HXFAphaGoERAE TR AEANB NP ER, KHERABRERAS, RA
FETWE, RE, RN, BELHAIRRE, BAEKOE, SRR > R <
HBHERREELE ©
g BRANRIE *
= =) W] & @) D72 &1 & Q- se
52 Elements @ Network {T} Debugger [Resources @ Timelines & storage [canvas Console [@) search + &
[l Resources I LEy [< > < aqAphago 0 @0
¥ <) q_Alphago — so.igiyi.com 20 matches | Q-list_item @) <| > || Done
> Fonts <a class="figure figure-180101 "
> Frames data-gidanadd-episode="@" data-gidanadd-channelid="17" data-gidanadd-
b B ifaces 3 data-searchpingback-elem="1ink" data-searchpingback-param="ptype=1-1" href="http://waw.iqiyi. con/w_19ru2uv54x.html" target="_blank">
i i <img alt="EHAMKLE_F: H% VS AlphaGo H1/5 (HHTDM) * title="BHAANASE % 3 VS AlphaGo 1R (4HIDM) * src="//m.iqiyipic.com/u
Scripts, o
> Stylesheets
708 <p class="viedo_rb">
708 01:31:24
@ Filter o144

Page o

HTML Parsing — Extracting Metadata

After obtaining the URLSs, we are now able to download the video. But before
doing so, we would like to obtain more information about the video such as the
title and description. With these metadata, we can improve queries, make further
analysis and filter videos for downloading, etc. To do so, open the video URL and
then open the page source. Similarly as finding the URLSs in the last section,
inspect the source and find the location of the metadata. We see that Bilibili videos
has their information stored in a <script> tag starting with

‘window. INITIAL STATE .

<D i} & www.bilibili.com/video/av14575134 < i
L'\'n\'l'k'\“ T v @E EM OWNSL EE 8B SE [JTHAP R Q o Bz

BEIR i R
B[E
Az = " i
P E-B
— LR
P Bl 0000/ 7527
1 AE%EE, 56 ZRHNE § A #xER s BBAN> &2 / i
v iy [m] ¢ @ [159 @366s 1 @64 A & Q- Search
IE Elements ‘ @ Network | {T} Debugger [Resources @ Timelines | £ storage [canvas ‘ Console (@] search ‘ + ‘ﬁ}
Documents 3 [< > & avas7s13a 0 ® 0
v

©| av14575134 — wwiw.bilibili.com | /script><script>window. INITIAL_STATE_ ={"aid":"14575134","p":"", "videoData":{"aid":14575134,"videos":3,"tid":39," tname" : "i&i#+ LFFR"," copyr
Beacons :
Fetches

Fonts

>
>

>

» Images
» | Other
> Scripts
~

Canbata

@ Filter

v

Tencent has the information in several <meta ...> tags.

@ v.qq.com/x/page/m0547677h1k.htmi ¢ thh o

= PR wam o2 SRt 7520

PEEZHAML S,
HBAFTFBE, SHE
NS T
»

HBAXERAH, R
RHSENHEHEE
THREANS L

»

25 ET (RONEA
ZR) , ZENZRE

xo O jl [T ¢ @ [252 B4 @4 Q-
T2 Elements @ Network {f} Debugger [Resources @) Timelines £ storage [l canvas (@) search + &
Documents § [< » & mosazezzhk.htmi N0 EE0O
¥ 5 m0547677h1k.html — v.qq.com <title>AlphaGo - AHLKELRK_HAMM</tit le>

<meta itemprop="url" content DS://v.qq.com/x/page/n@547677h1K. html" />
<meta itemprop="name" name="title" content="AlphaGo - AMAMLH 5 _HRMM"
Fetches s <meta name="author" content="Tencent VFE Team" />
<meta name="keywords" itemprop="keywords" content="AlphaGo — AHLAMELRF
<meta name="description" itemprop="description" content="AlphaGo — AHLALI4Z
<meta itemprop="image" content="https://puui.qpic.cn/vpic/@/me547677h1k_160_90_3.3pg/0">
Other 2 <meta itemprop:
3 2 <neta itempro
Seripts 2 <neta itemsrop

Documents

Frames | RHRL R, R, M2, B R MY,

thumbnailUrl" content="https://puui.apic.cn/vpic/0/mo547677h1k_160_96_3.1pg/0">
i t null" />

»
>
>
> Images
>
>
N

Shulanhnnte 23 <meta itemprop
OFi 2 <neta itemprop=
= 25—
> Page ©

Iqiy1 stores the information as json format in somewhere starting with ‘video-info’.

(<[> D www.igiyi.com/w_19ru2uv5 4x.html X m a9

HANAEEZZF: fLE VS AlphaGo 1/ (HID3)
3@ {5—t

_— HE
@ HEE Y RER s
Bli2E: M—HEED 1939 EEMSASE: 855 &TEdIE: 2017-06-10 e
ERAYIA&REF: I35 VS AlphaGo 15 (HHTTER)
N RECABHEBESR
BT e
@z
= = [& [©] [104 23 @3 o Qe
52 Elements @ Network {} Debugger [Resources @) Timelines £ Sstorage & canvas Console (@] search + 8
Documents & [< > < wion2uwsachiml 0Ee0n

¥ 5] w19ru2uvBax.html — wuiw.igiyl.com

Fetches
Fonts. 2

i 5"} ivideo—info='{"isLequ":true,"channel": {"ppsUrl":"http://www.pps . tv/sports/","logoTnage" : "http://tpd. sinaing. cn/2746147127/50/5661734602/1'
images

Scripts

vVvVvVYw

Stylesheets
> | Extra Scripts

Of course, this can, and should, be done automatically. After a few manual
inspections and tries Python scripts can be used to do the work efficiently.

Note that the source used for searching and the source to which the video belongs
may not necessarily be the same. For example, making a query in Tencent may
return resulting videos that is provided by Bilibili, Tudou, etc. Therefore, the code
for obtaining URLs and the code for scraping metadata should be written
separately. Also, one might notice that metadata sometimes can also be obtained
from the querying results instead of going into the specific video page. However,
the major downside of doing so is that the descriptions are truncated and replaced
by ‘...", so we eventually decide to extract metadata using the more time
consuming method in order to obtain the complete descriptions and other
information.

Video Downloading — you-get

With no official APIs provided by the video sources, it is not easy to download the
videos manually. Fortunately, there is a handy tool that can do the job, named

you-get (https://github.com/soimort/you-get). This is a powerful tool that can
download videos simply by providing the URL. It is used via the command line.
For example, we can download a video by running

you-get https://www.bilibili.com/video/av14575134

in the command line. Similarly, this can also be done automatically using Python.

Before using you-get, we tried using another tool which is named
youkudownloader (https://pypi.org/project/youkudownloader). However, it seems

that it is outdated. Part of its code no longer works as many websites have changed
the way of storing information.

10

https://github.com/soimort/you-get/
https://pypi.org/project/youkudownloader

Generating Queries

So far, we can easily get bunch of videos automatically, with arbitrary queries
defined by us (“AlphaGo News US”, “AlphaGo News”, etc.). However, we found
that the results showed up are not very accurate. In other words, there are some
videos in the result which are not we target for, let say, the replay of the games Ke
Jie and Lee Sedol played against AlphaGo, rather than video news. To fix this, we
limit the length of the video in 5 minutes so that we can filter out the lengthy
videos which are apparently not our targets. We can achieve this task by simply
add an argument in pytube which support filtering on videos.

Although we can limit our videos in the length we want, we still found that the
results are not as related as we expected. We thought the problem was on the
keyword (query). That is to say we should put other queries which might result in
more accurate videos. However, we did our best to come up with “AlphaGo News
US” in human guess, which we think is the most general query to limit the results
in video news which reported about AlphaGo. Hence, we decided to look into the
text to find out what are the popular words which should be candidates for the

query.

NLTK -- Document pre-processing

First, we collect the title and description of videos in the approach discussed above
(Youtube API + pytube). We analyze them separately, while in same approaches.
The main task of analyzing the text is to gather the word counts in each dataset
(title, description). The pre-processing works of analyzing the text include some
Natural Language Processing (NLP) techniques as follows:

1. Tokenization: Given a whole text file, we should chop the whole paragraph,
or sentences to word level. A token is a sequence of characters, which should
be a word in this case. This is a necessary in most cases in NLP since we
usually do the analyzing in word level rather than whole sentences or
characters. The input of tokenization is the title or description of the video,
and the output should be a list of words.

11

2. Part of Speech Tagging: To give each word in the list there part of speech,
for example, assign “V” to “play” in “I like to play baseball”. The reason
why we do this is a preparation for the next step. The input of Part of Speech
Tagging is a list of words, which should become a reasonable sentence if we
join each item with spaces. The output is a list of tuple. Each tuple of the list
should be (<word>, <tag>), for example, (“play”, “V”).

3. Lemmatization: There are many different forms of same words in documents
for grammatical reasons. For example, “play” and “played” should be the
same word in analyzing the sentences “I play baseball” and “I played
baseball”. However, it should be different once the single word possesses
multiple part of speech. Let’s say, “plays” in “I enjoy the perfect plays in the
game”. Hence, it is clear now that the Part of Speech Tagging in previous
step 1s necessary for the pre-processing of the documents. The input of
lemmatization is a list of tuple of word and part of speech tag, and the output
is a list of words since we do not need the tag anymore.

4. Stopwords Removal: A stop word is a commonly used word (such as “the”,

€69 ¢ 29 “i

a”, “an”, “in”). The occurrence of theses common words will affect our
result in analyzing text since these words are usually “not important™ to the
content of a document. The input of stopwords removal is a list of words,

and the output is still a list of words while the stopwords are excluded.

All of the pre-processing steps above is implemented with NLTK (Natural
Language Toolkit), a suite of libraries and programs for symbolic and statistical
natural language processing for English written in the Python programming
language.

12

https://www.nltk.org/

Document W word list

Tokenize J » POS tagging

tuple list

word list word list (

(Stopwords [_emma'-.izatinn

-«
L remaval

Chinese Word Segmentation

For Chinese results, there is no need to do any lemmatization, since the Chinese
language does not have this type of problem. While English uses spaces as
separators of words, Chinese do so according to the context. Therefore, before we
can do analysis such as word count, we will need the words separated first. A nice
tool for doing so is called jieba (https://github.com/fxsjy/jieba), which works fairly

nice and can correctly split most of the Chinese sentences we have. The tool is
written in Python and can be used via Python.

There is also a Stanford Word Segmenter
(https:/nlp.stanford.edu/software/segmenter.shtml) that can achieve the same

purpose. But after some of our observations, we find that this tool does not perform
as well as jieba. Many words, especially names, cannot be correctly identified by
the Stanford Word Segmenter, and therefore we decide not to use it.

Look into the word counts in documents

We get the processed text after implementing the steps above, then we can further
enter the process of analyzing the word counts in the document. Same as before,

13

https://www.draw.io/#G1SO4TIVFvcwXugAXEPSK6RdifEIZf6zC8
https://github.com/fxsjy/jieba
https://nlp.stanford.edu/software/segmenter.shtml

we count the words of title and description of videos separately. In this section, we
explain the process of counting the words in description of videos.

After iterating through the whole list of words and count the occurences of each of
them, we found that the most popular words do not have reference value. The
words are “Alphago”, “Google”, “Al”, etc., which we have already knew and tried

on the query. The words we interested in is in the medium frequent range, which
can be shown in the following picture.

count
[oE B

20 4

e & 8

0 200 400 600 800 1000 1200 1400 1600
index

The y-axis in the above picture is the count for each word, and x-axis is the index
of the word in the list, in sorted order rather than the order occur in the document.
We can see that there are few words in the head (with big number of counts),
which are apparently the most popular words in the documents. And there are a
bunch of words in the tail, which are also apparently the words we do not want to
look into since we need the words with certain popularity in the query. Hence, we

would like to extract the words from the medium popular range, which is roughly
boxxed up in the picture above.

14

However, the curve is too deep to be readable. To solve this problem, we apply

Log-log Plot to transform the deep curve into a linear line. We change the count in

y-axis to log(count) and the index in x-axis to log(count). We can see the

distribution of the scatters is transformed from deep curve to a linear line in the

following picture.

count

index

And the range of words we want to look into has become more clearer in this way.

The text part in the whole project is not limited to plain text such as titles and

descriptions. However, we found that we can also work on the transcript from the

anchor. Since the content in broadcast news is usually in very formal English, we
can rely on common speech recognition toolkits to get the transcript.

15

We collected the videos with previous approach described above (Youtube API +
pytube). To transcribe the text from audio, we need to convert the video file to
audio file first. We use command line toolkit “ffmpeg” to do the converting in our
project. We use Speech-to-Text Client Libraries by Google to transcribe our audios

to text. It is a python library, while we still have to upload the audio files to Google
Cloud Storage. We can then get the URL of the files and put it into the
Speech-to-Text SDK. Finally, we get transcript our transcript through these steps.
To avoid unnecessary cost from Google Cloud Storage, we delete the audio files
right after finishing the transcript.

There is one thing we have to consider before Speech-to-Text Client Libraries by
Google -- the pricing. The pricing table is as follows:

Feature 0-60 minutes Over 60 minutes, up to 1 million minutes
Speech Recognition (all models except video) Free $0.006 USD / 15 seconds*
Wideo Speech Recognition Free $0.012 USD / 15 seconds*

Have a note on these pricing policy could avoid unnecessary cost which might
happen unknowingly.

After we get the transcript from audio files, we stored the transcripts and do the
same analysis as title and descriptions. We found that in the transcript, the words
tend to be more common compare to the ones in titles and descriptions.

The results of the distribution of the text in normal and Log-log Plots are as follow:

16

https://cloud.google.com/speech-to-text/docs/reference/libraries#client-libraries-install-python

L

-
™

- []
i = B [] 1 2 3 4
o
Word counts on titles

-

- L] L]
[] o e [i 4
ndey den:
Word counts on descriptions
&
L] -
5 . == e
' \
. Wy
-
! ¥
\ .
]
- [] -
L] P ann L] E | 2
ey ingen

Word counts on audio transcriptions

17

Here is an example of such counts (after applying segmentation).

142 91 # 87 o 72 AlphaGo 66 WE47 31 30 B 27
B 26 T 26 323 K23 A#l22 BE#21 417 516 FiHH 16 ATERE 15
. 14 14 114 214 <13 sHF13 513 ” 13 AE 12 #1712
011 #10 49 #MFS HEBES #HS =8 F8 BEES 28
LA 8 E - F7 w7 =%7 257 k7 277 hE7 #Te
EZ/6 :6 HhE6 106 1556 HR6 —6 E6 16 HIBA 6
MmES ®H#HES #5 B2S #Wgs HE—5 #s 235 A5 L5
LiEs s xS s hEsS -5 s M5 374 4
EEH4 HWE4 H4 B4 K4 30 4 EH4 134 A EH 4 M4
T4 ERX4 N4 HWH4 FE-F4 H4 54 HEEE 4 BaT4 |4
Al 4 B4 ¥4 N4 B£3 KEM3 B3 TF3 HiE3 #3
BEE3 FH3 ?3 Deepmind 3 N3 FEEL3 M3 273 W3 B3
#3 123 Master 3 & 3 BM3 ®3J3 Fmif3 #E3 #HE3 EF3
DeepMind 3 63 BAR3 K3 /3 #e3 HB3 Fhi3 o F3 Fa/Ri% 3
FH3I LR3I %3 £33 pef3 FEW3I K3 O EBE3 —H3 hEE#3
o3 B3 &3 B3 "3 T3 ;3 "3 B3 HEA3
BE2 =2 T2 X2 B2 ERAFABLR 2 B2 Moo HEK2 ®F2
209 2 100 2 t2 XEH2 HWEA2 M2 FIEFE2 BEmM2 602 RE2
N2 W2 E=R2 £2 RiB2 @2 fik 2 ®22 BHE2 BEF2
112 FHN2 BKE2 B2 PETR2 B2 A2 mWmB2 MER2 FH2
BF2 ®#H2 #HBAs2 BiF2 —E2 HAR2 (2 FE2 MWMk2 1A@2
BRE&H2 RAR3E 2 ETITR 2 L2 Al2 Hfr2 xEE2 {]2 BE2 aF2
W2 BEFH2 FEAil2 W2 B2 PEE#HDE 2 BF2 BHR2 EEGD2 B2
Enigy 2 52 BERT2 %2 B2 IE2 HE2 Alphago2#%2 152
wEE2 HIUR2 %2 360 2 mAh2 UENE2 f& 2 ER2 ZE12 RBERT2
AlphaGoZero 2 %2 KE2 HF2 BWHR2 RW:2 wx2 HTiE2 ER2 E;2
B2 MM2 KE2 A2 JLR2 EH2 HE2 %Lk B2 W 2
BE2 oH2 W2 REPIE2 BEF2 R2 B2 FE2 T2 Zero 2
B2 E2 ERSHERI 2 HE2 HRr2 RKR2 BE#F2 NE2 FE2 M2
RS 2) 2 192 Google2 f52 BEe2 12 XE2 H1 T 1
FEW 1 AR FE1 R TR HiA% 1 BB F¥H1 HH1 TTHI
1 el RE1 O &1 X211 R 1 B 1 M1 mE
EH1 =ZR1 #E1 =1 XE1 WE1I ARl &£F1 #E1 K1
X1 EA1L sH EEIL1 FEZ1 FHEEL 1 BE 1 mF 1 ENER
1 HF1 ORI BEXKEI FHB1 O fEE1 —Xk1 O TF1 ORI B
mE1 BRI MBI O1 Bl %K1 WE1 Prol fF1 Rl
FHEAL BF1 @l BF1 EI Nature 1 #H\B1 HH&K1 KA1 KFKI
RE1 201 BeM 1 Sk ipadl BT BMEI1I X1 XFE1 BiE
71 %1 W Wikl SHEI BET1 @1 2 1 251 HF1
HW1 =XK1 Efi1 TEE1 LEBUARI TE1 1 WmE L1 A
ML BER1 TE1 KR ERAL TE1 BEE1 Q1 ik 1 M 1
Bl @aE1l BHERTI B M1 ®BfE1 i1 alphagol BN KE
EH1 X1 F@1 OFE1 EE1 ZE1 HFEEHI Rzl #EE1 ERI

18

*z1 z1

K& 1
B kM
FI1 x#1
21 A#1
—=JL1 Z2i/1
B¥1 Al
HR1 OEFEI
RIB1 S
BRI EEI
HE1 FRE]
...... 1 BARE
EE1 Ll
=1 g 1
wFE1 BZE1
=21 &1
B&1 M
EH1L A1
AMEL —H1
71 -0
NLE1 SfpE 1
i1 ERLI
Wikl #&1
BE1 TR
g1 Note6 1
B/ &%
Bl WEL
20171 RR4 1
B 1 ZR 1
EG%H 1
RE1 M1
wmez1 AH1
171 ZF1
551 B/BEI
BEFETEIL

1 FFE 1
Bl 1 4R
BN HEE1
N5s 1 Bk 1
HE1 F1
B¥1 §wB1
BE1L XFI
3D 1 R

A1 BEL PRI B HE1 11 BEH1 21
7B B’E1 431 =X 1 FEL 1051 BHAL EEAL RI
B581 SBE1 +X1 KRN1 UHHE1 FHA!l Vivl BAI

LR1 @1 w1 &8\ 1 k171 TRl KGRI

Z1 —F£1 REL A1 dH1 iPhone8 1 ARk 1 iRAK 1

AR OBIF1 OB\ A1 AF1 dlAL MEXKI % 1
851 EEHITIHI BF1 ZM1 Bl PE#ER!] FEr1 EI
wEB1 H1 BElI WAL FT1 21 MEL OEREBIL

hE1 A% B MM 1841 TR1 MRl 2RI

W1 IR EF1 #EiRD ER1 TEH1I WM& A1

HE1 EA1 PS1 wEIT Tl FEL O SK1 KR

W1 2891 A1 RE1 &EEIL Alphal MEHZ— 1 HE 1
FE1 EKE1 X4l KEHE # 1 ME1 RSB RDEEE
z1 =P BH1 1 2Bl &K1 ARSE D BRI

EE1 Poweronl Af11 £H3kK1 FTE1 EE1 —®1 KRNI

BattleBots 1 WEL KA1 KE1 FE1 fl ME1 HEII
HE] HE1 B&1 3A1 F&1 Myl FER1 @&

MREF 1 FE1 EM1 #WME1 E1 F—ZF1 noval EEI
—&B5r 1 HELAM 1 EE1l EF1 O XBE1 Om1 BME! BEIRl
SE1 i1 EE1 BB #%1 #HE1 IEM1 &F1

Al #{A1 IBM1 DeepZenGo 1 BER 1 A1 MEE1 OREL
#milT —/B1 F-#H1 —TFTF1 HFE1 HI M1 Sirl

F—f1 FEF1 RT1 %K1 XTI HEI M&E1 FE1

B 1 &1 KE1 &Rl LEF1 OTE1 ORI BEI

W&kl RE1 O —1N1 BBl EE1 L1 2T 1 EF 1

"1 BfEI1 401 BiFr1 X1 ¥ 1 —#&1 Noll

FE1 Stonel EE1 BH1 ME1 EI hA 1 TGN

EBW1 YOGA1 XTFT1 HH1 X®R1 —F1 ZEh1 d=ml

A1 HE1 O FE1 MR Of#Ex1 21 E1 YNAS

L@l ME1 Ef1 O RFE1 ®ie1 B k1 BEL 1 iR
L1 HAE1D Hepl o el MERHD EZE1 OBEL1 OMHEE]

—#®1 —#FH1 ~1 HE1 fh1 #&1 ME1 ®1

gml ANFL EI 541 ERH 1 Eff1 Bkl K1

WmE1 Bkl 1 HE1 &1 RE1 EHARI EZ -8
BRIEI1 Motol 281 £FH 1 WMkl IEI Bl EEIEL SR
[1 A/ Wk BX1 RE1 T2l BEE1 B

XT1 ZHRF1 Biz1 E#H1 NFEL EW1I BEMAL RE
BE1 HmE1 BR1 S51 #£EF1 ¥ wMHE1 EHNE1

%1 WIFE1 BER1 Wil BEF1 7201 FE1 A1

%1 1 E1 F;E1 B#R1 BE1 1 BRI

461 41 N1 EBEE1 EZ§ALE F1 TEL W1
—$1 B A1 A1 Crazy 1 H&¥FhR1 IARBE1 TR
150 1 20170528 1

19

Named Entities

To narrow down the range of targets what we are looking for our queries, we
decide to look into named-entities. As described in WIKIPEDIA: a named-entity is
a real-world object, such as persons, locations, organizations, products, etc., that

can be denoted with a proper name. The reason why we think it is important to
dive into is named-entities usually differ more apparently between different
cultures.

We use a python library SpaCy for extracting the named-entities from documents.
It’s is an industrial level Natural Language Processing package for python which is
totally free. We can just input the raw text and then output would be list of entities.

The documents we look into are descriptions. We found that there are many
advertisements in the descriptions which would influence the accuracy such as
“Follow us on Twitter”, “Download on AppStore”, etc. Hence, there are some
irrelevant entities showed up in the results such as “Twitter”, “AppStore”,
“Facebook”, etc. Advertisement removal should be one of the future works which
might improve the performance of our results on generating more appropriate
queries.

Specific News Channels

Despite the problem we met, we still found an interesting word in the result. There
is an entity “CGTN” in the result that looks like a name of the news firm which
might possess many resource of news about AlphaGo. We then found that CGTN
stands for China Global Television Network, which is a Chinese international
English-language news channel that might have videos being our targets. The
reason is that we want to compare the cultural difference between China and the
United States, and the feature that both videos are in English is a great help.

Hence, we turned our targets to Youtube Channels in order to narrow down the
range of the results. That is to say, we queried “AlphaGo News US” in specific

20

https://en.wikipedia.org/wiki/Named_entity
https://spacy.io/

Youtube Channel (more precisely, news channel) and see if the result would be
more relevant to our target. Youtube API also support to search on specific

Y outube channel, we only have to pass the channel ID as argument. The result
turned out to be more accurate videos showed up in the first view videos.

Comparing Searching Approaches

We decided to compare the difference in results between searching in CGTN (with
channel) and without specific channel. The way we compare between them is to
append each named entity to “AlphaGo”, that is to say, “Alphago <entity>" as the
query and get the number of the results in each way. Then we normalize each data
series so that we can take weight (percentage) rather than actual counts to compare
with each other. We again visualize the comparison so that easily see if something
strange (interesting) happens.

Distribution of results of search with entities in CGTM channel or general search

21

Each spot in the picture above represents a word (named entity). The x-axis is the
percentage of the count of the word in results of searching without specific
channel. The y-axis is the percentage of the count of the word in results of
searching with CGTN channel.

The spots distribute in the diagonal line from lower left to upper right are the
“normal cases”. Which means the percentage of the word in both search
approaches are similar in certain threshold range. The case we want to find is that
have dramatic difference of percentage in both search approaches. In other words,
the spots which appear in the upper left or lower right corners.

We can see that there are some extreme cases in the upper left corner. Those are
the advertisements since specific firm might want to advertise their mobile
application on Apple Store, Page on Facebook, etc., which we mentioned before. If
we set both maximum and minimum thresholds of the difference of the percentage,
we can find some words interesting.

The entities such as “Ke Jie” appears in the spots boxxed up above, which make
sense since CGTN is a news channel based in China and Ke Jie is the Chinese Go
player who played against AlphaGo.

22

way @ . L T *
25 4 .
B
20 1
. . =
#
._?:15- . .
3
=
@
. L]
104 * . .
A L .
- .. . I’
e '.= - - e
05 - . » . a
e o® .
:'_-l_ ..‘ . :. L]
::l: l"
00 WG °*°
00 0.5 10 15 20 25 30 35
Plain

Distribution of results of search with entities in CGTM channel or general search

We should query in more news channel on Youtube such as NBC, ABC, etc., to
see if we can improve the accuracy of searching related news videos in future
works.

There are some problems we found and we have not been able to solve it yet so far
which are related to the degree of relevance.

1. First, we found that there are some videos which include multiple quick
short news. The report of AlphaGo might be a little portion of the video,
while most of the information in the clip is not helping our data analysis.

2. Another problem occurred while we were looking into the search results. We
saw many “Philippines” and “ISIS” in named entities analysis, however, we
are still not able to figure out what happened of here by human guess.

3. Third, the number of the videos we should take as references is hard to
decide. In the previous sections, we mentioned that we download 500 videos

23

and metadata and do the analytical works on them. However, we found that
the results become more irrelevant as approaching to the tail.

After all, we think we already have a potential solution of these problems. There
are some clues that we might be able to access the “Relevance” of the results of
searching with Youtube API. We can sorted the results with the order of each
relevance between the video and query, while we still can not access the value
right now. We consider to do it in the future and we think it is a valuable approach
that we can give it a try.

24

Results

At this point, we have developed code and gathered tools so that we could
download videos and obtain metadata from an arbitrary query. Currently, we
Downloading from Tencent is rather slow probably due to some internet problems.
Downloading from Iqiyi is sometimes unstable and may occur errors.

Currently, our main focus is to find a way to improve our queries in order to obtain
more relevant videos and discover keywords that seems to be very interesting. For
example, some interesting keywords include ‘Philippines’, ‘Chess’, ‘Starcraft’, etc.
These words do not usually come into mind when we think about AlphaGo.
However, by doing analysis we find that these words might contain more
information than we think.

Besides attempting to improve our queries in a systematic manner, we also inspect
some videos manually, and here are some of the interesting results we find.

In this video from https://www.youtube.com/watch?v=8dMFJpEGNLQ, the tone
towards China is very negative and treats the AlphaGo event of defeating a famous

Chinese player as China’s ‘national crisis’ for Go is a traditional game in China
and has a long history.

25

https://www.youtube.com/watch?v=8dMFJpEGNLQ

From the screenshot we see that this video states that China blocked the Google
machine because of the game. However, we know that China has blocked many
US sites such as Google, Youtube, Facebook, etc. already for a long time and it has
nothing to do with AlphaGo.

ABC NEWS MAY 24, 2017 (

MAY 24, 2017
CNN MAY 24, 2017

ogle’s
ainst
yer

Google’s man-versus-machine
showdown blocked in China

SHERISSE PHAM & SERENITIE WANG

26

From this screenshot we see that the video selects a small portion of the Chinese
player’s words and depict the feeling of depression and suffering a defeat.
Although the words were really said by the player, the complete context has been
removed and here these words seem to show a very different emotion from the
original context.

Google's Al AlphaGo Is Beating Humanity At Its Own Games. (HBO) o .~» 0
(== News HB®

CDBOOLO GO H BY rov0OOROODOODO®
L

R
.A T Pr
-

—

v

St L LL]

v

To me [AlphaGo] is the god of the Go game.

of) 1:48/2:04 Scroll for details

v

27

On the other hand, in a video from
https://www.bilibili.com/video/av10820622?from=search&seid=15276494022864
839122, we see exactly the same event, but described in a much more neutral
manner. It holds no attitude about the event. Instead, it simply shows the event and
let people see how the Chinese player feels and what he talks about the game.

E_B IEEHELHR] AN AphaGo ®:: m

(LR R ”WMW -
fll
il
/N
i
i

Il 2402/4856

28

https://www.bilibili.com/video/av10820622?from=search&seid=15276494022864839122
https://www.bilibili.com/video/av10820622?from=search&seid=15276494022864839122

Another video from https://www.igiyi.com/v_19rr7eslyg.html has a very positive

attitude towards the Chinese player and it describes the defeat as ‘pitifully’ in the
title.

fiE R AlphaGo

Google i#FnaGkaR

D Ol o014/ o0t10

Therefore, we see that videos from different cultures may have significantly
different opinions towards the same event, and we hope that we can improve our
methods and find more such examples for further analysis.

29

https://www.iqiyi.com/v_19rr7es1yg.html

Conclusion

We list the some ideas and future works below, including the potential solutions of
the problems mentioned above:

1. Although Youtube is the most popular and we can even say it is monopoly
in video platforms, we still can try to scrape videos from other sources. One
of the potential benefits is we possibly can focus on news videos if we
directly get the videos from news channel companies websites.

2. Query on news channels on Youtube since we can further narrow down the
range of search results such as the way we query on CGTN mentioned
above.

3. Irrelevant videos may still appear in the search results even if we implement
many approaches in searching, while we can find other approaches to filter
out those videos.

4. Removing advertisements will significantly improve the utilities of the
named entities since they hold significant percentage of the counts in the
documents.

5. Access the relevance score in the search result of Youtube API. This is the
most important and useful way I think we can improve our accuracy on
searching since we can automatically filter out the irrelevant videos with
certain threshold on relevance score.

30

