CS3101

Lecture 6

This week

Threads & processes
Performance & profiling

Extending and embedding Python (Boost,
SWIG)

More libraries
Web frameworks & CGI (Django, Pylons)

Final Projects & Demos

Due via courseworks March 2nd

Demos later that week

Submit a single compressed archive containing well

documented source code and the following:

— project.txt —a 1 page write-up describing your project,
results, lessons learned.

— readme.txt — a short document describing any libraries
your code depends on, where to download them (and
which versions), as well as instructions for running your
project

Demos
— Schedule a short demo via Doodle: see email

— 10-15 minutes, demonstrate usage, features

Threads & Processes

http://docs.python.org/library/
multiprocessing.html|

Threads: Characteristics

A thread is an independent flow of control that shares
global state with other threads

All threads appear to execute simultaneously
Experience with threading in other languages?
— E.g. PTHREAD in C, threads in Java

Can be complex, not easy to master

Can also be powerful

— Allows you to solve some problems with better
architecture, performance

Consider threading non-compute bounded tasks via
thread pools

Processes: Characteristics

A process is an instance of a running program

OS protects processes from one another

— Inter-process communication (IPC) must be used for
processes to communicate between one another

— Communication may also be done via files and
databases

Processes can run on different nodes of a
network or on different cores of a local machine

Each Python process contains its own instance of
the interpreter

The Global Interpreter Lock

* Python’s core implementation uses a GIL which protects
internal data structures
 Why? Easy integration of C libraries that are usually not

thread-safe.
— The key to this lock must be held by a thread before it can safely
access objects
— The interpreter releases and reacquires the lock every 100 byte
code instructions (parameterized)

* Released and reacquired around |I/O operations
* Difficult to speed up compute bounded tasks in Python
using multithreading alone

— One GIL per interpreter

— use the mulitprocessing module which spawns processes to
achieve full concurrency, as each interpreter has its own GIL.

Thread pools: consider for non-
compute bounded tasks

import subprocess

sites= ['www.google.com',
"www.yahoo.com’,
'www.columbia.edu’]

for 1p 1n sites:
subprocess.call("ping -c2 %s" % 1p, shell=True)

Thread pools (cont’d)

import subprocess
from threading import Thread

Sites = ['www.google.com',
"www.yahoo.com',
"www.columbia.edu']

class ping_worker(Thread):
def __init__ (self,ip):
Thread.__init__(self) # must explicitly call
self.ip = 1ip
def run(self):
subprocess.call("ping -c2 %s" % ip, shell=True)

Thread pools (cont’d)
pool = []

for 1p 1n sites:
worker = ping_worker(ip)
pool .append(worker)
worker.start()

for worker 1n pool:
worker.join()

Multiprocessing: map and apply

example from the python doc
from multiprocessing import Pool

def f(xX):
return X*Xx

if __name_ == '_main__":

start 4 worker processes
pool = Pool(processes=4)

evaluate "f(10)" asynchronously
result = pool.apply_async(f, [10])

print (result.get(timeout=1))
prints "100" unless your computer is *very* slow

print (pool.map(f, range(10))) # distribute and compute in parallel
prints "[0, 1, 4,..., 81]"

Pools

Multiprocessing.Pool, Multiprocessing.
A process pool controls pool of workers
— Accepts submitted jobs

c1a$s_mu1ti€rocessing.Poo1([processes[,initia1izer

[, 1nitargs]]])

— If initializer is not None: each process will call initializer(*initargs)
when it starts

— Defaults to one worker per available cpu core
apply — blocks till results is ready
apply_async — non blocking
map / map_asyncy — distributes jobs among processes
close() — prevents more jobs from being submitted
join() - waits for the worker processes to terminate
terminate() — immediately brings down the worker processes

Async methods return a multiprocessing.pool.AsyncResult objected, like a
queue

— get(timeout), wait(timeout), ready(), sucessful()

Multiprocessing Queues

Import from multiprocessing
Meant to be shared among threads and processes

Supplies FIFO queues that provide multithread and
multiprocess access
Comprised of one main class and two exception classes

— Queue: main class

— Empty: exception arising when trying to get an item from an
empty queue

— Full: arises when queue is full
Supports blocking and non-blocking put and get
— Threads can specify timeouts

A container for arbitrary objects

Using Queues for Inter-process
Communication

queues are process and thread safe
ex. from the python doc

from multiprocessing import Process, Queue

def f(q):
g.put([42, None, 'hello'])
if __name__ == '__main__":
g = Queue()
p = Process(target=f, args=(q,))
p.start()

print (g.get()) # blocking call
p.join()

Assigning worker functions to
processes

#ex from the pydoc

from multiprocessing import Process
import os

def worker(name):
print ('parent process:', os.getppid())
print ('process 1id:', os.getpid())
print ('hello', name)

if __name__ == '__main__":
pool = []
for arg in ['homer', 'lisa']:

p = Process(target=worker, args=('bob',)) # note that trailing
comma

pool.append(p)
p.start()

for p in pool:
p.join() # block until this process completes

Performance & Profiling

http://docs.python.org/library/
profile.html

Performance Basics

Python is substantially slower than C (about one to two orders
of magnitude)

The tradeoff is often well worth it:

— more of your time to focus on the problem

General methodology:

— Focus on algorithms, use Python to prototype
— Ifit’s fast enough, move on
— Ifit’s not: profile, rewrite in Python

— Finally, rewrite modules in C and import

Code generally spends 90% of it’s time in 10% of its context

Optimizing performance

* |In scripting we are much more interested in
— correctness
— readability
— efficiency w.r.t. to development time
* When you need to be fast with Python, you have options
— Identifying hotspots with the profile module
— Finding a high performance library (e.g., numpy, Boost)

— Rewriting your own modules in C and importing

Playing with timeit

A good introduction to benchmarking

Useful for small scale optimizations, i.e., measuring the
performance of a single routine

Covers many common gotchas - i.e., setup code, multiple
runs

Quick question: Say you benchmark a function with identical
inputs several times on the same machine. The running
times are 100ms, 90ms, and 110ms respectively.

— Which time would you report as the most accurate
estimate of performance?

From the command line

./python -mtimeit -s ‘setup statements(s)’ ‘bechmark
statements’

joshS python -mtimeit -s 'x=[5,4,3]*100' 'x.sort()’

— 100000 loops, best of 3: 13 usec per loop

joshS python -mtimeit -s 'x=[5,4,3]*100' 'sorted(x)’
— 10000 loops, best of 3: 88 usec per loop

Notice timeit automatically adjusts the number of loops
run. Cool right?

A classic pitfall: string concatenation in object
languages (but newly defunct in Python 2.5+ due to
architecture changes)

def slow(): # create lots of objects unnecessarily
big — 1)
small = 'foo’
for i in range(10000):
big+= small
return big

def fast(): # perform a single concatentation
big = []
small = foo’
for i in range(10000):
big.append(aDonut)
return ".join(big)

if _name___ =="'" main__ "
from timeit import Timer
t1 = Timer('fast()’, 'from __main__ import fast")
t2 = Timer('slow()’, 'from __main__ import slow')
print tl.timeit(humber=100) / t2.timeit(number=100)

1.54 Notice the unexpected results (Using Python 2.5+)?

Profiling

e Typically code spends 90% of its time in 10% of it’s
context

— Don’t guess where - it’s often not obvious

e Pattern: use the profile module with standardized
inputs to analyze code, then analyze the data with
pstats

* Profiling is not just for algorithms intensive work

— worth considering when working with large data
sets

— a must if you're sending code out into the world

Profiling: why never to teach
recursion via Fib()

def recFib(n):
if 0 or 1
return n
else:
return recFib(n-1) + recFib(n-2)

def iterfib(n):
sum,a,b =0,1,1

if n<=2: return 1 21897 function calls (7 primitive calls) in 0.312 CPU seconds
for i in range(3,n+1):
sum=a+b Ordered by: standard name
a=b
b=sum ncalls tottime percall cumtime percall filename:lineno(function)
return sum 1 0.000 0.000 0.000 0.000:0(range)
1 0.001 0.001 0.001 0.001 :0(setprofile)
def go(): 1 0.000 0.000 0.311 0.311 <string>:1(<module>)
print recFib(20) 1 0.000 0.000 0.312 0.312 profile:0(go())
print iterfib(20) 0 0.000 0.000 profile:0(profiler)
21891/1 0.311 0.000 0.311 0.311 t.py:1(recFib)
if __name__==" main__ " 1 0.000 0.000 0.311 0.311t.py:16(go)
import profile 1 0.000 0.000 0.000 0.000 t.py:7(iterfib)

profile.run('go()")

Memonization using function
decorators

* |dea: cache a functions return results in a
dictionary, keyed by the arguments that
produced that value

 Worth understanding - useful for optimizing
recursive functions, server side code

Memoizing a recursive function

@memoize({})
def memoize(cache=None): def memFib(n):
if cache is None: cache = {} if n < 2: return 1

def decorator(function): return memFib(n-1) + memFib(n-2)

def decorated(*args):

. . def fib(n):
if args not in cache: _ ifn < 2: return 1
cache[args] = function(*args) return fib(n-1) + fib(n-2)
return cache[args]
return decorated if _name__=="'_main__"
return decorator import profile

profile.run(‘'memFib(20)")
profile.run('fib(20)")

63 function calls (5 primitive calls) in 0.010 CPU seconds
21/1 0.000 0.000 0.001 0.001t.py:11(memFib)
39/1 0.000 0.000 0.001 0.001 t.py:4(decorated)

21894 function calls (4 primitive calls) in 0.302 CPU seconds
21891/1 0.301 0.000 0.301 0.301 t.py:16(fib)

Visualizing results

t1:recFib
99.60% 9.59%

* Generating call graphs P 0005+
e References:
e http://
www.graphviz.org/ LR
* http://
code.google.com/p/

irfonseca/Wi ki/ ngxaeaco/ﬁ/ole
Gprof2Dot

* http://docs.python.org/
library/profile.html

(99.60%) ' 21890

t1:<module>
99.67%

99.66%
(0.05%)
1

python -m profile -o output.pstats
python gprof2dot.py -f pstats output.pstats | dot -Tpng -o output.png

Extending and Embedding

http://www.swig.org/Docl.3/
Python.html

C / C++ Integration

* There are instances when scripting languages
won’t cut it from a performance perspective

— Often as your intuition develops you can get a sense
for this in advance

e Software is heterogeneous - many instances in
which you’ll need to connect to a driver or
library written in C

— You can make your life easier by scripting the bulk of
code, and interfacing the special cases

Extending and Embedding

e Recall that Python itself runs in a C-coded VM
Which means Python is highly extensible!

— builtin types (including numbers, sequences, dictionaries, sets)
are coded in highly optimized C

— as well as many standard library modules

Extending

— building C / C++ modules that Python code can access using the
import statement (as well as other languages)

Embedding

— executing Python code from an external C application

— Exposing Python libraries to a host language in the process of
embedding Python

Fundamentals

A C-coded extension is guaranteed to run only with the version of
Python it is compiled for

You generally need an identical compiler to that used to build your
version of Python

— on *nix systems - it’s gcc
— microsoft is usually MSVC

A Python extension module named ‘foo’ generally lives in a dynamic
library with the same filename (foo.pyd on Win32, foo.so on *nix)

That library is customarily placed in the site-packages sub directory of
the Python library

Manually (avoid when possible
— there are tools to assist)

//gcd.c

int gcd(int a,int b)

{

}

int c;

while (a!=0) {
C = a;

= b%a;

a
b = c;

}

return b;

// gcd_wrapper.c
#include <Python.h>

extern int gcd(int, int);

PyObject *wrap_gcd(PyObject *self, PyObject *args){

int x,y;

i1f (!PyArg_ParseTuple(args,
NULL;

int g = gcd(X, y);

return Py_BuildValue("i", g);
}

/* List of all functions to be exposed */
static PyMethodDef gcdmethods[] = {

{ "gcd", wrap_gcd, METH_VARARGS}, {NULL, NULL}
s

void initgcd(void){
/* Called upon import */
Py_InitModule('"gcd", gcdmethods);
ks

11", &%, &y)) return

Building and installing with distutils

e Distribution utilities automates the building and installation of
C-coded modules

— cross platform: definitely the way to go rather than a
manual approach

 Assuming you have a properly decorated C module ready to go,
say foo.c, create a new file: setup.py in the same directory,
execute the below

* then run from the shell Spython setup.py install

* you’re now free to import your module in native Python
— import gcd
— gcd (40, 4)

from distutils.core import setup, Extension
setup(name='gcd’,ext_modules=[Extension('gcd’,sources=['gcd.c'])])

SWIG

Manual decoration is cumbersome

— Appropriate when you’re coding a new built-in data type,
or core Python extension, otherwise: use a tool

Simplified Wrapper and Interface Generator:
http://www.swig.org

SWIG decorates C source with the necessary Python markup

Markup generation is guided by the library’s header file
(occasionally with some help)

Not Python specific, support for:
— Scripting: Perl, PHP, Python, Tcl, Ruby.

— Non-scripting languages: C#, Common Lisp, Java, Lua,
Modula-3, OCAML, Octave and R

SWIG (much easier)

//example.c //example.h
int gcd (int a, int b) int gcd(int,int);
L
int c;
while (Ca!=0) {
C = a;
a = b%a;
b = c;
¥

return b;

h

SWIG (cont’d)

//example.1 - swig directions

%module example
/* Parse the header file to generate wrappers */

%include "example.h"

from distutils.core import setup, Extension
setup(name='example’, ext_modules=[Extension(‘example’, sources=['example.c'])])

#1install using shell commands
$swig -python example.i

$python setup.py install from example import gcd

print gcd(7890, 12)

Boost

* Uniformly high quality C++ libraries
— Development partially funded by LLNL and LBNL
— Mathematics intensive

 References:
— www.boost.org/libs/python/doc

Detailed references

nttp://www.python.org/doc/ext/ext.html

nttp://www.python.org/doc/api/api.html

nttp://www.swig.org/tutorial.html

www.boost.org/libs/python/doc

Python in a Nutshell, 2nd Edition: Chapter
25

Libraries Ill

More libraries: email

import smtplib,o0s

#import classes

from email.MIMEMultipart import MIMEMultipart
from email.MIMEBase import MIMEBase

from email.MIMEText import MIMEText

from email import Encoders

message = os.system('sports’)

image = os.system('sports_image’)
subject = 'Sports!’
mail("jbg2109@gmail.com”, "Sports!”, \
message, image, 'user’, 'pass’)

def mail(to, subject, text, attach):
msg = MIMEMultipart()
msg['From'], msg['To'], msg['Subject'] = user, to,subject ¢ jbg2109@gmail.com show details
msg.attach(MIMEText(text)) It's 34 today, you should bike!
part = MIMEBase('application’, 'octet-stream”)
part.set_payload(open(attach, rb’).read())
Encoders.encode_base64(part)
part.add_header('Content-Disposition’, =
'attachment; filename="%s"" %

os.path.basename(attach))
msg.attach(part)
mailServer = smtplib.SMTP("smtp.gmail.com”, 587)
mailServer.ehlo()
mailServer.starttls()
mailServer.ehlo()
mailServer.login(user, pwd)
mailServer.sendmail(user, to, msg.as_string())
mailServer.close()

bike.gif
326K View

® Reply =P Forward

see: http://docs.python.org/library/smtplib.html

Deques

>>> from collections import deque

>>> d = deque('ghi') # make a new deque with three items
>>> for elem in d: # iterate over the deque's elements
oaa print elem.upper()

G

H

I

>>> d.append('j")
>>> d.appendleft('£f")
>>> d

deque([‘f" 'g'l 'hll ‘i.l 'j'])

add a new entry to the right side
add a new entry to the left side
show the representation of the degque

% %

>>> d.pop() # return and remove the rightmost item
lj'

>>> d.popleft() # return and remove the leftmost item
lf'

>>> list(d) # list the contents of the deque

[lg|’ lhl' lil]

>>> d[0]) # peek at leftmost item

lql

>>> d[-1) # peek at rightmost item

Iil

source: http://docs.python.org/library/collections.html

Simple Scheduling

* Running scripts
incrementally

. import time, os, sys
— Useful for maintenance, P Y

updates def main(cmd, inc=60):
] while True:

* Many operating systems os.system(command)

have this capability build time.sleep(inc)

N if name_ =="'" main_ "

. cmd = sys.a 1
— cron, windows scheduler it numarés <r§?/[]
. . main(cmd)

* Nice to have a little more else:

control inc = sys.argv[2]

main(cmd, inc)

Using sched for simualtions

import sched
schedule = sched.scheduler(time.time, time.sleep)

 Why the input of a delay function? When would you not
want to use real-time?

* Adding an event returns a unique token which may be used
to check status, cancel, etc

* enter - schedules an event at a relative time

* enterabs - schedules a future event at a specific time
* support for priorities

 won’t overlap or cancel tasks by default

e useful for guaranteeing a scheduled task completes at the
given rate on average

e see: http://docs.python.org/library/sched.html

Python and CG|

http://docs.python.org/library/
cgi.html

http://httpd.apache.org/

CGl (Slides courtesy of John Zhang)

When a web browser requests a page from a web server,
the server may return either static or dynamic content

— Serving dynamic content requires the server-side programs to
generate and deliver the content

The Common Gateway Interface (CGl) is a long-standing
web- wide standard for server-side programming
What happens:
— First, browser sends request to server
— Server executes another program, passing content of request
— Server captures standard output of other program
— Server returns output to the browser as response to request

A CGIl program / script is the “other program” in this case

CGl (cont’d)

* CGlis astandard, so you can code scripts in any language

e Scripts often handle submitted HTML forms

— ACTION attribute of the FORM tag specifies the URL for a CGI
script to handle the form

— Method is GET or POST

— GET encodes form contents as query string and sends as part of
URL, POST transmits form’s contents as encoded stream of data

— GET is faster, you can use a fixed GET-form URL, but can’t send
large amounts of data, and URL length is limited

— POST has no size limits

 With CGI, GET data is sent as query string, POST data is sent
through standard input

The cgi Module

* Recovers data only from the query string if it is
present, otherwise, recovers data from standard
input

 Module supplies one function and one class that
will be used often

— Function escape(...)

* Escapes a string, i.e. replaces some characters with
appropriateHTML entites such as <, >, & with <, > and
&

— Class FieldStorage
* Used for parsing input

The FieldStorage Class

When FieldStorage is instantiated, the query
string and/or standard input is parsed

— Distinction between POST and GET is hidden

Must only be instantiated once, since it consumes
stdin

FieldStorage instances are mappings

— Keys are the NAME attributes of the form’s controls
— Contains a subset of dict’s functionality

* |teration, checking if a key is present, indexing are possible

Output

* The response to a HTTP request is the standard
output of the CGI script

* Script must output:
— Content-type header (often just text/html)
— Followed by a blank line
— Followed by response body

* Script may also output be any MIME type
followed by a response body that conforms to the
type

— Response is often in HTML or XML

Example (python 2.6)

import cgi, cgitb
cgitb.enable() # built in error handling

print "Content-Type: text/html" # HTML is following
print # blank 1line, end of headers

print "<TITLE>CGI script output</TITLE>"

print "<H1>This i1s my first CGI script</H1>"

print "Hello, world!"

form = cgi.FieldStorage()

1f "name" not in form or "addr" not in form:
print "<H1>Error</H1>"
print "Please fill in the name and addr fields.'
return

print "<p>name:", form["name"].value

print "<p>addr:", form["addr"].value

Python 2.6.2: C:\Python26\python.exe

<type ‘exceptions.NameError'> Mon Feb 22 19:45:14 2010

A problem occurred i a Python script. Here 15 the sequence of function calls leading up to the error, in the order they occurred.

C:\Program Files\Apache Software Foundation\Apache2. 2\cgi-bin\scenano.py i ()

11l 2rrol LG}
7 asdfs
s dfs wundefined

<type 'exceptions. NameEiror">: name 'asdfs' is not defined
args = ("name 'asdfs’ 1s not defined",)
message = "name "asdfs’ 1s not defined"

Installing Scripts on Apache

 Depends on web browser and host platform
— Here, we assume you are using Apache

* |n configuration file httpd.conf
— ScriptAlias /cgi-bin/ /usr/local/apache/cgi-bin/

* Enables any executable script in aliased directory to run as CGl
script
— Or, you may enable CGI execution in a specific directory
using Apache directive
* Options +ExecCGl
* You’d also need to add a global AddHandler directive
 AddHandler cgi-script py
* Enables scripts with extension .py to run as CGlI

* Also see mod python: www.modpython.org

Web Frameworks

Offer different functionality and philosophies

Some integrate database access, others focus
on web part, etc.

Some examples
— Django www.djangoproject.com

— Pylons www.pytlonshg.com

Usually offer built in support for sessions
Worth it for larger projects

Final Projects & Demos

Due via courseworks March 2nd

Demos later that week

Submit a single compressed archive containing well

documented source code and the following:

— project.txt —a 1 page write-up describing your project,
results, lessons learned.

— readme.txt — a short document describing any libraries
your code depends on, where to download them (and
which versions), as well as instructions for running your
project

Demos
— Schedule a short demo via Doodle: see email

— 10-15 minutes, demonstrate usage, features

