CS3101 Python: Lec 5

i ITS AN HONOR To SPEAK. TO YOU,
Cé’for:q%lﬁ?l’) SOME OF THE BRIGHTEST INNOVATORS
TED TALK. FROM 50 MANY FIELDS, ABOUT A PROBLEM

IN DESPERATE. NEED OF YOUR ATTENTION :
\),
d
S A N
Wl

HOW DO YOL END PARENTHETICAL ?
STATEMENTS WITH EMOMICONS?
T CANT FIGURE OUT A GOoD WAY. - s

\ -~ LINGX (02 85D 7)) WOULD. 20

<
\cds\?\e we

-+ LINUX (0R BSD :) WOULD ..., pue?

L

CONFERENCES TM BANNED PROM
SIGGRAPH

EURD CRYPT

DEFCON

PrCoN

INTERNATIONAL ASTRONOMICAL UNION
CANADIAN PALEONTOLOGY CONFERENCE
EVERY AMERICAN FURRY CONVENTION
AMERICAN BAKING SOCIETY

ASIA DOLPHIN-TRAINING CoONVENTION
TED

NS

This week

Working w/ zip files
Modules and packages
Subprocesses
Serialization

GUIs

Databases

Working with compressed files (code is Python 3.x,
should work w/ 2.x as well)

See: http://docs.python.org/library/zipfile.html

Working with Compressed Files

o Python provides libraries to work directory
with data in zip, gzip, bz2, tars, etc

o Most libraries offer decompression of
individual files on the fly (i.e., unnecessary to
extract the entire archive to make
modifications)

o Third party libraries are available to handle
pretty much any format

EX

e Simpsons.zip:
° 2ﬁ|eS:

- simpsons.txt (homer, marge, bart, lisa, maggie)
- donuts.txt (jelly, grape, etc)

Reading a zip archive, simple right?

import zipfile
f = zipfile.zipFile('simpsons.zip')
for name in f.namelist():

bytes = f.read(name)

contents = bytes.decode()
print ('File', name, 'contains', len(bytes), 'bytes')

print ('It\'s contents are', contents)

$python3 foo.py

File donuts.txt contains 29 bytes
It's contents are:

jelly

sugar

chocolate

grape

File simpsons.txt contains 52 bytes
It's contents are:

Creating an archive, simple again

import random, zipfile

paths = ['file_a', 'file_b', 'file_c'] # create three random files
for path in paths:

out = open(path, 'w')

out.write(str(random.random()))

out.close()

create an archive: default compresssion is deflate
z = zipfile.zipFile('foo.zip', 'w')
for path in paths[:-1]:

z.write(path)

z.close()

append a file to an existing archive
z = zipfile.zipFile('foo.zip', 'a')
z.write(paths[-1])

print (z.namelist())
z.close()

Serializing data (code is 3.x)

*See:
http://docs.python.org/3.1/library/pickle.html

Serializing Data using cPickle

Basic operations: dump and load

Dump: store arbitrary data structure

o Supports text and binary forms (where might you
prefer binary data?)

Load

o Compatibility is guaranteed from one Python release
to the next

Machine and implementation independent

In between dumps and loads you can

o Store to a database, compress, send over a
network,etc

Ex. — pickling an object

import pickle

donuts = {'homer': 12, 'lisa' : 0, 'marge' : 1}

text = pickle.dumps(donuts) # serialize (note the 's')
print (text)

del donuts

donuts = pickle.loads(text)

print (donuts)

python3 foo.py

b'\x80\x03}g\x00 (X\x05\x00\x00\x00homerg\x01K\x0cX
\X04\x00\x00\x0011sag\x02K\x00X\x05\x00\x00\x00margeq
\XO3K\Xx01X\x04\x00\x00\x00bartq\x04K\x04u. '

{'homer': 12, 'lisa': O, 'marge': 1, 'bart': 4}

Pickling multiple, arbitrary objects

import pickle
An arbitrary collection of objects supported by pickle.
data = {'a': [1, 2.0, 3, 4+6j], 'b': ("character string", b"byte string"), 'c':
set ([None, True,
False])}

more_data = 'abcdef'

def store(path, *objects): # store an arbitrary sequence of objects
out = open(path, 'wb')
for obj in objects:
pickle.dump(obj, out, pickle.HIGHEST PROTOCOL) # new in Python 3.X
out.close()

def retriever(path):
f = open(path, 'rb'")
while True:
try:
yield pickle.load(f)
except EOFError as e:
print ('No more objects to retrieve')
f.close()

path = 'foo.pickle’
store(path, data, more_data)
f = retriever(path)

print (next(f))

print (next(f))

print (next(f))

Pickling class instances

class Donut():

def __init__ (self, tasty):
self.tasty = tasty

chocolate_donut = Donut(tasty=True)
asparagus_donut = Donut(tasty=False)

store(path, chocolate_donut, asparagus_donut)
X = retriever(path)

d = next(x)
print (d.tasty)
d = next(x)

print (d.tasty)

Modules

Modules

A typical Python program is made up of several
source files

Recall that each source file is a module

— Groups code and data for reuse

Modules should be independent of one another

To communicate between modules
— Use import and from keywords

— Global variables are not global to all modules
* They are attributes of a module’s namespace
 Different from some programming languages
* Not a viable way to communicate between modules

Extensions (preview)

* Python supports extensions: components can
be written in other languages for use in Python

— Use C, C++, Java, C#, etc.

e Extensions are seen as modules

— Python code that uses extensions are called client
code

— Client code does not care if modules are pure
Python or an extension

* Advanced topic: covered in the next lecture

Module Objects

e Recall that code for a module resides in a file
with the same name (minus the filename
extensions)

— E.g. module name corresponds to name.py

 Modules are first-class objects

— Can be treated like other objects

e Passed as arguments in a function call, can be returned
by functions, bound to a variable, etc.

The import Statement

Syntax:

— import modname [as varname], |, ...]

— Import keyword followed by comma delimited module
specifiers

When the statement is executed, a module object

Is bound to a variable

When a variable name (varname) is specified, the
module (modname) is found but it is bound to
varname instead

Example:

— import o0s, sys, csv as comma_separated values

Module Body

Sequence of statements in the module’s source
file
No syntax is required to specify a file as a module

— This is automatic; every source file can be used as a
module

Executed the first time it is imported

If the first statement is a literal string, it is used as
a docstring

— Recall: accessible as the doc_ attribute of a
module

Doc Strings

def complex(real=0.0, imag=0.0):
"""Form a complex number.

Keyword arguments:
real -- the real part (default 0.0)
imag -- the imaginary part (default 0.0)

1f imag == 0.0 and real == 0.0:
return complex_zero

 See: http://www.python.org/dev/peps/pep-0257/

Module Attributes

Import creates a new namespace containing attributes
of the imported module
To access an attribute in this namespace, use the name
of the module and the dot operator

— import Module

— Module.foo()

— import Module as Alias

— Alias.foo()

Normally, attributes in a module are bound by
statements in the module s body

You can also bind / unbind attributes outside a module

— For clarity, this is not recommended

Private Variables

 How to make variables “private” to a module

* No variable is truly private
— Recall that encapsulation is not Python''s strong suit

* Begin a variable name with an underscore to
signify that it is private
— Convention, not enforced by Python, so it is up to
programmers to follow this convention

— Some IDEs will respect this convention, and not show
attributes when performing code completion

The from Statement

Allows you to import specific attributes of a module into
the current namespace
Syntax:

— from modname import attrname as varname

Alternate syntax:
— from modname import * (ewww)

— Imports all attributes from module modname into the current
namespace

— The asterisk (*) requests that all attributes of the module
some_module be bound to the current namespace

— Considered bad form, it obfuscates the namespace!

Better:
— from numpy import vector as vec

Searching for a Module

How does Python search for a non-built-in module in the
filesystem?

First, Python looks at the items of sys.path

Each item is the path of a directory or archive (zip)

Initialized at start-up using the environment variable PYTHONPATH (if
present)

First item is always the path of the main script

You can rebind sys.path at runtime, but it will not affect modules
already loaded

Modules can be loaded from:

dll (Windows) or .so (Unix) libraries
.pY (pure Python code)
pyc, .pyo: bytecode compiled Python modules

Lastly, for module M, if there exists file M/ __init__.py is loaded

Loading a Module

If a file M.py is found, it is compiled into M.pyc (or M.pyo, if
the optimize —O flag is used)
— Unless the compiled file already exists, or is newer than M.py
— If M.py is in a writable directory, then M.pyc is stored there and
is not recompiled in the future

Once the compiled bytecode is found, Python executes the
module body to initialize the module

Circular Imports
— Python allows circular imports
— E.g. module a.py imports b.py, while b.py imports a.py

— Messy, avoid if possible

* but generally no side effects if modules ONLY contain definitions
rather than executable code in the outer body

Main

 what happens if you import a module (source)
that has commands in the module
namespace?

— They’re executed

o

 [fyouusetheif name ==“ main_ ":
block, those statements will only execute if
this module is the first loaded

* name__ attribute of main program is always
“ _main__”, otherwise the module name

Main

#homer.py

print (“Name 1s”, __name__)

print ("Mmmm homer")

1if _name__ == "__main__":
print ("Arghggggg™)

#donut.py

import homer

print ("Mmmm donut')

1if _name__ == "__main__":
print("Arghggggs™)

Understanding imports and __main__

Spython3 homer.py
nameis _main___
Mmmm homer

Arghggggg

Spython3 donut.py
name is homer
Mmmm homer
Mmmm donut

Arghggggsg

Packages

Python packages are modules that contain other modules
Packages may contain subpackages

A package resides in a subdirectory of the same name in one of the
directories in sys.path
— Packages may also be stored in zip files
Module body of package P is stored in P/__init__.py
— Thefile __init__.pyis required, even if it is empty to indicate that P is a
package
— Loaded when you first import P
You can import module M in package P using:
— import PM
— More dots let you navigate the package hierarchy
— Package body is always loaded before module in that package
You can also use:
— from P import M
— from P import * # not recommended!

Distributing Python Programs

* Python modules, extensions, programs can be
packaged and distributed

e Supported forms:
— Compressed archives (.zip, .tar.gz)
— Self-unpacking, self-installing (.exe)

— Self-contained, ready-to-run (.exe, .zip with a script
prefix on Unix)

— Platform-specific installers (.msi, .rpm, .deb)
— Python Eggs: a third party extension

* Python provides utilities for packaging
— distutils

The subprocess module

See:
http://docs.python.org/library/
subprocess.html|

Subprocesses

e Say you’d like to call an existing program, pass
it input, and capture the output

* The subprocess module defines one class,
Popen(), and convenience functions

* To run a command, without interacting with it,

1mport subprocess
subprocess.call('ls -17)

Shell

* Expands variables in the command string using
the system’s environmental variables

import subprocess
Command with shell expansion
subprocess.call('ls -1 $HOME', shell=True)

Communicate

#You can communicate with processes by
#piping stdout, 1n, err

from subprocess import Popen, PIPE

cmd = '1s'

p = Popen(cmd, stdout=PIPE, stderr=PIPE)
comm. waits for the process to finish
stdout, stderr = p.communicate()

stdout = stdout.decode()

print (stdout)

Passing arguments

from subprocess import Popen, PIPE

p = Popen(['echo', 'foo'], stdout=PIPE,
stderr=PIPE)

stdout, stderr = p.communicate()
result = stdout.decode()
print (result.strip())

$python3 foo.py
foo

GUIs (code is Python 3.x, except for
the image, menu, and list slides
which are 2.x)

http://wiki.python.org/moin/Tkinter

GUIls and Python

* Programmed through a toolkit
— Library supplying controls (widgets)

— Toolkit lets you compose controls, display them
and interact with them

* A number of toolkits are available for Python
— Tkinter, wxPython, PyQt, PyGTK

e Tkinter is included with Python
— We will only cover the basics here

Tkinter

* Object-oriented wrapper around Tk

— Tk is a cross-platform toolkit which can be used with
other scripting languages like Tcl, Ruby, Perl

* Cross platform

— Runs on Windows, Unix-like platforms, Mac
— More or less mimicks native look, feel

* Note on examples

— Meant to be run as stand-alone scripts

— If you run from within IDLE or other scripts with GUIs,
anomalies may pop up

Fundamentals

Import Tkinter module
Development process Welcome!
— Create, configure and position widgets
— Enter Tkinter main loop
Your application becomes event driven
— User interacts with widgets, firing events
— Application responds via handlers you write for these events
A first example (from Python in a Nutshell)
— import sys, Tkinter as tk # capitialized in Python 2.x, lower case in 3.x
— tk.Label(text="Welcome!').pack()
— tk.Button(text="Exit', command=sys.exit).pack()
— tk.mainloop()
In this simple case, we do not need to bind widgets to named variables
Configurations specified as named arguments
No parent window(s) specified, so widgets are placed on main window
Calling pack() passes off layout handling to a default layout manager

The Main Loop

e Calling the Tkinter.mainloop() function enters
the Tkinter main loop and the program
becomes event driven

* Tkinter will respond, as expected, to user-
driven events

— E.g. moving the window, minimizing, maximizing,
etc.

Dialogs

* Tkinter provides modules to define dialogs
(modal boxes)

e Some commonly used modules
— tkMessageBox
* Message dialog, with simple input options
— tkSimpleDialog
* Subclass to create your own dialogs
— tkFileDialog
* Dialog for choosing files or directories

— tkColorChooser
* Dialog for choosing colors

Dialog Box

import tkinter as tk
import tkinter.messagebox as box

Hello World

top = tk.Tk()
def hello():
box.showinfo("Say Hello", "Hello World")

b1 = tk.Button(top, text = "Say Hello", command = hello)
bl.pack()

top.mainloop()

More donuts?

Yes No g

" No

3 (Yes)

import tkinter as tk
import tkinter.messagebox as box

top = tk.Tk()

def ask():
r = box.askyesno("Homer", "More donuts?")
#box.showinfo("Say Hello", "Hello World")
print (r)

bl = tk.Button(top, text = "Ask", command = ask)

bl.pack()

top.mainloop()

(U1 W Simpsons

Menus

Bart

import Tkinter
root = Tkinter.Tk()

menubar = Tkinter.Menu()

def handle_click(menu, entry): print menu, entry
filemenu = Tkinter.Menu()

for x in 'Homer', 'Marge’, 'Lisa’, 'Bart':

filemenu.add_command(label = x, command=lambda
x=X:handle_click('Simpsons’, x))

menubar.add_cascade(label="Simpsons’, menu=filemenu)
root.config{(menu=menubar)
Tkinter.mainloop()

Simpsons Marge

Widgets

* A widget is a class which contains code to display a
common gui object (e.g., a button, or a listbox)

* When instantiating, first argument is the parent
window (master) of the widget

— If the first argument is omitted, the application main
window is the master

— All other arguments are named
* To charlge a option on an existing widget, use the
widget s config(...) function
— E.g. for widget w, function form is: w.config(option=value)

— Alternatively, each!yvidget iS @ mapping object, so you can
also do: w|,,option] = value

Common Widgets

* Tkinter provides some common widgets for
simple GUIs

— Button

— Checkbutton
— Entry

— Label

— Listbox

— Radiobutton
— Scale

— Scrollbar

e And more

Tk Variables

Tkinter provides classes whose instances represent
variables for some data types

— E.g. DoubleVar for floats, IntVar for integers, StringVar for strings
Sort of like mutable versions of the built-in immutable
types

Variable objects can be passed as textvariable or variable in
configuration options for widgets

When the variable is changed, the widget will automatically
update
Instantiate one of these classes to get a variable object

— For variable object x, x.set(...) and x.get() sets and returns the
value of x, respectively

Tk Variables and Widgets

O O O) tk
import tkinter as tk start
import tkinter.messagebox as box e .
root = tk.Tk() P—
tv = tk.stringvar(Q) finish
tk.Label (textvariable=tv).pack() e
tk.Entry(textvariable=tv).pack() =

tv.set('start')

tk.Button(text="Exit', command=root.quit).pack
O
tk.mainloop()

Tkinter Lists, Images, and Clicks

0tk 000 i

'ae.g.if ae.qif
br.gif or.qif

Tkinter Lists, Images, and Clicks

import os, Tkinter
root = Tkinter.Tk()

L = Tkinter.Listbox(selectmode=Tkinter.SINGLE)

imgdict = {}

path= /Users/josh/Desktop’

for name in os.listdir(path):
if not name[-3:] == ‘gif’: continue
imgpath = os.path.join(path, name)
img = Tkinter.PhotoImage(file=imgpath)
imgdict[name] = img
L.insert(Tkinter.END, name)

L.pack()

tk

ae.gif
br.gif

Tkinter Lists, Images, and Clicks

ae.gif
br.qif

label = Tkinter.Label()
label.pack()

def list_entry_clicked(*ignore):

name = L.get(L.curselection()[0])
label.config(image=imgdict[name])

L.bind('<ButtonRelease-1>",list_entry_clicked)

root.mainloop()

Tkinter Lists and Scroll bars

Listbox can display textual items, selection capability
L.delete(0, END) #clear the box
L.insert(End, foo) #insert a string to the back

import Tkinter 0 q
S = Tkinter.Scrollbar() 1 \
L = Tkinter.Listbox() 2
S.pack(side=Tkinter.RIGHT, fill=Tkinter.Y) 3
L.pack() 4
S.config(command=L.yview)

L.config(yscrollcommand=S.set) S

for i in range(100): b
L.insert(Tkinter.END, str(i)) 7
Tkinter.mainloop() 8 1

Tkinter Radio Buttons

from Tkinter import *
root = Tk() .
root.title('Radiobutton”) ™ Radio...

opts =[('Option 1', 1), ('Option 2', 2), ('Option 3', 3), Option 1
(‘Option 4', 4), ('Option 5', 5), ('Option 6', 6)]

var = IntVar() Option 2
def WhiCh(): * Option 3
print var.get(), 'selected’ :
for text, value in opts: | Uption 4

Radiobutton(root, text=text, value=value,\ Option 5
variable=var, command=which).pack() Option 6
var.set(3)
root.mainloop()
4 Selected

5 Selected

Tkinter reference

e http://docs.python.org/library/tkinter.html

e http://www.pythonware.com/library/tkinter/
introduction/

e http://wiki.python.org/moin/Tkinter

Databases

The Python Database API (DBAPI)

* Python specifies a common interface for
database access, but the standard library does
not include a RDBMS (relation db

management sys) module - why?

* Designed to encourage similarity between
database implementations — pick a module,
same patterns apply

e Defines common connection objects, cursor
objects, types, etc

Implementations

There are many free third-party modules
(including XML db support).

Pretty much these all work the same way
programatically

Differences are mostly in SQL variations
PostgreSQL: http://www.initd.org/
PostgreSQL: http://pybrary.net/pg8000/

MySQL
http://sourceforge.net/projects/mysgl-python

MSSQL: http://pymssal.sourceforge.net/

DBAPI Pattern

Download and install the DBAPI implementation

Import the module and call the connect function (when
you're finished, remember to close it)

Specify the server address, port, database, and
authentication

Get a cursor, use it to execute SQL (cursors are emulated for
DBs which do not support them)

Fetch results as a sequence of tuples, one tuple per row in
the result, where tuple indexes correspond to columns

Cursors pretty much work the way you expect in other
languages, just with less code.

Standard methods on cursors: fetchone(), fetchmany(),
fetchall()

Accessing a MySQL Database, getting
column names
import MySQLdb

#create a connection object

con = MysQLdb.connect('127.0.0.1", port=3306,
user="tomato', \ passwd='squish', db='test’

cursor = con.cursor() #get a cursor

sql = "SELECT * FROM Simpsons #some quick sql
cursor.execute(sqgl) #execute and fetch

results = cursor.fetchall()

print (results) # returns a 1list of column, value
dictionaries

con.close() #close the connection

Insert data into a MYSQL Database

import MySQLdb # Open database connection

db = MysSQLdb.connect
("localhost", "testuser","test123","TESTDB")

cursor db.cursor()

Prepare SQL query to INSERT a record into the database.

sq1 = “INSERT INTO SIMPSONS(TITLE, AUTHOR) VALUES (’The
Tao of Homer', ’'H31S’)”

try: # Execute the SQL command
cursor.execute(sql)
db.commit()

except: # Rollback 1n case there i1s any error
db.rollback()

disconnect from server

db.close()

References

nttp://wiki.python.org/moin/

DatabaseProgramming/

nttp://www.tutorialspoint.com/python/

python database access.htm

