P LR ’ " y YIS
vy [, 777 @
Y, \M.””W\... . \\\w\ g \\“\ RJ M W W m -
ylow.. mll Km
mwfcmmazmm)
% %mrmm & LN
- P ma -,
”WW —A_EN“ TM o
o % Re W;
o
T
g — O<< o
.
T — > oo o
s BEFuoy ¥E| O
. =R . o ms !Nw -
“M 8g_.328% 23 >
o M BE«<2a &R ~
228 BRwrd 2%
55 Sek2 o
IMW e)
o
2 G=. e
2 i3 S
—& U q
. BEE mm, S
o~ .H.S/n,m N
556791
HZ2 I.a

7 94n3237 :UOYlAd €' TOTESD

Last week

Regular expressions
Functional programming tools
Generators

File handing w/ the os module

This week

Project guidelines
Object oriented Python
Exceptions

Libraries part |

Course project

Project Proposal

One page document describing

— Problem statement / motivation

— Expected input / output

— Relevant libraries

— Anticipated challenges / difficulties
Timetable

— Proposal due by the start of next class

— Final project due by Tues March 2nd

— Live demo: must be scheduled via Doodle that same week
(instructions to follow)

Demo
— 10 minute live demo, end to end run
— If you need special hardware | can meet on campus

See me if | can help you brainstorm ideas

Previous projects

Genetic algorithms

Solar system simulation in MAYA

Music recommendations via mining Last.fm
Financial engineering utilities

Labview interface to monitor equipment
Sports scheduling, game roster creation

A webpage for elementary students

Crypto

Requirements / Grading

Originality
Polish
Technical

— Design

— Complexity

— Execution

— Library usage
Documentation
Effort

Past questions
— Line count
— Interfaces

Object-oriented Python

Resources:
http://docs.python.org/tutorial/
classes.html

Object oriented programming

* Object oriented paradigms
— Classes
— Instances
— Inheritance
— Polymorphism
— Encapsulation
— Operator overloading
* Python is a multi-paradigm language
— You can mix and match procedural and OOP code

— OOP is great when you need to group together data
(state) and behavior (methods)

Class and Instances

Classes

— Classes define abstract objects which may be instantiated as
instances. Classes are instance factories. Attributes provide
data / state; methods provide functionality.

A class is a user defined type
Classes have attributes and methods

— Class attributes are shared among instances
— Instance attributes belong to specific instances

Classes can be instantiated
— Objects of that type are called instances
Calling a class object returns an instances of that class

Instances

— Are instantiations of a class, represented by an object in a
program.

Example

class Boat():
def __init__(self, name): # the constructor
self.name = name # an instance attribute
def greet(self): # self refers to the calling instance
print ('hi from', self.name)

betty = Boat('betty')
fred = Boat('fred')
betty.greet()
fred.greet()

$python foo.py
hi from betty
hi from fred

Attributes

Attributes represent data which belong to the class or
instances
You can specify attributes inside the body

— Descriptors (including functions), normal data objects, even
other classes (nested classes)

Attributes are specified by binding a value to an identifier
inside or outside the body (binding inside is better for
readability)

— Can be bound at runtime

The first string literal in the class body is taken to be the
docstring

Implicit attributes:
— __name__: name of the class
— _ bases__:tuple of base classes

— _dict__ :dictionary object containing the class attributes

Class Attributes vs. Instance Attributes

class Boat(): $python foo.py
num_boats = 0 hi from betty
def __init__(self, name): 1
self.name = name hi from fred
Boat.num_boats +=1 2

def greet(self):
print ('hi from',
self.name)

betty = Boat('betty')
betty.greet()

print (Boat.num_boats)
fred = Boat('fred"')
fred.greet()

print (Boat.num_boats)

Methods: class vs. instance

Class methods are functions which typically run on data
belonging to all classes

Instance methods typically run on data belonging to a
specific instance

Methods can be defined in class bodies using the def
statement

— Instance method definitions have a mandatory first parameter:
self

self refers back to the instance which called the method,
and is passed by Python automatically behind the scenes
class c(object):

— def hello(self):

* print (‘Hello world!’)

Many types of methods can be defined (to be discussed
later)

Self

e selfisan automatically * Class methods may be

received first argument called without

received when instantiating the class

instances call methods « They do not use self as
e self provides a their first parameter

reference back to the
instance which called
the class method

 |nstance methods must
specify self as their first
parameter

Example

class Homer():
def eat():
print ('Homer class method')

def snack(self):
print ('Homer instance method')

Homer.eat()
h = Homer()
h.snack() # self automatically passed

$python foo.py
Homer class method
Homer instance method

Classes and Instances (cont’d)

* Classes in Python are first-class objects
— They are objects like any other

— Can be passed as arguments to functions, used as keys
in a dictionary, bound to local and global variables,
etc.

 Classes work a lot like dictionaries: an instance of

a class is a Python object with arbitrarily named
attributes you can bind and reference

e Lookup of attributes not found in the instance
itself is delegated to the class, which may be
delegated to classes it inherits from

Constructors

Constructor

— If a class defines or inherits the init method, it is
implicitly executed when the class is instantiated

To create an instance, call a class definition as if it were
a function

— mylnstance = Foo()

Calling a class object invokes the __init_ method on
the new instance, deferring to the superclass if
necessary

__init__ bind’s attributes to the newly created instance

Built-in function isinstance(l,C) returns True if object | is
an instance of class C or its subclasses, False otherwise

The Class Statement

class classname(base-classes):
— statement(s)

The class statement does not create any instances of the
new classes, it simply defines their attributes and methods

— __init__is called only when an instance is created (and every
time)

base-classes are parents of the class, i.e. the current class

derives or inherits from these base classes, is optional

statement(s) is nonempty and is the class body, will execute

immediately when the class statement is called

— Until the body finishes executing, the class will not be bound to
the identifier

Caution: any executable code not in methods will run when
the class definition is parsed

Inheritance

* Inheritance

— Creating a new (sub) class by extending the
functionality of an existing (parent or super) class.

Results in the subclass inheriting the attributes and
behavior of the parent class

— Inheritance in Python means that name lookup (for

methods and attributes) is extended to the parent
classes

— Python supports multiple inheritance

* |n case of conflicts between attributes or methods, the
general rule is the first inherited class wins (left-most first)

Inheritance

class Boat():
def __init__(self, name):
self.name = name
def greet(self):
print ('hi from', self.name)

class Sailboat(Boat):
def sail(self):
print ('wooosh')

b = Sailboat('betty') # the constructor i1s i1nherited
b.greet() # greet i1s inherited
b.sail() # sail is a new method specific to sailboats

$python foo.py
hi from betty
wooosh

Multiple Inheritance

class Sailboat():
def sail(self):

print ('wooosh')

class Cannon():
def fire(self):
print ('Boom!")

class Pirateship(Sailboat, Cannon):
pass

p = PirateShip(Q)

p.sail()
p.fire(Q)

S python foo.py
Wooosh

Boom!

Method and Attribute Resolution

Recall the syntax of the class statement

class classname(base-classes):
— statement(s)

Python supports multiple inheritance

— base-classes can be a comma-delimited list of
superclasses

Method resolution order
— How does lookup of an attribute name occur?
— In general: left-to-right, depth first

Composition

class Homer():
def __init__(self):
self.donuts = []
def add(self, donut):
self.donuts.append(donut)
def stats(self):

print ('Homer has the
following donuts')

for d in self.donuts:
print ('\t' + d.name)

class Donut():
def __init__(self, name):
self.name = name

h = Homer()
h.add(ponut('jelly"'))
h.add(Donut('sugar"'))
h.stats()

$ python foo.py

Homer has the following donuts:
jelly
sugar

Polymorphism (overriding)

Polymorphism

— A subclass specializes the behavior of their parent class by
overriding (or re-declaring) methods or data

— Mammals swim (but people and dolphins swim rather
differently)

Polymorphism in python is as simple as re-declaring a
method
Common patterns:

— Inheritor (does not override a method, makes use of the
parent’s functionality)

— Replacer (overrides the method entirely)
— Extender (calls the parent’s method, but adds functionality)
— Provider (fills in a template method declared by the parent)

Polymorphism example (replacer)

class Boat():
def go(self):
print ('Generic behavior')

class Sailboat(Boat):
def go(self):
print ("Let's go sailing!")

a = Boat()

a.go(Q)

b = Sailboat()
b.go(O)

$ python foo.py
Generic behavior
Let's go sailing!

Overriding Attributes

 When a subclass defines an attribute with the
same name as one in a superclass, the

subclass’ attribute will always be used first

— Known as the subclass overriding the definition in
the superclass

* Delegating to superclass (or base) methods
— Subclasses may call methods in base classes

Exposing functionality

* Python’s philosophy is to expose as much of a
class as possible

* Private variables are signified by a leading
underscore _
— Decreases risk of accidental data sharing

— But a convention that’s up to the programmers to
respect

— A determined programmer can access class
private variables

Inspection

class Boat():
"'"'Class docs
the_sky = 'blue'
def go(self):
print ('Generic behavior')

b = Boat()
print (b.__class__.__dict__)

Python foo.py

{'_module__": "_main__"', 'the_sky': 'blue',
' _dict__'": <attribute '__dict__' of 'Boat'
objects>, 'go': <function go at 0x3b61le0>,

'__weakref__': <attribute '__weakref__

objects>, '__doc__': 'Class docs'}

' of 'Boat'

Operator overloading

Allows classes to define specific behavior for
normal operators (e.g., +, -,*)

As well as concepts such as iteration, type
conversation, equality testing

Useful if you're developing a package

— For instance, it makes sense to be able to multiple
two vectors with the “*’ operator

Use sparingly and only if obvious

Operator overloading example

class Donut():

def __init__(self, name, quantity):
self.name = name
self.quantity = quantity

def __add__(self, num):
self.quantity += num
print ('woohoo!"')
print ('we have %s donuts!' % (self.quantity))

d = Donut('jelly', 1)
d += 8

python foo.py
woohoo!
we have 9 donuts!

Providing iterator functionality

class Donut():
def __init__(self, name):
self.name = name
def __getitem__(self, 1):
return self.name[1]

d = Donut('jelly")

print ('Give me a ', end = '")
for char in d:
print (char + '!', end = ' ")

python foo.py
Give me a j! e! 1! 1! y!

Factory methods

e A factory is a function which returns an object
of a particular class type depending on some
condition

* A typical scenario is switching between two
almost identical classes depending on the
enviornment

Example

class cl1():
def run_command(self):
print ('ready for Tlinux')

class c2(Q):
def run_command(self):
print ('ready for windows')

def factory(linux=False):
if Tinux:
return cl1()
else:
return c2()

x = factory(linux=True)
X . run_command ()

$python foo.py
ready for Tinux

The object Type

* Built-in type: object
* Ancestor of all built-in types and new-style
classes

* Some special methods are defined:

— _new__, init_, delattr
__hash_, repr_, str

Exceptions

Resources:
http://docs.python.org/tutorial/

errors.html

Exceptions

Difference between errors and exceptions?

— Errors detected during execution are called exceptions
and are not unconditionally fatal

Python’s emphasis

— Use exceptions when and where they make a program
simpler, more robust, and more readable

Special situations are frequently indicated in
Python using exceptions

— e.g., end of iteration is signaled by the Stoplteration
exception

OK to use frequently

Stack trace

def bug(Q):
return 1 / 0O

print (bug())

$ python f.py
Traceback (most recent call last):
File "f.py", 1ine 4, 1n <module>
print (bug())
File "f.py", 1ine 2, 1n bug
return 1 / O

Exception objects

def bug():
try:
return 1 / O
except ZeroDivisionError as detail:
print ('Caught a bug!"')
print (type(detail))
print (detail)

print (bug())

$ python f.py

Caught a bug!

<class 'zeroDivisionError'>
int division or modulo by zero
None

Stop Iteration

def count_down(to):
while to > O:
to =1
yield to

f = count_down(3)
while True:
print(next(f))

$ python foo.py

2

1

0

Traceback (most recent call last):
File "z.py", 1line 8, in <module>

print(next(f))
StopIteration

Stop Iteration

def count_down(to):
while to > O:
to =1
yield to

f = count_down(3)
done = False
while not done:
try:
print(next(f))
except StopIteration:
print('all done')
done = True
print ('phew')

S python foo.py
2

1

0

all done

phew

Exceptions

Raising Exceptions

Exceptions communicate
errors and anomalies

When problems are detected,
exceptions are raised / thrown

Your code can explicitly raise
exceptions

Exceptions are caught by
exception handlers

Exceptions are instances of
BaseException

Handling Exceptions

Handling an exception
means accepting the
exception object from the
propagation mechanism

If exceptions are uncaught,
they terminate the program
and result in a stack trace

Handling exceptions allows
programs to deal with
errors and anomalies
gracefully

The try Statement

* Provides Python’s exception handling
mechanism

* |tis a compound statement with one of these
forms:

— Try clause followed by one or more except clauses
(with optional else clause)

— Try clause followed by finally clause

— Try clause followed by except clauses and optional
else clause, followed by finally clause (Python
2.5+)

Exception propagation

When an exception is raised normal control flow
is superseded by the exception propagation
mechanism

A raised exception is handled by the first try block
with a matching except clause

If an exception is raised without a try clause, or in
a try clause without a matching except clause, it
propagates up the call stack stack until either
being caught, or terminating the program

You can catch arbitrary deep exceptions produced
by function calls

try/except/else

Syntax ([] indicate optional code):
try:
statement(s)
except [expression [, target]]:
statement(s)
[else:statement(s)]

 The body of the except clause is known as an exception handler

* Exception handler executes if expression matches an exception
object propagating from the try clause

— expression is an Exception class or tuple of classes

— target is an identifier that is bound to the exception object
before the handler executes

— In the case of several except clauses, they are checked in order
until one is found with a matching expression

— List specific cases before general ones

try/except/else (cont’d)

e Last except may lack an expression
— Known as bare excepts
— Will handle any exception that reaches it
— Should avoid; it’s sloppy coding
— Trivia: “On error resume next”

* Exception propagation terminates when it finds a
handler with a matching expression

 The optional else clause executes only when the try
clause terminates normally (i.e. when no exception is
raised) or when it exists with a break, continue or
return statement

— Handlers do not cover exceptions raised in the else clause

Examples

>>> try: # try / except example
open('/")
except IOError:
print ('Failed to open file.’)
Fa11ed to open file.

>>> try.
open(‘test’, ‘w’)
print (‘success’)
except IOError:
print (‘Failed to create file’)
else:
print (‘File creation succeeded.’)

<open file 'test', mode 'w' at Oxb770f3e0>
success
File creation succeeded.

Finally

Syntax

try:
statement(s)

finally:
statement(s)

* The finally clause is a clean-up handler

— It always executes after the try clause, regardless of whether or
not an exception is raised (executes even if a return statement is
placed w/in the try clause)

— If an exception propagates from the try clause, the try clause
will terminate, the finally clause executes, and the exception
continues to propagate

* Specifies code which is guaranteed to run regardless of
whether an exception occurs in the try block

e Useful to close database connections, files, etc
— Wish the user a nice day before crashing

try/except/finally

* From Python 2.5 onward, except clause(s) are allowed with try/finally

* Syntax:
try:
statement(s)
except [expression[, target]]:
statement(s)
finally:
statement(s)
* Equivalent to:
try:
try:
statement(s)
except
statement(s)
finally:
statement(s)
* If try clause raises an exception, it will be handled using the excepts before the
finally clause is executed

e Can you think of some instances where try/except/finally would be useful?

The with statement

New in Python 2.5 (standard in 2.6+, 3.x)
Occasionally pops up in an error handling context

Syntax:

— with expression [as varname]
e statement(s)

Embodies the C++ idiom “resource acquisition is
initialization”
Best explained with an example:

— with open(‘foo.txt’) as f:
e statements using file object f

More information:
— http://www.python.org/peps/pep-0343.html

Built-in exceptions

* (All of type Exception)
— BaseException
— AssertionError
— AttributeError
— IOError
— ImportError
— IndexError
— KeyError
— NotlmplementedError
— TypekError

* See:

http://docs.python.org/library/exceptions.html#bltin-
exceptions

Assert

def homer_dates(x):
assert(x != 'selma')
print ('woohoo!")

homer_dates('marge')
woohoo'!

homer_dates('selma’)
Traceback (most recent call Tlast):
File "qg.py", 1ine 6, 1n <module>
homer_dates('selma')
File "q.py", 1ine 2, 1n homer_dates
assert(x != 'selma')
AssertionError

Defining your own exceptions

class HomerError(BaseException):
"'"Protects Homer'''
def homer_dates(x):
if x == 'selma':
raise HomerError
print ('woohoo!"')

try:
homer_dates('marge')
homer_dates('selma')
except HomerError:
print ('not gonna happen')

$python foo.py
woohoo!
not gonna happen

Exception Handling Strategies

Easier to ask forgiveness than
Look before you leap permission

Python prefers the second

def div(x, y): def div(x,y):
ify == 0: try:
raise zerobDivisionError return x / y

except ZeroDivisionError:

e Checks diminish |
readability Emphasizes the

_ common case
* Exceptions are rare, why

waste effort up front? * Increases readability

Exceptions wrap up

Avoid empty except
statements

Use the built-in exceptions
before defining your own
types

Use assert as a sanity check

The stack trace is powerful

In small scripts, the easiest
way to debug is often just to
crash and examine it!

Libraries

XML-RPC

:\Python25>python server.py

istening on port 8600...
localhost - — [12/Feh/2809 15:41:24]1 “POST ~ HITP/1.8" 208 -
localhost = — [12/Feh/2009 15:41:241 “POST ~ HTTP,/1.8" 208 -

:\Python25>python client.py
3 is even: False
108 is even: True

Anyone taken Networks? What do you think the line count would be in C?

XML-RPC:

http://docs.python.org/library/xmlirpclib.html
Server

import xmirpclib
from SimpleXMLRPCServer import SimpleXMLRPCServer
def is_even(n): return n%2 ==

server = SimpleXMLRPCServer(("localhost", 8000))
print "Listening on port 8000..."
server.register_function(is_even, "is_even") server.serve_forever()

Client

import xmlrpclib proxy = xmirpclib.ServerProxy("http://localhost:8000/")
print proxy.is_even(3)
print proxy.is_even(100)

False
True

Finding and installing libraries

http://www.goldb.org/ystockquote.html

All it takes Included Functions

>> import ystockquote

« get_all(symbol)
« get price(symbol)
« get change(symbol)

>> ystockquote.get_price('GOOG’) T RV G i)

357.95

« get _avg daily volume(symbol)

« get stock _exchange(symbol)

« get _market cap(symbol)

« get book value(symbol)

« get ebitda(symbol)

 get dividend per share(symbol)

