CS3101.3 Python: Lecture 3

This week

Assignment 3

Python 2 vs. Python 3

Wrapping up functions

Functional (and iterative) programming tools
Regular expressions

News:

— Solutions to hw’s 1,2 posted will be posted to
courseworks on Thurs

— Python 3.1 is now available on cunix.cc.columbia.edu

Assignment 3 (ex 1 of 2)
Sport Recommender

Requirements:

— Write a script which
recommends a sport to play
based on today’s weather

— Retrieve the current
temperature using URLLIB,
Regular Expressions, and a web
service of your choice

— See:
http://developer.yahoo.com/
weather/

Suggested output:

— Spython sport.py
— It’s 36 degrees, you should ski!

Recommended web service:
http://weather.yahooapis.com/

forecastrss?w=12761356

Yahoo! Weather - New York, NY

Conditions for New York, NY at 7:51 pm EST

\é :
&
Current Conditions:
Fair, 32 F

Forecast:
Mon - Partly Cloudy. High: 35 Low: 26
Tue - Cloudy. High: 36 Low: 31

Assignment 3 (ex 2 of 2)
News Parser

* Write a script which
. . G_i_D COLUMBIA UNIVERSITY
retrleves COlumbIa S IN THE CITY OF NEW YORK

Academic Programs

webpage and prints only s

Libraries

the titles Of the news Medical Center

Athletics

Arts

stories on the main page s

Giving to Columbia

* Use regular expressions T

Faculty & Staff

and string operations

Neighbors

About Columbia

Suggested output: semie COLUMBIANEWS
* Spython news.py
 Today’s stories are:

Alumnus Judd Gregg (CC '69) Nominated as U.S. Commerce
Secretary More

Columbia College and Law School Alumnus Eric Holder
Confirmed as U.S. Attorney General More

Team Led by Columbia Researchers Discovers First Gene for
Most Common Form of Epilepsy More

Columbians Celebrate Inauguration of President Obama
(CC'83) Video iin

1. AlumnsJudd Gregg....

Python 2 vs. Python 3

Python 2 vs. Python 3

Intentionally backwards incompatible (but mostly the
same)

Notable changes: dictionaries, strings, print

Why? Removed many deprecated features, reorganized
standard library, more modern approach

Fairly easy to transition between them

Python 3 is still in the oven

— Most major libraries primarily support only 2.x

— Most large scale new projects lean toward 3.x

— Aims to be the emerging standard over a 5 year timeframe
Reference:

— http://docs.python.org/3.1/whatsnew/3.0.html

Print is now a function

Motivation: keyword arguments make the advanced functionality more accessible

Oold: print "The answer 1i1s", 2%2
New: print("The answer 1is", 2%2)

old: print # Prints a newline
New: print() # You must call the print function!

old: print >>sys.stderr, "fatal error"
New: print("fatal error”, file=sys.stderr)

print("There are <", 2*%*32, "> possibilities!”, sep="%*")
There are* <4294967296> *possibilities!

Views and Iterators instead of Lists

Motivation: memory efficiency (avoid unnecessary copy), support
dynamic refresh, allow arbitrary sizes

dict methods dict.keys(), dict.items() and dict.values() return
“views” instead of lists

— Views are dynamic collections which provide a window into an object,
and change with that object

this no longer works: k = d.keys(); k.sort(). Use k = sorted(d) instead
(this works in Python 2.x too and is just as efficient).

— For a quick fix, use list(d.keys())

— Also, the dict.iterkeys(), dict.iteritems() and dict.itervalues() methods

are redundant and longer supported.

map() and filter() return iterators. If you really need a list, a quick fix
is e.g. list(map(...))
range() now behaves like xrange() used to behave, except it works
with values of arbitrary size

Text vs. Data instead of Unicode vs. 8-bit

* Motivation: unicode is the future, language transparency “allows programs
to consistently represent and manipulate text expressed in most of the
world's writing systems”

— UTF-8: variable-length encoding system for Unicode. That is, different
characters take up a different number of bytes.

* Python 3.0 uses the concepts of text and (binary) data instead of Unicode
strings and 8-bit strings
* Animmutable sequence of numbers-between-0-and-255 is called a bytes
object.
— the type used to hold data is bytes
« Animmutable sequence of Unicode characters is called a string.
— The type used to hold text is str

* All textis Unicode; however encoded Unicode is represented as binary
data.

* Asthe str and bytes types cannot be mixed, you must always explicitly
convert between them.

* Use str.encode() to go from str to bytes
* Use bytes.decode() to go from bytes to str.

Encoding and decoding bytes

« >>> by = b'abcd\x65’

« >>> by

b'abcde'

« >>> type(by)

<class 'bytes'>

« >>> by.decode(’utf-8’) # (or ‘ascii’)
"abcde’

>>> a_string = '#FEA Python'

>>> len(a_string)

>>> by = a_string.encode('utf-8")
>>> by

b'\xe6\xb7\xb1\xe5\x85\xa5 Python'

« >>> a_string.encode('ascii')

UnicodeEncodeError: 'ascii' codec can't encode
characters in position 0-1: ordinal not in range(128)

9

Finishing up functions

Returning multiple values from

functions

* Functions may return multiple values of
arbitrary types, separated by commas

>>> def x():
. return 1,'a',[2,3]
>>> X
<function x at 0x2b3348>
>>> X()

(1, 'a’, [2, 3D

>>> type(x())
<class 'tuple'>

Positional argument

are just expressions

supplies the value for the
parameter that corresponds to
it by the order in the function
definition

Are the usual scenario in C or
JAVA

Disadvantages:

— Potential for typos, poor
readability

— Heaven help us deciphering
functions which take long lists
of arguments

Positional vs. Named arguments

Named arguments

* bind optional parameters to
specific values, while letting
other optional parameters
take default ones

* may be specified in any
order

* Great for readability /
reliability purposes
— Very hard to make a mistake

Examples

>>> def f(middle, begin="homer', end='donuts'):
return begin + ' ' + middle + + end

>>> T('likes')

"homer 1ikes donuts'

>>> f(begin="1lisa', middle="11kes"',
end="veggies"')

'"Tisa likes veggies'

>>> f('exercises', end='rarely')

"homer exercises rarely'

Optional arguments are everywhere

Python 3 Python 2

>>> range(5)

en(00) >>> range(5)

>>> range(-S, 5) [O) 1; 2) 31 4]
range(-5, 5) >>> range(-5,5)
>>> range(-5,5,2)

range(-5, 5, 2) ['5; '41 '3; '2; '1; O) 11 2) 3) 4]
>>> for val in range(-5,5,2): SSS range(-S 5,2)
... print(val) 7
-5 [_51 _31 _1) 1/ 3]

i >>> xrange(5)

1 xrange(5)

3

*: Sequences of positional arguments

* collects unmatched positional arguments into a tuple

>>> def f(*args):
print (args)
print (type(args))

>>> f('homer', 'donuts', 'duffbeer')
("homer', 'donuts', 'duffbeer')
<class 'tuple'>

**. Sequences of Named Arguments

** collects keyword arguments into a dictionary

>>> def f(**args):
print (args)
print (type(args))

>>> f(homer="donuts’,l1sa="'veggies')
{"homer': 'donuts', 'lisa’:'veggies'}
<class 'dict'>

General rule: more complicated to the right
For both calling and defining functions

All positional arguments must appear first
Followed by all keyword arguments
Followed by the * collections

Followed by ** collections

For maximally readable code, generally use
named arguments when possible

File handling w/ the OS module

e Last time, we talked about files
* The os module provides some handy utility
functions and attributes for file handling

— Checking if a file exists
— Getting the current directory
— Checking if a path is a file or a directory

* Browsing the file system

File tests

Import os

File tests

— os.path.exists(‘file’), os.path.isfile(‘file’), os.path.isdir
(“file’)

Joining paths (proper formatting for the

underlying OS as opposed to ‘pathl’ + /" +

‘path2’)

— os.path.join(‘pathl’, ‘path2’)

Path information

— os.curdir, os.path.walk(...)

Exploring a directory structure

>>> 1=0
>>> for (path, dirs, files) in os.walk(path):
1+=1
if 1 > 5: break
print (path)
print (dirs)
print (files)

print ('---")
/Developer
["About Xcode.app', 'Applications', 'Documentation',
"Examples', 'Extras', 'Headers', 'Library',
'Makefiles', 'Platforms', 'SDKs', 'Tools', 'usr']
['Icon\r']

/Developer/About Xcode.app

Generators, itertools, functional
programming tools

Generators are like normal functions in most respects but
they automatically implement the iteration protocol to
return a sequence of values over time

Consider a generator when
— you need to compute a series of values lazily
— you need to work with an infinite series

Generators use yield instead of return: that’s it!

When a yield statement is executed, the function execution
is “frozen”

Local variables, point of execution saved
Expression after yield keyword returned

If the function body ends, or a return statement is
executed, an exception is raised to indicate the end of the
iteration

Generators 101

Python 2 Python 3
>>> def gen(): >>> def gen():
yield "first" . yield "first"
yield "second" e yield "second"
>>> f = gen() 22 nentep
>>> f.next() 'first’
"first'>>> f.next() >>> next(f)
'second' 'second"’
>>> f.next() >>> next(f)
Traceback (most recent Traceback (most recent call
call Tlast): Tast):
File "<stdin>", line 1, File "<stdin>", 1ine 1, 1in
in <module> <module>

StopIteration StopIteration

Infinite generators

python 3.1
>>> def gen_squares():
1 =0
while True:
yield 1
1 +=1

s Wl 2
PARAY

>>> f = gen_squares()

>>> next(f)

0

>>> for 1 1n range(4):
next(f)

o NG

Itertools

Functions creating iterators for efficient looping

tertools implements a number of iterator
ouilding blocks inspired by APL, Haskell, and SML
Produce sequences efficiently and elegantly

— standardizes a core set of fast, memory efficient tools
that are useful by themselves or in combination.

— Together, they form an “iterator algebra” making it
possible to construct specialized tools

See
— http://docs.python.org/library/itertools.html

ltertools: cycle

>>> Tmport itertools

>>> homer = ['donuts', 'more']
>>> Ttertools.cycleChomer)
<itertools.cycle object at 0Ox2b6df0>
>>> X = 1tertools.cycle(homer)
>>> next(x)

"donuts'’

>>> next(x)

"'more’

>>> next(x)

"donuts’

Itertools: permutations / combinations

* |teratively returns r-length tuples in sorted order, no
repeated elements

>>> 1mport itertools
>>> J1tertools.permutations(p="abc', r=2)
>>> j1tertools.permutations('abc', 2)

<itertools.permutations object at
0x2b18d0>

>>>11st(1tertools.permutations('abc’', 2))
[C'a’, 'b"), ("a’, 'c’), ('b', "a’), ('b’',
¢y, ("¢’ rany, (', b

count
cycle
repeat
chain
dropwhile
groupby
ifilter
islice
imap
starmap

Many more..

Functools

* Advanced functionality

* Higher order functions and operations on
callable objects

— functions that act on or return other functions.

* See
— http://docs.python.org/library/functools.html

* |n addition to the def statement, functions can
also be defined using the lambda expression

* Since lambda is an expression, it can be in-
lined similarly to Lisp

 Lambda functions are anonymous . No name
is assigned: lambda returns the function itself

* Elegant when simple, unnecessarily
obfuscated when complex

When to Use Lambda

When being concise is reasonable

Compared to def():
— Lambda’s are expressions, def is statement
— Lambda can be used in places def cannot
* e.g., in the middle of a list declaration
e or even inside a function call as a parameter
Limitations:
— Not as general as def: limited to a single expression

Avoid sacrificing readability! A lot of
programmers erroneously believe complex code
is better — the opposite is true.

Lambda’s 101

>>> lambda x: X + 5

<function <lambda> at 0x2b33d8>

>>> (lambda x: x + 5) (1)

6

>>> foo = (lambda x : x + ' > + 'simpson')
>>> foo('lisa')

"l1sa simpson'

>>> foo('homer')

"homer simpson'

Lambdas are Extremophiles

>>> # embedding in a list
>>>~funcs = [(lambda x: x**2), (lambda x:

Xk*3)]

>>> for f in funcs:

4 8

print(f(2), end

=)

>>> # embedding in a dictionary

>>> ops = {'doub]

e

(lambda x: x*2),

"triple' : (lambda x: x * 3)}

>>> ops[' 'double’]
18

(9

Using Lambda (cont’d)

* Multiple arguments

— separate arguments by commad

(Tambda x,y : x * y)(5,10) # 50
e State is maintained (like closures)

def rem(x):
return (lambda y: x + y)

f = rem(10)
f(5) # 15

Map

* Common task: applyan >>>donuts =[1,2,3]

operation to each >>> more = lambda x: x * 2
element in a sequence >>> map(more, donuts)
* Syntax: <map object at 0x2b79f0>

—map(function, sequence) >>> list(map(more, donuts))
— Calls function(item) for [2, 4, 6]

each item of sequence

and returns a list of the

return values

Remember: in Python 3.x Map and Filter return iterators, in Python 2.x, a list

Multiple map arguments

* Map is smart

 Map (func, sequences) will accept N
sequences provided that the sequences
correspond to the arguments expected by the
function

>>> l1st(map(pow, [2, 4, 6], [1, 2, 3]1))

[2, 16, 216]

Filter

* Syntax: >>> def is_odd(x):
— filter(function, .. return(x%2)!=0
sequence) >>>x =[1,2,3,4,5,6]

— Returns items of | >>> filter(is_odd, x)
sequence iff function

(item) evaluates to True <filter object at Ox2b7af0>

— If the sequence is a >>> |ist(filter(is_odd, x))
string or a tuple, the [1, 3,5]
returned value will be of
the same type,
otherwise, a list is
returned

Remember: in Python 3.x Map and Filter return iterators, in Python 2.x, a list

Reduce

Forewarning, toast in Python 3, but worth knowing about

Applies a function to pairs of items in a sequence,
producing a running result
Syntax:

— reduce(function, sequence)

— function must take two arguments

— First two items of sequence are used as the first two arguments
to the function

— Then, function is applied to the previous result and the next
item in sequence

Example:

— reduce(lambda x, y: x + vy, range(10))

— Returns the sum (note: don’t do this---there’s already a sum()
function)

Regular expressions

dl" EXPressions

 ARE s astring that represents a pattern

* Their purpose is to test another string against the
pattern

— Discovering if any part of that string matches the pattern,
and if so, where

* Very powerful — a bit of a bear syntactically
— Can be used to match, search, replace, and split strings

 REs may be compiled or used on the fly
 Omnipresent in scripting languages (the ongoing joke:

Perl REs are powerful enough to write just about any
program).

Searching with REs

>>> Tmport re
>>> pattern = re.compile('[a-z]+)
>>> m = pattern.search('5 donuts')

>>> print (m.group(), m.start(Q),
m.end())

donuts 2 8

Matching with REs

>>> Tmport re
>>> pattern = re.compile('[a-z]+)
>>> m = pattern.match('5 donuts')
>>> 1T m:
print ('Matched!")
. else:
print ('Failed')

Failed

Findall

>>> Tmport re
>>> p = re.compile('\d\sdonut')

>>> hits = p.findall('homer has 4
donuts, bart has 1 donut')

>>> print (hits)
['4 donut', 'l donut']

Findall (cont’d)

>>> import re
>>> p = re.compile('\d+\sdonuts’)

>>> 1ter = p.finditer('99 donuts on the
shelf, 98 donuts on the shelf...")

>>> for m in iter:
print (m.group(), m.span())

99 donuts (0, 9)
98 donuts (24, 33)

The syntax of patterns

Alphanumeric characters match themselves

A RE that is just a string of letters and digits
will match the same string

Punctuation is the opposite

— Wildcard characters with special meaning

— To return them to normal, they must be escaped
(e.g., preceded by a backslash: \. or \{)

Backslash character matched by repeated
backslash (\\)

Common Patterns

Matches any character
A Matches start of string
S Matches end of string

Matches zero or more cases of previous
RE (greedy)

+ Matches one or more cases of previous RE
(greedy)
? Matches zero or one case of the previous

RE (greedy)

*? 47, ?7? Nongreedy versions of *, +, ?

Common Patterns (cont’d)

Element Meaning

{m, n} Matches m to n cases of the previous RE (greedy)
[...] Matches any one of a set of characters specified in brackets

| Matches either the preceding or following expression

(...) Matches RE within group and indicates a group

\d, \D Matches a digit, non-digit resp. (Like, [0-9] and [*0-9] resp.)
\s, \S Matches whitespace (\t, \n, \r, \f, \v), non-whitespace resp.
\w, \W Matches one alphanumeric character

\b, \B Matches an empty string at the start or end of the word

\Z Matches empty string at the end of a whole string

Character sets

* Sets of characters can be denoted by listing
characters within brackets []

* You can denote a range of characters by giving
the first and last characters separated by a

hyphen
— E.g. [a-z], first and last characters inclusive

— Within a set, special characters stand for
themselves

— Except for \, [, and —

* Avertical bar matches a pattern on either side

import re

p = re.compile(‘Homer|Simpson')
iterator=p.finditer(“HomerJaySimpson")
for match in iterator:

print (match.group(), match.span())
Homer (0, 5)
aco (8, 12)

Groups

* Groups are used to extract segments of a string
that matched a pattern, or a segment of a pattern

* A RE can contain any number of groups
* Parentheses in a pattern indicate a group

import re

p = re.compile(' Chomer\s(jay))\ssimpson')
m = p.match('"homer jay simpson')

print (m.group(0))

-- homer jay simpson

print (m.group(2))

-- Jay

Optional Flags

* The compile function in the re module accepts
optional flags

— re.compile(pattern, flags)
* Some attributes:

— re.IGNORECASE, re. MULTILINE, re. VERBOSE,
re.DOTALL

 Example:
— re.compile(‘hello’, reIGNORECASE)

RE Substitution

e Substitutions can be made based on regular
expressions

* Syntax:
— r.sub(repl, s, count=0)

— Copy of s is returned where nonoverlapping matches with
ris replaced by repl

— When count is greater than 0, only the first count matches
are replaced, otherwise, all are replaced

 Example:
—r = re.compile(‘world’, re.IGNORECASE)
— print (r.sub(‘*mMars!’, ‘Hello world!’,

1))

Splitting

e Strings can also be split based on regular expressions
* Syntax:
— r.split(s, maxsplit=0)

— List of splits of s by r (i.e. substrings of s separated by
nonoverlapping, nonempty matches with r) is returned

— If maxsplit is greater than 0, then at most maxsplit splits
are returned, otherwise, all splits are returned

 Example:
— r =re.compile(‘\d+’)
— print (r.split(‘lots 42 of random 12 digits 77’))
— [‘lots’, ‘of’, ...]

Finding tags w/in HTML

>>> |1ne = '<tag>my eyes! the goggles
do nothing!</tag>"

>>> r = re.compile('<tag>(.*)</tag>",
re.DOTALL)

>>> m = r.search(line)

>>> print (m.group(l))

my eyes! the goggles do nothing!

References

* A great tutorial:
— http://www.amk.ca/python/howto/regex/

A Word on Documentation

Code is usually read far more than it is written
It is worth it to document your code!
Docstrings can be written for classes, modules and methods

Usually consists of one sentence, followed by a blank, then
a more detailed description
Guideline for writing docstrings:

— First line should be a concise and descriptive statement of
purpose

— Self-documentation is good, but do not simply repeat variable /
method names

— Next, describe the method and side effects
— Describe arguments

Style Reference

 PEP 8
— http://www.python.org/dev/peps/pep-0008/

* Google Python Style Guide

— http://code.google.com/p/soc/wiki/
PythonStyleGuide

Assignment 3

Due before class next week

Assignment 3 (ex 1 of 2)
Sport Recommender

Requirements:

— Write a script which
recommends a sport to play
based on today’s weather

— Retrieve the current
temperature using URLLIB,
Regular Expressions, and a web
service of your choice

— See:
http://developer.yahoo.com/
weather/

Suggested output:

— Spython sport.py
— It’s 36 degrees, you should ski!

Recommended web service:
http://weather.yahooapis.com/

forecastrss?w=12761356

Yahoo! Weather - New York, NY

Conditions for New York, NY at 7:51 pm EST

\é :
&
Current Conditions:
Fair, 32 F

Forecast:
Mon - Partly Cloudy. High: 35 Low: 26
Tue - Cloudy. High: 36 Low: 31

Assignment 3 (ex 2 of 2)
News Parser

* Write a script which
. . G_i_D COLUMBIA UNIVERSITY
retrleves COlumbIa S IN THE CITY OF NEW YORK

Academic Programs

webpage and prints only s

Libraries

the titles Of the news Medical Center

Athletics

Arts

stories on the main page s

Giving to Columbia

* Use regular expressions T

Faculty & Staff

and string operations

Neighbors

About Columbia

Suggested output: semie COLUMBIANEWS
* Spython news.py
 Today’s stories are:

Alumnus Judd Gregg (CC '69) Nominated as U.S. Commerce
Secretary More

Columbia College and Law School Alumnus Eric Holder
Confirmed as U.S. Attorney General More

Team Led by Columbia Researchers Discovers First Gene for
Most Common Form of Epilepsy More

Columbians Celebrate Inauguration of President Obama
(CC'83) Video iin

1. AlumnsJudd Gregg....

