CS3101.3

def get SolutionCosts (nav:‘gationCoJe):
fuelStopCost =15

extralomputationCost = 8
» this AlgorithmBecsmingSkynetCost = 999999999
woterCrossingCost= H5

GENETIC ALGORITHMS TIP:
ALW/AYS INCLUDE THIS IN YOUR FITNESS FUONCTION

Agenda

Dictionaries, sets

Sequences, iterables, slicing
List comprehensions

Sorting, custom comparators
Functions, modules, imports
Command line arguments
File 1/O

Homework 2

Questions? Homework, general?

- 247,

AT

\ |4

Today’s theme: Files and Functions
with the Simpsons

* By the end of this lecture you will be able to
* Produce an HTML webpage from this CSV file

Character,Meal,Ate,Quantity,Comment

Barney Gumble,Breakfast,Duff Beer,1,l could’ve gone to Harvard
Duffman,Breakfast,Power bar,4,Duffman - can't breathe!
Duffman,Lunch,Protein shake,5,Duffman - has the power!
Homer Simpson,Snack,Donut - Jelly,1,Mmm Donut

Homer Simpson,Snack,Donut - Cream,1,Mmm Donut

Homer Simpson,Snack,Donut - Strawberry,1, Mmm Donut
Homer Simpson,Dinner,Brocolli,2,So long cruel world

Lisa Simpson,Breakfast,Oranges,1,Satisfying

Lisa Simpson,Lunch,Kale,2,Einstein's favorite

Lisa Simpson,Dinner,Tofu,4,Animals are cute!
Klang,Snack,Humans,40, *how*to*cook*for*forty?*humans*
Montgomery Burns,Snack, Life Extension Elixer,1,Excellent...

Dictionaries (cont’d)

e Review:

— Dictionaries are Python’s built in mapping type
— Mutable, not ordered
— Keys in a dictionary must be hashable

— Values are arbitrary objects, may be of different
types

— |Items in a dictionary are a key/value pair

Specifying Dictionaries

Use a series of pairs of expressions, separated by commas
within braces

i.e. {'x': 42, ‘y’:3.14, 26: ‘Z’} will create a dictionary with 3
items, mapping x’ to 42, ‘y’ to 3.14, 26 to ‘Z’.

Alternatively, use the dict() function

— Less concise, more readable

— dict(x=42, y=3.14)

Dictionaries do not allow duplicate keys

— If a key appears more than once, only one of the items
with that key is kept (usually the last one specified)

Dictionaries (cont’d)

e Suppose x={a’:1, ‘b":2, ‘c’:3}

— To access a value: x[‘a’]

— To assign values: x[‘a’] =10

— You can also specify a dictionary, one item at a time in this way
* Common methods

— .keys(), .values(), .items(), .setdefault(...), .pop(...)

— Sequences returned in arbitrary order
* Dictionaries are containers, so functions like len() will work

— Toseeif a key is in a dictionary, use in keyword

— E.g. ‘@’ in x will return True, ‘d" in x will return False.

— Attempting to access a key in a dictionary when it doesn’t exist
will result in an error

More Examples

>>> X['dad'] = 'homer’

>>> X['mom']='marge’

>>> x['son'] = 'bart’

>>> x['daughter'] = ['lisa’, 'maggie’]
>>> print 'Simpson family:', x

Simpson family: {'dad": 'homer', 'daughter’: ['lisa’, 'maggie'], 'son': 'bart’,
'mom': 'marge’}

>>>'dog' in x

False

>>> print 'Family members: ', x.values()

Family members: ['homer’, ['lisa’, 'maggie'], 'bart’, 'marge’]
>>> x.items()

[("dad’, 'homer'), ('daughter’, ['lisa’, 'maggie']),, ('son’, 'bart’), ('mom’,
'marge’)]

Python has built in sets

simpsons = set(["homer", "marge", "bart", "lisa"])

philosophers = set(["aristotle", "sophocles", "homer"])

print simpsons.intersection(philosophers)
set(['homer'])

print simpsons.union(philosophers)
set(['homer’, 'marge’, 'aristotle’, 'lisa’, 'sophocles’, 'bart'])

orint set(['homer']).issubset(philosophers)
True

Sets

* Python has two built-in types: set and frozenset
— Instances of type set are mutable and not hashable
— Instances of type frozenset are immutable and
hashable
— Therefore, you may have a set of frozensets, but not a
set of sets

 Methods (given sets S, T):
— Non-mutating: S.intersection(T), S.issubset(T), S.union
(T)
— Mutating: S.add(x), S.clear(), S.discard(x)

— Standard operators are overloaded for the non-
mutating methods: e.g., Setl & Set2 overloads to
intersection_update

Sets cont’d

To create a set, call the built-in type set() with
no argument (i.e. to create an empty set)

— You can also include an argument that is an
iterable, and the unique items of the iterable will
be added into the set

Exercise: count the number of unique items in
the list L generated using the following:

import random

L = [random.randint(1, 50) for x in range
(100)]

Sequences

An ordered collection of items
ndexed by nonnegative integers
Lists, Strings, Tuples

Librarians and extensions provide other kinds

You can create your own (later)
— E.g., the sequences of prime numbers

Sequences can be sliced (which means
extracting a section)

Not Pythonic in style — but powerful

Iterables

* Python concept which generalizes idea of
sequences

* All sequences are iterables

* Beware of bounded and unbounded iterables

— Sequences are bounded
— Iterables don’t have to be

e E.g., iterating over a generator computing the next digit
of Pl

— Beware when using unbounded iterables: it could
result in an infinite loop or exhaust your memory

Manipulating Sequences

e Concatenation

— Most commonly, concatenate sequences of the same type using
+ operator

* Same type refers to the sequences (i.e. lists can only be

concatenated with other lists, you can’t concatenate a list
and a tuple)

 The items in the sequences can usually vary in type
e Less commonly, use the * operator
* Membership testing
— Use of in keyword
— E.g. X" in ‘xyz’ for strings

— Returns True / False

° Example [la)’ lbI’ ICI] + [ldI’ le)’ lf)]

Slicing

e Extract subsequences from sequences by slicing

e Given sequence s, syntax is s[x:y] where x,y are
integral indices— x is the inclusive lower bound —
vy is the exclusive upper bound

* |f x<y, then s[x:y] will be empty
e If y>len(s), s[x:y] will returns [x:len(s)]
* |If lower bound is omitted, then it is by default 0

* If upper bound is omitted, then it is len(s) by
default

Slicing (cont’d)

Also possible: s[x:y:n] where n is the stride

n is the positional difference between successive
items

s[x:y] is the same as s[x:y:1]
s[x:y:2] returns every second element of s from [x, vy]

s[::3] returns every third element in all of s
X,Y,n can also be negative

s[y:x:-1] will return items from [y, x] in reverse
(assuming y > x)

s[-2] will return 2nd last item

Slicing (cont’d)

* Itis also possible to assign >>> s =range(10)
to slices >>>s[1::2] = s[::2]

>>> S

* Assigning to a slicing s[x:y:n]
is equivalent to assigning to

the indices of s specified by [0, 0, 2, 2, 4, 4, 6, 6, 8, 8]
the slicing x:y:n >>> s = range(10)
>>> 5[5:0:-1]

[5,4,3,2,1]

 Examples:
>>> s = range(10)

>>> s[::-1] # Reverses the
entire list

[9I 8) 7) 6] SI 4I 3) 2) 1I O]

Rewriting set intersections with a list
comprehension

def intersection(groupA, groupB):
result =[]
for obj in groupA:

if obj in groupB:
result.append(obj)
return result

def intersection(groupA, groupB):
return [obj for obj in groupA if obj in groupB]

List Comprehensions

It is common to use a for
loop to go through an
iterable and build a new list
by appending the result of
an expression

Python list comprehensions
allows you to do this quickly

General syntax: [expression
for target in iterable
clauses]

Underlying implementation
is efficient

The following are
equivalent:

result =[]
for x in sequence:
— result.append(x + 1)

result=[x+1 for x in
sequence]

Never sacrifice readability
for elegance

General rule: one or two
lines, fine — more, bad idea

Examples

>>>a = ['dad’, 'mom’, 'son’, 'daughter’, 'daughter’]
>>> b = ['homer’, 'marge’, 'bart’, 'lisa’, 'maggie']
>>>[ali] +": "+ b[i] foriin range(len(a))]

['dad: homer', 'mom: marge’, 'son: bart', 'daughter: lisa’,
'‘daughter: maggie']

>>> [x +y for x in range(5) for y in range(5, 10)]

5,6,7,8,9,6,7,8,9,10,7,8,9, 10, 11, 8, 9, 10, 11, 12,
9,10, 11, 12, 13]

>>> [x for x in range(10) if x**2 in range(50, 100)]
8, 9]

Sorting

e sorted() vs. list.sort()
— For iterables in general, sorted() can be used
— For lists specifically, there is the .sort() method
e Sorted()
— Returns a new sorted list from any iterable
e List.sort()
— Sorts a list in place

— Is extremely fast: uses “timsort”, a “non-recursive
adaptive stable natural mergesort/binary insertion sort
hybrid”

— Read the PEP if curious — pretty impressive

Sorting (cont’d)

Standard comparisons understand numbers, strings, etc.

What if you have to compare something different?

Built in function cmp(x, y) is the default comparator

— Returns-1ifx<y

— ReturnsOifx==vy

— Returns 1if x>y

You can create custom comparators by defining your own function

— Function compares two objects and returns -1, O, or 1 depending
on whether the first object is to be considered less than, equal
to, or greater than the second object

— Sorted list will always place “lesser” objects before “greater”
ones

— More on functions later

Sorting (cont’d)

* Forlist L, sort syntax is:

— L.sort(cmp=cmp, key=None, reverse=False)
— All arguments optional (default ones listed above)
— cmp is the comparator function

— If key is specified (to something other than None),

items in the list will be compared to the key(item)
instead of the item itself

* For sorted, syntax is:

— sorted(cmp, key, reverse)

What if you had to sort a dictionary?

e Dictionaries cannot be directly sorted —a mapping has no order
— You need to select an index of either keys or values

simpsons ={'bart' : 7, 'marge’ : '41’', 'homer' : '42', 'lisa' : 6}

print sorted(simpsons)

['bart’, 'homer’, 'lisa’, 'marge’]

from operator import itemgetter

orint sorted(simpsons.iteritems(), key=itemgetter(1), reverse=True)

[(‘homer', '42"), ('marge’, '41'), ('bart’, 7), ('lisa’, 6)]

x = sorted(simpsons.iteritems(), key=itemgetter(1), reverse=True)
orint [obj[0] for obj in x]

['homer', 'marge’, 'bart’, 'lisa']

None

Built in data type to denote a null object
No attributes or methods

Use as a placeholder when you need a
reference, but don’t care about the object

Functions return None unless they have
specific return statements meant to return
other values

Functions

Python is all about the libraries

— Python’s libraries are

— Check first before
reinventing the wheel

Libraries Preview
http://docs.python.org/library/

* Out of the box:
_ Numeric and — Internet data handling

mathematical modules — Structured markup handling
(html, xml, etc)

— Internet protocols (you

— Files and directory

handling _
— Data persistence name it)
. — Multimedia services
— Data compression and (presentation,
archiving manipulation)
— File formats (csv, etc) — Internationalization
— Cryptographic services — GUIs
— Operating system hooks — Debugging, profiling
— Interprocess — Windows, Mac, *nix, Sun
communication and specific services

threading

Functions

Most statements in a typical Python program are grouped together
into functions or classes

Request to execute a function is a function call
When you call a function, you can pass in arguments

A Python function always returns a value

— If nothing is explicitly specified to be returned, None will be
returned

Functions are also objects!

— May be passed as arguments to other functions
— May be assigned dynamically at runtime

— May return other functions

— May even be keys in a dictionary or items in a sequence!

The def Statement

The most common way to define a function
Syntax:

— def function-name(parameters):
e statement(s)

function-name is an identifier; it is a variable name that gets
bound to the function object when def executes

Each call to a function supplies arguments corresponding to
the parameters listed in the function definition

Example:

— def sum_of squares(x, y):

* return x**2 + y**2

Discussion, difference between x = sum_of squares(1, 2) and
X = sum_of _squares

Parameters

Parameters are local variables of the function
Pass by reference vs. pass by value
— Passing mutable objects is done by reference
— Passing immutable objects is done by value
Supports named keyword and default arguments
— def f(x, y=[]):

e y.append(x)

° returny

— Beware: default value gets computed when def is executed, not
when function is called

Supports optional, arbitrary number of argument
— def sum_args(*numbers):

* return sum(numbers)

— sum_args([1,2,3])

Functions are polymorphic

def intersection(groupA, groupB):
result =[]
for obj in groupA:
if obj in groupB:
result.append(obj)
return result

def multiply(x, y):
return x *y

print multiply (2,4)
3 print intersection([1,2,3], (1,3,4))
[1, 3]

print multiply (.5,2)

1.0

foo = {"homer" : "donuts", "lisa" : "kale"}
bar = ["homer", "kale"]
print intersection(foo, bar)

. . 'h !
print multiply("foo", 3) [homer’]
foofoofoo

Notice the list and tuples?

Docstrings

An attribute of functions
Documentation string (docstring)

If the first statement in a function is a string literal, that
literal becomes the docstring

Usually docstrings span multiple physical lines, so triple-
guotes are used

For function f, docstring may be accessed or reassigned
at runtime!l using f.__doc___

def foo(x):
— “’Hello docstring world"”

The return Statement

* Allowed only inside a function body and can
optionally be followed by an expression

* None is returned at the end of a function if
return is not specified or no expression is
specified after return

* Point on style: you should never write a return
without an expression

Recursion

def fact(x): return (1 if x == 0 else x * fact(x-1))

def fact2(x): def fact3(x):

result=1
while (x > 1):
result = result * x

return 1

else:
X=Xx-1

return x * fact2(x-1)
return result

Discussion: Question from last week: is vs. ==. Is (is) identity function, == (is) equality

def is a statement

Legal in Python Why is this legal?
import random * Python statements are
if random.randint(0,1): exec_Utable —we have .
def func(x): runtime, but not compile
return x + 1 time in the C sense
else: * Functions are objects like

def func(x):

return x -1 everything else in Python

and can be created on the fly

orint func(1)

0
2

Modules and imports

Modules

From this point on, we’re going to need to use
more and more modules

A typical Python program consists of several
source files, each corresponding to a module

Simple modules are normally independent of
one another for ease of reuse

Packages are (sometimes huge!) collections of
modules

Imports

Any Python source file can be used as a module by executing an import
statement

Suppose you wish to import a source file named MyModule.py, syntax is:
— import MyModule as Alias

— The Alias is optional

Suppose MyModule.py contains a function called f()

— To access f(), simply execute MyModule.f()

— If Alias was specified, execute Alias.f()

Can also say “from MyModule import f”

Stylistically, imports in a script file are usually placed at the start
Modules will be discussed in greater detail when we talk about libraries

Common question: place them in the same directory as your script, next
python will look in sys.path

o

Thisis why we need if _name_ ==“ main__

”

Command-Line Arguments

Arguments passed in through the command line (the
console)

S python script.py argl arg2 ...

Note the separation by spaces
Encapsulation by quotes is usually allowed
The sys module is required to access them
— Import sys

— Command-line arguments are stored in sys.argyv,
which is just a list

— Recall argv, argc in C---no need for argc here, that is
simply len(sys.argv)

Common pattern

Import sys
def main():

if len(sys.argv) != 2:

print 'Invalid Input’

print 'Usage: python myscript.py argl'
else:

something = sys.argv[1]

Example

multiply.py
import sys
product =1
for arg in sys.argv:
print arg, type(arg) # all arguments stored as strings
foriinrange(1, len(sys.argv)): # first arg is the script name!
product *= int(sys.argvl[i])
print product

S python multiply.py 12345

File I/O

File Objects

* Builtin type in Python: file
* You can read/write data to a file

* File can be created using the open function
— E.g. open(filename, mode="rU’)
— A file object is returned
— filename is a string containing the path to a file

— mode denotes how the file is to be opened or
created

File Modes

 Modes are strings, can be:
— ‘r’: file must exist, open in read-only mode

— ‘w’: file opened for write-only, file is overwritten if it already exists,
created if not

— ‘a@’: file opened in write-only mode, data is appended if the file exists,
file created otherwise

— ‘r+’: file must exist, opened for reading and writing

— ‘w+’: file opened for reading and writing, created if it does not exist,
overwritten if it does

— ‘a+’: file opened for reading and writing, data is appended, file is
created if it does not exist

* Binary and text modes

— The mode string can also have ‘b’ to ‘t’ as a suffix for binary and text
mode (default)

— On Unix, there is no difference between opening in these modes

— On Windows, newlines are handled in a special way, ‘rU’

File Methods and Attributes

* Assume file object
e Common methods

— f.close(), f.read(), f.readline(), f.readlines(), f.write
(), f.writelines(), f.seek()

e Common attributes
— f.closed, f.mode, f.name, f.newlines

Reading from File

e Say (for some inexplicable reason) you needed to parse this
CSV file to extract Klang’s comments

lines = open(‘simpsons_diet.csv’).readlines()

for line in lines:
if line.startswith("Klang"):
print line
f.close()

Lisa Simpson,Dinner,Tofu,4,Animals are cute!
Klang,Snack,Humans,40, *how*to*cook*for*forty?*humans*

Montgomery Burns,Snack, Life Extension Elixer,1,Excellent...

Closing can be done automatically by the garbage collector, but it is innocuous to call,
and is often cleaner to do so explicitly.

Writing to File

f = open('sample2.txt’, 'w')
foriinrange(99, -1, -1):
ifi>1lori==0:
f.write('%d donuts in the box\n' % i)
else:
f.write('%d donuts in the box\n' % i)

f.close()

* Notice how file objects have a readline() method, but not # a
writeline() method, only a writelines() method which writes #
lines from list.

CSV — often messy, always useful

e Comma-separated values
e Common file format, great for spreadsheets, small databases
* Basically:

— Each record (think row in spreadsheets) is terminated by a
line break, BUT

— Line breaks may be embedded (and be part of fields)
— Fields separated by commas

— Fields containing commas must be encapsulated by
double-quotes

— Occasionally has a header line with column values

* Various formats — some quirky. Use the CSV Module

Reading a CSV File

Use the csv module to create a reader instance

Dialect, delimiter, quotechar (format parameters) are all
optional
— Controls various aspects of the CSV file

— E.g. use a different delimiter other than a comma
Reader is an iterator containing the rows of the CSV file

Also available are dictionary readers which automatically
parse headers, return an iterator over a sequence of
dictionaries mapped to the rows

Reading with the CSV library

Import csv

reader = csv.reader(open(‘simpsons_diet.csv’),

delimiter=',', quotechar=""")
for row in reader:

print row

[Barney Gumble,Breakfast,Duff Beer,1,l could’ve gone to Harvard]
[Duffman,Breakfast,Power bar,4,Duffman - can't breathe!]
[Duffman,Lunch,Protein shake,5,Duffman - has the power!]

Reading CSVs directly into variables

Import csv

reader = csv.reader(open(r'c:\simpsons_diet.csv'), \

delimiter=',', quotechar=""")
for char, meal, ate, quantity, comment in reader:
+ate + “for “ +\

o

print char + “ had “ + quantity +
meal

Lisa Simpson had 4 Tofu for Dinner
Klang had 40 Humans for Snack
Montgomery Burns had 1 Life Extension Elixer for Snack

Writing a CSV file

The writer function creates a CSV writer object, which converts values to
strings and escapes them properly.

import csv
reader = csv.reader|((r'c:\simpsons_diet.csv'), \
delimiter=',", quotechar=")
out = (r'c:\simpsons_new.csV', "wb")
writer = csv. (out, delimiter=',’, quotechar=""")
for row in reader:
writer. (row)

new = ['Chronos’, 'Snack’, 'Klang', '1', 'The humans made him tasty!']

writer. (new)
out. ()

kiang,Snack,HumansAO, *how*to*cook*for*forty?*humans*
Montgomery Burns,Snack, Life Extension Elixer,1,Excellent...
Chronos, Snack, Klang, The humans made him tasty!

Basic string manipulation

“Klang,Snack,Humans,40, *how*to*cook*for*forty?*humans*”

x="Klang,Snack,Humans,40,*how*to*cook*for*forty?*humans*"
columns = x.split(",")

columns
['Klang', 'Snack’, 'Humans', '40', '"*how*to*cook*for*forty?*humans™']
comment = columns [-1]

comment

*how*to*cook*for*forty?*humans*
cleaned = comment.replace("*", " ").strip()

cleaned [0].upper() + cleaned [1:] +"."
How to cook for forty? humans.

How about reading that CSV file from
a network?

import urllib, csv

url =
simpsons = urllib.urlopen(url)

reader = csv.reader(simpsons, delimiter=',',
quotechar=""")

for char, meal, ate, quantity, comment in reader:

Homework Il

Due before the start of class next
week

Exercise 1: Producing a webpage
from a CSV file

Write a Python script which parses this CSV file: http://
www.cs.columbia.edu/~joshua/teachng/cs3101/
SIMpPSONS.CSV

and creates an HTML file describing the contents.
Requirements:

— Your script must use command line arguments to
input the path to which the HTML file will be written.

— Your script must either use Python’s urllib library (see
the online doc) to automatically download the CSV file
prior to parsing, or must take it’s location as a
command line argument

This weeks extra credit

For a (very large) triangle in the form:

40

/311
521040

26 53 06 34
1051878690

Compute the maximum path value from the upper most entry in the
triangle to an entry on the bottom row. Legal moves are those
which move exactly one entry adjacent from the present index.
E.g., from the 2"9entry on the fourth row (in blue), you may access
the 15t or 3" entry on the fifth row.

http://www.cs.columbia.edu/~joshua/teachng/cs3101/triangle.txt

