CS3101 Programming
Languages - Python

. 'v //W"’
/

Agenda

Course description

Python philosophy

Getting started (language fundamentals, core
data types, control flow)

Assignment

Course Description

Instructor / Office Hours

Josh Gordon
PhD student
Contact

— joshua@cs.columbia.edu

Office hours

— By appointment, feel free to drop a line anytime

Syllabus

Jan 19th

Jan 26th

Feb 2nd

Feb 9th

Feb 16t

Feb 23

Language overview. Course structure. Scripting
essentials.

Sorting. Parsing CSV files. Functions. Command
line arguments.

Functional programming tools. Regular
expressions. Generators / iterators.

Object oriented Python. Exceptions. Libraries I.

GUIs. Databases. Pickling. Libraries Il.

Integration with C. Performance, optimization,
profiling. Parallelization.

HW1: Due Jan 26t

HW2: Due Feb 2nd

HW3: Due Feb 9t

Project Proposal:
Due Feb 16th

Course Project:
Due Feb 28th

None

Grading
Assignment |Weight

Class participation 1/10
HW1 1/10
HW?2 1/10
HW3 1/10
Proposal 1/10
Project 5/10
Extra credit challenge problems Depends how far you get ©

Late assighments: two grace days / semester, after which accepted at: -10% / day.

Resources / References

* Course website:
— www.cs.columbia.edu/~joshua/teaching
— Syllabus / Assignments / Slides
* Text books
— Learning Python
— Python in a Nutshell (available elect. on CLIO)
— Python Cookbook
* Online doc:
— www.python.org/doc

Powerful Object-Oriented Programming

Learning

O'REILLY*

Mark Lutz

Ordered by technical complexity - notice anything?

Recipes from the Python Community

PYthOf b
Cookbook

O'REILLY" Alex Martelli, Anna Ravenscroft & David Ascher

IN A NUTSHELL

A Desktop Quick Reference

O'REILLY" A Martel

O'REILLY"

Help for Windows Programmers

Programming on Win32

Marie Hammond & Andy Robinson

Course Project

* Opportunity to leverage Python to accomplish
something of interest / useful to you!

* Past projects:
— Genetic algorithms to tackle NP-Hard problems
— Solar system simulation via input to MAYA
— Music recommendation system via mining Last.fm
— Financial engineering utilities
— Labview interface to control lab equipment
— Sports scheduling
— A webpage for elementary students

Previous Projects

This is the ‘test’ vi

#7hs scrct crestes » detionary of ditver captions

230 vaiues. The first elermert. in the ‘controlelst’ then
[#ctates which driver vahus is tested i the statement
#The resst s then acpenided to the Tesut’Ist and fed
920 the LAWIEW arrar.

sk =[] [nedizh
[Ehedia}

Knverdr = {)
fwverdit{drvercapt{0]] = deivervals{0]

aerdct{drvercapts | rvald | N
[iveracidnercaptd? ;vﬁ: maxchedse,
Kawerdct{drmercapts3)] = drtvervalsl3) (=
estval = diiverdit{conrokdst{0]] | koAt st
JF testval < machechst{0] and testval > minchechist 0} =
res sppeni(pess’)
| e scpend(Yor)
e cax
S
A session is
established with
e = = Python 2.5
Events Statistics Controls
I Population ™ Years [Selection ¥ Mating M Age ™ Mutation Maximum Fitness: 4703 (start)
- > The data from the
Age kills an organism with fitness 4757 . e e data J
Age Kills an organism with fitness 4703 E R tliness pcos main vi s fed info
Age Kills an organism with fitness 4702 these vi's so that
Age kills an organism with fitness 4638 4 Average Fitness: 2044 (“step) Python can
Age kills an oraanism with fitness 4638 T o evaluate and
perform its magic...

Academic Honesty

The Python community is top notch
Incredible web resources
Pitfalls:

— Temptation to search for solutions
— Learning only to concatenate other’s work without
thinking for yourself

http://www.cs.columbia.edu/education/
honesty

Python Philosophy

(I like to spend a lot of time on best
practices)

What is Python?

Powerful dynamic programming language

Very clear, readable syntax (rejects the complexity of PERL in favor
of a sparser, less cluttered grammar)

Supports multiple programming paradigms (primarily object
oriented, imperative, and functional)

Dynamic type system (late binding)

Automatic memory management / garbage collection
Exception-based error handling

Very high level built in data types

Extensive standard libraries and third party modules

Built from the ground up to be extensible via C (or Java, .NET)
Embeddable within applications as a scripting interface

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.

Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.

Although practicality beats purity.
Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right™ now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Favorite Python Characteristics

Emphasizes code readability / clarity
— Key insight: code is read many more times than it is written

— Allows the developer to focus on the problem domain rather than the
implementation

— Great for academic and research environments
Batteries included
— Powerful libraries for common tasks
— Covers everything from asynchronous processing to zip files
Plays well with others
— Easy integration with C / C++, VM’s available for JAVA
Runs everywhere
— Cross platform and portable
Open source

— The Python implementation is under an open source license that makes it
freely usable and distributable, even for commercial use

Strong community

Quality Community:
Python Enhancement Proposals

http://www.python.org/dev/peps/

Well thought on rationale for changes /
enhancements / philosophy

Cogent motivation, debate, and relative merits

Great place to learn development paradigms
in general

@ python

SIcarwis

Advanced Search

» Core Development > PEP Index -~ PEP 8 -- Style Guide for Python Code | mar ,jf;";;‘:';

ABOUT
NEWS »
DOCUMENTATION >
DOWNLOAD »
COMMUNITY »
FOUNDATION

CORE DEVELOPMENT

Why Develop Python?
Getting Set Up

Issue Workflow

How to Contribute to
Python

Intro to Development
Development Process
Culture

Tools

Patch Submission
Buildbot

Documenting Python
FAQ

PEP Index
python-dev Summaries
Python.org

Browse Subversion
Daily Snapshots

LINKS
Help Fund Python

= R

PEP: 8
Title: Style Guide for Python Code
Version: 68852
Last-Modified: 2009-01-22 09:36:39 +0100 (Thu, 22 Jan 2009)
Author: Guido van Rossum <guido at python.org>, Barry Warsaw <barry at python.org>
Status: Active
Type: Process
Created: 05-Jul-2001
Post-History: 05-Jul-2001

Introduction

This document gives coding conventions for the Python code comprising the
standard library in the main Python distribution. Please see the
companion informational PEP describing style guidelines for the C code in
the C implementation of Python[l].

This document was adapted from Guido's original Python Style Guide
essay([2], with some additions from Barry's style guide[5]. Where there's
conflict, Guido's style rules for the purposes of this PEP. This PEP may
still be incomplete (in fact, it may never be finished <wink>).

A Foolish Consistency is the Hobgoblin of Little Minds

One of Guido's key insights is that code is read much more often than it
is written. The guidelines provided here are intended to improve the
readability of code and make it consistent across the wide spectrum of
Python code. As PEP 20 [6] says, "Readability counts".

A style guide is about consistency. Consistency with this style guide is
important. Consistency within a project is more important. Consistency
within one module or function is most important.

Is Python a scripting language?

Historically scripting refers to authoring simple tasks, generally
in a high level interpreted language. Today the meaning is less
clear.

Scripting probably better refers to Pythons approach to
development, rather than what is capable in the language

— Scripting fosters an exploratory, incremental approach to
programming

— The developer scales up in complexity and power as
necessary

Common use cases

Python code is often deployed in the context of
larger applications

— Integration with Labview, GIS, Maya, Sage
Coordinating heterogeneous software components

— linking software written in diverse languages
Rapid prototyping

— exploring ideas before a detailed implementation
Concatenative programming

— creating software by intertwining libraries

Rethinking performance

Key notion: developer vs. computational efficiency
— common misconception that code is often CPU bound
— direct your time where it’s valuable
Like JAVA, Python is compiled to byte-code
— Portability at the expense of speed
— The core language, however, is highly optimized
* built-in data types are implemented in C

* built-in methods are thoughtful - sort is approximately
1200 lines of C in later versions of Python

More commonly than JAVA, you’ll see Python deployed in
high performance environments - Boost / LLNL

Getting started:
Language fundamentals, core data
types, control flow

Python versions

Python 3000 (released early 2009)
Intentionally backwards incompatible
— Major changes:

 printis a function (previously a statement), API
modifications (often views and iterators instead
of lists), text vs. data instead of unicode vs. 8-bit

e 2to3 tool available

Reference:
http://docs.python.org/3.0/whatsnew/3.0.html

Sample Python program (3.0)

lerminal emacs 509x27

import math

x: circumference of the circumscribed (outside) polygon
y: circumference of the inscribed (inside) polygon

max error allowed
eps = le-IGD

initialize w/ square
X 4
y 2*math.sqrt(2)

ctr =
while x-y > eps:
Xnew = 2*x*y/(x+y)
y = math.sqrt(xnew*y)
X Xnew
ctr += 1

print("PI " r{(x+y)/2))

print("# of ite ions " 4+ str(ctr))

-uu-:---F1 hello world. (Python)
Wrote /Users/josh/temp/hello_world.py

Sample program (2.x)

® OO Terminal — emacs-i386 — 70x14

foo =
options = | p p
- option options:
result = foo.replace(. option)
result

result:

All L1 (Python)

OO O Terminal — bash — 65x6

Josh:temp josh$ python knights.py
We are the knights who say charge?
We are the knights who say banana?

We are the knights who say neet!
That's more like it!
Josh:temp josh$

Tips for learning languages

Strategies that have proven valuable to last
semester’s students

— Iteration and refinement - first make it
work, then make it elegant

— Copious examples

— Side by side comparison against a familiar
language

— Think before using the web as a crutch

Writing and running programs

Python programs are run by passing them to the interpreter (or via
an interactive session)

Code has the extension (.py) - compiled bytecode (.pyc)

Python interpreters compile statements to byte code and execute
them on a virtual machine

Compilation occurs automatically the first time the interpreter reads
code which imports modules, and subsequently upon modification

— Standalone scripts are recompiled when run directly
Compilation and execution are transparent to the user

Python includes an interactive session mode

Hello world

Via .py files and the console Via the interpreter

lerminal emacs

. ‘) lerminal Python 50x13
print ("Hello world")

dyn-128-59-245-54:temp josh$ python3.1

Python 3.1 (r31:73578, Jun 27 2009, 21:49:46)

[GCC 4.0.1 (Apple Inc. build 5493)] on darwin
Type "help", "copyright", "credits" or "license" f
or more information.

>>> print ("Hello world")

lerminal bash 44x5 Hello world

>>>
dyn-128-59-245-54:temp josh$ python3.1 hw.py & I
Hello world
dyn-128-59-245-54:temp josh$ []

Main methods

lerminal emacs 77x24

print ("Code in out scope is executed")
print ("as the module loads")

def O:
classes and functions are declared and parsed
but not executed unless called

def ():
a good place to parse command line arguments
or place testing code for the moduleD

a common pattern to check whether this is the main module
makes use of the built-in dictionary
if _name__ == "_main -

print ("I'm the main module!")

main() # calls main

if this wasn't the first module loaded, return control here

~uu-:---F1 hw.p All L12 (Python)
Wrote /Users/josh/temp/hw.py

Development Environments: Text
Editors vs. IDEs vs. IDLE

Eclipse with PyDev

Pydev - HelloWorld/src/helloworld.py - Eclipse SDK - /Users/josh/Documents /workspace
T Q[|85l v n [@ pydev §Java

% Pydev Package Expl 82\~ U1 |[) helloworld.py &3 _ =0

IDLE

N print ‘'mmm_donut
LT Jhgjhk
1 con
L] convert
> Helloworld
(5 sre
) helloworld.py
7 temp2
1] temp3

£ problems | & Console &3 X% GEEE #B-r5-78

JUsers/josh/D: F /src/ .py
mmm donut

Writable Insert 1:18

File Edit Fornmat Run Options Windows Help
. -, Python Shell =
#— Needed for Ccheck Module AltsX Python (xml.dom)
_makeAttrD
. att Run Module F5 |
1 {}

"

attr.has_key{ ' dummy')
AttributeError:
assume a W3C NamedNodeMap
attr_dict = {}
i in range(attr.length):
node = attr.item{(i)
attr_dict[nhode.nodeName] = node
attr_dict

"

attr

#—— Class interface to module functionality
XML_Ob.jectifu:

Ln: 1|Col: 1

http://pydev.sourceforge.net/

Lexical Structure:
Python cares about whitespace

 The lowest level syntax of the language -
specifies, for instance, how comments and
variable names appear

* Python programs are composed of a set of
plain text ASCIlI encoded source files

* Like other language, Python source files are a
sequence of characters, however: unlike in C or
JAVA, in Python we’re interested in lines and
indentation - whitespace counts

Logical vs. Physical Lines

Python programs consist of a
sequence of logical lines, which may
contain one or more physical lines rerminali=—emacsi=425¢15

donuts = {} # an empty dictionary

— lines may end with a comment

— blank lines are ignored by the ¥ redeclared and populated

] donuts = {'homer' : 42, 'lisa' : 6}
compiler
)] # a statement spanning physical lines
— the end of a physical line marks B note the open brace has not terminated
the end of a statement donuts = {'homer' : 42,
'lisa' : 6}
Producing readable code:
manual spanning via '\'
— physical lines may be joined by a donuts = {'homer' : 42, \
(\) character 'lisa’', 6}

~uuu:---F1 hello world.p All L7 (P

— if an open parenthesis ((), brace
({), or bracket ([) has not yet
been closed, lines are joined by
the compiler)

Indentation

Indentation is used to express block
structure

Unlike C or JAVA (or most languages
in fact) indentation is the only way
to denote blocks

Blocks are delineated by contiguous
whitespace sequence, typically in
units of four spaces, immediately to
the left of a statement

All statements indented by the same
amount belong to an identical block

Indentation applies only to the first
physical line in a logical block

The first physical line in a source file
must have no indentation

lerminal emacs 33x16

block 1
if condition:
block 2
...,
if second_condition:
block 3
...,
else:
block 4
...,
else:
block 5

....[]

~uuu:**-F1 hello world.g Top

Formal syntax: Tokens, identifiers,
keywords, operators, delimiters

Logical lines are understood as
sequences of tokens

Tokens are substrings of the line,
which correspond to identifiers,
keywords, operators, delimiters,
and literals

Identifiers name functions,
variables, classes, or modules

Identifiers start with a character
or an underscore

Python is case sensitive
Punctuation is disallowed
within identifiers

Convention: start a class name
with an uppercase character,
and everything else with a
lower

A literal is a string or numerical value
that appears directly in program text
Keywords are reserved identifiers -
Python has about 30 of them, many
should be familiar to other languages

— (and, assert, break, class,
continue, def, del, and so forth)

Non-alphanumeric characters (and
combinations) are used by Python as

operators
— (+,-, %/, <=, <>, =, and so forth)

These symbols are used as delimiters
in expressions, lists, dictionaries, and
sets

- () L1{1},andsoforth)

Statements and Expressions

A Python program may be understood as a sequence of simple and
compound statements

Unlike C or JAVA, Python does not have any forward declarations or
other top level syntax

The general rule is one statement per line (statements can be
terminated with (;), but it’s unusual style)

Statements may be expressions (a phrase which evaluates to produce a
value) or assignments

The simplest expressions are literals and identifiers

Expressions are built by joining subexpressions with operators and
identifiers

Compound statements

Contain a set of statements
and control their execution

Compound statements contain
a set of clauses

— Each clause has a header
starting with a keyword,
and ending with a (:)

— Followed by a body, which
is itself a sequence of
statements, terminated
when indentation returns to
the outer level

Also legal are simple
statements following the (:)

43x14

philosophers = set(['homer', 'aristotle'])
simpsons = set(['homer', 'bart'])

[erminal emacs

both = simpsons.intersection(philosophers)

0

if len(both) > O:
print 'these guys are in each!'
print both

~uu-:**-F1 hello world.p

7% L12 (Py

Assignment

Python

* Python is dynamically typed and
features automatic memory

management

foo =42
foo =42.42e7
foo = “dolphin”

foo = [“one”, “two”, “three”]
foo ={‘dozen’ : 12}

foo.append(“four”)

foo = some_class()

int foo = 42;
float foo = 42.42;

char *cp = “dolphin";

Java

List<String> foo = new
ArrayList<String>();

Object foo = new Object ();

41

Data types

Built-in types

All data values in Python are objects, and each object has a
type

Built-in types cover numbers, strings, lists, tuples, and
dictionaries

Type determines supported operations

— For instances, lists support .reverse(), but strings (as
immutable objects) do not

Mutable vs. immutable objects
Useful functions: type(obj) and isinstance(obj, type)

User defined type are supported via classes

Basic types: Numbes
Support for ints (including

long, if you're coming
from C) floating point,
and complex

Unlimited precision (you
may indeed compute

2721000,000 (but not if
you’re in a rush))

Up casting is automatic

All numbers in Python are
immutable - so any
operation on a number
always produces a new
object

4,-24,0

12.4, 3.14e-10, 4.0e+210

1e10, 1E1

oL

3+4j

0177, 0x9ff, OxFF

Standard Integer
(corresponds to C longs)

Floating Point
(corresponds to C
doubles)

Scientific Notation

Unlimited Precision Long
Integer

Complex

Octal and hex literals for
integers

Basic types: Numeric operations
Basic mathematical modules

are included by default

— You’ll need “import 1-2.0
math” for square root,

2*12
common constants, etc /
. 5/2
NumPy / SciPy:
5.0/2

http://numpy.scipy.org/

— Similar to a high
performance open source 2* 81
MATLAB implementation «se100

— Matrix data types, vector 5+ 10e1
processing, sophisticated
computation libraries

Sage: www.sagemath.org

5% 2

math.pi

math.sqrt(85)

-1.0

24

2

2.5

1

274.37

9.99e+100

200.0

3.141592...

9.2195...

Basic types: Strings

Strings are immutable objects Syntax Result
which store a sequence of

characters (plain or Unicode)

‘Marge’ ‘Marge’
— May be used to represent arbitrary
sequences of binary bytes
Single or double quoting allowed, ~ Homer Homer
triple quoting for multiline
Unicode su pport “Lisa’s Music” “Lisa’s Music”
— Useful for multilingual text and
special characters “Homer’s\tdonut” “Homer’s donut”
— Very strong support in Python 3000
Raw Strmg encodlng u’bart\u0026lisa’ u’bart&lisa’
— r“C:\Josh\Document’s\”
All the typical escape characters CASimpson\Bart\’ “CA\Simpsom\Bart”

— “\n” = new line
_ ll\tll _ tab

Basic types: String methods

s1 = “Josh” Declares a new variable foo = “The Simpsons”
s2 = “a marathon”

s1+ “is training for “+s2 ‘osh is training for a foo.lower()
marathon’ (concatenation)
foo.find(“S”)
foo.find(“z”)
s1[0] ‘)’ (give me the first
character in s1) foo.split(“ “)
s1[0:3] Jos (give me the first 3 oo el
characters)
“The” in foo
s1*3 “JoshJoshJosh” (repeat)

o

whitespace “strip()

Declares a new variable

‘the simpsons’

4

-1

[“The”, “Simpsons”]
False

True

“whitespace”

Common theme with Python: basic operations are abundant and behave as
you would expect - the complexity of syntax corresponds with the

complexity of the operation

Basic types: Lists

A list is an ordered I

collection of objects foo =] (an empty list)
. foo =1[0,1,"bar”] (a list containing two
Lists are both integers and a string)

mutable and
heterogeneous (may
be composed of

a rbitra ry ObjeCtS Of foo =1[0,1,[“a”, “nested”, “list”], 3] (a nested list)
different types)

foo[2] “bar” (the second
element in foo)

foo[2] [“@”, “nested”, “list”] (the
Support arbitrary third element of Foo)
hesti ng (e'g.' lists foo[2][1] “nested” (the second
Wlthln IIStS) element of the third

element of foo)

Support slicing and
indexing (by offset)

Basic types: List methods

Modifying the list (in any

function) modifies the original

copy)

Sorting is a built-in method

(common feature of scripting

languages)

— Highly optimized, handles
many special common
cases (including partially
sorted list, a list
constructed from two
sorted lists, a reversed list,
etc)

Basic slicing and indexing:
_ foo - [lla”’ llb”’ HCII’ lld”]
— foo[-2]
* Counts from the right,
returns ‘c’

foo =]

wun

foo.append(“a”)

ow_n

foo.append(“c”)

foo.append(“b”)

foo.append(“x”)

foo.pop()

foo.sort()

ow_n

foo.index(“c”)

foo[1:]

(empty list)

("]

o n u_n

[“a”, “c”]

[lla”’ llcll’ llb”]

o _n o, n uyp.n o n
[“a”, “c”, “b”, “X”]

“x” (removes and returns the last

element from Foo)

[“a”, “b”, “c”] (sorts in place)
2

[“b”, “c”] (slicing: give me all the
elements beginning from index 1)

Ex. [terating over a list

@ OO Terminal — emacs-i386 — 70x14

foo =
options = | ¢ ¢
- option options:
result = foo.replace(. option)
result
result:

All L1 (Python)

OO O Terminal — bash — 65x6

Josh:temp josh$ python knights.py
We are the knights who say charge?
We are the knights who say banana?

We are the knights who say neet!
That's more like it!
Josh:temp josh$

Nested lists ex. (but NOT the right
way to represent a matrix)

():

matrix = [["upper left",2,3],[4,"center",6],[7,8,"lower right"]]
orint matrix[1][1]
orint "The upper row” + matrix[0]

main()

9

center
The upper row: ['upper left’, 2, 3]

Basic Types: Dictionaries

e Dictionaries are unordered
collections

*Like lists, dictionaries are
mutable and heterogeneous

*Unlike lists, which are accessed
by index, dictionaries are
accessed by key

* Methods .keys(), .values(), .items
() vs. iterkeys(), etc

*Dictionaries are mappings:
arbitrary collections of objects
indexed by (almost) arbitrary
keys

*One of the more optimized
types in Python, used properly
many operations are constant
time (amortized)

foo = {} Empty dictionary

foo[‘coffee’] = “good” Single item dictionary

foo[‘decaf’] = “bad” Foo now contains two
items

foo[‘coffee’] “good”

decaf’ in foo True

foo.keys() [‘coffee’, ‘decaf’]

foo[‘tea’] KeyError!

foo[‘tasty’] = [‘cookies’, Note that dictionary
‘ice-cream’] keys may reference
arbitrary objects

Discussion:
Why can you not sort a dictionary in place?
What would you do if you had to sort one?

Dictionary basics: sparse data structures

T n
e)
mann
SR A\ \ >§§\\ X\ t\\i \L
' mmm
; \\\\\\@\\\ \&\\% \N&\\\

R\ \\ § A\
\\§ \\ Q \~ N N S
‘mE W

N N\

B A BB
AR 2= \RR \ \
\ A\ _

board[(0, 4)] = "LIGHT KING"
board[(7, 4)] = "DARK_KING" |

Discussion:

Can you compare the memory usage of this representation
against a matrix using lists? (Chess boards are 8x8)

— lgnore the size of the dictionary and list support code (becomes
insignificant at large sizes)

Dictionaries as record objects

random
homer[‘donutSupply’] =5
homer['hairsRemaining‘] = 4
homer['noises'] = [‘Munch’, ‘Crunch’, ‘MMM Donut’, ‘Aghggh’]
homer['donutSupply'] > O:
homer['donutSupply'] -=1
random.choice(homer['noises'])

9

MMM Donut
Aghggh
Aghggh
Munch
Crunch

Basic types: Tuples
Tuples are:

— Ordered collections) An empty tuple
— Accessed by offset

. . foo=(‘h e ’ A three item tupl
— Static and immutable 402(; (homer’, ‘marge rec em Tpie
— Fixed length
— Heterogeneous foo[1] ‘Marge]
— Nestable len(Foo) 3
Many of the same operations foo[-1] "
as lists and dictionaries
fool[:-1] [‘homer’, ‘marge’] (give
Why tUpleS? me everything up until
— Program integrity the last element)

— Occasionally used as a type of
constant

Control flow basics

Comparisons and Booleans

Parenthesis are optional

The end of line is the end of LELEAIN
statement cout << “x is larger”;

The end of indentation is the JIIX

end OT . blOCk. cout << “x is smaller”;
Why indentation syntax?

— Enforces consistency and
readability

if x>vy:

print “x is larger”
else:

print “x is smaller”

Comparisons and Booleans Continued

- The dangling else
If (x) problem:

if (y) — Which statement does the
else belong to?

* This problem doesn’t
occur in Python

Note: although you may
be smart enough not to
write code this way,
others on your project
may not be

statement];

else
statement?2; .

Comparisons and Booleans Continued

foo = True A new boolean variable
5>5 False
5==5,5==4 (True, False)
statementl
not 5 False
o e o e else:
(True and True and False) False state mentz
True and (5 > 4) True
True and (“a” == “b") False

True or False True

Control flow basics

Control flow: for statements

For loops are valid over any iteratble (strings, lists, tuples)

7«

for x in range(5): |Simpsons = [“Homer”, “Marge”,

orint x “Lisa”, “Bart”]
for person in Simpsons:

print person

->
Homer
Marge
Lisa
Bart

Control flow: nested for statements

* Loops (like all =0
statements) can be for x in range(3):
nested for y in range(3):
* For loops are valid over i—i11

any iterable sequence

* While <test>: #repeat while

Control flow: while statements

General form:

true

— <statements>
Else: #optional
— <statements>

Control flow: break and continue

* break:
— exits the loop immediately

e continue:

— returns to the beginning of
the loop

if b<10:

Preview: list comprehension

* Likely novel if you're
familiar with C or
Java
— Derived from set theory

 Ashortcutto

construct a new list

— Also a performance boost
due to Pythons internals

e We'll see these used
more later

foo =11, 2, 3]
bar =[x+ 10 for x in foo]

9
bar is now [11, 12, 13]

bar =[]
x in foo:
bar.append(x + 10)

User input from the console

Reading from the console

@ O O Terminal — emacs-i386 — 69x11

radius = input()
circumference = 2 * math.pi * radius
: , circumference

-uu-:---F1 gircle.py (Python)
Loading python...done

OO O Terminal — bash — 67x6

Josh:temp josh$ python circle.py

Enter the radius: 12.2
the circumference is 76.6548607476

Josh:temp josh$

Type casting

What happens if you try to True:

square a number the user x = input(‘Square: ')
enters? (x == "quit'):
Correction

— print int(userSays) ** 2
Casts work the other way
too

— x="hi"+5+" times"”

— x="hi" +str(5) + " times”
You may cast between
complicated structures as
well — but be careful you
understand the expected
behavior in advance

Assignment 1

Due before the start of class next
week

Exercise 1 of 2
Primes

e 1. Install Python

e 2. Write a script to compute and print the prime
numbers below N. Read N from the console by
prompting the user.

— Performance is not important, you’ll be graded on
correctness only.

Josh:temp josh$ python primes.py
Compute primes up to? 15
23571113

Josh:temp josh$

Exercise 2 of 2
Word frequency

 Write a word frequency counter. Your program
should prompt the user to enter a single word per
line (or return to finish). Report the frequency of
each word, sorted alphabetically in ascending order.

* Hint: Use a dictionary. When the user enters a word,
check if the dictionary has that key.

Spython word_freq.py

Enter a word (or return to finish
Enter a word (or return to finish
Enter a word (or return to finish): homer
Enter a word (or return to finish): bart
Enter a word (or return to finish):

:homer
: homer

~— — —

You entered:
bart: 1
homer: 3

Challenge problem

For the ambitious only, implement a solution to the following comic (a
variant of the knapsack problem).

MY HOBBY:
EMBEDDING NP-COMPLETE PROBLEMS IN RESTRURANT ORDERS

{ CROTCHKIES RESTAURANT

«— APPENZERS ——

r MIXED FRUIT 2.15
FRENCH FRIES 2.75
SIDE S5ALAD 3.35
HOT WINGS 3.55
MOZZARELLA STICKS 4.20
SAMPLER PLATE 5.80

—— SANDWICHES ~—

WED LIKE EXACTLY §15. 05
WORTH OF APPETIZERS, PLEASE.
| .. EXACTLY? UHH ...

HERE, THESE PAPERS ON THE KNAPSACK
PROBLEM MIGHT HELP YOU OUT.

LISTEN, I HAVE Six OTHER
TABLES TO GET TO —

—AS FAST AS POSSIBLE, (F COURSE. WANT
SOMETHING ON TRAVELING SALESNAN? /

.
[¥ATY

Source http://xkcd.com/287

Submission instructions

Please submit a zip including your source and
README to courseworks

Under class files, select “Post File” — be sure to
select the appropriate folder (e.g., assignment 1)

CVN: email me a zip (we’ve had issues uploading
code)

Note:

— When you're reading files down the road, use relative
(not absolute paths)

See you next week

Course website (with these slides and the
assignment)

— www.cs.columbia.edu/~joshua/teaching/cs3101/

Bring your laptops next week
Questions: joshua@cs.columbia.edu

