
CS 3101.3 Python:
Lecture 6

February 26, 2009

Thursday, February 26, 2009

Project Proposals
• We have a range of great ideas

• Craigslist mining and statistical analysis

• Genetic algorithms

• Financial engineering

• Hardware interface to lab equipment

• Music crawler

• Network subterfuge

• Prime number sieves

• ...

Thursday, February 26, 2009

Final Projects
• Due Thursday March 5th 6pm by email to

joshua@cs.columbia.edu

• Submit a single zipped archive containing source code and the
following:

• README.txt - a short plaintext file detailing any libraries
your code depends on, where to download them, and
instructions for running your code

• PROJECT.pdf - a pdf writeup describing your project,
results, lessoned learned, etc.

• Well documented internally - especially if you anticipate
trouble areas

• Neatly packaged, should work out of the box - all paths must
be relative

Thursday, February 26, 2009

mailto:joshua@cs.columbia.edu
mailto:joshua@cs.columbia.edu

Demos

• A couple of projects depend on external
resources - databases, web servers, lab
equipment

• Submit your code as normal

• Send me an email to schedule a demo

Thursday, February 26, 2009

Office Hours
I’ll be camping in the TA room:

Monday March 2nd: 6pm-8pm

Tuesday March 3rd: 6pm-8pm

and

by email appointment
(joshua@cs.columbia.edu)

Thursday, February 26, 2009

mailto:joshua@cs.columbia.edu
mailto:joshua@cs.columbia.edu

• First lecture is Wednesday March 4th, 4pm

• Hopefully no one needs to sit that one :)

• Regular expressions, however, are coming up

CVN

Thursday, February 26, 2009

Agenda

• Performance:

• Optimization: when and why

• Profiling, identifying hotspots, timing execution

• Memoizing function return values

• Integrating Python with C / C++

• Distutils and SWIG, Boost

• Common questions

• Sorting a dictionary

• Documentation

• The None keyword

• Scheduling

• Sending Email

• Threads 101

Thursday, February 26, 2009

Performance Basics
• Data Structures and Algorithms

• Focus on the big picture

• Disk, network I/O

• Almost always when I see scripts performing
poorly it’s one of these

• Batch operations - cache data in memory, read and
write en masse

• Code generally spends 90% of it’s time in 10% of its
context

Thursday, February 26, 2009

Optimizing performance

• In scripting we are much more interested in

• correctness

• readability

• efficiency w.r.t. to development time

• When you need to be fast with Python, you have options

• Identifying hotspots with the profile module

• Small scale optimization with timeit

• Rewriting libraries in C++

Thursday, February 26, 2009

Starting small with
timeit

• A good introduction to benchmarking

• Useful for small scale optimizations, i.e., measuring the
performance of a single routine

• Covers many common gotchas - i.e., setup code,
multiple runs

• Quick question: Say you benchmark a function with
identical inputs several times. The running times are
100ms, 90ms, and 110ms respectively.

• Which time would you report as the most accurate
estimate of performance?

Thursday, February 26, 2009

From the command line
• ./python -mtimeit -s ‘setup statements(s)’ ‘bechmark

statements’

• josh$ python -mtimeit -s 'x=[5,4,3]*100' 'x.sort()'

• 100000 loops, best of 3: 13 usec per loop

• josh$ python -mtimeit -s 'x=[5,4,3]*100' 'sorted(x)'

• 10000 loops, best of 3: 88 usec per loop

• Notice timeit automatically adjusts the number of loops
run. Cool right?

• Difference between sorted and sort?

Thursday, February 26, 2009

A classic (newly defunct?) example of a common
pitfall: building a string

def slow():
 big = ''
 small = 'foo'
 for i in range(10000):
 big+= small
 return big

def fast():
 big = []
 small = 'foo'
 for i in range(10000):
 big.append(aDonut)
 return ''.join(big)

if __name__ == '__main__':
 from timeit import Timer
 t1 = Timer('fast()', 'from __main__ import fast')
 t2 = Timer('slow()', 'from __main__ import slow')
 print t1.timeit(number=100) / t2.timeit(number=100)

1.54

O(n^2)

O(n)

Notice the unexpected results (Using Python 2.5)?

Thursday, February 26, 2009

Profiling

• Typically code spends 90% of its time in 10% of it’s
context

• Don’t guess where - it’s often not obvious

• Pattern: use the profile module with standardized inputs
to analyze code, then analyze the data with pstats

• Profiling is not just for algorithms intensive work

• worth considering when working with large data sets

• a must if you’re sending code out into the world

Thursday, February 26, 2009

Profiling

• Calibration: if you’re doing serious work you’ll
want to calibrate profile to your machine - takes
care of the overhead

• See profile.calibrate, the python doc, or Python
in a nutshell p.480

• You can run profile directly and see statistical
output, or write to disk with an optional
filename=... named parameter.

• Consolidate several runs and analyze with pstats

Thursday, February 26, 2009

Profiling
def recFib(n):
 if n == 0 or n == 1: # base case
 return n
 else:
 return recFib(n-1) + recFib(n-2)

def iterfib(n):
 sum,a,b = 0,1,1
 if n<=2: return 1
 for i in range(3,n+1):
 sum=a+b
 a=b
 b=sum
 return sum

def go():
 print recFib(20)
 print iterfib(20)

if __name__ == '__main__':
 import profile
 profile.run('go()')

 21897 function calls (7 primitive calls) in 0.312 CPU seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 0.000 0.000 :0(range)
 1 0.001 0.001 0.001 0.001 :0(setprofile)
 1 0.000 0.000 0.311 0.311 <string>:1(<module>)
 1 0.000 0.000 0.312 0.312 profile:0(go())
 0 0.000 0.000 profile:0(profiler)
21891/1 0.311 0.000 0.311 0.311 t.py:1(recFib)
 1 0.000 0.000 0.311 0.311 t.py:16(go)
 1 0.000 0.000 0.000 0.000 t.py:7(iterfib)

Thursday, February 26, 2009

Visualizing results
• Generating call graphs

• References:

• http://www.graphviz.org/

• http://code.google.com/p/
jrfonseca/wiki/Gprof2Dot

• http://docs.python.org/
library/profile.html

python -m profile -o output.pstats
python gprof2dot.py -f pstats output.pstats | dot -Tpng -o output.png

Thursday, February 26, 2009

http://www.graphviz.org
http://www.graphviz.org
http://code.google.com/p/jrfonseca/wiki/Gprof2Dot
http://code.google.com/p/jrfonseca/wiki/Gprof2Dot
http://code.google.com/p/jrfonseca/wiki/Gprof2Dot
http://code.google.com/p/jrfonseca/wiki/Gprof2Dot
http://docs.python.org/library/profile.html
http://docs.python.org/library/profile.html
http://docs.python.org/library/profile.html
http://docs.python.org/library/profile.html

Memonization using
function decorators

• Idea: cache a functions return results in a
dictionary, keyed by the arguments that
produced that value

• One student used this technique on
homework 2

• Worth understanding - useful for optimizing
recursive functions, server side code

Thursday, February 26, 2009

Memoizing a recursive
function

#cache the return values of a fn
def memoize(cache=None):
 if cache is None: cache = {}
 def decorator(function):
 def decorated(*args):
 if args not in cache:
 cache[args] = function(*args)
 return cache[args]
 return decorated
 return decorator

63 function calls (5 primitive calls) in 0.010 CPU seconds
21/1 0.000 0.000 0.001 0.001 t.py:11(memFib)
39/1 0.000 0.000 0.001 0.001 t.py:4(decorated)

21894 function calls (4 primitive calls) in 0.302 CPU seconds
21891/1 0.301 0.000 0.301 0.301 t.py:16(fib)

@memoize({})
def memFib(n):
 if n < 2: return 1
 return memFib(n-1) +
memFib(n-2)

def fib(n):
 if n < 2: return 1
 return fib(n-1) + fib(n-2)

if __name__ == '__main__':
 import profile
 profile.run('memFib(20)')
 profile.run('fib(20)')

Thursday, February 26, 2009

Data structure internals

• Python optimizes the common case heavily -
make use of that

• In general you can expect excellent
performance when using the built in types
appropriately

• Caution when not - you need a basic
underlying knowledge to sense where
performance might degrade

Thursday, February 26, 2009

Lists

• List operations:

• internally implemented as vectors

• Chaining two lists together O(len(a) + len(b)

• Accessing or rebinding any item: O(1)

• Len: O(1)

• Slicing, O(M)

• Rebinding with segments of different length

• cheap when appending to the tail of the list, if you need
FIFO operations on large lists - see collections.deque

Thursday, February 26, 2009

Deques

source: http://docs.python.org/library/collections.html
Thursday, February 26, 2009

http://docs.python.org/library/collections.html
http://docs.python.org/library/collections.html

Strings

• String operations

• Most methods are O(N) where N is the
string length, len is O(1)

• Fastest way to produce a copy of the
string with transliterations / removal is
the string’s translate method

source: http://docs.python.org/library/stdtypes.html

Thursday, February 26, 2009

http://docs.python.org/library/stdtypes.html
http://docs.python.org/library/stdtypes.html

Dictionaries and sets
• Internally hash tables

• one of the more highly optimized implementations around

• Accessing, rebinding, adding, removing: generally 0(1)

• Iterkeys vs. keys

• Methods: keys, values, items are O(n)

• Methods: iterkeys, iteritems, itervalues are O(1)

• Iterkeys() return an element at a time, keys() returns a list

• consider the different memory charactistics

• Gotchas: testing if a value is in a dictionary

• Never use if x in d.keys() - that’s O(n): instead use: if x in d

• Sets are similar

Thursday, February 26, 2009

Sort
• Using operator ‘in’ is the natural tool for checking membership

• O(1) for dictionaries and sets

• O(n) for sequences (lists, strings, or tuples)

• If you find yourself performing many lookups on a sequence,
consider restructuring with a dictionary

• Alternatively, it may be worth your time to maintain a sorted copy

• Internally, (as of 2.4) merge-sort: stable (equivalent items retain
their relative position)

• Close to 1200 lines of C code, handles many common cases
(already sorted lists, reverse sorted, mostly sorted aside from a
few random elements, the input is the concatenation of two
already sorted sequences, and onward)

• Performance drops off fast when using custom comparators -
best bet to use the built in types

Thursday, February 26, 2009

Common question
Sorting a dictionary by keys and values

• If you find yourself frequently needing to sort a dictionary consider a support
data-structure

• By keys: simplest approach: sort the keys then extract the corresponding elements

• Many ways: see: http://writeonly.wordpress.com/2008/08/30/sorting-dictionaries-
by-value-in-python-improved/

d = {'homer' :350, 'marge': 140, 'bart': 80, 'lisa': 70, 'maggie': 6}

keys = d.keys()
keys.sort()
print [(key, d[key]) for key in keys]
[('bart', 80), ('homer', 350), ('lisa', 70), ('maggie', 6), ('marge', 140)]

couple ways
from operator import itemgetter
print sorted(d.items(), key=itemgetter(1))
or
items = d.items()
items.sort(key = itemgetter(1))
print items
[('maggie', 6), ('lisa', 70), ('bart', 80), ('marge', 140), ('homer', 350)]

Thursday, February 26, 2009

http://writeonly.wordpress.com/2008/08/30/sorting-dictionaries-by-value-in-python-improved/
http://writeonly.wordpress.com/2008/08/30/sorting-dictionaries-by-value-in-python-improved/
http://writeonly.wordpress.com/2008/08/30/sorting-dictionaries-by-value-in-python-improved/
http://writeonly.wordpress.com/2008/08/30/sorting-dictionaries-by-value-in-python-improved/

C / C++ Integration

• There are instances when scripting languages
won’t cut it from a performance perspective

• Often as your intuition develops you can get a
sense for this in advance

• Additionally, life is heterogeneous - many
instances in which you’ll need to connect to a
driver or library written in C

• You can make your life easier by scripting the
bulk of code, and interfacing the special cases

Thursday, February 26, 2009

Extending and Embedding

• Recall that Python itself runs in a C-coded VM

• built in types (including numbers, sequences,
dictionaries, sets) are coded in highly optimized C

• as well as many standard library modules

• Extending

• building C / C++ modules that Python code can access
using the import statement (as well as other languages)

• Embedding

• executing Python code from an external C application

Thursday, February 26, 2009

Common cases

• Performance:

• you re-implement functionality originally coded in
Python

• rapid prototyping

• Leveraging existing functionality in a C library

• avoid reinventing the wheel

• many high quality highly optimized libraries written

• Exposing Python functionality to a host language in
the process of embedding Python

Thursday, February 26, 2009

The common case:
exposing an existing library

• Recall Python’s use as Glue

• Exposing the functionality of an existing C
library is a common task

• getting at hardware drivers, math libraries,
vision packages, ontologies, etc

• Many existing tools to help you

Thursday, February 26, 2009

Fundamentals
• A C-coded extension is guaranteed to run only with the version

of Python it is compiled for

• You generally need an identical compiler to that used to build
your version of Python

• on *nix systems - it’s gcc

• microsoft is usually MSVC

• A Python extension module named ‘foo’ generally lives in a
dynamic library with the same filename (foo.pyd on Win32,
foo.so on *nix)

• That library is customarily placed in the site-packages sub
directory of the Python library

Thursday, February 26, 2009

Manual decoration

//gcd.c
int gcd(int a,int b)
{
	 int c;
	 while (a!=0) {
	 	 c = a;
 a = b%a;
 b = c;
	 }
	 return b;
}

// gcd_wrapper.c
#include <Python.h>

extern int gcd(int, int);

PyObject *wrap_gcd(PyObject *self, PyObject *args){
	 int x,y;
	 if (!PyArg_ParseTuple(args, "ii", &x, &y)) return NULL;
	 int g = gcd(x, y);
	 return Py_BuildValue("i", g);
}

/* List of all functions to be exposed */
static PyMethodDef gcdmethods[] = {
 { "gcd", wrap_gcd, METH_VARARGS}, {NULL, NULL}
};

void initgcd(void){
 /* Called upon import */
	 Py_InitModule("gcd", gcdmethods);
}

Thursday, February 26, 2009

Building and installing
with distutils

• Distribution utilities automates the building and installation of C-coded
modules

• cross platform: definitely the way to go rather than a manual
approach

• Assuming you have a properly decorated C module ready to go, say
foo.c, create a new file: setup.py in the same directory, execute the below

• then run from the shell $python setup.py install

• you’re now free to import your module

• import gcd

• gcd(40, 4)

from distutils.core import setup, Extension
setup(name='gcd',ext_modules=[Extension('gcd',sources=['gcd.c'])])

Thursday, February 26, 2009

SWIG
• Manual decoration is cumbersome

• Appropriate when you’re coding a new built-in data type,
or core Python extension, otherwise: use a tool

• Simplified Wrapper and Interface Generator: http://
www.swig.org

• SWIG decorates C source with the necessary Python markup

• Markup generation is guided by the library’s header file
(occasionally with some help)

• Not Python specific, support for:

• Scripting: Perl, PHP, Python, Tcl, Ruby.

• Non-scripting languages: C#, Common Lisp, Java, Lua,
Modula-3, OCAML, Octave and R

Thursday, February 26, 2009

http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org

SWIG (much easier)

//example.c
int gcd (int a, int b)
{
	 int c;
	 while (a!=0) {
	 	 c = a;

a = b%a;
b = c;

	 }
	 return b;
}

//example.h
int gcd(int,int);

Thursday, February 26, 2009

Importing a function
//example.i - swig directions
%module example
/* Parse the header file to generate wrappers */
%include "example.h"

#import as normal
#test.py
from example import gcd
print gcd(7890, 12)

#install using shell commands
$swig -python example.i
$python setup.py install

#leverage distutils!
#setup.py
from distutils.core import setup, Extension
setup(name='example', ext_modules=[Extension('example', sources=['example.c'])])

Thursday, February 26, 2009

Boost

• Uniformly high quality C++ libraries

• Development partially funded by LLNL
and LBNL

• Mathematics intensive

• References:

• www.boost.org/libs/python/doc

Thursday, February 26, 2009

http://www.boost.org/libs/python/doc
http://www.boost.org/libs/python/doc

Detailed references

• http://www.python.org/doc/ext/ext.html

• http://www.python.org/doc/api/api.html

• http://www.swig.org/tutorial.html

• www.boost.org/libs/python/doc

• Python in a Nutshell, 2nd Edition: Chapter 25

Thursday, February 26, 2009

https://www.python.org/doc/ext/ext.html
https://www.python.org/doc/ext/ext.html
http://www.python.org/doc/api/api.html
http://www.python.org/doc/api/api.html
http://www.swig.org/tutorial.html
http://www.swig.org/tutorial.html
http://www.boost.org/libs/python/doc
http://www.boost.org/libs/python/doc

Common question
Pydoc & Docstrings

• Docstrings are used by source
parsing tools

• Viewing doc from the
terminal

• pydoc sys

• Producing html

• pydoc -w hello > hello.html

• Starting a local webserver

• pydoc -p 9999

Thursday, February 26, 2009

Common question
None vs ‘None’

• Take a look at Pythons internal types:

• http://docs.python.org/library/types.html

• “The sole value of types.NoneType. None is frequently
used to represent the absence of a value, as when
default arguments are not passed to a function.”

def kungfu(punches=5, kicks=None):
 if kicks == None:
 print 'boring'
 else:
 print punches, kicks

kungfu(5, 5) 5 5

kungfu(5) boring

Thursday, February 26, 2009

http://docs.python.org/library/types.html
http://docs.python.org/library/types.html

Common question
Scheduling Events

• Often have the need to run
scripts incrementally

• Useful for maintenance,
updates

• Many operating systems
have this capability build in -
cron, windows scheduler

• Nice to have a little more
control

simplistic
import time, os, sys

def main(cmd, inc=60):
 while True:
 os.system(command)
 time.sleep(inc)

if __name__ == '__main__':
 cmd = sys.argv[1]
 if numargs <3:
 main(cmd)
 else:
 inc = sys.argv[2]
 main(cmd, inc)

Thursday, February 26, 2009

Using sched

• Why the input of a delay function? When would you not
want to use real-time?

• Adding an event returns a unique token which may be used
to check status, cancel, etc

• enter - schedules an event at a relative time

• enterabs - schedules a future event at a specific time

• support for priorities

• won’t overlap or cancel tasks by default

• useful for guaranteeing a scheduled task completes at the
given rate on average

• see: http://docs.python.org/library/sched.html

import sched
schedule = sched.scheduler(time.time, time.sleep)

Thursday, February 26, 2009

http://docs.python.org/library/sched.html
http://docs.python.org/library/sched.html

More libraries: email
import smtplib,os
#import classes
from email.MIMEMultipart import MIMEMultipart
from email.MIMEBase import MIMEBase
from email.MIMEText import MIMEText
from email import Encoders

def mail(to, subject, text, attach):
 msg = MIMEMultipart()
 msg['From'], msg['To'], msg['Subject'] = user, to,subject
 msg.attach(MIMEText(text))
 part = MIMEBase('application', 'octet-stream')
 part.set_payload(open(attach, 'rb').read())
 Encoders.encode_base64(part)
 part.add_header('Content-Disposition',
 'attachment; filename="%s"' %
 os.path.basename(attach))
 msg.attach(part)
 mailServer = smtplib.SMTP("smtp.gmail.com", 587)
 mailServer.ehlo()
 mailServer.starttls()
 mailServer.ehlo()
 mailServer.login(user, pwd)
 mailServer.sendmail(user, to, msg.as_string())
 mailServer.close()

message = os.system('sports')
image = os.system('sports_image')
subject = 'Sports!'
mail("jbg2109@gmail.com", "Sports!", \
message, image, 'user', 'pass')

see: http://docs.python.org/library/smtplib.html

Thursday, February 26, 2009

http://docs.python.org/library/smtplib.html
http://docs.python.org/library/smtplib.html

Common questions
Reversing a string by characters or

words

• Lists have the .reverse() method

• Strings do not, but it’s still straightforward

s = 'ford'
print s[::-1]
s = 'homer drives a ford'
rev = s.split()
rev.reverse()
print ' '.join(rev)

drof
ford a drives homer

Thursday, February 26, 2009

Process, Threads
• Process

• run in separate, protected logical address space

• interprocess communication occurs through special
channels - network, a file, a protocol, etc

• Threads

• Execute simultaneously in a given program w/o protection
- sharing data is easy - lower overhead, faster
communication

• Examples of multithreaded programming?

• Concurrency issues, atomic and non-atomic operations

Thursday, February 26, 2009

The Global Interpreter
Lock

• Python’s core implementation using a GIL which protects internal
data structures

• The key to this lock must be held by a thread before it can safely
access objects

• The interpreter releases and reacquires the lock every 100 byte
code instructions (settable)

• Released and reacquired around I/O operations

• Effective performance enhancement from multithreading is difficult
in Python in compute bounded scenarios

• Anyone know how to do it?

• When do Python threads still make sense?

Thursday, February 26, 2009

Consider threading non-cpu bounded tasks
import os, sys

for host in range(60,70):
 ip = "128.59.245."+str(host)
 proc = os.popen("ping -q -c2 "+ip,"r")
 print "Testing ",ip,
 sys.stdout.flush()
 while 1:
 line = proc.readline()
 if not line: break
 print line

import os, time, sys
from threading import Thread

class pingWorker(Thread):
 def __init__ (self,ip):
 Thread.__init__(self)
 self.ip = ip
 self.status = -1
 def run(self):
 print "Testing ", ip
 proc = os.popen("ping -q -c2 "+self.ip,"r")
 while True:
 line = proc.readline()
 if not line: break
 print line
 self.status+=1

pool = []

for host in range(60,70):
 ip = "128.59.245."+str(host)
 worker = pingWorker(ip)
 pool.append(worker)
 worker.start()

for worker in pool:
 worker.join()
 print "From ",worker.ip," received: ", worker.lines

Compare the execution
time of each

Notice join?

Constructors do not
execute threads

Thursday, February 26, 2009

Take away
Concatenative Programming
• The heart of scripting is concatenation

• Juxtaposing existing libraries is the way to achieve
results

• You no longer have to be an expert to accomplish
technically complex tasks

• Doesn’t mean you should ignore the
fundamentals

• Basic programming knowledge is becoming
ubiquitous

Thursday, February 26, 2009

