P LR ’ " y YIS
vy [, 777 @
Y, \M.””W\... . \\\w\ g \\“\ RJ M W W m -
ylow.. mll Km
mwfcmmazmm)
% %mrmm & LN
- P ma -,
”WW —A_EN“ TM o
o % Re W;
o
T
g — O<< o
.
T — > oo o
s BEFuoy ¥E| O
. =R . o ms !Nw -
“M 8g_.328% 23 >
o M BE«<2a &R ~
228 BRwrd 2%
55 Sek2 o
IMW e)
o
2 G=. e
2 i3 S
—& U q
. BEE mm, S
o~ .H.S/n,m N
556791
HZ2 I.a

7 94n3237 :UOYlAd €' TOTESD

Agenda

* Exceptions
* Object oriented Python
* Library demo: xml-rpc

Resources

 http://docs.python.org/tutorial/errors.html

e http://docs.python.org/tutorial/classes.html

e http://docs.python.org/library/xmlirpclib.html

Project Proposal

One page document describing

— Your intention, the basic idea, why it’s useful or
fun

— Relevant libraries
— Any challenges or difficulties

Be specific

Effort should be comparable to that you’d put
into a final

Represents most of your grade

Extra credit solution: Week 2

Homework’s 2 and 3 will
be graded on course
works by midday Friday

See me if for any reason
you have not submitted
them

Recurrent computer
science problem:

— Toolkit syndrome

— Tendency to throw
solutions at problems

— Examine the instance first!
— Reduce the problem

77

55 34

12 98 S

54 11 55 43

76 32 82 23 51
77

55 34

12 98 S

54 11 55

76 32 82 23 51

Exceptions

Python’s emphasis

Use exceptions when and where they make a
program simpler, more robust, more readable

OK to use frequently
OK to use when not sighally an abnormal error

Contrast with JAVA
— Heavier weight

Raising exceptions

An exception is an object which signifies an error
or anomaly

Terminology

Raising exceptions: Python raises exceptions
following the occurrence of an abnormal
condition

— Exception object is created and passed to the
exception propagation mechanism

Your code can also explicitly raise exceptions
Equivalent terminology to throwing in JAVA

Handling exceptions

* Exceptions are handled (or caught in JAVA
terminology) when code accepts an exception
object from the propagation mechanism and
takes some action

* In the event no code handles the exception, it
proceeds all the way up the exception stack
and terminates the program with an error

 Handling exceptions gives a program the
ability to continue despite anomoly

Python Exceptions

* Notice that iterators signal an empty container
with the Stoplteration exception in response

to a .next() method
* This event is neither an error or anomaly

 We’ll cover Python specific error handling and
checking strategies, as well as the standard
logging module of the standard library

Raising (throwing) exceptions

Raising Exceptions

* Exceptions communicate
errors and anomalies

* When problems are detected,
exceptions are raised / thrown

* Your code can explicitly raise
exceptions

* Exceptionsare instances of the
exceptions class

* The next catcher with the right
sized glove catches the
exceptions, or the game ends

Handling (catching) exceptions

Handling Exceptions

* Handling exceptions means
receiving the exception object
from the propagation
mechanism

* |f exceptions are uncaught,
they are printed to std err and
the program exits

* Exceptions nest!

— You may check and catch for
exceptions within other try
blocks

* Exceptions propagate up
namespaces / scope

— [fit’s missed, the next catcher
has a shot at it

Try, except, finally statements

* The try statement begins an exception-handling
block

e Compound statement
— Try followed by one or more except clauses

— Try followed by one or more except clauses followed
by an else

— Try followed by exactly one finally clause
* Exception handlers

— The body of each except statement handles a specific
exception

Try, except, else statements

If a try statement contains several except clauses,
the exception-propagation mechanism will test
each of them in order

Handle specific cases first!

If the final except clause lacks an expression, it
will handle an exception of any type

Beware of “bare except” statements

Else executes only when the try clause normally
terminates

Useful to avoid accidentally handling unexpected
exceptions

Syntax definition

* Try:
— Statement(s)

e Except [expression [, target]]:
— Statement(s)

e [else:
— Statement(s)]

Basic exception control flow

Try / Except Try / Except / Else
def questionable(): def ok():

open('/) try:
f = open('test’, 'wb')
print ‘success’
except
print 'doh’
: else:
print ‘caught a problem’ print 'life goes on’

def better():

caught a problem success
life goes on

Finally

Try:

— Statement(s)

[Except...]

Finally:

— Statement(s)

Finally is a clean up handler

Specifies code which is guaranteed to run
regardless of whether an exception occurs in the
try block

Useful to close database connections, files, etc

Finally

Why finally?

Good for code that must
executre regardless of
whether execution
completed normally

Clean-up handler

Occurs even if a return
statement is encountered
within the try and the
function exits

Try / Except / Finally

f = open('test’, 'wb')
print ‘opened’
except IOError:

print 'doh’
finally:

print 'closed’

f.close()

Exception propagation

When an exception is raised normal control flow
is superseded by the exception propagation
mechanism

A raised exception is handled by the first try block
with a matching except clause

If an exception is raised without a try clause, or in
a try clause without a matching except clause, it
propagates up the call stack stack until either
being caught, or terminating the program

You can catch exceptions arbitrary deep
exceptions produced by function calls

Exceptions: Themes

* Try to keep try / except cases as narrow as

possible
* |In small programs: it’s often better just to fail

with the exception
— In most scripts, this is often the most efficient case

* |n sensitive software: you may use broader try /
except clauses, covering large segments of code

* You may also use Tkinter to nicely display errors
on the screen

Exceptions: LBYL vs. EAFP

" ” “It’s easier to ask forgiveness than
Look before you leap permission” — Admiral Grace Hooper

Exceptions: LBYL vs. EAFP

“Look before you leap” Why is this bad?
def safe divide(a,b):
ifb==0:
raise
"yuck”

returna/b

Exceptions: LBYL vs. EAFP

“Look before you leap” Why is this bad?

Exceptions: LBYL vs. EAFP

“Look before you leap” Why is this bad?

* Checks diminish the
readability of the common
case

* Exceptions are usually rare,
why perform the work up
front?

Exceptions: LBYL vs. EAFP

.) “It’s easier to ask forgiveness than
Why is this good? permission” — Admiral Grace Hooper

def save divide(a,b):

try:
returna/b

except
print 'yuck'

return

Exceptions: LBYL vs. EAFP

. . “It’s easier to ask forgiveness than
Why is this good? permission” — Admiral Grace Hooper

* Readability

* Emphasizes the common
case

Why is this dangerous?

L ’ T

.

A

Exceptions: LBYL vs. EAFP

)) “It’s easier to ask forgiveness than
Why is this good? permission” — Admiral Grace Hooper

* Readability

* Emphasizes the common
case

Why is this dangerous?

* Don’t cast too wide a net

* |f you unintentionally catch
errors raised in interior
functions: you’ll obfuscate
them

Exceptions: Assert

def homer_date(w):
assert (w !="selma’), ‘omg’
print "it's a date!"

homer_date('marge’)

it's a date!

homer_date('selma’)

Exceptions: Assert

The assert statement
issues an AssertionError if
the test fails

A great way to document
your programs — more
robust than comments

No performance hit -
ignored when your code
is run with the -0 flag

Self-documenting

Exceptions: Defining your own

class DateError(Exception):
"Used to protect homer"

def homer_date(w):
if w =="selma’ or w == "patty":
raise DateError, w
else:
print 'woohoo!’

homer_date('marge’)
Woohoo!

homer_date('patty’)

Standard Exceptions

* Always reuse a standard exception before
defining your own

* For the complete hierarchy, see

e http://docs.python.org/library/
exceptions.html

Exceptions nest

Multiple except blocks Within one another
try: try:
fOO() fOO()
. try:
except Exceptionl: bar()
handle_1() except:
except Exception2: handle_1()
handle_2() except:
handle_2()

except:

Logging

Use Python’s extensive logging module, ‘import logging’

Very powerful and complex, however, you can get away
with a basic subset to handle your needs

Emit messages by ‘logging.debug(‘my message’), or
‘logging.warning(‘...")
Priority hierarchy
— DEBUG < INFO < WARNING < ERROR < CRITICAL
You can specify behavior for each
See: http://docs.python.org/library/logging.html

FYI, you can also rebind sys.stderr to any file object to
record uncaught exceptions which terminate your program

Object oriented Python

Python is object oriented, but provides
support for other programming paradigms

Thus far we’ve been procedurally oriented

Object oriented Python provides all the usual
features — inheritance, polymorphism, etc

Select the most appropriate style for your
project

Object-Oriented Python: Themes

Overview When is OO suitable?

* Python is object oriented, * When you want to separate
but doesn’t force the state from behavior
paradigm on the developer — State == data

— Behavior == code

* When you’d like to employ
00 paradigms

Thus far we’ve covered
procedural programming,
with some functional tools

— Inheritance
— Modules and functions — Polymorphism
Idea is to select the most * When you’re writing large
appropriate paradigm for code or code for use by

your programs other developers

Classes and instances

e Classes are user defined types, instantiated as
objects

* Characteristics of Python classes
— Can be called as if they were functions

— Has a set of named attributes

— Attributes can be data or functions (functions of
classes are known as methods)

— Classes inherit from other classes — equivalent to
delegating functionality not found in a child class to
the parent

Classes and instances

Python classes as just like other objects

— They are valid as arguments to functions, return

values of methods, placed in containers, or used
as attributes of other classes

First-class objects (good concept to know)
The class statement

class name (base-classes):
— statement(s)

Inheritance

class name (base-classes):
— statement(s)

Base-classes are a comma seperated set of super
classes from which this class inherits

Base classes are optional, just use close
parenthesis if this class doesn’t extend another

Subclass is of course transitive (e.g., if hammer
subclasses tool, and tool subclasses object, then
hammer is an object)

Inheriting from 2+ classes, conflicts go to the left
most inherited class

Class body

e class name (base-classes):
— statement(s)

* The class body follows in the statements, and
executes immediately upon instantiation

* Important: the class statement doesn’t create
the class, but only defines the specification
and initial implementation

Attributes

Attributes are specified by binding a value to an identifier
within a class

Class foo(object):

- x=1
Function definitions occur similarly in the class body
— def bar():

» ..
Implicit attributes:
— Begin with double underscores
— __hame__
— _ bases

— _dict__ (a class specific dictionary attributed used to store all
other attributes)

Class private variable

Occur via renaming

Names beginning with a double underscore
are replaced by the compiler with
_classname__ident

Decreases risk of accidental data sharing

A convention that’s up to the programmers to
respect

Encapsulation

There’s no difference between a

class attribute created in or class Foo():
outside of the class body _x=0
With respect to encapsulation,

private class variables are print FOo.x
signified with two underscores (a
bit ugly)

Encapsulation is not Python’s
strong suit. From the Python doc:

“Note that the mangling rules are
designed mostly to avoid
accidents; it still is possible for a
determined soul to access or
modify a variable that is
considered private”

See

.org/doc/2.5.

2/tut/nodell.html

Instance and initialization

To create an instance of the class, the syntax is identical
to calling the class as if it were a function

mylnstance = Foo()
Use the built-in “is-instance(l,C)” function as needed

Calling a class object invokes the __init_ method on
the new instance, deferring to the superclass if
necessary

Purpose of __init__:to bind attributes of the newly
created instance, in Python you can of course bind or
unbind attributes outside of __init__ as well

Class documentation

* As always, the first string in a class is the
documentation string

Quick examples

Object-Oriented Python: Concepts

Who can define these? Definitions
* Classes / Instances * Classes?
* |nheritance

* Composition

* Polymorphism, Overriding

* QOperator overloading

* Encapsulation

Object-Oriented Python: Concepts

Who can define these? Definitions
* Classes/ Instances * (Classes: serve as instance
e Inheritance factories. Their attributes

provide behavior - data and
functions — which are

inherited by all instances
* Operator overloading generated from them.
* Encapsulation * |nstances?

* Composition
* Polymorphism, Overriding

Object-Oriented Python: Concepts

Who can define these? Definitions

. C|asses/ Instances ¢ Classe.s: serve_ ds in§tance
factories. Their attributes

provide behavior - data and
* Composition functions — which are
inherited by all instances
generated from them.

* |nheritance

* Polymorphism, Overriding

* QOperator overloading — Aboat.

 Encapsulation * Instances: an in§tantiatiop of.a
class, representing an object in
the world

— A particular ship.
* Inheritance?

Object-Oriented Python: Concepts

Who can define these? Definitions
* Classes / Instances * Inheritance: creating a new
 |Inheritance class by extending a super

(parent) class results in
inheriting it’s behavior and
attributes — multiple

* Operator overloading inheritance supported

* Encapsulation — “Catamaran” extends “hull”,
defining new behavior

* Composition?

* Composition
* Polymorphism, Overriding

Object-Oriented Python: Concepts

Who can define these? Definitions

* Classes / Instances * Inheritance: creating a new class
by extending a super (parent)

* |nheritance class results in inheriting it’s
behavior and attributes —

* Composition multiple inheritance supported

. . g — “Catamaran” extends “hull”,
* Polymorphism, Overriding defining new behavior

: * Composition: a boat is built from
»
Operator overloading a hull, a rudder, a sail — new

* Encapsulation classes often contain / benefit
from collections of existing ones

— “My little sailboat” contains “my
little hull”, “my little sail”

* Polymorphism?

Object-Oriented Python: Concepts

Who can define these? Definitions
* Classes / Instances * Polymorphism: a subclass
 Inheritance changes or specializes the

behavior of their super class

— Zebras swim differently than
whales, but both are

* Operator overloading mammals
* Encapsulation * Operator overloading?

* Composition
* Polymorphism, Overriding

Object-Oriented Python: Concepts

Who can define these? Definitions
 Classes / Instances * Polymorphism: subclasses
. change or specialize the
* Inheritance behavior of their super class

— Zebras and whales are both

o CompOSItlon mammals, but they swim()

* Polymorphism, Overriding differently .
_ * Operator overloading:
* Operator overloading changing the programmatic
. : behavior of the standard
Encapsulation operators to behave with
classes

— Homer + Donut = happy
* Encapsulation?

Object-Oriented Python: Concepts

Who can define these?

Classes / Instances
Inheritance

Composition
Polymorphism, Overriding
Operator overloading
Encapsulation

Definitions

Polymorphism: subclasses
change or specialize the
behavior of their super class
— Zebras and whales are both
mammals, but they swim()
differently
Operator overloading:
changing the programatic
behavior of the standard
operators to behave with
classes

— Homer + Donut = happy

Encapsulation: exposing the
minimum amount of data

Object-Oriented Python: Classes vs.
Instances

Calling a class as if it were a
function results in an
instantiation

A Class has arbitrary attributes

(variables) which you can bind
and reference: these can be
set on the fly

Classes have methods which
are attributes bound to
functions

“Self” is an automatically
received first argument which
provides a handle back to the
class to be processed

class Sailboat():

def setName(self, text):
self.name = text

def sayHello(self):
print 'hello from', self.name

betty = Sailboat()
betty.setName('betty')
betty.sayHellof)

martha = Sailboat()
martha.setName('martha’)
martha.sayHello()

hello from betty
hello from martha

What happens here?

class Sailboat(): Sailboat.name = 'betsy’
def setName(self, print Sailboat.name

name): Sailboat.setName('frodo')
self.name = name

def sayHello(self):

print ‘hello from',
self.name

What happens here?

class Sailboat(): Sailboat.name = 'betsy’
def setName(self, print Sailboat.name

name): Sailboat.setName('frodo')
self.name = name

def sayHello(self): Betsy

print 'hello from’,
self.name

Object-Oriented Python: Inheritance
and constructors

* Classes can inherit from class Sailboat():
multiple other classes def setName(self, name):
— Inherited in Python self.name = name
means that name lookup [EGEECLEIEERE
is extended to the super print ‘hello from', self.name
class if it can not be
referenced locally class Betterboat(Sailboat):
* Methods can take a special def _init__(self, name):
python defined name (i.e., self.setName(name)
init_, del) which

are implicitly evoked betty = Betterboat('betty’)

* |nitis a constructor, a betty.sayHello()

method called whenever an
instance of the class is hello from betty
created

Inheritance and Composition

class Sailboat(): class Pirateship(Sailboat):
def setName(self, name): def __init__(self, name):

self.name = name self.cannon = Cannon()
self.setName(name)

class Cannon(): def capture(self, Sailboat):

def init (self): print self.name, 'captures’, \

Sailboat.name
self.cannons =0

def addCannon(self): x = Pirateship(‘betty’)
self.cannons +=1 x.cannon.addCannon()
def fire(self): y = Sailboat()
foriin y.setName('selma')

rangE(Self.CannonS)Z x.cannon.ﬁre()’ x.capture(y)
print 'boom’
boom, betty captures selma

Adding some behavior with isinstance

class Sailboat(): class Pirateship(Sailboat):

def setName(self, name): def __init__(self, name):

self.name = name self.cannon = Cannon()
self.setName(name)

def capture(self, other):

print self.name, 'shoots at',
other.name

class Cannon():
def __init__(self):

self.cannons=0 self.cannon.fire()
def addCannon(self): if (other, Pirateship):
self.cannons +=1 print self.name, 'captures’, \
def fire(self): other.name

for i in range(self.cannons): else:

prin t 'boom’ print self.name, ‘sinks’', other.name

Class vs. Instance attributes

 Class attributes belong to C'a;:;hfrledo’
the class, instance -
attributes to a particular x = Shared()
instantiation print x.data, Shared.data

* Here, data is a class 11

variable, shared among w.data = 2

instances print x.data, Shared.data
* Assigning x.data creates an Kk
instance variable on x

Shared.data=3
print x.data, Shared.data
23

Instance methods

“Self” is an automatically
received first argument which
provides a handle back to the
instance of the class to be
processed

Instance methods are associated
with a particular instance, while
class methods are associated with
a class

Example.setName(‘foo’)

class Example():
def setName(self, text):
self.name = text
print self.name

x = Example()
x.setName('instance call')

instance call

equivalently
Example.setName(x, ‘class call')
class call

Overriding super class methods

Common patterns class Cannon():
def fire(self):

print 'boom!’

Inheritor: does not override a
super class method, makes use
of existing functionality as is

class TentativeCannon (Cannon):
def fire(self):
' i.f raw_input('are you sure? ') ==

Replacer: replaces that
method with one of the same

name V"
Extender: calls the super’s Cannon.fire(self)
method, but adds functionality

of its own x = TentativeCannon ()
Provider: fills in the template x.fire()

method of an abstract super are you sure?y
class method Boom!

Abstract class

 Abstractclasses can be used [EEEEUEIEGeRTGLI|E
to define an expected def delegate(self):

interface or behavior seltfire()
. , def fire(self):
— Not |'rT.1 plementation assert 0, 'fire must be defined!"
specific
* Forinstance, objects class LittleCannon(AbstractCannon):
conforming to the file class def fire(self):
must understand how to print ‘boom

open in and out streams

class BrokenCannon({AbstractCannon):

— regardless of whether
that’s over a network or

to a local disk x, z = LittleCannon(), BrokenCannon()
x.fire(), z.fire()
Boom,

Operator overloading

When is overloading suitable? Overloading “-”

* Operator overloading allows | aedekatek s

classes to intercept normal def _init__(self, n, q):
self.name =n

operations (+, - *, and, or, self. quantity = g

iteration, etc) def sub__ (self, n):
print 'dohl’, self.quantity - n,

* QOverloading moves classes
closer in behavior to built in
types x = Donut(‘jelly’, 5)

e Useful if you're developinga Rimks
package to make the
behavior more natural

print "donut's left"

doh! 4 donut's left

Overloading iterators

* You may overload built
in operators as well —
such as __ getitem_

— Provides x.name[1]
aCCessors
* Overloading
__getitem___ provides
iteration support as well

class Donut():
def init_ (self, n):
self.name =n
def getitem__ (self, i):
return self.name/i]

x = Donut('jelly_delicious')
for char in x.name:
print char,

jelly _delicious

XML-RPC

Exploring Python’s Libraries: XML-RPC

Requests
* RPC = Remote procedure <methodCall>
call <methodName>getPrice
* Message passing paradigm </methodName>
* Protocol for exchanging <params>
XML structured mformatlon <param>
through webservices wvalues
» XML -a specification , value _
language for creating <string>GO0G</string>
markup languages </value>
* \Verysimple interaction </param>
</params>

</methodCall>

Exploring Python’s Libraries: XML-RPC
Responses

<methodResponse>
<params>
<param>

<value>
<string>358.83 +0.79 (0.22%) Feb 12 3:36pm ET</string>

</value>
</param>
</params>
</methodResponse>

XML-RPC:

http://docs.python.org/library/xmlirpclib.html
Server

import xmirpclib
from SimpleXMLRPCServer import SimpleXMLRPCServer
def is_even(n): return n%2 ==

server = SimpleXMLRPCServer(("localhost", 8000))
print "Listening on port 8000..."
server.register_function(is_even, "is_even") server.serve_forever()

Client

import xmlrpclib proxy = xmirpclib.ServerProxy("http://localhost:8000/")
print proxy.is_even(3)
print proxy.is_even(100)

False
True

XML-RPC

&y _o x

:\Python25>python server.py
Listening on port 86A00...
localhost - — [12/Feh/2809 15:41:24]1 “POST ~ HITP/1.8" 208 -
localhost = — [12/Feh/2009 15:41:241 “POST ~ HTTP,/1.8" 208 -

:\Python25>python client.py
3 is even: False
108 is even: True

Finding and installing libraries

http://www.goldb.org/ystockquote.html

All it takes Included Functions

>> import ystockquote

« get_all(symbol)
« get price(symbol)
« get change(symbol)

>> ystockquote.get_price('GOOG’) T RV G i)

357.95

« get _avg daily volume(symbol)

« get stock _exchange(symbol)

« get _market cap(symbol)

« get book value(symbol)

« get ebitda(symbol)

 get dividend per share(symbol)

