
Source: http://xkcd.com/534/

Thursday, March 19, 2009



Agenda
• Homework 2
• Jumping into a few practical examples
• Finish dictionaries
• Sorting, Custom Comparators
• Parsing a CSV files to produce a 

webpage
– In class exercise (also your hw)

• Functions
• Command line arguments

Thursday, March 19, 2009



Questions? Homework, 
general?

3

Thursday, March 19, 2009



4

Thursday, March 19, 2009



This weeks extra credit
For a very large triangle in the form:

 40
 73 11
 52 10 40
 26 53 06 34
 10 51 87 86 90


Compute the maximum path value beginning at the top,
and proceeding by single vertical or adjacent steps to the 

bottom ( i.e., the path in blue).

http://www1.cs.columbia.edu/~joshua/cs3101spring09/code/
triangle.txt

Thursday, March 19, 2009

http://www1.cs.columbia.edu/~joshua/cs3101spring09/code/triangle.txt
http://www1.cs.columbia.edu/~joshua/cs3101spring09/code/triangle.txt
http://www1.cs.columbia.edu/~joshua/cs3101spring09/code/triangle.txt
http://www1.cs.columbia.edu/~joshua/cs3101spring09/code/triangle.txt


Exercise 2
• Briefly implement two strategies to tackle 

the extra credit problem
• Write a script which takes a command line 

parameter indicating the chosen strategy
• Output the maximum path value 

computed with that approach
• For this exercise you will be graded only 

on the correctness of your program, not 
whether your strategies actually find the 
optimal answer

6

Thursday, March 19, 2009



Sequence basics
• Sequence concatenation
– sequences of the same type can be 

concatenated with the (+) operator
• note type references to the sequence itself (i.e., a 

list or a tuple) - NOT the contents
– likewise (less commonly) you can assemble 

multiple copies using (*)
• Membership testing
– Use “x in sequence” - returns True / False
– More general in the case of strings, checking 

whether “x” is any substring of sequence
7

Thursday, March 19, 2009



Subsequences and Slicing
• Given a sequence, a subsequence may be 

extracted via slicing
• Form: s[x:y] where s is a sequence, x is 

the lower bound (inclusive) and y is the 
upper bound (exclusive)

• if x is less than y the extract will be 
empty, if y is greater than len(s) it will be 
the upper bound

• x can be omitted if it’s 0, i.e. s[:5]
• y can be omitted, in which case it will be 

the upper bound 8

Thursday, March 19, 2009



More slicing syntax
• Slicing can also use the syntax s[x:y:n], 

where n is the stride (i.e., step) of the slice
• the same as saying n is the positional 

difference between successive elements
• think s[x:y] == s[x:y:1]
• think s[x:y:2] give me every second element 

in the range
• consider s[::3] - every third element in the 

sequence
• indices may also be negative - s[::-1] 

reverses a list 9

Thursday, March 19, 2009



Sorting sequences
• A sort method on a list causes elements to be 

sorted in place
• General syntax

– L.sort(cmp=cmp, key=None, reverse=False)
• cmp is a pairwise comparison function, we’ll see how to write 

those. cmp is the default
• these return -1,0,1
• key is None by default

– Search the web for Python TIMSORT if for the technical 
details

• In general, passing arguments to sort slow down 
the process, later lectures will cover the decorate, 
sort, undecorate pattern

• 10

Thursday, March 19, 2009



Quick word on sets
• Useful containers - word on program consistency
• Methods

– Non-mutating
• (set).intersection(another set)
• (set).issubset..
• (set).issuperset...

– Mutating
• (set).add
• (set).clear

• Operators are overloaded for the non-mutating 
methods: e.g., Set1&Set2 for instance is 
intersection_update

• Careful... 11

Thursday, March 19, 2009



Dictionaries
• Dictionaries are containers, so built in functions 

like len() will work (returning the number of key 
value pairs)

• Dictionaries are iterable (but only the keys by 
default, an in arbitrary order)
– min(myDictionary)
– max(myDictionary)
– returns the smallest and largest keys

• Membership: 
– if key in dictionary
– can also use has_key but the above is better

• Accessing: d[‘x’] returns a value or KeyError
• Assignment d[‘x’] = 5 creates or reassigns 12

Thursday, March 19, 2009



Major dictionary methods
• If d is a dictionary:
• d.keys() - returns a list of the keys in arbitrary order
• d.values() - returns a list of the values in arbitrary 

order
• d.items() - returns a list of key / value pair tuples
• d.iter(iterms / keys / values)
• d.clear()
• d.popitem() - removes and returns an arbitrary item
• d.pop(key)
• d.setdefault(k[,x]) - returns d[k] if the key exists, 

otherwise sets d[k] equal to x and returns x
13

Thursday, March 19, 2009



List comprehensions
• Common use of the for loop:

– inspect each item in an iterable
– build a new list by appending the result of an expression
– general syntax [expression for target in iterable clauses]
– result = []

• for item in sequence:
– result.append(item + 5)

– result = [item + 5 for item in sequence]
– result = [item + 5 for item in sequence if item > 3]
– result = [x+y for x in seq1 for y in seq2]

• Notes
– list comprehensions are expressions rather than a block of 

statements - so you use it almost anywhere
– performance is high due to the underlying implementation
– elegance - but NEVER sacrifice readability
– general rule: sort is ok, long and complex skip it 14

Thursday, March 19, 2009



Functions
• In Python a function is a group of 

statements that execute upon calling
• Functions are objects that are handled 

like anything else, i.e.,
– they may be passed as arguments to other 

functions
– they may be assigned dynamically at runtime
– they may return other functions as their 

result
– they may be keys in a dictionary or items in a 

sequence *mapping trick*
15

Thursday, March 19, 2009



Basic examples

16

Thursday, March 19, 2009



Sorting and Comparisons
• sorted() vs. list.sort()

– sorted is general
– returns a new sorted 

list from any iteratable
• list.sort() is a list only 

method
– alters the list in place

• Standard 
comparisons (==) 
understands 
numbers, strings, etc

• What if you need to 
do a special 
comparison?

print sorted([5, 2, 3, 1, 
4]) 

[1, 2, 3, 4, 5]

print sorted(['b','a', 'c']) 
['a', 'b', 'c']

print sorted([[2,2],
[1,2]]) 

[[1, 2], [2, 2]]

Thursday, March 19, 2009



Custom Comparisons
• cmp() is the built-

in function that 
compares two 
objects, x and y
– returns a 

negative number 
if x < y

– returns 0 if 
they’re equal

– returns a positive 
number if x > y

• You can define your 
own arbitrary 
comparison 
function

def food_compare(x, y):
    if 'donut' in x:
        return 1
    elif x == y: #use standard 

comparison
        return 0
    else:
        return -1

print sorted(['broccoli', 'duffbeer’, 
'donut'])

['broccoli', 'donut', 'duffbeer']

print sorted(['broccoli', 'duffbeer', \

 
        'donut'], food_compare)
['duffbeer', 'broccoli', 'donut']

Thursday, March 19, 2009



Using Dictionaries as Sparse 
Data Structures

6

def main():

 board = {}

 # a chess board

 # say we only want to 

keep track of the
# position of the kings


 board[(0, 4)] = 
"LIGHT_KING"

Discussion:

 Can you compare the memory usage of this 

representation against a matrix using lists? (Chess 
boards are 8x8)


 Ignore the size of the dictionary and list support code 
(becomes insignificant at large sizes)

Thursday, March 19, 2009



Dictionaries - methods
• Keys and values, testing for a key
simpsons = {'bart' : 7, 'marge' : '41', 'homer' : '42', 'lisa' : 6}

print simpsons.keys()
['homer', 'lisa', 'bart', 'marge']

print simpsons.values()
['42', 6, 7, '41']

print simpsons.items()
[('homer', '42'), ('lisa', 6), ('bart', 7), ('marge', '41')]

simpsons['barney']
KeyError: 'barney'

if 'barney' in simpsons:
    ...

Thursday, March 19, 2009



Using Dictionaries as Records

8

import random
def main():

 homer[‘donutSupply’] = 5

 homer['hairsRemaining‘] = 4

 homer['noises'] = [‘Munch’, ‘Crunch’, ‘MMM Donut’, ‘Aghggh’]

 while homer['donutSupply'] > 0:

 
 homer['donutSupply'] -= 1

 
 print random.choice(homer['noises'])

main()
 
MMM Donut
Aghggh

Discussion:

 Any questions on dictionaries before we move 

on?Thursday, March 19, 2009



What if you had to sort a 
• Dictionaries cannot be directly sorted – a mapping 

has no order
simpsons = {'bart' : 7, 'marge' : '41', 'homer' : '42', 'lisa' : 6}

print sorted(simpsons) #sorts by keys
['bart', 'homer', 'lisa', 'marge']

from operator import itemgetter
print sorted(simpsons.iteritems(), key=itemgetter(1), 

reverse=True)
[('homer', '42'), ('marge', '41'), ('bart', 7), ('lisa', 6)]

#if you just want the keys (sorted by value)
x = sorted(simpsons.iteritems(), key=itemgetter(1), 

reverse=True)
print [obj[0] for obj in x]
['homer', 'marge', 'bart', 'lisa'] Thursday, March 19, 2009



Tonight’s theme: Files and 
• Goal:

– Produce a webpage from this CSV file
– In class exercise shortly

Character,Meal,Ate,Quantity,Comment
Barney Gumble,Breakfast,Duff Beer,1,I could’ve gone to 

Harvard
Duffman,Breakfast,Power bar,4,Duffman - can't breathe!
Duffman,Lunch,Protein shake,5,Duffman - has the power!
Homer Simpson,Snack,Donut - Jelly,1,Mmm Donut
Homer Simpson,Snack,Donut - Cream,1,Mmm Donut
Homer Simpson,Snack,Donut - Strawberry,1,Mmm Donut
Homer Simpson,Dinner,Brocolli,2,So long cruel world
Lisa Simpson,Breakfast,Oranges,1,Satisfying
Lisa Simpson,Lunch,Kale,2,Einstein's favorite
Lisa Simpson,Dinner,Tofu,4,Animals are cute!
Klang,Snack,Humans,40, *how*to*cook*for*forty?

*humans*
Montgomery Burns,Snack, Life Extension Elixer,

1,Excellent…Discussion: advanced file functionality (seeking, etc) is outside our 
scopeThursday, March 19, 2009



File I/O
• Say (for some inexplicable reason) you needed to 

parse this CSV file to extract Klang’s comment
– First, let’s get that line… 

…
Lisa Simpson,Dinner,Tofu,4,Animals are cute!
Klang,Snack,Humans,40, *how*to*cook*for*forty?*humans*
Montgomery Burns,Snack, Life Extension Elixer,1,Excellent…
…

#read the entire file into a list, one line per entry
lines = open(r"c:\simpsons_diet.csv").readlines()
#for each line / entry in the list
for line in lines:
    if line.startswith("Klang"):
        print line

Discussion: read only is the default behavior
Thursday, March 19, 2009



Basic string manipulation
Klang,Snack,Humans,40, *how*to*cook*for*forty?

line = "Klang,Snack,Humans,40," \
        "*how*to*cook*for*forty?*humans*"
columns = line.split(",")
print columns 
['Klang', 'Snack', 'Humans', '40', '*how*to*cook*for*forty?

*humans*']
comment = columns [-1]
print comment
*how*to*cook*for*forty?*humans*
cleaned = comment.replace("*", " ").strip()
print cleaned [0].upper() + cleaned [1:] + "."
How to cook for forty? humans.

Thursday, March 19, 2009



Basic File I/O - writing
• Now let’s write that to a file

cleaned = “How to cook for forty? 
Humans.”output = open(r"c:\klang.txt", 'w')

output.write(cleaned + “\n”) #new line
# manually close the file - this happens
# automatically when
# the file object is garbage collected
output.close()

Thursday, March 19, 2009



Basic File I/O - writing
• Say we wanted to write one word per line
cleaned = “How to cook for forty? 

Humans.”
output = open(r"c:\klang.txt", 'w')
words = cleaned.split()
output.writelines("\n".join(columns))
output.close()
klang.txt ->
how
to
cook
…

Discussion: note the ‘w’, the “ “.join, and the default behavior of the 
split() statementThursday, March 19, 2009



Join statements
Using iteration
for line in lines:

 f.write(line + “\n”)

Quick examples
foo = ['homer', 'lisa', 'bart']
print foo
['homer', 'lisa', 'bart']

print " ".join(foo)
homer lisa bart

x = “ loves “
print x.join(foo)
homer loves lisa loves bart

Using join
f.write(“ “.join(lines))

Thursday, March 19, 2009



Let’s try reading with the CSV 
library

import csv
reader = csv.reader(open(r'c:

\simpsons_diet.csv'), \

 
      delimiter=',', quotechar='“')
for row in reader:

…
[Barney Gumble,Breakfast,Duff Beer,1,I could’ve gone to Harvard]
[Duffman,Breakfast,Power bar,4,Duffman - can't breathe!]
[Duffman,Lunch,Protein shake,5,Duffman - has the power!]
…

Thursday, March 19, 2009



I/O – Reading directly into 
variables

import csv
reader = csv.reader(open(r'c:

\simpsons_diet.csv'), \

 
      delimiter=',', quotechar='"')
for char, meal, ate, quantity, comment in 

reader:

…
Lisa Simpson had 4 Tofu for Dinner
Klang had 40 Humans for Snack
Montgomery Burns had 1  Life Extension Elixer for 
Snack

Thursday, March 19, 2009



I/O – and now writing with 

import csv
reader = csv.reader(open(r'c:\simpsons_diet.csv'), \

 
 delimiter=',', quotechar=‘"')
out  = open(r'c:\simpsons_new.csv', "wb")
writer = csv.writer(out, delimiter=',', quotechar='"')
for row in reader:
    writer.writerow(row)
new = ['Chronos', 'Snack', 'Klang', '1', 'The humans made 

him tasty!']
writer.writerow(new)

...
Klang,Snack,Humans,40, *how*to*cook*for*forty?*humans*
Montgomery Burns,Snack, Life Extension Elixer,1,Excellent…
Chronos, Snack, Klang, The humans made him tasty!

The writer function creates a CSV writer object, which converts 
values to strings and escapes them properly.

Thursday, March 19, 2009



How about reading that CSV file 
from a network?

import urllib, csv

#grab our csv file from the network
url = r"http://www.cs.columbia.edu/~joshua/”
url += r“cs3101spring09/code/

simpsons_diet.csv"
simpsons = urllib.urlopen(url)

reader = csv.reader(simpsons, delimiter=',', 
quotechar='"')

for char, meal, ate, quantity, comment in 

Thursday, March 19, 2009



In class exercise (also one of your hw problems) 
• Say we needed to 

produce a 
webpage from 
this CSV log file. 

• How would you 
go about it?

Homer Simpson,Dinner,Broccoli,2,So long cruel world!
Lisa Simpson,Lunch,Kale,2,Einstein's favorite
Lisa Simpson,Dinner,Tofu,4,Animals are cute!
Klang,Snack,Humans,40, *how*to*cook*for*forty?*humans*
Montgomery Burns,Snack, Life Extension Elixer,1,Excellent…

Goal: 
<html><body>
<h1>Homer Simpson</
h1><p>
Ate <b>2</b> pieces of 
Broccoli. <p>
So long cruel world!<p>…

Discussion: Which methods and data structures might be employed?
Thursday, March 19, 2009



In class exercise (also one of your hw problems) 
• We’ll need
– to read the 

CSV file
– to open an 

output file
– to parse the 

lines of the 
CSV and 
format with 
HTML

Homer Simpson,Dinner,Broccoli,2,So long cruel world!
Lisa Simpson,Lunch,Kale,2,Einstein's favorite
Lisa Simpson,Dinner,Tofu,4,Animals are cute!
Klang,Snack,Humans,40, *how*to*cook*for*forty?*humans*
Montgomery Burns,Snack, Life Extension Elixer,1,Excellent…

Goal: 
<html><body>
<h1>Homer Simpson</
h1><p>
Ate <b>2</b> pieces of 
Broccoli. <p>
So long cruel world!<p>…

Thursday, March 19, 2009



Reference Code
line = "Klang,Snack,Humans,40," \
        "*how*to*cook*for*forty?

*humans*"
columns = line.split(",")
print columns 
['Klang', 'Snack', 'Humans', '40', 

'*how*to*cook*for*forty?
*humans*']

comment = columns [-1]
print comment
*how*to*cook*for*forty?*humans*
cleaned = comment.replace("*", " 

").strip()
print cleaned [0].upper() + cleaned 

[1:] + "."

#read the entire file into a list, one 
line per entry

lines = \
open(r"c:

\simpsons_diet.csv").readlnes()
#for each line / entry in the list
for line in lines:

 if line.startswith("Klang"):

 
 print line

output = open(r"c:\klang.txt", 'w')
output.write(cleaned + “\n”) #new 

line
# manually close the file - this 

happens
# automatically when
# the file object is garbage 

collected
output.close()

Discussion: Take 10 minutes and try to sketch it out – I’ll come around 
and help out.Thursday, March 19, 2009



Assorted utility functions
Syntax Semantics

import os.path Import the OS module
os.path.exists("bob.txt") Exists test
os.path.isfile(r"c:\bob.txt") File test
os.path.isdir("bob") Directory test
os.curdir Current directory
os.path.join(currentdir, "images") System independent path
os.path.walk(rootdir,f,arg) Function to recursively parse 

directories

Discussion: note the ‘r’ preceding c:\bob.txt – raw string support to 
avoid escaping \’sThursday, March 19, 2009



Functions
• Before we go in to 

functions, keep in 
mind:
– Pythons libraries are 

HUGE
– Look before writing 

a function to 
perform a common 
task

Thursday, March 19, 2009



Libraries Preview
http://docs.python.org/library/
• Out of the box:

– Numeric and 
mathematical modules

– Files and directory 
handling

– Data persistence
– Data compression and 

archiving
– File formats (csv, etc)
– Cryptographic services
– Operating system 

hooks
– Interprocess 

communication and 
threading

– Internet data handling
– Structured markup 

handling (html, xml, 
etc)

– Internet protocols 
(you name it)

– Multimedia services 
(presentation, 
manipulation)

– Internationalization
– GUIs
– Debugging, profiling
– Windows, Mac, *nix, 

Sun specific services

Thursday, March 19, 2009

http://docs.python.org/library/
http://docs.python.org/library/


Functions 101
• Keep in mind
– Dynamic typing 

and 
polymorphism

–Mutable vs. 
Immutable 
parameters vs. 
call by 
reference / value

• Maximize
– Leverage preexisting 

code
– Your own code reuse
– Procedural 

decomposition
– Documentation

• Minimize
– Redundancy
– Errors

Discussion: Review: dynamic typing, polymorphism, by reference / by 
valueThursday, March 19, 2009



Functions - Polymorphism
def multiply(x, y):

 return x * y

print multiply (2,4)
8

print multiply (.5,2)
1.0

print multiply("foo", 3)
foofoofoo

def intersection(groupA, groupB):
    result = []
    for obj in groupA:
        if obj in groupB:
            result.append(obj)
    return result

print intersection([1,2,3], (1,3,4))
[1, 3]

foo = {"homer" : "donuts", "lisa" : 
"kale"}

bar = ["homer", "kale"]
print intersection(foo, bar)
['homer']


Discussion: Notice the list and tuples?

Thursday, March 19, 2009



Rewriting intersection with a list 
comprehension

def intersection(groupA, groupB):
    result = []
    for obj in groupA:
        if obj in groupB:
            result.append(obj)
    return result

Discussion: How can we make this more elegant?

Thursday, March 19, 2009



Rewriting intersection with a list 
comprehension

def intersection(groupA, groupB):

 return [obj for obj in groupA if obj in 

def intersection(groupA, groupB):
    result = []
    for obj in groupA:
        if obj in groupB:
            result.append(obj)
    return result

Thursday, March 19, 2009



Python has built in sets

Discussion: Other set operators: union, add, issuperset, issubset, etc

simpsons = set(["homer", "marge", "bart", "lisa"])
philosophers = set(["aristotle", "sophocles", "homer"])

print simpsons.intersection(philosophers)
set(['homer'])

print simpsons.union(philosophers)
set(['homer', 'marge', 'aristotle', 'lisa', \

     'sophocles', 'bart'])

print set(['homer']).issubset(philosophers)

Thursday, March 19, 2009



def is a statement
Legal in Python
import random

if random.randint(0,1):

 def func(x):

 
 return x + 1
else:

 def func(x):

         return x -1

print func(1)

0
2
…

Why is this legal?
• Python statements are 

executable – we have 
runtime, but not 
compile time in the C 
sense

• Functions are objects 
like everything else in 
Python

• Assignment is legal as 
well
– foo = func
– print foo(1)

Discussion: randint(0,1) --> 0 evaluates to False, 1 to True

Thursday, March 19, 2009



Functions – pass by reference 
Mutable (lists, 
dictionaries, classes) by 
def rev(x):
    x.reverse()

def addOne(x):
    x += 1

def main():
    myList = ["a", "b"]
    rev(myList)
    print myList

main()
['b', 'a']

Immutable (numbers, 
strings) by value
def rev(x):
    x.reverse()

def addOne(x):
    x += 1

def main():
    x = 5
    addOne(x)
    print x

main()
5

Discussion: Similarity to Java

Thursday, March 19, 2009



Recursion

# equivalently...
def fact2(x):
     if x == 0:
         return 1
     else:
         return x * 

fact2(x-1)

# an iterative 
solution


def fact3(x):
    result = 1
    while (x > 1):
 
   result = result * x
        x = x - 1
    return result 

# returns the factorial of x
def fact(x): return (1 if x == 0 else x * 
fact(x-1))

Discussion: Question from last week: is vs. ==. Is (is) identity function, 
== (is) equality

Thursday, March 19, 2009



Scoping: namespace 
resolution

• What’s a namespace?
– Defines a variables scope, the area in which it 

carries meaning
• Static, lexical scope
– Scope is a function of program text

• General rules
– Namespace binding happens as variables are 

declared
– Names defined inside a def are visible only 

within that def, and do not clash with outsiders
– Each call to a function creates a new local scope
– You can explicitly access global variables with 

the global statement, but this is rare

Thursday, March 19, 2009



Scoping: namespace 
• Global scope:

– Each module is namespace in which 
variables can be created

– These are visible to the outside world
– Global scope is limited in span to a 

single file only
• Variable resolution:

– 1. Local (function)
– 2. Enclosing functions
– 3. Global (module)
– 4. Built-in (python)

# global scope
x = 8
def foo(y):

  # local scope

z = x + y
return z

print  foo(2)
Global names: x, fn
Local names: y, z

import math
pi = 3.14
print math.pi
3.14159265359
print pi
3.14

open = 5
print open
5
open("foo.txt") #???
TypeError: 'int' object is not 

callable

Discussion: Careful! Local scope wins: you can override built in fns
Thursday, March 19, 2009



Command line arguments
• Each argument 

passed to the 
program ends up in 
sys.argv, which is 
just a list

• The first item is 
always the name of 
the module

• Arguments are 
separated by spaces

#mutiply.py
import sys
for arg in sys.argv:

  print arg
x = sys.argv[1]
y = sys.argv[2]
print x * y

$ python mutiply.py 5 2
10

Thursday, March 19, 2009



Quick example
#getSyllables.py
import sys
def main():
    if len(sys.argv) != 2:
        print 'Invalid Input’
        print 'Usage: python getSyllables.py 

yourWord'
    else:
        word = sys.argv[1]

Thursday, March 19, 2009



51

Thursday, March 19, 2009



This weeks extra credit
For a very large triangle in the form:

 40
 73 11
 52 10 40
 26 53 06 34
 10 51 87 86 90


Compute the maximum path value beginning at the top,
and proceeding by single vertical or adjacent steps to the 

bottom ( i.e., the path in blue).

http://www1.cs.columbia.edu/~joshua/cs3101spring09/code/
triangle.txt

Thursday, March 19, 2009

http://www1.cs.columbia.edu/~joshua/cs3101spring09/code/triangle.txt
http://www1.cs.columbia.edu/~joshua/cs3101spring09/code/triangle.txt
http://www1.cs.columbia.edu/~joshua/cs3101spring09/code/triangle.txt
http://www1.cs.columbia.edu/~joshua/cs3101spring09/code/triangle.txt


Exercise 2
• Briefly implement two strategies to tackle 

the extra credit problem
• Write a script which takes a command line 

parameter indicating the chosen strategy
• Output the maximum path value 

computed with that approach
• For this exercise you will be graded only 

on the correctness of your program, not 
whether your strategies actually find the 
optimal answer

53

Thursday, March 19, 2009


