
CS3101: Programming
Languages - Python

(CVN) Spring 2009

Monday, March 16, 2009

Agenda

• Administrative Details

• Course Description

• Getting Started

• The Role of Scripting Languages in a
Heterogeneous Software World

• Language Overview

• Writing your first scripts

• Assignment 1

Monday, March 16, 2009

Administrative Details

Monday, March 16, 2009

Your instructor

• Joshua Gordon

• Second semester PhD student

• Research interests: AI / NLP / Software Systems
Engineering

• Life interests: biking, hiking

• Contact:

• joshua@cs.columbia.edu

• Telephone number by request

Monday, March 16, 2009

mailto:joshua@cs.columbia.edu
mailto:joshua@cs.columbia.edu

Office Hours

• Feel free to contact me anytime by email -
always happy to help

• For more involved questions let me know a
day or so in advance and we can schedule a
phone appointment

• Essential to begin a dialog for the course
project

Monday, March 16, 2009

Course resources

• Website:

• www.cs.columbia.edu/~joshua/teaching/
cs3101/cvn

• Lecture notes, references, assignments and
the course project

• Courseworks - discussion board

Monday, March 16, 2009

http://www.cs.columbia.edu/~joshua/teaching/cs3101/cvn
http://www.cs.columbia.edu/~joshua/teaching/cs3101/cvn
http://www.cs.columbia.edu/~joshua/teaching/cs3101/cvn
http://www.cs.columbia.edu/~joshua/teaching/cs3101/cvn

Grading
• Three homework assignments (worth 40% total)

• Optional Challenge problems excuse you from the regular
HW

• Final project of your own choosing (with my input) - worth
60%

• Why no final

• Practical vs. academic knowledge

• Syntax vs. semantics

• Grace days: 2, after which late assignments are accepted at
-10% / day

Monday, March 16, 2009

Academic Honesty
• http://www.cs.columbia.edu/education/honesty

• Special notes:

• Just about everything Python related can be found
on the web

• This is a good thing, however, do NOT fall into two
pitfalls

• 1) copying a solution or segment of a solution -
always reference your sources

• 2) learning only to concatenate code

Monday, March 16, 2009

http://www.cs.columbia.edu/education/honesty
http://www.cs.columbia.edu/education/honesty

CVN

• How this course differs from the campus version

• Caveat: audience, interactivity

• Will do my best to find students

• Pace / surveys

• From the basics up

• second year CS student as the baseline

• Accelerate as we go

Monday, March 16, 2009

Course Description

Monday, March 16, 2009

Project

• Opportunity to leverage Python to accomplish
something useful to YOU

• Requirements:

• draft proposal and approval

• Grading criteria

• Concept

• Implementation

• Demonstrated proficiency, library use

Monday, March 16, 2009

Previous Projects

• Genetic algorithms to tackle NP problems

• Solar system animation via programmatic input to
MAYA

• Music recommendation system

• A personal resource page for elementary students

• Financial engineering utilities

• Software library database builder

• Checkers

Monday, March 16, 2009

Course Content
• + Learning the core language

• + Acquiring proficiency in solving common scripting tasks

• - We are not a course in advanced programming

• Objective: Becoming a good Python programmer

• What does that mean?

• Efficiency w.r.t. to your time

• Ability to locate the resources you need

• Understanding the appropriate solution for the job

• Python is all about the libraries

Monday, March 16, 2009

Topics

• The course will at a minimum cover (in addition to the
essentials)

• Libraries galore, including: database and network
connectivity, system utilities, numeric computation, C / C
++ integration, compression, win32 API (basics), xmlrpc,
threading...

• Regular expressions

• Debugging and Optimization

• Appropriate use cases

• Performance (yours vs. your code’s)

Monday, March 16, 2009

Where Python has been
useful to me

• Developing an iPhone application

• the server side core language is Python

• reason: easily leverages the C and JAVA components
needed, facilitates writing the remainder

• Enhancing a Spoken Dialog System

• Everywhere really: setting up the database connection,
parsing recognition hypothesis, creating and mining log
files, network communication

• Sport recommender - leveraging code from the previous
course

• *Removing copyrighted content from slides

Monday, March 16, 2009

References
• The online documentation is outstanding and your

best bet as a library reference

• www.python.org/doc

• Useful books (depending on your skill level)

• Learning Python by Mark Lutz, 3rd Edition

• Python in a Nutshell by Alex Martelli,
2nd Edition

• Python Cookbook (multiple authors), 2nd Edition
(dated but still useful)

Monday, March 16, 2009

http://www.python.org/doc
http://www.python.org/doc

Ordered by technical complexity - notice anything?

(images copyright O’Reilly Media)

Monday, March 16, 2009

Word on Editions
• Python 3000 (released early 2009)

• Intentionally backwards incompatible

• Major changes:

• print is a function (previously a statement), API
modifications (often views and iterators instead of
lists), text vs. data instead of unicode vs. 8-bit

• 2to3 tool available

• Reference: http://docs.python.org/3.0/whatsnew/3.0.html

• Which version the course assumes, and a note on
assignments

Monday, March 16, 2009

http://docs.python.org/3.0/whatsnew/3.0.html
http://docs.python.org/3.0/whatsnew/3.0.html
http://docs.python.org/3.0/whatsnew/3.0.html
http://docs.python.org/3.0/whatsnew/3.0.html
http://docs.python.org/3.0/whatsnew/3.0.html
http://docs.python.org/3.0/whatsnew/3.0.html

Learning a language

• Finally, strategies that have proven valuable to
last semesters students

• Iteration and refinement - first make it
work, then make it elegant

• Copious examples

• Side by side comparison against a familiar
language

• Think before using the web as a crutch

Monday, March 16, 2009

The Zen of Python
• From calling: “python -c "import this”

Beautiful is better than ugly.
Explicit is better than implicit.

Simple is better than complex.
Complex is better than complicated.

Flat is better than nested.
Sparse is better than dense.

Readability counts.
Special cases aren't special enough to break the rules.

Although practicality beats purity.
Errors should never pass silently.

Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Monday, March 16, 2009

Pythonic Style:
Self documenting code

foo = [‘a’, ‘b’, ‘c’]
length = len(foo)

@foo = (“a", “b“, “c");
my $length =

scalar(@list);
my $anotherWay =

$#list + 1;
$length = @foo;
if(@list > 0) {
…
}

Discussion: Does anyone have any experience with Perl? Horror
stories? Ever tried reading someone else’s code?

Monday, March 16, 2009

General Syntax

Monday, March 16, 2009

Basic Libraries Preview

Notice dynamic typing, indentation based scope, end of a
line indicates the end of a statement

Monday, March 16, 2009

Getting Started

Monday, March 16, 2009

Available Environments

• To develop software in Python you create text
files that contain source code and documentation

• Any text editor is allowable, though you’re better
off using one with Python support

• IDEs (integrated development environments are
recommended for heavier code)

• Terminology: script, a standalone program,
module: a file intended to be imported from
another program

Monday, March 16, 2009

Running programs

• Python programs are run by passing them to the interpreter
(or via an interactive session)

• Code has the extension (.py) - compiled bytecode (.pyc)

• Python interpreters compile statements to byte code and
execute them on a virtual machine

• Compilation occurs automatically the first time the
interpreter reads code which imports modules, and
subsequently upon modification

• Standalone scripts are recompiled when run directly

• Compilation and execution are transparent to the user

Monday, March 16, 2009

Monday, March 16, 2009

Eclipse with PyDev

http://pydev.sourceforge.net/

Monday, March 16, 2009

http://pydev.sourceforge.net
http://pydev.sourceforge.net

Integrated Development
Environments

• Simplify: debugging, project management,
code completion, library browsing,
repository integration

• Disadvantages: heavyweight, cumbersome,
learning curve

• Optional for this course per your
preference, though recommended unless
you’re already an emacs expert

Monday, March 16, 2009

Language fundamentals
Caveat: these next few slides are low level - familiarity with
these topics is essential to understanding compiler errors

Monday, March 16, 2009

Lexical Structure
• The lowest level syntax of the language -

specifies, for instance, how comments and
variable names appear

• Python programs are composed of a set of plain
text ASCII encoded source files

• Like other language, Python source files are a
sequence of characters, however:

• unlike in C or JAVA, in Python we’re interested
in lines - whitespace counts

Monday, March 16, 2009

Logical vs. Physical Lines
• Python programs consist of a sequence of logical lines,

which may contain one or more physical lines

• lines may end with a comment

• blank lines are ignored by the compiler

• the end of a physical line marks the end of a statement

• Producing readable code:

• physical lines may be joined by a (\) character

• if an open parenthesis ((), brace ({), or bracket ([) has
not yet been closed, lines are joined by the compiler)

Monday, March 16, 2009

Let’s see how this looks

Monday, March 16, 2009

Indentation

• Indentation is used to express block structure

• Unlike C or JAVA (or most languages in fact) indentation is the
only way to denote blocks

• Blocks are delineated by contiguous whitespace sequence,
typically in units of four spaces, immediately to the left of a
statement

• All statements indented by the same amount belong to an
identical block

• Indentation applies only to the first physical line in a logical block

• The first physical line in a source file must have no indentation

Monday, March 16, 2009

Let’s see how this looks

Monday, March 16, 2009

Tokens and Identifiers
• Logical lines are understood as sequences of tokens

• Tokens are substrings of the line, which correspond to
identifiers, keywords, operators, delimiters, and literals

• Identifiers name functions, variables, classes, or modules

• Identifiers start with a character or an underscore

• Python is case sensitive

• Punctuation is disallowed within identifiers

• Convention: start a class name with an uppercase
character, and everything else with a lower

Monday, March 16, 2009

Keywords, Operators,
and Delimiters

• Keywords are reserved identifiers - Python has about 30
of them, many should be familiar to other languages

• (and, assert, break, class, continue, def, del, and so forth)

• Non-alphanumeric characters (and combinations) are
used by Python as operators

• (+, -, *, /, <=, <>, !=, and so forth)

• These symbols are used as delimiters in expressions, lists,
dictionaries, and sets

• ((,), [,], {, }, , and so forth)

Monday, March 16, 2009

Literals
• A literal is a string or numerical value that

appears directly in program text

Monday, March 16, 2009

Statements and
Expressions

• A Python program may be understood as a sequence of simple
and compound statements

• Unlike C or JAVA, Python does not have any forward
declarations or other top level syntax

• The general rule is one statement per line (statements can be
terminated with (;), but it’s unusual style)

• Statements may be expressions (a phrase which evaluates to
produce a value) or assignments

• The simplest expressions are literals and identifiers

• Expressions are built by joining subexpressions with operators
and identifiers

Monday, March 16, 2009

Assignments

Python
• Python is dynamically typed

and garbage collected
– Variables need not be

explicitly declared or
allocated

• Foo = 42
• Foo = 42.42
• Foo = “dolphin”
• Foo = [“one”, “two”, “three”]
• Foo = homer()

C
• int foo = 42;
• float foo = 42.42;
• char *cp = “dolphin";

41

Java

List<String> foo = new
ArrayList<String>();

Homer foo = new Homer();

Monday, March 16, 2009

Compound statements

• Contain a set of statements and control their
execution

• Compound statements contain a set of clauses

• Each clause has a header starting with a keyword,
and ending with a (:)

• Followed by a body, which is itself a sequence of
statements, terminated when indentation returns
to the outer level

• Also legal are simple statements following the (:)

Monday, March 16, 2009

Let’s see how this looks

Monday, March 16, 2009

Scripting Philosophy

Monday, March 16, 2009

Scripting
• Historically scripting refers to authoring simple tasks,

generally in a high level interpreted language. Today
the meaning is less clear.

• Scripting probably better refers to Pythons approach
to development, rather than what is capable in the
language

• Scripting fosters an exploratory, incremental
approach to programming

• The developer scales up in complexity and power
as necessary

Monday, March 16, 2009

Philosophy
• Coordination in a heterogeneous software world

• linking components written in diverse languages

• Python code is often deployed in the context of
larger applications

• Rapid prototyping

• exploring algorithmic performance before a
detailed implementation

• Concatenative programming

• creating software by intertwining libraries

Monday, March 16, 2009

Performance
• Key notion: developer vs. computational efficiency

• common misconception that code is often CPU bound

• direct your time where it’s valuable

• Like JAVA, Python is compiled to byte-code

• Portability at the expense of speed

• The core language, however is highly optimized

• built-in data types are implemented in C

• built-in methods are thoughtful - sort is approximately 1200 lines
of C in later versions of Python

• More commonly than JAVA, you’ll see Python deployed in high
performance environments - Boost / LLNL

Monday, March 16, 2009

The Core Language:
Data types

Monday, March 16, 2009

Overview
• All data values in Python are objects, and each object has a

type

• Type determines supported operations

• For instances, lists support .reverse(), but strings (as
immutable objects) do not

• Mutable vs. immutable objects

• Useful functions: type(obj) and isinstance(obj, type)

• Built-in types cover numbers, strings, lists, tuples, and
dictionaries

• User defined type are supported via classes

Monday, March 16, 2009

Numbers

• Support for integers (including long, if you’re
coming from C) floating point, and complex
numbers

• All numbers in Python are immutable - so
any operation on a number always produces
a new object

• Up casting is automatic

• Unlimited precision

Monday, March 16, 2009

Numeric Literals
• Beginning from the

basics
• Dynamic typing
• Python offers

unlimited precision.
You may indeed
compute
2^1000,000 (but not
if you’re in a rush)

Syntax Result

4, -24, 0 Standard Integer
(corresponds to C
longs)

12.4, 3.14e-10,
4.0e+210

Floating Point
(corresponds to C
doubles)

1e10, 1E1 Scientific Notation

9L Unlimited Precision
Long Integer

3+4j Complex

0177, 0x9ff, 0xFF Octal and hex
literals for integers

Monday, March 16, 2009

Basic numeric operations
• NumPy / SciPy provide heavy

lifting
– Think a free Python

implementation of MATLAB
– Matrix data types, vector

processing, sophisticated
computation libraries

– http://numpy.scipy.org/
• Basic mathematical modules

are included by default
– “import math” gives you

square root, common
constants, etc

Syntax Result

1 + 1 2

1 – 2.0 -1.0

2 * 12 24

5 / 2 2

5.0 / 2 2.5

5 % 2 1

2 ** 8.1 274.37

2 * 5e100 9.99e+100

2.0 * 10e1 200.0

math.pi 3.141592…

math.sqrt(85) 9.2195…

Monday, March 16, 2009

http://numpy.scipy.org/
http://numpy.scipy.org/

Text processing
• Text processing is

fundamental to
scripting languages

• Historically a
syntactic burden in C
and cumbersome in
Java

• Python excels in this
area (so does Perl)

Monday, March 16, 2009

Strings

• Strings are immutable objects which store a
sequence of characters (plain or Unicode)

• May be used to represent arbitrary
sequences of binary bytes

• Quoting: single or double allowed so long as
you’re consistent, triple quoting for multiline

Monday, March 16, 2009

String literals
• Unicode support

– Useful for multilingual text
and special characters

– Very strong support in
Python 3000

• Raw string encoding
– r“C:\Josh\Document’s\”

• All the typical escape
characters
– “\n” – new line
– “\t” – tab

Syntax Result

‘Marge’ ‘Marge’

“Homer” ‘Homer’

“Lisa’s Music” “Lisa’s Music”

“Homer’s\tdonut” “Homer’s donut”

u’bart\u0026lisa’ u’bart&lisa’

r”C:\Simpson\Bart\” “C:\\Simpson\\Bart”

Monday, March 16, 2009

Basic string operations
Syntax Result

s1 = “Josh”
s2 = “a marathon”

Declares a new variable

s1 + “ is training for “ + s2 ‘Josh is training for a
marathon’ (concatenation)

len(“abc”) 3 (length)

s1[0] ‘J’ (give me the first
character in s1)

s1 * 3 “JoshJoshJosh” (repeat)

Common theme with Python: basic operations are abundant
and behave as you would expect - the complexity of syntax
corresponds with the complexity of the operation

Monday, March 16, 2009

Basic string methods
• Built-in methods are

efficient
• Typically you can guess

method names once you
understand the pattern

• .startswith(), .endswith(),
etc

• Always see the
documentation, many
methods exist, avoid
reinventing the wheel

Syntax Result

foo = “The Simpsons” Declares a new variable

foo.lower() ‘the simpsons’

foo.find(“S”) 4

foo.find(“z”) -1

foo.split(“ “) [“The”, “Simpsons”]

foo.islower() False

“The” in foo True

“ whitespace “.strip() “whitespace”

Monday, March 16, 2009

Lists

• A list is an ordered, mutable sequence of
items

• Lists may be composed of arbitrary objects
of different types

• Arbitrary nesting is allowed

Monday, March 16, 2009

Basic construction and
indexing

• Lists are:
– Ordered collections

of arbitrary objects
– Accessed by offset
– Variable length and

heterogeneous
– Mutable (unlike

strings, lists may be
changed in place)

– Nestable

Foo = [] (an empty list)
Foo = [0,1,”bar”] (a list containing two

integers and a string)

Foo[2] “bar” (the second
element in foo)

Foo = [0,1,[“a”, “nested”, “list”], 3] (a nested list)

Foo[2] [“a”, “nested”, “list”]
(the third element of
Foo)

Foo[2][1] “nested” (the second
element of the third
element of foo)

Monday, March 16, 2009

Basic list methods
• Appending to or popping from the

list modifies the original copy
• Notice that sorting is a built-in

method
– A common feature of scripting

languages
– Later we’ll discuss user defined

sort criteria
– Highly optimized, handles

many special common cases
– A partially sorted list, a list

constructed from two sorted
lists, a reversed list, etc

• Slicing and indexing:
– Foo = [“a”, “b”, “c”, “d”]
– Foo[-2]

• Counts from the right,
returns ‘c’

Foo = [] (empty list)

Foo.append(“a”) [“a”]

Foo.append(“c”) [“a”, “c”]

Foo.append(“b”) [“a”, “c”, “b”]

Foo.append(“x”) [“a”, “c”, “b”, “x”]

Foo.pop() “x” (removes and returns the
last element from Foo)

Foo.sort() [“a”, “b”, “c”]

Foo.index(“c”) 2

Foo[1:] [“b”, “c”] (slicing: give me all
the elements beginning from
index 1)

Monday, March 16, 2009

Basic list membership,
string manipulation

Monday, March 16, 2009

Basic nested lists
def main():
 matrix = [["upper left",2,3],[4,"center",6],[7,8,"lower right"]]
 print matrix[1][1]
 print "The upper row“ + matrix[0]

main()

center
The upper row: ['upper left', 2, 3]

Monday, March 16, 2009

Dictionaries

• Dictionaries are mappings: arbitrary collections of
objects indexed by (almost) arbitrary keys

• Underlying implementation is a hashmap

• One of the more optimized types in Python, used
properly many operations are constant time

• Items in a dictionary are key / value pair

• dict() function for creation

• donut_supply = dict(homer=12, marge=6)

Monday, March 16, 2009

Dictionaries
• Dictionaries are

unordered collections
• Unlike lists, which are

accessed by index,
dictionaries are
accessed by key

• Like lists, dictionaries
are mutable and
heterogeneous

• Methods .keys(),
.values(), .items() vs.
iterkeys(), etc

Syntax Result

foo = {} Empty dictionary
foo[‘coffee’] =
“good”

Single item
dictionary

foo[‘decaf’] =
“bad”

Foo now contains
two items

foo[‘coffee’] “good”
decaf’ in foo True

foo.keys() [‘coffee’, ‘decaf’]
foo[‘tea’] KeyError!
foo[‘tasty’] =
[‘cookies’, ‘ice-
cream’]

Note that
dictionary keys
may reference
arbitrary objects

Discussion:
 Why can you not sort a dictionary in place?
 What would you do if you had to sort one?

Monday, March 16, 2009

Dictionary basics: sparse data
structures

def main():
 board = {}
 # a chess board
 # say we only want to

keep track of the
position of the kings

 board[(0, 4)] =
"LIGHT_KING"

Discussion:
 Can you compare the memory usage of this

representation against a matrix using lists? (Chess
boards are 8x8)

– Ignore the size of the dictionary and list support code
(becomes insignificant at large sizes)

Monday, March 16, 2009

Basic dictionaries as records
import random
homer[‘donutSupply’] = 5
homer['hairsRemaining‘] = 4
homer['noises'] = [‘Munch’, ‘Crunch’, ‘MMM Donut’, ‘Aghggh’]
while homer['donutSupply'] > 0:
 homer['donutSupply'] -= 1
 print random.choice(homer['noises'])

MMM Donut
Aghggh
Aghggh
Munch
Crunch

Monday, March 16, 2009

Tuples in Brief
• Tuples use many of the

same operations as lists
and dictionaries

• Tuples are:
– Ordered collections
– Accessed by offset
– Static and immutable
– Fixed length
– Heterogeneous
– Nestable

• Why tuples?
– Program integrity
– Like constants, they’re

guaranteed to be consistent

Syntax Result

() An empty tuple

foo = (‘homer’,
‘marge’, 42)

A three item tuple

foo[1] ‘Marge]

len(Foo) 3

foo[-1] 42

foo[:-1] [‘homer’, ‘marge’]
(give me everything
up until the last
element)

Monday, March 16, 2009

Control flow basics

Monday, March 16, 2009

Comparisons and Booleans
• Parenthesis are optional
• The end of line is the

end of statement
• The end of indentation

is the end of a block
• Why indentation syntax?

– Enforces consistency and
readability

C++:
if (x > y){
 cout << “x is larger”;
}else {
 cout << “x is smaller”;
}

Python:
if x > y:
 print “x is larger”
else:
 print “x is smaller”

Monday, March 16, 2009

Comparisons and Booleans
Continued

• The dangling else
problem:
– Which statement does

the else belong to?
• This problem doesn’t

occur in Python
• Note: although you

may be smart
enough not to write
code this way, others
on your project may
not be

C, C++, Java:
If (x)
 if (y)
 statement1;
else
 statement2;

Monday, March 16, 2009

Comparisons and Booleans
Continued

53

Syntax Result

foo = True A new boolean
variable

5 > 5 False

5 is 5, 5 == 4 True

5 is not 5 False

‘x’ is “x” True

5 >= 4 True

(True and True) True

True and (5 > 4) True

True and (“a” is “b”) False

True or False True

Python:
If x:
 if y:
 statement1
 else:
 statement2

Monday, March 16, 2009

Control flow: for statements
For loops are valid over any iteratble (strings, lists, tuples)

for x in range(5):
 print x
->
0
1
2
3
4

Simpsons = [“Homer”, “Marge”,
 “Lisa”, “Bart”]

for person in Simpsons:
 print person
->
Homer
Marge
Lisa
Bart

Monday, March 16, 2009

Control flow: nested for
statements

• Loops (like all
statements) can be
nested

• For loops are valid
over any iterable
sequence

i = 0
for x in range(3):
 for y in range(3):
 i = i + 1
 #or i += 1
print i

Discussion:
 What will this print? Take a moment and work

it out.
Monday, March 16, 2009

Control flow: while
statements

General form:
While <test>: #repeat while

true
– <statements>

Else: #optional
– <statements>

a = 0
b = 10
while a < b:
 a += 1
 print a

Monday, March 16, 2009

Control flow: break and
continue

• break:
– exits the loop

immediately
• continue:
– returns to the

beginning of the loop

a = 0
b = 100
while a < b:
 a += 1
 if a % 2 == 0:
 continue
 b = b / 2
 print a
 if b < 10:
 break

Discussion:
 What will this print? Take a moment and work

it out.
Monday, March 16, 2009

Preview: list comprehension
• List comprehension

will likely be new to
you if you’re familiar
with C or Java
– Derived from set theory

• A shortcut to
construct a new list
object
– Also a performance

boost due to Pythons
internals

• We’ll see these used
more later

foo = [1, 2, 3]
bar = [x + 10 for x in

foo]

bar is now [11, 12, 13]

#Identical to:

bar = []
for x in foo:
 bar.append(x + 10)

Monday, March 16, 2009

User input from the
console basics

Monday, March 16, 2009

Reading from the console

Monday, March 16, 2009

Type casting
• What happens if you try

to square a number the
user enters?

• Correction
– print int(userSays) ** 2

• Casts work the other
way too
– x = "hi" + 5 + " times“
– x = "hi" + str(5) + "

times“
• You may cast between

complicated structures
as well – but be careful
you understand the
expected behavior in
advance

while True:
x = input(‘Square: ')
if (x == 'quit'):

break
else:

print x ** 2

5
TypeError: unsupported operand for ‘str’

Monday, March 16, 2009

Assignment 1
Due by the next lecture

Monday, March 16, 2009

Exercise 1 of 2
Primes

• Write a script to compute and print the prime
numbers below N. Read N from the console by
prompting the user.

• Performance is not important, you’ll be graded on
correctness only.

Monday, March 16, 2009

Exercise 2 of 2
Word frequency

• Write a word frequency counter. Your program
should prompt the user to enter a single word per
line (or return to finish). Report the frequency of
each word, sorted in ascending order.

• Hint: Use a dictionary. When the user enters a
word, check if the dictionary has that key.

Monday, March 16, 2009

Challenge problem
• A reasonable submission excuses you from the rest of the weeks

homework. For the ambitious only, implement a solution to the
following comic (a variant of the knapsack problem).

Source http://xkcd.com/287

Monday, March 16, 2009

http://xkcd.com/287
http://xkcd.com/287

See you next week

• Please remember to check the course
website

• www.cs.columbia.edu/~joshua/teaching/
cs3101/cvn

• Questions: joshua@cs.columbia.edu

Monday, March 16, 2009

http://www.cs.columbia.edu/~joshua/teaching/cs3101/cvn
http://www.cs.columbia.edu/~joshua/teaching/cs3101/cvn
http://www.cs.columbia.edu/~joshua/teaching/cs3101/cvn
http://www.cs.columbia.edu/~joshua/teaching/cs3101/cvn
mailto:joshua@cs.columbia.edu
mailto:joshua@cs.columbia.edu

