
Natural Language Processing
COMS 4705

John Hewitt

Pretraining

Adapted from slides by Anna Goldie, John Hewitt

Lecture Plan

1. Motivating model pretraining from word embeddings

2. Model pretraining three ways

1. Decoders

2. Encoders

3. Encoder-Decoders

3. Interlude: what do we think pretraining is teaching?

4. Very large models and in-context learning

2

Outline

1. A brief note on subword modeling

2. Motivating model pretraining from word embeddings

3. Model pretraining three ways

1. Encoders

2. Encoder-Decoders

3. Decoders

4. What do we think pretraining is teaching?

3

Motivating word meaning and context

Recall the adage we mentioned at the beginning of the course:

 “You shall know a word by the company it keeps” (J. R. Firth 1957: 11)

This quote is a summary of distributional semantics, and motivated word2vec. But:

 “… the complete meaning of a word is always contextual,

 and no study of meaning apart from a complete context

 can be taken seriously.” (J. R. Firth 1935)

Consider I record the record: the two instances of record mean different things.

4 [Thanks to Yoav Goldberg on Twitter for pointing out the 1935 Firth quote.]

https://twitter.com/yoavgo/status/773276598053273600

Where we were: pretrained word embeddings

Circa 2017:

• Start with pretrained word embeddings (no
context!)

• Learn how to incorporate context in an LSTM
or Transformer while training on the task.

Some issues to think about:

• The training data we have for our
downstream task (like question answering)
must be sufficient to teach all contextual
aspects of language.

• Most of the parameters in our network are
randomly initialized!

5

… the movie was …

ෝ𝒚

Not pretrained

pretrained
(word embeddings)

[Recall, movie gets the same word embedding,
no matter what sentence it shows up in]

Where we’re going: pretraining whole models

In modern NLP:

• All (or almost all) parameters in NLP
networks are initialized via pretraining.

• Pretraining methods hide parts of the input
from the model, and train the model to
reconstruct those parts.

• This has been exceptionally effective at
building strong:

• representations of language

• parameter initializations for strong NLP
models.

• Probability distributions over language that
we can sample from

6

… the movie was …

ෝ𝒚

Pretrained jointly

[This model has learned how to represent
entire sentences through pretraining]

What can we learn from reconstructing the input?

7

Columbia University is located in __________, New York.

What can we learn from reconstructing the input?

8

I put ___ fork down on the table.

What can we learn from reconstructing the input?

9

The woman walked across the street,

checking for traffic over ___ shoulder.

What can we learn from reconstructing the input?

10

I went to the ocean to see the fish, turtles, seals, and _____.

What can we learn from reconstructing the input?

11

Overall, the value I got from the two hours watching

it was the sum total of the popcorn and the drink.

The movie was ___.

What can we learn from reconstructing the input?

12

Iroh went into the kitchen to make some tea.

Standing next to Iroh, Zuko pondered his destiny.

Zuko left the ______.

What can we learn from reconstructing the input?

13

I was thinking about the sequence that goes

1, 1, 2, 3, 5, 8, 13, 21, ____

Pretraining through language modeling [Dai and Le, 2015]

Recall the language modeling task:

• Model 𝑝𝜃 𝑤𝑡 𝑤1:𝑡−1), the probability
distribution over words given their past
contexts.

• There’s lots of data for this! (In English.)

Pretraining through language modeling:

• Train a neural network to perform language
modeling on a large amount of text.

• Save the network parameters.

14

Decoder
(Transformer, ++)

Iroh goes to make tasty tea

goes to make tasty tea END

https://arxiv.org/pdf/1511.01432.pdf

The Pretraining / Finetuning Paradigm

Pretraining can improve NLP applications by serving as parameter initialization.

15

(Transformer, LSTM, ++)

Iroh goes to make tasty tea

goes to make tasty tea END

Step 1: Pretrain (on language modeling)

Lots of text; learn general things!

Step 2: Finetune (on your task)

Not many labels; adapt to the task!

(Transformer, LSTM, ++)

☺/

… the movie was …

Stochastic gradient descent and pretrain/finetune

Why should pretraining and finetuning help, from a “training neural nets” perspective?

• Consider, provides parameters ෠𝜃 by approximating min
𝜃

 ℒpretrain 𝜃 .

• (The pretraining loss.)

• Then, finetuning approximates min
𝜃

 ℒfinetune 𝜃 , starting at ෠𝜃.

• (The finetuning loss)

• The pretraining may matter because stochastic gradient descent sticks (relatively)

close to ෠𝜃 during finetuning.

• So, maybe the finetuning local minima near ෠𝜃 tend to generalize well!

• And/or, maybe the gradients of finetuning loss near ෠𝜃 propagate nicely!

16

Lecture Plan

1. A brief note on subword modeling

2. Motivating model pretraining from word embeddings

3. Model pretraining three ways

1. Encoders

2. Encoder-Decoders

3. Decoders

4. What do we think pretraining is teaching?

17

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

18

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

19

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

ℎ1, … , ℎ𝑇

Pretraining encoders: what pretraining objective to use?

So far, we’ve looked at language model pretraining. But encoders get bidirectional
context, so we can’t do language modeling!

20

Idea: replace some fraction of words in the
input with a special [MASK] token; predict
these words.

ℎ1, … , ℎ𝑇 = Encoder 𝑤1, … , 𝑤𝑇

𝑦𝑖 ∼ 𝐴𝑤𝑖 + 𝑏

Only add loss terms from words that are
“masked out.” If ෤𝑥 is the masked version of 𝑥,
we’re learning 𝑝𝜃(𝑥| ෤𝑥). Called Masked LM.

I [M] to the [M]

went store

𝐴, 𝑏

[Devlin et al., 2018]

https://arxiv.org/pdf/1810.04805.pdf

BERT: Bidirectional Encoder Representations from Transformers

Devlin et al., 2018 proposed the “Masked LM” objective and released the weights of a
pretrained Transformer, a model they labeled BERT.

21

Some more details about Masked LM for BERT:

• Predict a random 15% of (sub)word tokens.

• Replace input word with [MASK] 80% of the time

• Replace input word with a random token 10% of
the time

• Leave input word unchanged 10% of the time (but
still predict it!)

• Why? Doesn’t let the model get complacent and not
build strong representations of non-masked words.
(No masks are seen at fine-tuning time!)

[Predict these!]

I pizza to the [M]

went store

Transformer
Encoder

[Devlin et al., 2018]

to

[Masked][Replaced] [Not replaced]

https://arxiv.org/pdf/1810.04805.pdf

BERT: Bidirectional Encoder Representations from Transformers

22

• The pretraining input to BERT was two separate contiguous chunks of text:

• BERT was trained to predict whether one chunk follows the other or is randomly
sampled.

• Later work has argued this “next sentence prediction” is not necessary.

[Devlin et al., 2018, Liu et al., 2019]

https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/abs/1907.11692

BERT: Bidirectional Encoder Representations from Transformers

Details about BERT

• Two models were released:

• BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params.

• BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params.

• Trained on:

• BooksCorpus (800 million words)

• English Wikipedia (2,500 million words)

• Pretraining is expensive and impractical on a single GPU.

• BERT was pretrained with 64 TPU chips for a total of 4 days.

• (TPUs are special tensor operation acceleration hardware)

• Finetuning is practical and common on a single GPU

• “Pretrain once, finetune many times.”

23 [Devlin et al., 2018]

https://arxiv.org/pdf/1810.04805.pdf

BERT: Bidirectional Encoder Representations from Transformers

BERT was massively popular and hugely versatile; finetuning BERT led to new state-of-
the-art results on a broad range of tasks.

24

• QQP: Quora Question Pairs (detect paraphrase
questions)

• QNLI: natural language inference over question
answering data

• SST-2: sentiment analysis

• CoLA: corpus of linguistic acceptability (detect
whether sentences are grammatical.)

• STS-B: semantic textual similarity

• MRPC: microsoft paraphrase corpus

• RTE: a small natural language inference corpus

[Devlin et al., 2018]

https://arxiv.org/pdf/1810.04805.pdf

Limitations of pretrained encoders

Those results looked great! Why not used pretrained encoders for everything?

25

If your task involves generating sequences, consider using a pretrained decoder; BERT and other
pretrained encoders don’t naturally lead to nice autoregressive (1-word-at-a-time) generation
methods.

Pretrained Encoder

Iroh goes to [MASK] tasty tea

make/brew/craft

Pretrained Decoder

Iroh goes to make tasty tea

goes to make tasty tea END

Extensions of BERT

You’ll see a lot of BERT variants like RoBERTa, SpanBERT, +++

26

Some generally accepted improvements to the BERT pretraining formula:

• RoBERTa: mainly just train BERT for longer and remove next sentence prediction!

• SpanBERT: masking contiguous spans of words makes a harder, more useful pretraining task

[Liu et al., 2019; Joshi et al., 2020]

BERT

[MASK] irr## esi## sti## [MASK] good

It’s

SpanBERT

bly

It’ [MASK] good

irr## esi## sti## bly

[MASK][MASK][MASK]

https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.10529

Extensions of BERT

A takeaway from the RoBERTa paper: more compute, more data can improve pretraining
even when not changing the underlying Transformer encoder.

27 [Liu et al., 2019; Joshi et al., 2020]

https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.10529

Full Finetuning vs. Parameter-Efficient Finetuning

Finetuning every parameter in a pretrained model works well, but is memory-intensive.

But lightweight finetuning methods adapt pretrained models in a constrained way.

Leads to less overfitting and/or more efficient finetuning and inference.

28 [Liu et al., 2019; Joshi et al., 2020]

(Transformer, LSTM, ++)

☺/

… the movie was …

Full Finetuning

Adapt all parameters

(Transformer, LSTM, ++)

☺/

… the movie was …

Lightweight Finetuning

Train a few existing or new parameters

https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.10529

Parameter-Efficient Finetuning: Prefix-Tuning, Prompt tuning

Prefix-Tuning adds a prefix of parameters, and freezes all pretrained parameters.

The prefix is processed by the model just like real words would be.

Advantage: each element of a batch at inference could run a different tuned model.

29 [Li and Liang, 2021; Lester et al., 2021]

(Transformer, LSTM, ++)

☺/

… the movie was …
Learnable prefix
parameters

https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2104.08691

Parameter-Efficient Finetuning: Low-Rank Adaptation

Low-Rank Adaptation Learns a low-rank “diff” between the pretrained and finetuned
weight matrices.

Easier to learn than prefix-tuning.

30 [Hu et al., 2021]

(Transformer, LSTM, ++)

☺/

… the movie was …

𝑊 ∈ ℝ𝑑×𝑑

𝐴 ∈ ℝ𝑑×𝑘

𝐵 ∈ ℝ𝑘×𝑑

𝑊 + 𝐴𝐵

https://arxiv.org/pdf/2106.09685.pdf

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

31

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Pretraining encoder-decoders: what pretraining objective to use?

For encoder-decoders, we could do something like language modeling, but where a
prefix of every input is provided to the encoder and is not predicted.

32

ℎ1, … , ℎ𝑇 = Encoder 𝑤1, … , 𝑤𝑇

ℎ𝑇+1, … , ℎ2 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 𝑤1, … , 𝑤𝑇 , ℎ1, … , ℎ𝑇

𝑦𝑖 ∼ 𝐴ℎ𝑖 + 𝑏, 𝑖 > 𝑇

The encoder portion benefits from
bidirectional context; the decoder portion is
used to train the whole model through
language modeling.

[Raffel et al., 2018]

𝑤1, … , 𝑤𝑇

𝑤𝑇+1, … , 𝑤2𝑇

𝑤𝑇+2, … ,

https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1910.10683.pdf

Pretraining encoder-decoders: what pretraining objective to use?

What Raffel et al., 2018 found to work best was span corruption. Their model: T5.

33

Replace different-length spans from the input
with unique placeholders; decode out the
spans that were removed!

This is implemented in text
preprocessing: it’s still an objective
that looks like language modeling at
the decoder side.

https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1910.10683.pdf

Pretraining encoder-decoders: what pretraining objective to use?

Raffel et al., 2018 found encoder-decoders to work better than decoders for their tasks,

and span corruption (denoising) to work better than language modeling.

https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1910.10683.pdf

Pretraining encoder-decoders: what pretraining objective to use?

A fascinating property
of T5: it can be
finetuned to answer a
wide range of
questions, retrieving
knowledge from its
parameters.

NQ: Natural Questions

WQ: WebQuestions

TQA: Trivia QA

All “open-domain”
versions

[Raffel et al., 2018]

220 million params

770 million params

3 billion params

11 billion params

https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1910.10683.pdf

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

36

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

• All the biggest pretrained models are Decoders.

Encoders
• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

ℎ1, … , ℎ𝑇

Pretraining decoders

When using language model pretrained decoders, we can ignore

that they were trained to model 𝑝 𝑤𝑡 𝑤1:𝑡−1).

37

We can finetune them by training a classifier
on the last word’s hidden state.

ℎ1, … , ℎ𝑇 = Decoder 𝑤1, … , 𝑤𝑇

𝑦 ∼ 𝐴ℎ𝑇 + 𝑏

Where 𝐴 and 𝑏 are randomly initialized and
specified by the downstream task.

Gradients backpropagate through the whole
network.

☺/

𝑤1, … , 𝑤𝑇

Linear 𝐴, 𝑏

[Note how the linear layer hasn’t been
pretrained and must be learned from scratch.]

Pretraining decoders

It’s natural to pretrain decoders as language models and then

use them as generators, finetuning their 𝑝𝜃 𝑤𝑡 𝑤1:𝑡−1)!

38

This is helpful in tasks where the output is a
sequence with a vocabulary like that at
pretraining time!

• Dialogue (context=dialogue history)

• Summarization (context=document)

ℎ1, … , ℎ𝑇 = Decoder 𝑤1, … , 𝑤𝑇

𝑤𝑡 ∼ 𝐴ℎ𝑡−1 + 𝑏

Where 𝐴, 𝑏 were pretrained in the language
model!

𝑤2 𝑤3 𝑤4 𝑤5 𝑤6

[Note how the linear layer has been pretrained.]

𝐴, 𝑏

ℎ1, … , ℎ𝑇

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5

Generative Pretrained Transformer (GPT) [Radford et al., 2018]

2018’s GPT was a big success in pretraining a decoder!

• Transformer decoder with 12 layers, 117M parameters.

• 768-dimensional hidden states, 3072-dimensional feed-forward hidden layers.

• Byte-pair encoding with 40,000 merges

• Trained on BooksCorpus: over 7000 unique books.

• Contains long spans of contiguous text, for learning long-distance dependencies.

• The acronym “GPT” never showed up in the original paper; it could stand for
“Generative PreTraining” or “Generative Pretrained Transformer”

39 [Devlin et al., 2018]

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://arxiv.org/pdf/1810.04805.pdf

Generative Pretrained Transformer (GPT) [Radford et al., 2018]

How do we format inputs to our decoder for finetuning tasks?

Natural Language Inference: Label pairs of sentences as entailing/contradictory/neutral

Premise: The man is in the doorway

Hypothesis: The person is near the door

Radford et al., 2018 evaluate on natural language inference.

Here’s roughly how the input was formatted, as a sequence of tokens for the decoder.

[START] The man is in the doorway [DELIM] The person is near the door [EXTRACT]

The linear classifier is applied to the representation of the [EXTRACT] token.

40

entailment

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

Generative Pretrained Transformer (GPT) [Radford et al., 2018]

GPT results on various natural language inference datasets.

41

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

We mentioned how pretrained decoders can be used in their capacities as language models.

GPT-2, a larger version (1.5B) of GPT trained on more data, was shown to produce relatively
convincing samples of natural language.

Increasingly convincing generations (GPT2) [Radford et al., 2018]

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

GPT-3, In-context learning, and very large models

So far, we’ve interacted with pretrained models in two ways:

• Sample from the distributions they define (maybe providing a prompt)

• Fine-tune them on a task we care about, and take their predictions.

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

GPT-3 is the canonical example of this. The largest T5 model had 11 billion parameters.

GPT-3 has 175 billion parameters.

43

GPT-3, In-context learning, and very large models

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

The in-context examples seem to specify the task to be performed, and the conditional
distribution mocks performing the task to a certain extent.

Input (prefix within a single Transformer decoder context):

“ thanks -> merci

 hello -> bonjour

 mint -> menthe

 otter -> ”

Output (conditional generations):

 loutre…”

44

GPT-3, In-context learning, and very large models

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

45

Scaling Efficiency: how do we best use our compute

GPT-3 was 175B parameters and trained on 300B tokens of text.

Roughly, the cost of training a large transformer scales as parameters*tokens

Did OpenAI strike the right parameter-token data to get the best model? No.

46

This 70B parameter model is better than the much larger other models!

The prefix as task specification and scratch pad: chain-of-thought

47
[Wei et al., 2023]

https://arxiv.org/pdf/2201.11903.pdf

Outline

1. A brief note on subword modeling

2. Motivating model pretraining from word embeddings

3. Model pretraining three ways

1. Encoders

2. Encoder-Decoders

3. Decoders

4. What do we think pretraining is teaching?

48

What kinds of things does pretraining teach?
There’s increasing evidence that pretrained models learn a wide variety of things about
the statistical properties of language. Taking our examples from the start of class:

• Columbia University is located in __________, New York. [Trivia]

• I put ___ fork down on the table. [syntax]

• The woman walked across the street, checking for traffic over ___ shoulder. [coreference]

• I went to the ocean to see the fish, turtles, seals, and _____. [lexical semantics/topic]

• Overall, the value I got from the two hours watching it was the sum total of the popcorn
and the drink. The movie was ___. [sentiment]

• Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his
destiny. Zuko left the ______. [some reasoning – this is harder]

• I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____ [some basic
arithmetic; they don’t learn the Fibonnaci sequence]

• Models also learn – and can exacerbate racism, sexism, all manner of bad biases.

• More on all this in the interpretability lecture!

1. Motivating model pretraining from word embeddings

2. Model pretraining three ways

1. Decoders

2. Encoders

3. Encoder-Decoders

3. Interlude: what do we think pretraining is teaching?

4. Very large models and in-context learning

49

	Slide 1: Natural Language Processing COMS 4705
	Slide 2: Lecture Plan
	Slide 3: Outline
	Slide 4: Motivating word meaning and context
	Slide 5: Where we were: pretrained word embeddings
	Slide 6: Where we’re going: pretraining whole models
	Slide 7: What can we learn from reconstructing the input?
	Slide 8: What can we learn from reconstructing the input?
	Slide 9: What can we learn from reconstructing the input?
	Slide 10: What can we learn from reconstructing the input?
	Slide 11: What can we learn from reconstructing the input?
	Slide 12: What can we learn from reconstructing the input?
	Slide 13: What can we learn from reconstructing the input?
	Slide 14: Pretraining through language modeling [Dai and Le, 2015]
	Slide 15: The Pretraining / Finetuning Paradigm
	Slide 16: Stochastic gradient descent and pretrain/finetune
	Slide 17: Lecture Plan
	Slide 18: Pretraining for three types of architectures
	Slide 19: Pretraining for three types of architectures
	Slide 20: Pretraining encoders: what pretraining objective to use?
	Slide 21: BERT: Bidirectional Encoder Representations from Transformers
	Slide 22: BERT: Bidirectional Encoder Representations from Transformers
	Slide 23: BERT: Bidirectional Encoder Representations from Transformers
	Slide 24: BERT: Bidirectional Encoder Representations from Transformers
	Slide 25: Limitations of pretrained encoders
	Slide 26: Extensions of BERT
	Slide 27: Extensions of BERT
	Slide 28: Full Finetuning vs. Parameter-Efficient Finetuning
	Slide 29: Parameter-Efficient Finetuning: Prefix-Tuning, Prompt tuning
	Slide 30: Parameter-Efficient Finetuning: Low-Rank Adaptation
	Slide 31: Pretraining for three types of architectures
	Slide 32: Pretraining encoder-decoders: what pretraining objective to use?
	Slide 33: Pretraining encoder-decoders: what pretraining objective to use?
	Slide 34: Pretraining encoder-decoders: what pretraining objective to use?
	Slide 35: Pretraining encoder-decoders: what pretraining objective to use?
	Slide 36: Pretraining for three types of architectures
	Slide 37: Pretraining decoders
	Slide 38: Pretraining decoders
	Slide 39: Generative Pretrained Transformer (GPT) [Radford et al., 2018]
	Slide 40: Generative Pretrained Transformer (GPT) [Radford et al., 2018]
	Slide 41: Generative Pretrained Transformer (GPT) [Radford et al., 2018]
	Slide 42: Increasingly convincing generations (GPT2) [Radford et al., 2018]
	Slide 43: GPT-3, In-context learning, and very large models
	Slide 44: GPT-3, In-context learning, and very large models
	Slide 45: GPT-3, In-context learning, and very large models
	Slide 46: Scaling Efficiency: how do we best use our compute
	Slide 47: The prefix as task specification and scratch pad: chain-of-thought
	Slide 48: Outline
	Slide 49: What kinds of things does pretraining teach?

