
COMS 4705: Intro to NLP
John Hewitt

Lec 6: Self-Attention and Transformers
Columbia University

Embeddings

Add Position
Embeddings

Multi-Head
Attention

Add & Norm

Feed-Forward

Add & Norm

Embeddings

Add Position
Embeddings

Block

Masked Multi-
Head Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Feed-Forward

Linear

Softmax

Add & Norm

Block

Repeat for number of
encoder blocks

Repeat for number of
decoder blocks.

Attend only to output of
last Encoder Block.

Probabilities

Decoder Inputs

Encoder Inputs

Transformer Encoder-Decoder

This note was originally written for Stanford CS 224n by John Hewitt.

Neural architectures and their properties

Progress in natural language processing is often accelerated by general-purpose tech-
niques that perform better than earlier methods across a wide range of settings. Some-
times, a new idea is proposed to solve old problems; other times, old techniques become
newly relevant as data or computation power becomes newly available. A few examples
of these include hidden Markov models [Baum and Petrie, 1966], conditional random
fields [Lafferty et al., 2001], recurrent neural networks [Rumelhart et al., 1985], convo-
lutional neural networks [LeCun et al., 1989], and support vector machines
[Cortes and Vapnik, 1995].

In this section, we’ll discuss a bit about the neural modeling approaches we’ve discussed
in Cs 224n so far, and how their limitations (and changes in the world) inspired the
modern (as of 2023) zeitgeist of self-attention and Transformer-based architectures.

Notation and basics

Let w1:n be a sequence, where each wi ∈ V , a finite vocabulary. We’ll also overload
w1:n to be a matrix of one-hot vectors, w1:n ∈ Rn×|V|. We’ll use w ∈ V to represent
an arbitrary vocabulary element, and wi ∈ V to pick out a specific indexed element of
a sequence w1:n. We’ll use the notation,

wt ∼ softmax(f(w1:t−1)), (1)

to mean that under a model, wt “is drawn from” the probability distribution defined
by the right-hand-side of the tilde, ∼. So in this case, f(w1:t−1) should be in R|V|.
When we use the softmax function (as above), we’ll use it without direct reference to
the dimension being normalized over, and it should be interpreted as follows. If A is a

1

COMS 4705: Intro to NLP Lec 6: Self-Attention and Transformers

tensor of shape Rℓ,d, the softmax is computed as follows:

softmax(A)i,j =
expAi,j∑d

j′=1 expAi,j′
, (2)

for all i ∈ 1, . . . , ℓ, j ∈ 1, . . . , d, and similarly for tensors of more than two axes. That
is, if we had a tensor B ∈ Rm,ℓ,d, we would define the softmax over the last dimension,
similarly. At the risk of being verbose, we’ll write it out:

softmax(B)q,i,j =
expBq,i,j∑d

j′=1 expBq,i,j′
. (3)

In all of our methods, we’ll assume an embedding matrix, E ∈ Rd×|V|, mapping from
the vocabulary space to the hidden dimensionality d, written as Ex ∈ Rd. Embedding

definitionThe embedding Ewi of a token in sequence w1:n is what’s known as a non-contextual
representation; despite wi appearing in a sequence, the representation Ewi is indepen-
dent of context. Since we’ll almost always be working on the embedded version of w1:n,
we’ll let x = Ew, and x1:n = w1:nE

⊤ ∈ Rn×d. An overarching goal of the methods
discussed in this note is to develop strong contextual representations of tokens; that
is, a representation hi that represents wi but is a function of the entire sequence x1:n

(or a prefix x1:i, as in the case of language modeling.). A non-
contextual
representation
of a token xi

of sequence
x1:n depends
only on the
identity of xi;
a contextual
representation
of xi depends
on the entire
sequence (or a
prefix x1:i.)

The default circa 2017: recurrent neural networks

General-purpose modeling techniques and representations have a long history in NLP,
with individual techniques falling in and out of favor. Word embeddings, for exam-
ple, have a much longer history than the word2vec embeddings we studied in the first
few lectures [Schütze, 1992]. Likewise, recurrent neural networks have a long and non-
monotonic history in modeling problems [Elman, 1990, Bengio et al., 2000]. By 2017,
however, the basic strategy to solve a natural language processing task was to begin
with a recurrent neural network.

We’ve gone over RNNs earlier in the course, but the general form bears repeating here.
A simple form of RNN is as follows:

ht = σ(W ht−1 + Uxt), (4)

Dependence on the sequence index

where ht ∈ Rd, U ∈ Rd×d, and W ∈ Rd×d. By 2017, the intuition was that there
were twofold issues with the recurrent neural network form, and they both had to do
with the the depenence on the sequence index (often called the dependence on “time”)
highlighted in Equation 4.

Parallelization issues with dependence on the sequence index. Modern graph-
ics processing units (GPUs) are excellent at crunching through a lot of simple operations
(like addition) in parallel. For example, when I have a matrix A ∈ Rn×k and a matrix
B ∈ Rk×d, a GPU is just blazing fast at computing AB ∈ Rn×d. The constraint of the
operations occuring in parallel, however, is crucial – when computing AB the simplest
way, I’m performing a bunch of multiplies and then a bunch of sums, most of which
don’t depend on the output of each other. However, in a recurrent neural network, when
I compute

h2 = σ(Wh1 + Ux2), (5)

2

COMS 4705: Intro to NLP Lec 6: Self-Attention and Transformers

1 2 3 4 5

0 0 0 0 0

Zuko made his uncle tea

Figure 1: A RNN unrolled in time. The rectangles are intermediate states of the RNN
(e.g., the first row is the embedding layer, and the second row is the RNN hidden state
at each time step) and the number in the rectangle is the number of serial operations
that need to be performed before this intermediate state can be computed

12345

0

Zuko made his uncle tea

Figure 2: A RNN unrolled in time. The rectangles are intermediate states of the RNN
(e.g., the first row is the embedding layer, and the second row is the RNN hidden state
at each time step) and the number in the rectangle is roughly the number of operations
separating lexical information of the word tea from each intermediate state.

I can’t compute h2 until I know the value of h1, so we can write it out as

h2 = σ(Wσ(Wh0 + Ux1) + Ux2). (6)

Likewise if I wanted to compute h3, I can’t compute it until I know h2, which I can’t
compute until I know h1, etc. Visually, this looks like Figure 1. As the sequence gets
longer, there is only so much I can parallelize the computation of the network
on a GPU because of the number of serial dependencies. (Serial meaning one-after-
the-other.)

As GPUs (and later, other accelerators like Tensor Processing Units (TPUs) became
more powerful and researchers wanted to take fuller advantage of them, this dependence
in time became untenable.

Linear interaction distance. A related issue with RNNs is the difficulty with which
distant tokens in a sequence can interact with each other. By interact, we mean that
the presence of one token (already observed in the past) gainfully affects the processing
of another token. For example, in the sentence

The chef1 who ran out of blackberries and went to the stores is1
the number of intermediate computations—matrix multiplies and nonlinearities, for
example—that separate chef from is scales with the number of words between them.
We visualize this in Figure 2.

Intuitively, researchers believe there’s an issue with linear interaction distance because
it can be difficult for networks to precisely “recall” the presence of a word when a large

3

COMS 4705: Intro to NLP Lec 6: Self-Attention and Transformers

number of operations occur after observing that word. This can make it difficult to
learn how distant words should impact the representation of the current word.

This notion of direct interaction between elements of a sequence might remind
you of the attention mechanism [Bahdanau et al., 2014] in machine translation. In that
context, while generating a translation, we learned how to look back into the source
sequence once per token of the translation. In this note, we’ll present an entire re-
placement for recurrent neural networks just based on attention. This will solve both
the parallelization issues and the linear interaction distance issues with recurrent neural
networks.

A minimal self-attention architecture

Attention, broadly construed, is a method for taking a query, and softly looking up
information in a key-value store by picking the value(s) of the key(s) most like the
query. By “picking” and “most like,” we mean averaging overall values, putting more
weight on those which correspond to the keys more like the query. In self-attention,
we mean that we use the same elements to help us define the querys as we do the keys
and values.

In this section, we’ll discuss how to develop contextual representations with methods
wherein the main mechanism for contextualization is not recurrence, but attention.

The key-query-value self-attention mechanism

There are many forms of self-attention; the form we’ll discuss here is currently the most
popular. It’s called key-query-value self-attention.

Consider a token xi in the sequence x1:n. From it, we define a query qi = Qxi, for matrix
Q ∈ Rd×d. Then, for each token in the sequence xj ∈ {x1 . . . , xn}, we define both a
key and a value similarly, with two other weight matrices: kj = Kxj , and vj = V xj for
K ∈ Rd×d and V ∈ Rd×d.

Our contextual representation hi of xi is a linear combination (that is, a weighted sum)
of the values of the sequence,

hi =

n∑
j=1

αijvj , (7)

where the weights, these αij control the strength of contribution of each vj . Going back
to our key-value store analogy, the αij softly selects what data to look up. We define
these weights by computing the affinities between the keys and the query, q⊤i kj , and
then computing the softmax over the sequence:

αij =
exp(q⊤

i kj)∑n
j′=1 exp(q

⊤
i kj′)

(8)

Intuitively, what we’ve done by this operation is take our element xi and look in its
own sequence x1:n to figure out what information (in an informal sense,) from what
other tokens, should be used in representing xi in context. The use of matrices K,Q, V
intuitively allow us to use different views of the xi for the different roles of key, query,
and value. We perform this operation to build hi for all i ∈ {1, . . . , n}.

4

COMS 4705: Intro to NLP Lec 6: Self-Attention and Transformers

v1:n =Vx1:n k1:n =Kx1:n

qi =Qxi (query)

(weights)

(weighted average)

(key)(value)

hi = αij vj

α qi
Tkj -> softmax

∑
scalar

vector

Self-Attention

Position representations

Consider the sequence the oven cooked the bread so. This is a different sequence than
the bread cooked the oven so, as you might guess. The former sentence has us making
delicious bread, and the latter we might interpret as the bread somehow breaking the
oven. In a recurrent neural network, the order of the sequence defines the order of
the rollout, so the two sequences have different representations. In the self-attention
operation, there’s no built-in notion of order. The

self-attention
operation has
no built-in
notion of the
sequence
order.

To see this, let’s take a look at self-attention on this sequence. We have a set of vectors
x1:n for the oven cooked the bread so, which we can write as

x1:n = [xthe;xoven;xcooked;xthe;xbread;xso] ∈ R5×d (9)

As an example, consider performing self-attention to represent the word so in context.
The weights over the context are as follows, recalling that qi = Qxi for all words, and
ki = Kxi likewise:

αso = softmax
([
q⊤

sokthe;q
⊤
sokoven;q

⊤
sokcooked;q

⊤
sokthe;q

⊤
sokbread;q

⊤
sokso

])
(10)

So, the weight αso,0, the amount that we look up the first word, (by writing out the
softmax) is,

αso,0 =
exp(q⊤

sokthe)

exp(q⊤
sokthe) + · · ·+ exp(q⊤

sokbread)
. (11)

So, α ∈ R5 are our weights, and we compute the weighted average in Equation 7 with
these weights to compute hso.

Non-
contextual
embedded
words
xi = Ewi have
no dependence
on the word’s
position in a
sequence w1:n;
only on the
identity of the
word in V.

For the reordered sentence the bread cooked the oven, note that αso,0 is identical. The
numerator hasn’t changed, and the denominator hasn’t changed; we’ve just rearranged
terms in the sum. Likewise for αso,bread and αso,oven, you can compute that they too
are identical independent of the ordering of the sequence. This all comes back down to
the two facts that (1) the representation of x is not position-dependent; it’s just Ew
for whatever word w, and (2) there’s no dependence on position in the self-attention
operations.

5

COMS 4705: Intro to NLP Lec 6: Self-Attention and Transformers

Position representation through learned embeddings. To represent position in
self-attention, you either need to (1) use vectors that are already position-dependent
as inputs, or (2) change the self-attention operation itself. One common solution is a
simple implementation of (1). We posit a new parameter matrix, P ∈ RN×d, where N
is the maximum length of any sequence that your model will be able to process.

We then simply add embedded representation of the position of a word to its word
embedding:

x̃i = Pi + xi (12)

and perform self-attention as we otherwise would. Now, the self-attention operation can
use the embedding Pi to look at the word at position i differently than if that word were
at position j. This is done, e.g., in the BERT paper [Devlin et al., 2019] (which we go
over later in the course.)

Position representation through changing α directly. Instead of changing the
input representation, another thing we can do is change the form of self-attention to
have a built-in notion of position. One intuition is that all else held equal, self-attention
should look at “nearby” words more than “far” words. Attention with Linear Biases
[Press et al., 2022] is one implementation of this idea. One implementation of this would
be as follows:

αi = softmax (k1:nqi + [−i, . . . ,−1, 0,−1, . . . ,−(n− i)]) , (13)

where k1:nqi ∈ Rn are the original attention scores, and the bias we add makes attention
focus more on nearby words than far away words, all else held equal. In some sense, it’s
odd that this works; but interesting!

Elementwise nonlinearity

Imagine if we were to stack self-attention layers. Would this be sufficient for a re-
placement for stacked LSTM layers? Intuitively, there’s one thing that’s missing: the
elementwise nonlinearities that we’ve come to expect in standard deep learning archi-
tectures. In fact, if we stack two self-attention layers, we get something that looks a lot
like a single self-attention layer:

oi =

n∑
j=1

αijV
(2)

(
n∑

k=1

αjkV
(1)xk

)
(14)

=

n∑
k=1

αjk

n∑
j=1

αij

V (2)V (1)xk (15)

=

n∑
k=1

α∗
ijV

∗xk, (16)

where α∗
ij =

(
αjk

∑n
j=1 αij

)
, and V ∗ = V (2)V (1). So, this is just a linear combination

of a linear transformation of the input, much like a single layer of self-attention! Is this
good enough?1

1This question ends up having a nuanced answer that’s out-of-scope for this note; ask me if you’re
interested in knowing more!

6

COMS 4705: Intro to NLP Lec 6: Self-Attention and Transformers

In practice, after a layer of self-attention, it’s common to apply feed-forward network
independently to each word representation:

hFF = W2 ReLU(W1hself-attention + b1) + b2, (17)

where often, W1 ∈ R5d×d, and W2 ∈ Rd×5d. That is, the hidden dimension of the
feed-forward network is substantially larger than the hidden dimension of the network,
d—this is done because this matrix multiply is an efficiently parallelizable operation, so
it’s an efficient place to put a lot of computation and parameters.

Future masking

When performing language modeling like we’ve seen in this course (often called autore-
gressive modeling), we predict a word given all words so far:

wt ∼ softmax(f(w1:t−1)). (18)

where f is function to map a sequence to a vector in R|V|.

One crucial aspect of this process is that we can’t look at the future when predicting
it—otherwise the problem becomes trivial. This idea is built-in to unidirectional RNNs.
If we want to use an RNN for the function f , we can use the hidden state for word wt−1:

wt ∼ softmax(ht−1E) (19)
ht−1 = σ(Wht−2 + Uxt−1), (20)

and by the rollout of the RNN, we haven’t looked at the future. (In this case, the future
is all the words wt, . . . ,wn.)

In a Transformer, there’s nothing explicit in the self-attention weight α that says not to
look at indices j > i when representing token i. In practice, we enforce this constraint
simply adding a large negative constant to the input to the softmax (or equivalently,
setting αij = 0 where j > i.)2

αij,masked =

{
αij j ≤ i

0 otherwise
(21)

In a diagram, it looks like Figure 3.

Summary of a minimal self-attention architecture

Our minimal self-attention architecture has (1) the self-attention operation, (2) position
representations, (3) elementwise nonlinearities, and (4) future masking (in the context
of language modeling.)

Intuitively, these are the biggest components to understand. However, as of 2023,
by far the most-used architecture in NLP is called the Transformer, introduced by
[Vaswani et al., 2017], and it contains a number of components that end up being quite
important. So now we’ll get into the details of that architecture.

2It might seem like one should use −∞ as the constant, to “really” ensure that you can’t see the
future. However, this is not done; a modest constant within even the float range of the ‘float16‘ encoding
is used instead, like −105. Using infinity can lead to NaNs and it’s sort of undefined how each library
should treat infinite inputs, so we tend to avoid using it. And because of finite precision, a large enough
negative constant will still set the attention weight to exactly zero.

7

COMS 4705: Intro to NLP Lec 6: Self-Attention and Transformers

Zuko made his uncle tea
Zuko

made

his

uncle

tea

−∞ −∞

−∞

−∞

−∞

−∞

−∞

−∞

−∞

−∞

Figure 3: Diagram of autoregressive future masking in self-attention. Words in each
row have words in the future masked out (e.g., “Zuko” can only attend to “Zuko”, while
“made” can attend to “Zuko” and “made”.)

The Transformer

The Transformer is an architecture based on self-attention that consists of stacked
Blocks, each of which contains self-attention and feed-forward layers, and a few other
components we’ll discuss. If you’d like to take a peek for intuition, we have a dia-
gram of a Transformer language model architecture in Figure 4. The components we
haven’t gone over are multi-head self-attention, layer normalization, residual con-
nections, and attention scaling—and of course, we’ll discuss how these components
are combined to form the Transformer.

Multi-head Self-Attention

Intuitively, a single call of self-attention is best at picking out a single value (on av-
erage) from the input value set. It does so softly, by averaging over all of the values,
but it requires a balancing game in the key-query dot products in order to carefully
average two or more things. In Assignment 5, you’ll work through a bit of this intu-
ition more carefully. What we’ll present now, multi-head self-attention, intuitively
applies self-attention multiple times at once, each with different key, query, and value
transformations of the same input, and then combines the outputs.

For an integer number of heads k, we define matrices K(ℓ), Q(ℓ), V (ℓ) ∈ Rd×d/k for ℓ in
{1, . . . , k}. (We’ll see why we have the dimensionality reduction to d/k soon.) These
our the key, query, and value matrices for each head. Correspondingly, we get keys,
queries, and values k

(ℓ)
1:n,q

(ℓ)
1:n,v

(ℓ)
1:n, as in single-head self-attention.

We then perform self-attention with each head:

h
(ℓ)
i =

n∑
j=1

α
(ℓ)
ij v

(ℓ)
j (22)

α
(ℓ)
ij =

exp(q
(ℓ)⊤
i k

(ℓ)
j)∑n

j′=1 exp(q
(ℓ)⊤
i k

(ℓ)
j′)

(23)

Note that the output h
(ℓ)
i of each head is in reduced dimension d/k. Finally, we define

the output of multi-head self-attention as a linear transformation of the concatenation

8

COMS 4705: Intro to NLP Lec 6: Self-Attention and Transformers

Embeddings

Add Position
Embeddings

Masked Multi-
Head Attention

Add & Norm

Feed-Forward

Add & Norm

Block

Linear

Softmax

Re
pe

at
 f

or
 n

um
be

r o
f

en
co

de
r b

lo
ck

s

Probabilities

Decoder Inputs

Transformer Decoder

Figure 4: Diagram of the Transformer Decoder (without corresponding Encoder, and so
no cross-attention.

9

COMS 4705: Intro to NLP Lec 6: Self-Attention and Transformers

of the head outputs, letting O ∈ Rd×d:

hi = O
[
v
(1)
i ; · · · ;v(k)

i

]
, (24)

where we concatenate the head outputs each of dimensionality d × d/k at their second
axis, such that their concatenation has dimension d× d.

Sequence-tensor form. To understand why we have the reduced dimension of each
head output, it’s instructive to get a bit closer to how multi-head self-attention is im-
plemented in code. In practice, multi-head self-attention is no more expensive
than single-head due to the low-rankness of the transformations we apply.

For a single head, recall that x1:n is a matrix in Rn×d. Then we can compute our value
vectors as a matrix as x1:nV , and likewise our keys and queries x1:nK and x1:nQ, all
matrices in Rn×d. To compute self-attention, we can compute our weights in matrix
operations:

α = softmax(x1:nQK⊤x⊤
1:n) ∈ Rn×n (25)

and then compute the self-attention operation for all x1:n via:

h1:n = softmax(x1:nQK⊤x⊤
1:n)x1:nV ∈ Rn×d. (26)

Here’s a diagram showing the matrix ops:

x1:nQ
(x1:nK)T

n =

d

softmax n

n

α

When we perform multi-head self-attention in this matrix form, we first reshape x1:nQ,
x1:nK, and x1:nV each into a matrix of shape Rn,k,d/k, splitting the model dimension-
ality into two axes, for the number of heads and the number of dimensions per head.
We can then transpose the matrices to Rk,n,d/k, which intuitively should look like k
sequences of length n and dimensionality d/k. This allows us to perform the batched
softmax operation in parallel across the heads, using the number of heads kind of like
a batch axis (and indeed in practice we’ll also have a separate batch axis.) So, the
total computation (except the last linear transformation to combine the heads) is the
same, just distributed across the (each lower-rank) heads. Here’s a diagram like the
single-head diagram, demonstrating how the multi-head operation ends up much like
the single-head operation:

reshape(x1:nQ)

reshape((x1:nK)T)n =

d/k

softmax n

k

n

α

10

COMS 4705: Intro to NLP Lec 6: Self-Attention and Transformers

Layer Norm

One important learning aid in Transformers is layer normalization [Ba et al., 2016]. The
intuition of layer norm is to reduce uninformative variation in the activations at a layer,
providing a more stable input to the next layer. Further work shows that this may be
most useful not in normalizing the forward pass, but actually in improving gradients in
the backward pass [Xu et al., 2019].

To do this, layer norm (1) computes statistics across the activations at a layer to esti-
mate the mean and variance of the activations, and (2) normalizes the activations with
respect to those estimates, while (3) optionally learning (as parameters) an elementwise
additive bias and multiplicative gain by which to sort of de-normalize the activations in
a predictable way. The third part seems not to be crucial, and may even be harmful
[Xu et al., 2019], so we omit it in our presentation.

One question to ask when understanding how layer norm affects a network is, “computing
statistics over what?” That is, what constitutes a layer? In Transformers, the answer
is always that statistics computed independently for a single index into the sequence
length (and a single example in the batch) and shared across the d hidden dimensions.
Put another way, the statistics for the token at index i won’t affect the token at index
j ̸= i.

So, we compute the statistics for a single index i ∈ {1, . . . , n} as

µ̂i =
1

d

d∑
j=1

hij σ̂i =

√√√√1

d

d∑
j=1

(hij − µi)2, (27)

where (as a reminder), µ̂i and σ̂i are scalars, and we compute the layer norm as

LN(hi) =
hi − µ̂i

σ̂i
, (28)

where we’ve broadcasted the µ̂i and σ̂i across the d dimensions of hi. Layer normaliza-
tion is a great tool to have in your deep learning toolbox more generally.

Residual Connections

Residual connections simply add the input of a layer to the output of that layer:

fresidual(h1:n) = f(h1:n) + h1:n, (29)

the intuition being that (1) the gradient flow of the identity function is great (the local
gradient is 1 everywhere!) so the connection allows for learning much deeper networks,
and (2) it is easier to learn the difference of a function from the identity function than it
is to learn the function from scratch. As simple as these seem, they’re massively useful
in deep learning, not just in Transformers!

Add & Norm. In the Transformer diagrams you’ll see, including Figure 4, the ap-
plication of layer normalization and residual connection are often combined in a single
visual block labeled Add & Norm. Such a layer might look like:

hpre-norm = f(LN(h)) + h, (30)

where f is either a feed-forward operation or a self-attention operation, (this is known
as pre-normalization), or like:

hpost-norm = LN(f(h) + h), (31)

11

COMS 4705: Intro to NLP Lec 6: Self-Attention and Transformers

Embeddings

Add Position
Embeddings

Multi-Head
Attention

Add & Norm

Feed-Forward

Add & Norm

Block

Linear

Softmax

Re
pe

at
 f

or
 n

um
be

r o
f

en
co

de
r b

lo
ck

s

Probabilities

Encoder Inputs

Transformer Encoder

Figure 5: Diagram of the Transformer Encoder.

which is known as post-normalization. It turns out that the gradients of pre-normalization
are much better at initialization, leading to much faster training [Xiong et al., 2020].

Attention logit scaling

Another trick introduced in [Vaswani et al., 2017] they dub scaled dot product attention.
The dot product part comes from the fact that we’re computing dot products q⊤

i kj . The
intuition of scaling is that, when the dimensionality d of the vectors we’re dotting grows
large, the dot product of even random vectors (e.g., at initialization) grows roughly as√
d. So, we normalize the dot products by

√
d to stop this scaling:

α = softmax(x1:nQK⊤x⊤
1:n√

d
) ∈ Rn×n (32)

Transformer Encoder

A Transformer Encoder takes a single sequence w1:n, and performs no future masking.
It embeds the sequence with E to make x1:n, adds the position representation, and then
applies a stack of independently parameterized Encoder Blocks, each of which consisting
of (1) multi-head attention and Add & Norm, and (2) feed-forward and Add & Norm.
So, the output of each Block is the input to the next. Figure 5 presents this. In the case
that one wants probabilities out of the tokens of a Transformer Encoder (as in masked
language modeling for BERT [Devlin et al., 2019], which we’ll cover later), one applies
a linear transformation to the output space followed by a softmax.

Uses of the Transformer Encoder. A Transformer Encoder is great in contexts
where you aren’t trying to generate text autoregressively (there’s no masking in the
encoder so each position index can see the whole sequence,) and want strong represen-
tations for the whole sequence (again, possible because even the first token can see the
whole future of the sequence when building its representation.)

12

COMS 4705: Intro to NLP Lec 6: Self-Attention and Transformers

Transformer Decoder

To build a Transformer autoregressive language model, one uses a Transformer Decoder.
These differ from Transformer Encoders simply by using future masking at each appli-
cation of self-attention. This ensures that the informational constraint (no cheating by
looking at the future!) holds throughout the architecture. We show a diagram of this
architecture in Figure 4. Famous examples of this are GPT-2 [Radford et al., 2019],
GPT-3 [Brown et al., 2020] and BLOOM [Workshop et al., 2022].

Transformer Encoder-Decoder

A Transformer encoder-decoder takes as input two sequences. Figure 6 shows the whole
encoder-decoder structure. The first sequence x1:n is passed through a Transformer
Encoder to build contextual representations. The second sequence y1:m is encoded
through a modified Transformer Decoder architecture in which cross-attention (which
we haven’t yet defined!) is applied from the encoded representation of y1:m to the
output of the Encoder. So, let’s take a quick detour to discuss cross-attention; it’s not
too different from what we’ve already seen.

Cross-Attention. Cross-attention uses one sequence to define the keys and values of
self-attention, and another sequence to define the queries. You might think, hey wait,
isn’t that just what attention always was before we got into this self-attention business?
Yeah, pretty much. So if

h
(x)
1:n = TransformerEncoder(w1:n), (33)

and we have some intermediate representation h(y) of sequence y1:m, then we let the
queries come from the decoder (the h(y) sequence) while the keys and values come from
the encoder:

qi = Qh
(y)
i i ∈ {1, . . . ,m} (34)

kj = Kh
(x)
j j ∈ {1, . . . , n} (35)

vj = V h
(x)
j j ∈ {1, . . . , n}, (36)

and compute the attention on q,k,v as we defined for self-attention. Note in Figure 6
that in the Transformer Encoder-Decoder, cross-attention always applies to the output
of the Transformer encoder.

Uses of the encoder-decoder. An encoder-decoder is used when we’d like bidirec-
tional context on something (like an article to summarize) to build strong represenations
(i.e., each token can attend to all other tokens), but then generate an output according
to an autoregressive decomposition as we can with a decoder. While such an architec-
ture has been found to provide better performance than decoder-only models at modest
scale [Raffel et al., 2020], it involves splitting parameters between encoder and decoder,
and most of the largest Transformers are decoder-only.

References
[Ba et al., 2016] Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint

arXiv:1607.06450.
[Bahdanau et al., 2014] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by

jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

13

COMS 4705: Intro to NLP Lec 6: Self-Attention and Transformers

Embeddings

Add Position
Embeddings

Multi-Head
Attention

Add & Norm

Feed-Forward

Add & Norm

Embeddings

Add Position
Embeddings

Block

Masked Multi-
Head Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Feed-Forward

Linear

Softmax

Add & Norm

Block

Repeat for number of
encoder blocks

Repeat for number of
decoder blocks.

Attend only to output of
last Encoder Block.

Probabilities

Decoder Inputs

Encoder Inputs

Transformer Encoder-Decoder

Figure 6: A Transformer encoder-decoder.

14

COMS 4705: Intro to NLP Lec 6: Self-Attention and Transformers

[Baum and Petrie, 1966] Baum, L. E. and Petrie, T. (1966). Statistical inference for probabilistic
functions of finite state markov chains. The Annals of Mathematical Statistics, 37(6):1554–1563.

[Bengio et al., 2000] Bengio, Y., Ducharme, R., and Vincent, P. (2000). A neural probabilistic language
model. Advances in neural information processing systems, 13.

[Bengio et al., 2003] Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A neural proba-
bilistic language model. J. Mach. Learn. Res., 3:1137–1155.

[Brown et al., 2020] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei,
D. (2020). Language models are few-shot learners. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., and Lin, H., editors, Advances in Neural Information Processing Systems, volume 33,
pages 1877–1901. Curran Associates, Inc.

[Collobert et al., 2011] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa,
P. P. (2011). Natural language processing (almost) from scratch. CoRR, abs/1103.0398.

[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learn-
ing, 20(3):273–297.

[Devlin et al., 2019] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Asso-
ciation for Computational Linguistics.

[Elman, 1990] Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2):179–211.
[Fukushima and Miyake, 1982] Fukushima, K. and Miyake, S. (1982). Neocognitron: A self-organizing

neural network model for a mechanism of visual pattern recognition. In Competition and cooperation
in neural nets, pages 267–285. Springer.

[Lafferty et al., 2001] Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001). Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of the Eigh-
teenth International Conference on Machine Learning, ICML ’01, page 282–289, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

[LeCun et al., 1989] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,
W., and Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural
computation, 1(4):541–551.

[Manning, 2022] Manning, C. D. (2022). Human Language Understanding & Reasoning. Daedalus,
151(2):127–138.

[Mikolov et al., 2013] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of
word representations in vector space. CoRR, abs/1301.3781.

[Press et al., 2022] Press, O., Smith, N., and Lewis, M. (2022). Train short, test long: Attention
with linear biases enables input length extrapolation. In International Conference on Learning
Representations.

[Radford et al., 2019] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019).
Language models are unsupervised multitask learners.

[Raffel et al., 2020] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y.,
Li, W., and Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551.

[Rong, 2014] Rong, X. (2014). word2vec parameter learning explained. CoRR, abs/1411.2738.
[Rumelhart et al., 1985] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal

representations by error propagation. Technical report, California Univ San Diego La Jolla Inst for
Cognitive Science.

[Rumelhart et al., 1988] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988). Neurocomputing:
Foundations of research. chapter Learning Representations by Back-propagating Errors, pages 696–
699. MIT Press, Cambridge, MA, USA.

[Schütze, 1992] Schütze, H. (1992). Dimensions of meaning. In Proceedings of the 1992 ACM/IEEE
Conference on Supercomputing, Supercomputing ’92, page 787–796, Washington, DC, USA. IEEE
Computer Society Press.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. Advances in neural information
processing systems, 30.

15

COMS 4705: Intro to NLP Lec 6: Self-Attention and Transformers

[Workshop et al., 2022] Workshop, B., :, Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ilić, S., Hesslow,
D., Castagné, R., Luccioni, A. S., Yvon, F., Gallé, M., Tow, J., Rush, A. M., Biderman, S., Webson,
A., Ammanamanchi, P. S., Wang, T., Sagot, B., Muennighoff, N., del Moral, A. V., Ruwase, O.,
Bawden, R., Bekman, S., McMillan-Major, A., Beltagy, I., Nguyen, H., Saulnier, L., Tan, S., Suarez,
P. O., Sanh, V., Laurençon, H., Jernite, Y., Launay, J., Mitchell, M., Raffel, C., Gokaslan, A., Simhi,
A., Soroa, A., Aji, A. F., Alfassy, A., Rogers, A., Nitzav, A. K., Xu, C., Mou, C., Emezue, C.,
Klamm, C., Leong, C., van Strien, D., Adelani, D. I., Radev, D., Ponferrada, E. G., Levkovizh, E.,
Kim, E., Natan, E. B., De Toni, F., Dupont, G., Kruszewski, G., Pistilli, G., Elsahar, H., Benyamina,
H., Tran, H., Yu, I., Abdulmumin, I., Johnson, I., Gonzalez-Dios, I., de la Rosa, J., Chim, J., Dodge,
J., Zhu, J., Chang, J., Frohberg, J., Tobing, J., Bhattacharjee, J., Almubarak, K., Chen, K., Lo, K.,
Von Werra, L., Weber, L., Phan, L., allal, L. B., Tanguy, L., Dey, M., Muñoz, M. R., Masoud, M.,
Grandury, M., Šaško, M., Huang, M., Coavoux, M., Singh, M., Jiang, M. T.-J., Vu, M. C., Jauhar,
M. A., Ghaleb, M., Subramani, N., Kassner, N., Khamis, N., Nguyen, O., Espejel, O., de Gibert,
O., Villegas, P., Henderson, P., Colombo, P., Amuok, P., Lhoest, Q., Harliman, R., Bommasani, R.,
López, R. L., Ribeiro, R., Osei, S., Pyysalo, S., Nagel, S., Bose, S., Muhammad, S. H., Sharma, S.,
Longpre, S., Nikpoor, S., Silberberg, S., Pai, S., Zink, S., Torrent, T. T., Schick, T., Thrush, T.,
Danchev, V., Nikoulina, V., Laippala, V., Lepercq, V., Prabhu, V., Alyafeai, Z., Talat, Z., Raja, A.,
Heinzerling, B., Si, C., Taşar, D. E., Salesky, E., Mielke, S. J., Lee, W. Y., Sharma, A., Santilli, A.,
Chaffin, A., Stiegler, A., Datta, D., Szczechla, E., Chhablani, G., Wang, H., Pandey, H., Strobelt, H.,
Fries, J. A., Rozen, J., Gao, L., Sutawika, L., Bari, M. S., Al-shaibani, M. S., Manica, M., Nayak, N.,
Teehan, R., Albanie, S., Shen, S., Ben-David, S., Bach, S. H., Kim, T., Bers, T., Fevry, T., Neeraj, T.,
Thakker, U., Raunak, V., Tang, X., Yong, Z.-X., Sun, Z., Brody, S., Uri, Y., Tojarieh, H., Roberts,
A., Chung, H. W., Tae, J., Phang, J., Press, O., Li, C., Narayanan, D., Bourfoune, H., Casper, J.,
Rasley, J., Ryabinin, M., Mishra, M., Zhang, M., Shoeybi, M., Peyrounette, M., Patry, N., Tazi, N.,
Sanseviero, O., von Platen, P., Cornette, P., Lavallée, P. F., Lacroix, R., Rajbhandari, S., Gandhi, S.,
Smith, S., Requena, S., Patil, S., Dettmers, T., Baruwa, A., Singh, A., Cheveleva, A., Ligozat, A.-L.,
Subramonian, A., Névéol, A., Lovering, C., Garrette, D., Tunuguntla, D., Reiter, E., Taktasheva,
E., Voloshina, E., Bogdanov, E., Winata, G. I., Schoelkopf, H., Kalo, J.-C., Novikova, J., Forde,
J. Z., Clive, J., Kasai, J., Kawamura, K., Hazan, L., Carpuat, M., Clinciu, M., Kim, N., Cheng,
N., Serikov, O., Antverg, O., van der Wal, O., Zhang, R., Zhang, R., Gehrmann, S., Mirkin, S.,
Pais, S., Shavrina, T., Scialom, T., Yun, T., Limisiewicz, T., Rieser, V., Protasov, V., Mikhailov, V.,
Pruksachatkun, Y., Belinkov, Y., Bamberger, Z., Kasner, Z., Rueda, A., Pestana, A., Feizpour, A.,
Khan, A., Faranak, A., Santos, A., Hevia, A., Unldreaj, A., Aghagol, A., Abdollahi, A., Tammour,
A., HajiHosseini, A., Behroozi, B., Ajibade, B., Saxena, B., Ferrandis, C. M., Contractor, D., Lansky,
D., David, D., Kiela, D., Nguyen, D. A., Tan, E., Baylor, E., Ozoani, E., Mirza, F., Ononiwu, F.,
Rezanejad, H., Jones, H., Bhattacharya, I., Solaiman, I., Sedenko, I., Nejadgholi, I., Passmore, J.,
Seltzer, J., Sanz, J. B., Dutra, L., Samagaio, M., Elbadri, M., Mieskes, M., Gerchick, M., Akinlolu,
M., McKenna, M., Qiu, M., Ghauri, M., Burynok, M., Abrar, N., Rajani, N., Elkott, N., Fahmy, N.,
Samuel, O., An, R., Kromann, R., Hao, R., Alizadeh, S., Shubber, S., Wang, S., Roy, S., Viguier,
S., Le, T., Oyebade, T., Le, T., Yang, Y., Nguyen, Z., Kashyap, A. R., Palasciano, A., Callahan,
A., Shukla, A., Miranda-Escalada, A., Singh, A., Beilharz, B., Wang, B., Brito, C., Zhou, C., Jain,
C., Xu, C., Fourrier, C., Periñán, D. L., Molano, D., Yu, D., Manjavacas, E., Barth, F., Fuhrimann,
F., Altay, G., Bayrak, G., Burns, G., Vrabec, H. U., Bello, I., Dash, I., Kang, J., Giorgi, J., Golde,
J., Posada, J. D., Sivaraman, K. R., Bulchandani, L., Liu, L., Shinzato, L., de Bykhovetz, M. H.,
Takeuchi, M., Pàmies, M., Castillo, M. A., Nezhurina, M., Sänger, M., Samwald, M., Cullan, M.,
Weinberg, M., De Wolf, M., Mihaljcic, M., Liu, M., Freidank, M., Kang, M., Seelam, N., Dahlberg,
N., Broad, N. M., Muellner, N., Fung, P., Haller, P., Chandrasekhar, R., Eisenberg, R., Martin, R.,
Canalli, R., Su, R., Su, R., Cahyawijaya, S., Garda, S., Deshmukh, S. S., Mishra, S., Kiblawi, S.,
Ott, S., Sang-aroonsiri, S., Kumar, S., Schweter, S., Bharati, S., Laud, T., Gigant, T., Kainuma, T.,
Kusa, W., Labrak, Y., Bajaj, Y. S., Venkatraman, Y., Xu, Y., Xu, Y., Xu, Y., Tan, Z., Xie, Z., Ye,
Z., Bras, M., Belkada, Y., and Wolf, T. (2022). Bloom: A 176b-parameter open-access multilingual
language model.

[Xiong et al., 2020] Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., Zhang, H., Lan, Y.,
Wang, L., and Liu, T. (2020). On layer normalization in the transformer architecture. In International
Conference on Machine Learning, pages 10524–10533. PMLR.

[Xu et al., 2019] Xu, J., Sun, X., Zhang, Z., Zhao, G., and Lin, J. (2019). Understanding and improving
layer normalization. Advances in Neural Information Processing Systems, 32.

16

	Neural architectures and their properties
	Notation and basics
	The default circa 2017: recurrent neural networks

	A minimal self-attention architecture
	The key-query-value self-attention mechanism
	Position representations
	Elementwise nonlinearity
	Future masking
	Summary of a minimal self-attention architecture

	The Transformer
	Multi-head Self-Attention
	Layer Norm
	Residual Connections
	Attention logit scaling
	Transformer Encoder
	Transformer Decoder
	Transformer Encoder-Decoder

