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Lecture Plan

1. Towards attention-based NLP models

2. The Transformer model

3. Great results with Transformers

4. Drawbacks and variants of Transformers
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Historically: recurrent models for (most) NLP!

• Circa 2016, the de facto strategy in NLP is to encode 
sentences with an RNN:
(for example, the source sentence in a translation) 
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• Define your output (parse, sentence, summary) 
as a sequence, and use an RNN to generate it.

• Use attention to allow flexible access to 
memory



Issues with recurrent models: Linear interaction distance

• RNNs are unrolled “left-to-right”.
• This encodes linear locality: a useful heuristic!

• Nearby words often affect each other’s meanings

• Problem: RNNs take O(sequence length) steps for 
distant word pairs to interact.
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tasty pizza

The chef waswho  …

O(sequence length) 



Issues with recurrent models: Linear interaction distance

• O(sequence length) steps for distant word pairs to interact means:
• Hard to learn long-distance dependencies (because gradient problems!)

• Linear order of words is “baked in”; we already know linear order isn’t the 
right way to think about sentences…
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The waschef who  …

Info of chef has gone through 
O(sequence length) many layers!



Issues with recurrent models: Lack of parallelizability

• Forward and backward passes have O(sequence length) unparallelizable 
operations
• GPUs can perform a bunch of independent computations at once!

• But future RNN hidden states can’t be computed in full before past RNN 
hidden states have been computed

• Inhibits training on very large datasets!
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If not recurrence, then what? How about attention?

• Attention treats each word’s representation as a query to access and 
incorporate information from a set of values.
• We saw attention from the decoder to the encoder; today we’ll think about 

attention within a single sentence.

• Number of unparallelizable operations does not increase with sequence length.

• Maximum interaction distance: O(1), since all words interact at every layer!
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attention
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All words attend 
to all words in 
previous layer; 
most arrows here 
are omitted
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Attention as a soft, averaging lookup table
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We can think of attention as performing fuzzy lookup in a key-value store.

In a lookup table, we have a table of keys 
that map to values. The query matches 
one of the keys, returning its value.

In attention, the query matches all keys softly, 
to a weight between 0 and 1. The keys’ values 
are multiplied by the weights and summed.



Self-Attention Hypothetical Example
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Self-Attention: keys, queries, values from the same sequence
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2. Compute pairwise similarities between keys and queries; normalize with softmax

 
 

3. Compute output for each word as weighted sum of values

 (queries)  (keys)  (values)

 



Barriers
• Doesn’t have an inherent 

notion of order! 

Barriers and solutions for Self-Attention as a building block
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Solutions



Fixing the first self-attention problem: sequence order

 

In deep self-attention 
networks, we do this at the 
first layer! You could 
concatenate them as well, 
but people mostly just add…
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Position representation vectors learned from scratch
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• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

• Pros:

• Periodicity indicates that maybe “absolute position” isn’t as important

• Maybe can extrapolate to longer sequences as periods restart!

•  Cons:

• Not learnable; also the extrapolation doesn’t really work!

Position representation vectors through sinusoids 

 
 

 

 
 

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/
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Barriers
• Doesn’t have an inherent 

notion of order! 

• No nonlinearities for deep 
learning! It’s all just weighted 
averages

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to 

the inputs
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Adding nonlinearities in self-attention
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Barriers
• Doesn’t have an inherent 

notion of order! 

• No nonlinearities for deep 
learning magic! It’s all just 
weighted averages

• Need to ensure we don’t “look 
at the future” when predicting 
a sequence

• Like in machine translation

• Or language modeling

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to 

the inputs

• Easy fix: apply the same 
feedforward network to each 
self-attention output.
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Masking the future in self-attention

 

The

chef

who

[START]

For encoding 
these words

The
chef

who
[START]

We can look at these 
(not greyed out) words
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Barriers
• Doesn’t have an inherent 

notion of order! 

• No nonlinearities for deep 
learning magic! It’s all just 
weighted averages

• Need to ensure we don’t “look 
at the future” when predicting 
a sequence

• Like in machine translation

• Or language modeling

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to 

the inputs

• Easy fix: apply the same 
feedforward network to each 
self-attention output.

• Mask out the future by artificially 
setting attention weights to 0!
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• Self-attention:

• the basis of the method.

• Position representations:

• Specify the sequence order, since self-attention is 
an unordered function of its inputs.

• Nonlinearities:

• At the output of the self-attention block

• Frequently implemented as a simple 
feed-forward network.

• Masking:

• In order to parallelize operations while not 
looking at the future.

• Keeps information about the future from 
“leaking” to the past.

Necessities for a self-attention building block:
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Outline

1. From recurrence (RNN) to attention-based NLP models

2. The Transformer model

3. Great results with Transformers

4. Drawbacks and variants of Transformers
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The Transformer Decoder
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• A Transformer decoder is how 
we’ll build systems like 
language models.

• It’s a lot like our minimal 
self-attention architecture, but 
with a few more components.

• The embeddings and position 
embeddings are identical.

• We’ll next replace our 
self-attention with multi-head 
self-attention.

Transformer Decoder



Recall the Self-Attention Hypothetical Example
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Hypothetical Example of Multi-Head Attention
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Sequence-Stacked form of Attention

 

=  
 

All pairs of 
attention scores!

 
=

 
 

 

Next, softmax, and 
compute the weighted 
average with another 
matrix multiplication.
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Multi-headed attention
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Multi-head self-attention is computationally efficient

 

27

 
 

 

Next, softmax, and 
compute the weighted 
average with another 
matrix multiplication.

    
 

=
 

=

mix

 

3 sets of all pairs of 
attention scores! =



Scaled Dot Product [Vaswani et al., 2017]
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The Transformer Decoder
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• Now that we’ve replaced 
self-attention with multi-head 
self-attention, we’ll go through 
two optimization tricks that 
end up being :

• Residual Connections

• Layer Normalization

• In most Transformer diagrams, 
these are often written 
together as “Add & Norm”

Transformer Decoder



The Transformer Encoder: Residual connections [He et al., 2016]

 

 Layer  

 Layer  +

[no residuals] [residuals]

[Loss landscape visualization,

Li et al., 2018, on a ResNet]30

https://arxiv.org/abs/1512.03385
https://arxiv.org/pdf/1712.09913.pdf


The Transformer Encoder: Layer normalization  [Ba et al., 2016]

 

Normalize by scalar 
mean and variance

Modulate by learned 
elementwise gain and bias
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https://arxiv.org/abs/1607.06450


The Transformer Decoder
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• The Transformer Decoder is a 
stack of Transformer Decoder 
Blocks.

• Each Block consists of:

• Self-attention

• Add & Norm

• Feed-Forward

• Add & Norm

• That’s it! We’ve gone through 
the Transformer Decoder.

Transformer Decoder



The Transformer Encoder
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• The Transformer Decoder 
constrains to unidirectional 
context, as for language 
models.

• What if we want bidirectional 
context, like in a bidirectional 
RNN?

• This is the Transformer 
Encoder. The only difference is 
that we remove the masking in 
the self-attention.

Transformer DecoderNo Masking!



The Transformer Encoder-Decoder
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• Recall that in machine 
translation, we processed the 
source sentence with a 
bidirectional model and 
generated the target with a 
unidirectional model.

• For this kind of seq2seq 
format, we often use a 
Transformer Encoder-Decoder.

• We use a normal Transformer 
Encoder.

• Our Transformer Decoder is 
modified to perform 
cross-attention to the output 
of the Encoder.



Cross-attention (details)
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Cross-attention (details)

 

=  
 

All pairs of 
attention scores!

 
=

 
 

 

Next, softmax, and 
compute the weighted 
average with another 
matrix multiplication.
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Outline
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2. Introducing the Transformer model

3. Great results with Transformers

4. Drawbacks and variants of Transformers
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Great Results with Transformers

[Vaswani et al., 2017]

Not just better Machine 
Translation BLEU scores

Also more efficient to 
train!

First, Machine Translation from the original Transformers paper!

[Test sets: WMT 2014 English-German and English-French]38



Great Results with Transformers

[Liu et al., 2018]; WikiSum dataset

Transformers all the way down.

Next, document generation! 

The old standard
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https://arxiv.org/pdf/1801.10198.pdf


Great Results with Transformers

[Liu et al., 2018]

Before too long, most Transformers results also included pretraining, a method we’ll 
go over on Thursday.

Transformers’ parallelizability allows for efficient pretraining, and have made them 
the de-facto standard. 

On this popular aggregate 
benchmark, for example:

All top models are 
Transformer (and 
pretraining)-based. 

More results Thursday when we discuss pretraining.
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https://arxiv.org/pdf/1801.10198.pdf
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• Quadratic compute in self-attention (today):

• Computing all pairs of interactions means our computation grows quadratically 
with the sequence length!

• For recurrent models, it only grew linearly!

• Position representations:

• Are simple absolute indices the best we can do to represent position?

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

What would we like to fix about the Transformer?
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https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf


 

Quadratic computation as a function of sequence length
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Work on improving on quadratic self-attention cost
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Key idea: map the 
sequence length 
dimension to a 
lower-dimensional 
space for values, keys In
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• As Transformers grow larger, a larger and larger percent of compute is outside the 
self-attention portion, despit the quadratic cost.

• In practice, almost no large Transformer language models use anything but the 
quadratic cost attention we’ve presented here.

• The cheaper methods tend not to work as well at scale.

• So, is there no point in trying to design cheaper alternatives to self-attention?

• Or would we unlock much better models with much longer contexts (>100k 
tokens?) if we were to do it right?

Do we even need to remove the quadratic cost of attention?
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Do Transformer Modifications Transfer?
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• "Surprisingly, we find that most modifications do not meaningfully improve 
performance."



• Pretraining on Tuesday! 

• Good luck on assignment 4!

• Remember to work on your project proposal!

Parting remarks
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