
Natural Language Processing
COMS 4705

John Hewitt

Self-Attention and Transformers

Adapted from slides by Anna Goldie, John Hewitt

Lecture Plan

1. Towards attention-based NLP models

2. The Transformer model

3. Great results with Transformers

4. Drawbacks and variants of Transformers

2

Historically: recurrent models for (most) NLP!

• Circa 2016, the de facto strategy in NLP is to encode
sentences with an RNN:
(for example, the source sentence in a translation)

3

• Define your output (parse, sentence, summary)
as a sequence, and use an RNN to generate it.

• Use attention to allow flexible access to
memory

Issues with recurrent models: Linear interaction distance

• RNNs are unrolled “left-to-right”.
• This encodes linear locality: a useful heuristic!

• Nearby words often affect each other’s meanings

• Problem: RNNs take O(sequence length) steps for
distant word pairs to interact.

4

tasty pizza

The chef waswho …

O(sequence length)

Issues with recurrent models: Linear interaction distance

• O(sequence length) steps for distant word pairs to interact means:
• Hard to learn long-distance dependencies (because gradient problems!)

• Linear order of words is “baked in”; we already know linear order isn’t the
right way to think about sentences…

5

The waschef who …

Info of chef has gone through
O(sequence length) many layers!

Issues with recurrent models: Lack of parallelizability

• Forward and backward passes have O(sequence length) unparallelizable
operations
• GPUs can perform a bunch of independent computations at once!

• But future RNN hidden states can’t be computed in full before past RNN
hidden states have been computed

• Inhibits training on very large datasets!

6

h
1

0

1 n

h
Th

2

1

2

2

3

Numbers indicate min # of steps before a state can be computed

If not recurrence, then what? How about attention?

• Attention treats each word’s representation as a query to access and
incorporate information from a set of values.
• We saw attention from the decoder to the encoder; today we’ll think about

attention within a single sentence.

• Number of unparallelizable operations does not increase with sequence length.

• Maximum interaction distance: O(1), since all words interact at every layer!

embedding 0 0 0 0 0 0 0 0

h
1 h

2 h
T

2 2 2 2 2 2 2 2
attention

attention
1 1 1 1 1 1 1 1

All words attend
to all words in
previous layer;
most arrows here
are omitted

7

Attention as a soft, averaging lookup table

8

We can think of attention as performing fuzzy lookup in a key-value store.

In a lookup table, we have a table of keys
that map to values. The query matches
one of the keys, returning its value.

In attention, the query matches all keys softly,
to a weight between 0 and 1. The keys’ values
are multiplied by the weights and summed.

Self-Attention Hypothetical Example

9

Self-Attention: keys, queries, values from the same sequence

10

2. Compute pairwise similarities between keys and queries; normalize with softmax

3. Compute output for each word as weighted sum of values

 (queries) (keys) (values)

Barriers
• Doesn’t have an inherent

notion of order!

Barriers and solutions for Self-Attention as a building block

11

Solutions

Fixing the first self-attention problem: sequence order

In deep self-attention
networks, we do this at the
first layer! You could
concatenate them as well,
but people mostly just add…

12

Position representation vectors learned from scratch

13

• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

• Pros:

• Periodicity indicates that maybe “absolute position” isn’t as important

• Maybe can extrapolate to longer sequences as periods restart!

• Cons:

• Not learnable; also the extrapolation doesn’t really work!

Position representation vectors through sinusoids

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Index in the sequence

D
im

en
si

o
n

14

Barriers
• Doesn’t have an inherent

notion of order!

• No nonlinearities for deep
learning! It’s all just weighted
averages

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to

the inputs

15

Adding nonlinearities in self-attention

The

chef

who

food

…
self-attention

Intuition: the FF network processes the result of attention

F
F

F
F

F
F

F
F

…
self-attention

F
F

F
F

F
F

F
F

16

Barriers
• Doesn’t have an inherent

notion of order!

• No nonlinearities for deep
learning magic! It’s all just
weighted averages

• Need to ensure we don’t “look
at the future” when predicting
a sequence

• Like in machine translation

• Or language modeling

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to

the inputs

• Easy fix: apply the same
feedforward network to each
self-attention output.

17

Masking the future in self-attention

The

chef

who

[START]

For encoding
these words

The
chef

who
[START]

We can look at these
(not greyed out) words

18

Barriers
• Doesn’t have an inherent

notion of order!

• No nonlinearities for deep
learning magic! It’s all just
weighted averages

• Need to ensure we don’t “look
at the future” when predicting
a sequence

• Like in machine translation

• Or language modeling

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to

the inputs

• Easy fix: apply the same
feedforward network to each
self-attention output.

• Mask out the future by artificially
setting attention weights to 0!

19

• Self-attention:

• the basis of the method.

• Position representations:

• Specify the sequence order, since self-attention is
an unordered function of its inputs.

• Nonlinearities:

• At the output of the self-attention block

• Frequently implemented as a simple
feed-forward network.

• Masking:

• In order to parallelize operations while not
looking at the future.

• Keeps information about the future from
“leaking” to the past.

Necessities for a self-attention building block:

20

Outline

1. From recurrence (RNN) to attention-based NLP models

2. The Transformer model

3. Great results with Transformers

4. Drawbacks and variants of Transformers

21

The Transformer Decoder

22

• A Transformer decoder is how
we’ll build systems like
language models.

• It’s a lot like our minimal
self-attention architecture, but
with a few more components.

• The embeddings and position
embeddings are identical.

• We’ll next replace our
self-attention with multi-head
self-attention.

Transformer Decoder

Recall the Self-Attention Hypothetical Example

23

Hypothetical Example of Multi-Head Attention

24

Sequence-Stacked form of Attention

=

All pairs of
attention scores!

=

Next, softmax, and
compute the weighted
average with another
matrix multiplication.

25

Multi-headed attention

26

Multi-head self-attention is computationally efficient

27

Next, softmax, and
compute the weighted
average with another
matrix multiplication.

=

=

mix

3 sets of all pairs of
attention scores! =

Scaled Dot Product [Vaswani et al., 2017]

28

The Transformer Decoder

29

• Now that we’ve replaced
self-attention with multi-head
self-attention, we’ll go through
two optimization tricks that
end up being :

• Residual Connections

• Layer Normalization

• In most Transformer diagrams,
these are often written
together as “Add & Norm”

Transformer Decoder

The Transformer Encoder: Residual connections [He et al., 2016]

 Layer

 Layer +

[no residuals] [residuals]

[Loss landscape visualization,

Li et al., 2018, on a ResNet]30

https://arxiv.org/abs/1512.03385
https://arxiv.org/pdf/1712.09913.pdf

The Transformer Encoder: Layer normalization [Ba et al., 2016]

Normalize by scalar
mean and variance

Modulate by learned
elementwise gain and bias

31

https://arxiv.org/abs/1607.06450

The Transformer Decoder

32

• The Transformer Decoder is a
stack of Transformer Decoder
Blocks.

• Each Block consists of:

• Self-attention

• Add & Norm

• Feed-Forward

• Add & Norm

• That’s it! We’ve gone through
the Transformer Decoder.

Transformer Decoder

The Transformer Encoder

33

• The Transformer Decoder
constrains to unidirectional
context, as for language
models.

• What if we want bidirectional
context, like in a bidirectional
RNN?

• This is the Transformer
Encoder. The only difference is
that we remove the masking in
the self-attention.

Transformer DecoderNo Masking!

The Transformer Encoder-Decoder

34

• Recall that in machine
translation, we processed the
source sentence with a
bidirectional model and
generated the target with a
unidirectional model.

• For this kind of seq2seq
format, we often use a
Transformer Encoder-Decoder.

• We use a normal Transformer
Encoder.

• Our Transformer Decoder is
modified to perform
cross-attention to the output
of the Encoder.

Cross-attention (details)

35

Cross-attention (details)

=

All pairs of
attention scores!

=

Next, softmax, and
compute the weighted
average with another
matrix multiplication.

36

Outline

1. From recurrence (RNN) to attention-based NLP models

2. Introducing the Transformer model

3. Great results with Transformers

4. Drawbacks and variants of Transformers

37

Great Results with Transformers

[Vaswani et al., 2017]

Not just better Machine
Translation BLEU scores

Also more efficient to
train!

First, Machine Translation from the original Transformers paper!

[Test sets: WMT 2014 English-German and English-French]38

Great Results with Transformers

[Liu et al., 2018]; WikiSum dataset

Transformers all the way down.

Next, document generation!

The old standard

39

https://arxiv.org/pdf/1801.10198.pdf

Great Results with Transformers

[Liu et al., 2018]

Before too long, most Transformers results also included pretraining, a method we’ll
go over on Thursday.

Transformers’ parallelizability allows for efficient pretraining, and have made them
the de-facto standard.

On this popular aggregate
benchmark, for example:

All top models are
Transformer (and
pretraining)-based.

More results Thursday when we discuss pretraining.
40

https://arxiv.org/pdf/1801.10198.pdf

Outline

1. From recurrence (RNN) to attention-based NLP models

2. Introducing the Transformer model

3. Great results with Transformers

4. Drawbacks and variants of Transformers

41

• Quadratic compute in self-attention (today):

• Computing all pairs of interactions means our computation grows quadratically
with the sequence length!

• For recurrent models, it only grew linearly!

• Position representations:

• Are simple absolute indices the best we can do to represent position?

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

What would we like to fix about the Transformer?

42

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

Quadratic computation as a function of sequence length

43

=

Work on improving on quadratic self-attention cost

44

Key idea: map the
sequence length
dimension to a
lower-dimensional
space for values, keys In

fe
re

n
ce

 t
im

e
(s

)

Sequence length / batch size

• As Transformers grow larger, a larger and larger percent of compute is outside the
self-attention portion, despit the quadratic cost.

• In practice, almost no large Transformer language models use anything but the
quadratic cost attention we’ve presented here.

• The cheaper methods tend not to work as well at scale.

• So, is there no point in trying to design cheaper alternatives to self-attention?

• Or would we unlock much better models with much longer contexts (>100k
tokens?) if we were to do it right?

Do we even need to remove the quadratic cost of attention?

45

Do Transformer Modifications Transfer?

46

• "Surprisingly, we find that most modifications do not meaningfully improve
performance."

• Pretraining on Tuesday!

• Good luck on assignment 4!

• Remember to work on your project proposal!

Parting remarks

47

