Natural Language Processing
COMS 4705

’;‘ !,“

N
COLUMBIA
ENGINEERING

John Hewitt

Self-Attention and Transformers
Adapted from slides by Anna Goldie, John Hewitt



Lecture Plan

Towards attention-based NLP models
The Transformer model
Great results with Transformers

s W

Drawbacks and variants of Transformers




Historically: recurrent models for (most) NLP!

e Circa 2016, the de facto strategy in NLP is to encode I .
sentences with an RNN:
(for example, the source sentence in a translation)

e Define your output (parse, sentence, summary) I ! I I

as a sequence, and use an RNN to generate it.

e Use attention to allow flexible access to
memory
I 3



Issues with recurrent models: Linear interaction distance

* RNNs are unrolled “left-to-right”.
e This encodes linear locality: a useful heuristic!
* Nearby words often affect each other’s meanings

tasty pizza

* Problem: RNNs take O(sequence length) steps for
distant word pairs to interact.

O(sequence length)

:::::::1::::

I The chef who ...
4




Issues with recurrent models: Linear interaction distance

* O(sequence length) steps for distant word pairs to interact means:
e Hard to learn long-distance dependencies (because gradient problems!)

* Linear order of words is “baked in”; we already know linear order isn’t the
right way to think about sentences...

l . 000 B Beeo l :
-—-—»ooo T - T - | (YY) - =
/ was

The chef who ...

Info of chef has gone through
I O(sequence length) many layers!
5




Issues with recurrent models: Lack of parallelizability

e Forward and backward passes have O(sequence length) unparallelizable
operations

* GPUs can perform a bunch of independent computations at once!

e But future RNN hidden states can’t be computed in full before past RNN
hidden states have been computed

* Inhibits training on very large datasets!

B B-E o P
H H

! f
000 - - eo®

I Numbers indicate min # of steps before a state can be computed
6

h

T




If not recurrence, then what? How about attention?

Attention treats each word’s representation as a query to access and
incorporate information from a set of values.

* We saw attention from the decoder to the encoder; today we’ll think about
attention within a single sentence.

Number of unparallelizable operations does not increase with sequence length.
e Maximum interaction distance: O(1), since all words interact at every layer!

to all words in

attention previous layer;
most arrows here

embedding E . . . . . . . are omitted
h h
1 2

T

attention All words attend




Attention as a soft, averaging lookup table

We can think of attention as performing fuzzy lookup in a key-value store.

In a lookup table, we have a table of keys In attention, the matches all keys softly,
that map to values. The matches to a weight between 0 and 1. The keys’ values
one of the keys, returning its value. are multiplied by the weights and summed.
keys values keys values Weighted
Sum
a vl k1 vl
b v2 k2 v2
query query output
d C v3 k3 v3 —
output . Z
d v4 % v4 k4 v4
e v5 k5 v5




Self-Attention Hypothetical Example

attention
weights
for
I “learned”
i I B

went to Stanford CS 224n and learned
9




Self-Attention: keys, queries, values from the same sequence

Let w,.,, be a sequence of words in vocabulary V, like Zuko made his uncle tea.

For each w;, let x; = Ew;, where E € RVl is an embedding matrix.

1. Transform each word embedding with weight matrices Q, K,V , each in R®*¢
q; = Qx; (queries) le; = Kx; (keys) v; = Vx; (values)

2. Compute pairwise similarities between keys and queries; normalize with softmax

. exp(e;;)
el-j = {q; k] al-j =
’” 2., exp(e;;r)
keys values Weighted
. Sum
3. Compute output for each word as weighted sum of values . v

k2 v2
yuery output

E l? 9 L L Z >
k4 v4

] k5 v5
10




Barriers and solutions for Self-Attention as a building block

Barriers Solutions

e Doesn’t have an inherent
notion of order!




Fixing the first self-attention problem: sequence order

* Since self-attention doesn’t build in order information, we need to encode the order of the
sentence in our keys, queries, and values.

* Consider representing each sequence index as a vector

p; € RY, fori € {1,2, ..., n} are position vectors

* Don’t worry about what the p; are made of yet!
» Easy toincorporate this info into our self-attention block: just add the p; to our inputs!
* Recall that x; is the embedding of the word at index i. The positioned embedding is:

~ In deep self-attention

Xi = Xj T Pi networks, we do this at the
first layer! You could
concatenate them as well,
but people mostly just add...

12




Position representation vectors learned from scratch

Learned absolute position representations: Let all p; be learnable parameters!

Learn a matrix p € R*X"

, and let each p; be a column of that matrix!
* Pros:

* Flexibility: each position gets to be learned to fit the data
 Cons:

* Definitely can’t extrapolate to indices outside 1, ..., n.

Most systems use this!

Sometimes people try more flexible representations of position:
 Relative linear position attention [Shaw et al., 2018]

* Dependency syntax-based position [Wang et al., 2019]

13




Position representation vectors through sinusoids

* Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

/sin(i/100002*1/4)\ P S S B
cos(i/100002°1/4) | 5 — = _———
pi = :
.« £
()
sin(i/100002*3/d)
. 2*—/d
@3(1/10000 2) Index in the sequence
* Pros:

* Periodicity indicates that maybe “absolute position” isn’t as important
* Maybe can extrapolate to longer sequences as periods restart!

e (Cons:
* Not learnable; also the extrapolation doesn’t really work!

14 Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/




Barriers and solutions for Self-Attention as a building block

Barriers Solutions
e Doesn’t have an inherent , * Add position representations to
notion of order! the inputs

 No nonlinearities for deep
learning! It’s all just weighted >
averages




Adding nonlinearities in self-attention

16

Note that there are no elementwise
nonlinearities in self-attention;
stacking more self-attention layers
just re-averages value vectors
(Why? Look at the notes!)

Easy fix: add a feed-forward network
to post-process each output vector.

m; = MLP (output;)

= W, = ReLU(W, output; + b;) + b,

self-attention

F B F F
i i i i

self-attention

W1 W, W3 Wy,

The chef who food

Intuition: the FF network processes the result of attention




Barriers and solutions for Self-Attention as a building block

Barriers Solutions

e Doesn’t have an inherent , * Add position representations to
notion of order! the inputs

 No nonlinearities for deep e Easy fix: apply the same
learning magic! It’s all just > feedforward network to each
weighted averages self-attention output.

 Need to ensure we don’t “look
at the future” when predicting >

a sequence
* Like in machine translation
* Or language modeling

17




Masking the future in self-attention

We can look at these
(not greyed out) words
* To use self-attentionin |

decoders, we need to ensure ( P?S\ . . \
we can’t peek at the future. S 0 e N\

_ [START]
* At everytimestep, we could

change the set of keys and ”
queries to include only past The

words. (Inefficient!) For encoding
these words

o chef
* To enable parallelization, we

mask out attention to future
words by setting attention who

_ T ; ;
scores to —oo, o — qi k]’] <i
L] -

—00,j > 1
18




Barriers and solutions for Self-Attention as a building block

Barriers

e Doesn’t have an inherent
notion of order!

 No nonlinearities for deep
learning magic! It’s all just
weighted averages

e Need to ensure we don’t “look
at the future” when predicting
a sequence

* Like in machine translation
* Or language modeling

19

Solutions
e Add position representations to

_d
the inputs

e Easy fix: apply the same
> feedforward network to each

self-attention output.

 Mask out the future by artificially

> setting attention weights to 0!




Necessities for a self-attention building block:

o Self-attention: Probabilities
* the basis of the method. Softmax
o . AN
e Position representations: Linear
 Specify the sequence order, since self-attention is N

* Frequently implemented as a simple

feed-forward network.
Masking: Block

an unordered function of its inputs. o v

Q 5 Feed-Forward
O

e Nonlinearities: g ¢ T

* At the output of the self-attention block 5 O

= Masked §elf-

S & Attention

(O]
O
2

* In order to parallelize operations while not Add Position

. Embeddings
looking at the future. N

* Keeps information about the future from Embeddings

o “leaking” to the past. Inputs




Outline

The Transformer model

s W




The Transformer Decoder

22

A Transformer decoder is how
we’ll build systems like
language models.

It’s a lot like our minimal
self-attention architecture, but
with a few more components.

The embeddings and position
embeddings are identical.

We'll next replace our
self-attention with multi-head
self-attention.

Masked Multi-
Head Attention

Add Position
Embeddings

Embeddings

Transformer Decoder




Recall the Self-Attention Hypothetical Example

attention
weights
for
I “learned”
i I B

went to Stanford CS 224n and learned
23




Hypothetical Example of Multi-Head Attention

I 24

Attention head 1
attends to entities

V V V V
kK k k Ik

I

went

I

to Stanford

went

Vv
Kk

€5

Y
K

224n

to

g
\" \%
Kk Kk
and learned
Stanford

Attention head 2 attends to
syntactically relevant words

g
VV V V VvV VvV VvV Vv

k k k k Kk k k Kk

I went to Stanford CS 224n and learned

CS 224n and learned




Sequence-Stacked form of Attention

« Let’s look at how key-query-value attention is computed, in matrices.
 Let X = [xq;...; x, ] € R™4 be the concatenation of input vectors.
« First, note that XK € R™*¢, XQ € R™4 XV € R™*¢,

First, take the query-key dot All pairs of
products in one matrix X0 = XQKTXT attention scores!
multiplication: XQ(XK)T KT xT -
Next, softmax, and ( )
compute the weighted softmax| xokTXxT | xy =
average with another

output € R™**¢

matrix multiplication. \ /
25




Multi-headed attention

26

What if we want to look in multiple places in the sentence at once?

* For word i, self-attention “looks” where xl-TQTKx]- is high, but maybe we want
to focus on different j for different reasons?

We’ll define multiple attention “heads” through multiple Q,K,V matrices

d
Let, Qp, Kp, V) € ]Rdxﬁ, where h is the number of attention heads, and £ ranges

from 1 to h.

Each attention head performs attention independently:

- output, = softmax(XQ,K; X") * XV, where output, € R*/"
Then the outputs of all the heads are combined!

- output = [outputy;...; output,]Y, where Y € R4*4

Each head gets to “look” at different things, and construct value vectors
differently.




Multi-head self-attention is computationally efficient

* Even though we compute A many attention heads, it’s not really more costly.
« We compute XQ € R™4 and then reshape to R™"*a/1_(Likewise for XK, XV .)
« Then we transpose to RM"*a/1. now the head axis is like a batch axis.

First, take the query-key dot 3 sets of all pairs of
products in one matrix X0 —  XQKTXT attention scores!

multiplication: XQ(XK) T KT xT € R3Xnxn

PR

Next, softmax, and ( )
compute the weighted softmax XOKTXT | xy =

average with another p
matrix multiplication. \ /

output € R™*4

27 mix




Scaled Dot Product [Vaswani et al., 2017]

* “Scaled Dot Product” attention aids in training.

* When dimensionality d becomes large, dot products between vectors tend to
become large.

* Because of this, inputs to the softmax function can be large, making the
gradients small.

* |nstead of the self-attention function we’ve seen:
output, = softmax(XQ,K; X") x XV,

 We divide the attention scores by ./d/h, to stop the scores from becoming large

28




The Transformer Decoder

Add & Norm
 Now that we’ve replaced
self-attention with multi-head
self-attention, we’ll go through
two optimization tricks that Addigblor
Masked Multi-

end up being :
e Residual Connections 1

Head Attention

* Layer Normalization

* In most Transformer diagrams, Add Position
these are often written Embeddings

together as “Add & Norm Embeddings

Transformer Decoder

29




The Transformer Encoder: Residual connections [He et al., 2016]

* Residual connections are a trick to help models train better.

* Instead of X = Layer(X“=1) (where i represents the layer)

x@@-1y x®

Layer

« We let X® = XD 4 Layer(X~1) (so we only have to learn “the residual”
from the previous layer)

XD — | ayer —ﬁ}—*wX“)

* Gradient is great through the residual
connection; it’s 1!

* Bias towards the identity function! [no residuals} [residuals]

[Loss landscape visualization,

30 Li et al., 2018, on a ResNet]



https://arxiv.org/abs/1512.03385
https://arxiv.org/pdf/1712.09913.pdf

The Transformer Encoder: Layer normalization [Ba et al., 2016]

* Layer normalization is a trick to help models train faster.

e |dea: cut down on uninformative variation in hidden vector values by normalizing
to unit mean and standard deviation within each layer.

* LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

 Let x € R? be an individual (word) vector in the model.

o letu= Z?zl xj; this is the mean; u € R.

2
e leto = \/% Z?zl(xj — ,u) ; this is the standard deviation; o € R.

« Lety € R%and p € R4 be learned “gain” and “bias” parameters. (Can omit!)
 Then layer normalization computes:

Normalize by scalar / \ Modulate by learned

31 mean and variance elementwise gain and bias



https://arxiv.org/abs/1607.06450

The Transformer Decoder

e The Transformer Decoder is a
stack of Transformer Decoder
Blocks.

e Each Block consists of:
e Self-attention
* Add & Norm
* Feed-Forward
* Add & Norm

 That’s it! We've gone through
the Transformer Decoder.

32

Repeat for number

of encoder blocks

Probabilities

Softmax
N
Linear
N

Add & Norm
N

Feed-Forward

T

ﬁ

Add & Norm
N
Masked Multi-

Head Attention

w Block

Add Position
Embeddings

Embeddings

Decoder Inputs




The Transformer Encoder

33

Probabilities

Softmax
AN
The Transformer Decoder LT
constrains to unidirectional N
context, as for language Add & Norm
models. - =
_ L . Y Feed-Forward
What if we want bidirectional = 28
. . . qe . 2 A
context, like in a bidirectional € |
3 O 3 Add & Norm
RNN’ s ﬁ o
This is the Transformer S G rl”t'tt;:;'ieoid
Encoder. The only difference is g o
that we remove the masking in ( w Block
the self-attention. |
Add Position
. Embeddings
No Masking! T
Embeddings

Decoder Inputs




Probabilities

The Transformer Encoder-Decoder softma
Linear
. . N
e Recall that in machine
. Add & Norm
translation, we processed the A
source sentence with a Feed-Forward
bidirectional model and T
] Add & Norm
generated the target with a Add & Norm N
. 3o . N Multi-Head
unidirectional model. tartion
Feed-Forward
e For this kind of seq2seq A J
I 1
format, we often use a NI Add 8:I\Norm
Transformer Encoder-Decoder. ST — Masked Multi-
. Head Attention
e We use a hormal Transformer Attention w
Encoder. w S Block
e Qur Transformer Decoder is | I EEen
. Add Position Embeddi
modified to perform Embe/]c\ldings = e’l‘ 'ngs
cross-attention to the output Embeddings Embeddings

34 of the Encoder. Encoder Inputs Decoder Inputs




Cross-attention (details)

 We saw that self-attention is when keys,
queries, and values come from the same

source.
* Inthe decoder, we have attention that hl» ) hn
looks more like what we saw last week. T
Add & Norm AN
* Let hy4, ..., h,, be output vectors from the N Multi-Head
Attention
Transformer encoder; x; € R% Reee Fenoie 727277 7
: T . 1r ==y 4n
* letz,..., 2z, beinput vectors from the T T
N
Transformer decoder, z; € R% S Masked Multi-
Attention Heo,dLA:ttpelltion
s Add Position
Add Position :
Embeddings Bl
Embeddings Elulieieiie 2

35 Encoder Inputs Decoder Inputs




Cross-attention (details)

* Let’s look at how cross-attention is computed, in matrices.
* LetH=|hy;..;hr ] € RT%2 pe the concatenation of encoder vectors.
* LetZ = [zq; ...; zp | € RT*? be the concatenation of decoder vectors.

First, take the query-key dot All pairs of
products in one matrix 70 = Z0KTHT attention scores!
multiplication: ZQ(HK)' KT HT T
/ eER

Next, softmax, and ( )
compute the weighted softmax| zokTHT | py =
average with another

output € RT*4

matrix multiplication. \ /
36




Outline

Great results with Transformers

s W

37




Great Results with Transformers

First, Machine Translation from the original Transformers paper!

BLEU Traiming Cost (FLLOPs)

Model - - -
EN-DE  EN-FR EN-DE EN-FR

ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0+ 1020
GNMT + RL [38] 24.6 39.92 2.3-101% 1.4.10%
ConvS2S [9] 25.16 4046 9.6-10"® 1.5.10%
Mok |32] 26.03  40.56 2.0-10"7 1.2.10%°
Deep-Att + PosUnk Ensemble [39] 404 <0 - 104
GNMT + RL Ensemble [38] 2630  41.16 1.8-10%°  1.1-10%!
ConvS2S Ensemble [9] 26.36 4129 7.7-1039 1.2.10%

38 [Test sets: WMT 2014 English-German and English-French] [Vaswani et al., 2017]




Great Results with Transformers

Next, document generation!

Model Test perplexity ROUGE-L
seqlseqg-attention, L = S00 504952 12.7
Transformer-b, 1, = 500 2 46549 34.2
Transformer- D, L. = 4000 2.22216 336
Transformer-DMCA, no Mok-laver, I, = 11000 203159 36,2
Transformer-DMCA, MoE-128. L = 11000 1.92871 379
Transformer-DMCA, Maol-256, 1. = THAK) 1. W)328 R

/

The old standard Transformers all the way down.

39 [Liu et al., 2018]; WikiSum dataset



https://arxiv.org/pdf/1801.10198.pdf

Great Results with Transformers

Before too long, most Transformers results also included pretraining, a method we’ll
go over on Thursday.

Transformers’ parallelizability allows for efficient pretraining, and have made them
the de-facto standard.

On this popular aggregate

Rank Name Model URL Bcore
benchmark, for example:

1 DeBERTu Tewn - Miaosull DeBERTY f TurmpNLRVY C’J‘ 20.3
2 VR FIYTTK MasA IFRT + DKM anzyd
x G L U E E"' 3  Albsba CAMO NLP SIUctBERT « TAPT [:/)‘ 00.5
j-i- & PING-AN Crnn-Sini ALBEIL + UAAL 1+ NAY ul)

All top models are
5 RN Team Naid FRNIT (4 an4

Transformer (and

11 L1 S5Tcam - Goog ¢ 5 ’ an 3
pretraining)-based. Vi AR a0 2 L 0

More results Thursday when we discuss pretraining. .
40 [LlU et al., 2018]



https://arxiv.org/pdf/1801.10198.pdf

Outline

s W

Drawbacks and variants of Transformers

41




What would we like to fix about the Transformer?

e Quadratic compute in self-attention (today):

* Computing all pairs of interactions means our computation grows quadratically
with the sequence length!

* For recurrent models, it only grew linearly!

e Position representations:
* Are simple absolute indices the best we can do to represent position?
 Relative linear position attention [Shaw et al., 2018]

* Dependency syntax-based position [Wang et al., 2019]

42



https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

Quadratic computation as a function of sequence length

* One of the benefits of self-attention over recurrence was that it’s highly
parallelizable.

« However, its total number of operations grows as O(n?d), where n is the
sequence length, and d is the dimensionality.

Need to compute all
XQ = XQK"XT pairs of interactions!
2

* Think of d as around 1, 000 (though for large language models it’s much larger!).
* So, for a single (shortish) sentence, n < 30; n? < 900.
* |In practice, we set a bound liken = 512.

* But what if we’d liken = 50,0007? For example, to work on long documents?
I 43



Work on improving on quadratic self-attention cost

* Considerable recent work has gone into the question, Can we build models like
Transformers without paying the O(T?) all-pairs self-attention cost?

* For example, Linformer [\Wang et al., 2020]

" 120 - Linformer, k=2048
' —e— Linformer, k=1024
. = —&— Linformer, k=512
Key idea: map the Con 2 L - Linformer, k=256
s | 4 g —-= Linformer, k=128
sequence length e ll} = Transformer
dimension to a e S S o} | |
lower-dimensional —— <
v “ 10}k ! el
space for values, keys o M : £ E —t————
P ’ Y mﬂ g ]] o u by bttt -_—.‘-_.t. = -_-.-:—.—_-. —_'.?_i:. "_?:‘_:_':::—-:*
v/ VF V/ 512/128 1024/64 2048/32 4096/16 8192/8 16384/4 32768/2 65536/1
\Y K Q

Sequence length / batch size

44




Do we even need to remove the quadratic cost of attention?

45

As Transformers grow larger, a larger and larger percent of compute is outside the
self-attention portion, despit the quadratic cost.

In practice, almost no large Transformer language models use anything but the
quadratic cost attention we’ve presented here.

* The cheaper methods tend not to work as well at scale.
So, is there no point in trying to design cheaper alternatives to self-attention?

Or would we unlock much better models with much longer contexts (>100k
tokens?) if we were to do it right?




Do Transformer Modifications Transfer?

e "Surprisingly, we find that most modifications do not meaningfully improve
performance.”

Model Params Ops Step/s Early loss Finalloss SGLUE XSum WebQ | WMT EnDe
Vanilla Transformer 223M 1117 2.182 + 0.005 1.838 71.66 17.78 23.02 ‘ 26.62
GeLU 223M 1117 2.179 + 0.003 1.838 75.79 17.86  25.13 2647
Swish 223M 1117 2.186 + 0.003 1.847 73.77 17.74 24.34 26.75
ELU 223M 1117 2.270 + 0.007 1.932 67.83 16.73 23.02 26.08
GLU 223M 11.1T 2174 £ 0.003 1.814 74.20 17.42 2434 27.12
GeGLU 223M 1117 2.130 + 0.006 1.792 75.96 18.27 24.87 26.87
ReGLU 223M nar 2.145 + 0.004 1.803 76.17 18.36 24.87 27.02
SeLU 223M 11T 2.315 + 0.004 1.948 68.76 16.76 22.75 25.99
SwiGLU 223M 1117 2.127 +0.003 1.789 76.00 18.20 24.34 27.02
LiGLU 223M 11.1T 2.149 + 0.005 1.798 75.34 17.97  24.34 26.53
Sigmoid 223M 1117 2.291 +0.019 1.867 74.31 17.51 23.02 26.30
Softplus 223M 1117 2207 £0.011 1.850 72.45 17.65 24.34 26.89
RMS Norm 223M 1117 2.167 + 0.008 1.821 75.45 17.94 24.07 27.14
Rezero 223M 1117 2.262 + 0.003 1.939 61.69 15.64 20.90 26.37 . . .
Rezero + LayerNorm 223M 1117 2.223 + 0.006 1.858 70.42 17.58 23.02 26.29 D ’H f M d ﬁ t ’I&\ f A I 1 t t
Reoro | BMS Nom  29M 11T Tmiioms 1s  wm  w mor | i (0] ansiormer odlrcations ansier Cross lmpilementations
Fixup 223M b i 2382+ 0.012 2.067 58.56 14.42 23.02 26.31
. .

24 layers, dg 224M 1117 2.200 £ 0.007 1.843 74.89 17.75 25.13 26.89 .?
e and Applications?

223M 1117 2.190 + 0.005 1.847 74.58 17.69 23.28 26.85
6 layers, dg = 6144, H 223M 11T 2.201 + 0.010 1.857 73.55 17.59 24.60 26.66
Block sharing 65M 1117 2.497 +0.037 2.164 64.50 14.53 21.96 * . . .

e W T e wooumonw Sh. N H Won Ch Yi T Will Fed
i cricmeperper s il A dooriosts sme g5 1w 108t aran iNaran un on un 1 1a 1il1am reaus

beddings
Encoder only block sharing 170M 1117 3.68 2.298 +0.023 1.929 69.60 16.23 23.02 26.23
Decoder only block sharing 144M 11.1T 3.70 2.352 +0.029 2.082 67.93 16.13 23.81 26.08 f
Factorized Embedding 27M 94T 380 2208£0006 1855 7041 1592 2275 2650 h b lt F M h 1 M t T K h M lka T N h F d l
Do Brbeding WL S 0 mitwe 1w pu be ozo] oam Thibau evry ichae atena arishma Malkan oa iede
dings
Tied encoder/decoder in- 248M 1117 3.55 2.192 + 0.002 1.840 7170 17.72 24.34 26.49
put embeddings
‘Tied decoder input and out- 248M 1117 3.57 2.187 £+ 0.007 1.827 74.86 17.74 24.87 26.67 T . . .
N Sh Zhenzh L Yanqi Zh Wei L
ey, e oam azeer enznon an anqi ou €l 11
‘Adaptive input embeddings 204M 9.2T 3.55 2.250 + 0.002 1.899 66.57 16.21 24.07 26.66
Adaptive softmax 204M 9.2T 3.60 2.364 £ 0.005 1.982 72.91 16.67 21.16 25.56
Adaptive softmax without 223M 10.8T 343 2.229 + 0.009 1.914 71.82 17.10 23.02 25.72 . . T
Nan D Jake M Ad Robert Colin Raffel
Mixture of softmaxes 232M 16.3T 2.24 2227 +0.017 1.821 76.77 17.62 22.75 26.82 an lng e arcus am 0 er S 0 ln e
Transparent attention 223M 1117 3.33 2.181+0.014 1.874 54.31 10.40 21.16 26.80
Dynamic convolution 257M 1187 265  2.403+0.009  2.047 5830 1267  2L16 17.03
Lightweight convolution 224M 104T 4.07 2.370 £ 0.010 1.989 63.07 14.86 23.02 24.73
Evolved Transformer 21TM 99T 3.09 2.220 £ 0.003 1.863 73.67 10.76 24.07 26.58
Synthesizer (dcnsﬂ) 224M 114T 347 2334 +£0.021 1.962 61.03 14.27 16.14 26.63
Synthesizer (dense plu:) 243M 12.6T 3.22 2.191 +0.010 1.840 73.98 16.96 23.81 26.71
Synthesizer (dense plus al- 243M 12.6T 3.01 2.180 + 0.007 1.828 74.25 17.02 23.28 26.61
pha)
Synthesizer (factorized) 207TM 10T 3.94 2.341 4+ 0.017 1.968 62.78 15.39 23.55
Synthesizer (random) 254M 1017 4.08 2.326 +0.012 2.009 54.27 10.35 19.56
Synthesizer (random plus) 292M 12.0T X 2.189 + 0.004 1.842 73.32 17.04 24.87

Synthesizer (random plus ~ 202) 12,07 21860007  1.828 75.24 1708 24.08

alpha)

Universal Transformer S4M  400T 088 24060036 2053 7013 1409 19.05 23.91
Mixture of experts 648M 1177 320 21480006  1.785 7455 1813  24.08 26.94
Switch Transformer 100M 1177 318 213540007 1758 75.38  18.02  26.19 26.81
Funnel Transformer 228M 19T 430 228840008 1918 6734 1626 2275 23.20
Weighted Transformer 280M  TLOT 059 23780021 1989 69.04 1698 2302 26.30
Product key memory 421M 3366 025  2155+0.003  1.798 7516 1704 23.55 26.73

46




Parting remarks

e Pretraining on Tuesday!
* Good luck on assignment 4!
e Remember to work on your project proposal!

47




