
COMS 4705: Intro to NLP
John Hewitt

Lec 5: Deep Networks, GPUs and Parallelization
Columbia University

In this note, we discuss TPUs, GPUs, what it means for neural network architectures to
be parallelizable across these accelerators, and implications for neural network design.
The goal is not to make you adept at writing CUDA code—the code that directly
specifies GPU behavior—but to teach you enough about the structure of GPUs (and
a bit about TPUs) to help you reason through the design and implementation of your
neural networks.

A good neural network architecture learns flexibly and efficiently from data. By flexibly,
we mean that the network is expressive, as we’ve discussed before in this course. To
recall, a network architecture is expressive when it can express complex functions and
learn such functions from data.

By learning efficiently, one of two things is usually meant. One is data efficiency,
wherein one measures performance of a network in the architecture as a function of
the number of training samples shown, desiring as high performance as possible for any
sample budget. Another is time efficiency, wherein one measures performance of a
network in the architecture as a function of various measures of time, including wall
clock time—how long we actually have to wait for training to happen—or the number
of operations needed to compute the training function.

Which one seems more important? In some sense, counting the number of operations
feels like the more standardizable unit—wall clock time must depend on all kinds of
things like what hardware is being used, whether other programs are running, or how
fast one’s disk I/O is.

However, modern LLM development has taught us that the first-order term in the
approximation of neural network quality is how much computation you spend on showing
reasonably high-quality data to a model. This amount of computation is roughly:

Computation = ModelSize×NumberOfExamples (1)

This means we want to define architectures that maximize the amount of computation
we can achieve for a fixed amount of wall-clock time. This in turn means defining
architectures that suit the computing hardware we have.

Model Expressivity Through Stacking Components

Zuko made his uncle tea

x
(ℓ)
t−1 = FF (xℓ−1 + µℓ−1

t−1) (2)
(3)

Matrix Multiplication and How We’ve Used It

Consider matrices A ∈ Rm×n B ∈ Rn×p, and C ∈ Rm×p. Also consider scalars α, β ∈ R.
We’ve seen matrix multiplication AB, and we’ve seen addition of matrices (or vectors)

1

COMS 4705: Intro to NLP Lec 5: Deep Networks, GPUs and Parallelization

A

3× 5

A11

Aij ·

B

5× 7

B11

Bjk =

AB

3× 7

(AB)ik

(AB)ik =

5∑
j=1

AijBjk

+ β

C

3× 7

Cik =

C′ = αAB + βC

3× 7

C′
ik

C′
ik = α

5∑
j=1

AijBjk + β Cik

α

Figure 1: Diagram of a GEMM, including an intermediate value AB. Note that this
diagram was generated mostly by ChatGPT, with fixes from me; I don’t know tikz this
well, but feel like I learned a lot fixing the errors.

AB + C. A general matrix multiplication is an operation of the form

C ← αAB + βC (4)

where C is an existing matrix that is overwritten by the operation. (We haven’t talked
about things like memory usage yet in the course, but this is where it starts, so keep in
mind that it matters that we already had memory around storing C; we’re not adding
in some other unrelated matrix D.) From this operation we can recover, e.g., matrix
multiplication by setting β = 0, α = 1:

C ← 1AB + 0C (5)

Note that the technical content in this section so far is basically drawn from NVIDIA’s
great matrix multiplication user guide. This will be true of much of the content in this
article, though I’ll be adding a few bits here and there, and removing some of the details
I don’t think are critical for this course.

Some matrix multiplies we’ve seen

We’ve seen plenty of matrix multiplies in the course. Here are a few, with some example
dimensionalities. First off, the matrix multiply just before the softmax in our language
model

softmax(Eh). (6)

We usually have thought of this as a matrix-vector multiply, E ∈ R|V|×d, and h ∈ Rd.
But as you see in assignment 1, we often compute these quantities over, e.g., a whole
sequence, so our h ∈ Rd×T is the matrix of all h vectors for a whole sequence of T words.

2

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

COMS 4705: Intro to NLP Lec 5: Deep Networks, GPUs and Parallelization

Now we can see we have a GEMM with shapes (|V|, d), (d, T), and (|V|, T), with the
pre-existing C = 0.

We’ve also seen the selection of a word embedding by multiplying by a one-hot vector
w:

E⊤w (7)

where w = [0; · · · ; 1; 0; · · ·] ∈ R|V| selects a particular vector in Rd from E. This can be
re-written as an index lookup from E.

One operation that is a matrix operation but is not a matrix multiply is the averaging
in our averaging language model:

1

t− 1

t−1∑
j=1

Ewj
(8)

GPUs and TPUs

GPUs (Graphics Processing Units) and TPUs (Tensor Processing Units) are computing
hardware specialized to perform a large number of independent operations in parallel.
This specialized functionality is in contrast to CPUs, which excel at serial operations—
operations performed one after another, thus allowing future operations to depend on
the results of earlier operations.

Serial computation is more flexible by allowing these dependencies. However, parallel
computation allows us to scale the number of operations performed at once, since no
operation has to wait for another.

If you have the time, I recommend reading this great article on GPU performance
released by NVIDIA. A lot of what I’ll write in this subsection is drawn from that. I’ll
also draw from the related matrix multiply users guide here.

Data and computation model of a GPU

A GPU is an accelerator with its own memory and computing cores, separate from the
CPU of the machine that the GPU resides on. Our goal here is to discuss enough of
the data and computation model of the GPU to write reasonably performant neural
network programs. However, there’s a lot of room for much more efficiency by digging
into details that we won’t cover in this course!

Let’s start by looking at Figure 2. At the left, we see the machine RAM, which I’ve
labelled as 512GB. Even before this, we have the hard disk storage of the machine (which
might be terabytes (1000s of GB) large.) Let’s say we have a matrix in A ∈ R512×512

and we want to compute A2. First off, let’s say we’re representing the values of A in
32-bit floats. That means each of the 512 ∗ 512 floating point numbers we need each
takes 4 bytes, so we have a total of 512 ∗ 512 ∗ 4 = 220 bytes. If A resides on our hard
disk, we first read it to the machine RAM (slow). From the machine’s RAM we move a
matrix to the GPU RAM, which tends to be much smaller (For example, a top-of-the
line B200 GPU has 192GB; a T4 has 16GB.) To compute A2, we further move parts
of A in chunks to the caches and registers of the streaming multiprocessors. We won’t
get into the streaming model here, but consider that each dot product in A2 does not
depend on any other; they can be computed parallel. The result of computing A2 is
written back to GPU VRAM (and must separately be explicitly moved back to the CPU
RAM if you want it there.)

3

https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

COMS 4705: Intro to NLP Lec 5: Deep Networks, GPUs and Parallelization

Machine RAM
(512 GB)

GPU VRAM
(50 GB)

caches
(0.040 GB)

very slow faster

streaming multiprocessors

Figure 2: Rough schematic of the data model of a GPU. Arithmetic perations are
performed on a large set of streaming multiprocessors (SMs). They act on data in their
registers (and, for the sake of the level of detail in this course) their nearby caches.
Moving data from VRAM to caches/SMs is fast. Moving data from machine RAM to
the GPU RAM is very slow.

Utilization: memory bandwidth and arithmetic intensity

So, there are two things we do when computing our operation: we move around bytes
(memory access) and we actually perform math. Let’s call Tmath the time we spend
doing math and Tmem the time we spend accessing memory. Assuming we can overlap
these two (again, see the NVIDIA blog post) our time for our program is

T = max(Tmath, Tmem) (9)

If Tmem is greater than Tmath, our program is memory-bound. If instead Tmath >
Tmem, the program is math-bound. As we’ll see, we’re often memory-bound.

To approximate Tmath and Tmem, we can use the following rough calculation. Let Cbytes
be the number of bytes we access for our computation. Let Cops be the number of
floating-point operations (e.g., scalar multiplications.) The ratio of these two is called
the arithmetic intensity:

arithmetic intensity =
Cmath
Cmem

(10)

If we let Bmath be the math bandwidth (or, speed at which we compute mathemati-
cal operations) and Bmem Be our memory bandwidth (speed at which we access/move
memory)

A processor’s operations-to-byte ratio is then:

Bmath
Bmem

(11)

Our time taken for math operations and memory access respectively are:

Tmath =
Cmath
Bmath

(12)

Tmem =
Cmem
Bmem

(13)

and our program is memory-bound if:

Tmath > Tmem ⇔
Cmath
Cmem

<
Bmath
Bmem

(14)

4

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

COMS 4705: Intro to NLP Lec 5: Deep Networks, GPUs and Parallelization

Examples of matrix multiply arithmetic intensity

Matrices of m×k and k×n leads to m×n matrix. Uses mnk FLOPs. Memory accesses:
mk + kn + mn (for output.) Arithmetic intensity is:

Cmath
Cmem

=
mnk

mn+mk + kn
(15)

Here’s an example using small matrices. Let’s use m = 10, n = 20, and k = 30: For
Cmath, we have:

mnk = 10× 20× 30

= 6, 000

And for Cmem:

mn+mk + kn = (10× 20) + (10× 30) + (30× 20)

= 200 + 300 + 600

= 1, 100

so an arithmetic intensity of:

6, 000

1, 100
≈ 5.45 (16)

Now, let’s use m = 1000, n = 2000, and k = 3000. For Cmath, we have

mnk = 1000× 2000× 3000

= 6, 000, 000, 000

and for Cmem:

mn+mk + kn = (1000× 2000) + (1000× 3000) + (3000× 2000)

= 2, 000, 000 + 3, 000, 000 + 6, 000, 000

= 11, 000, 000

for an arithmetic intensity of:

6, 000, 000, 000

11, 000, 000
≈ 545.45 (17)

Things we didn’t get to

• cores

• tensor cores

• floating point precisions

5

	Data and computation model of a GPU
	Utilization: memory bandwidth and arithmetic intensity
	Examples of matrix multiply arithmetic intensity

