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ABSTRACT

Accurate estimation of segmental durations is crucial for natural-
sounding text-to-speech (TTS) synthesis. This paper presents a
model of vowel duration used in the Bell Labs Japanese TTS sys-
tem. We describe the constraints on vowel devoicing, and effects
of factors such as phone identity, surrounding phone identities,
accentuation, syllabic structure, and phrasal position on the du-
ration of both long and short vowels. A Sum-of-Products ap-
proach is used to model key interactions observed in the data, and
to predict values of factor combinations not found in the speech
database. We report root mean squared deviations between ob-
served and predicted durations ranging from 8 to 15 ms, and an
overall correlation of 0.89.

1. INTRODUCTION

Segmental durations in natural speech are highly context depen-
dent. For example, the first /a/ in the Japanese wordkakaru
' to hang up' is shorter than the second, which is in turn shorter
than the /a/ insuika' watermelon' when said in isolation. Phone
identity, surrounding phone identities, and phrasal position are
just a few of the factors which can exhibit influences on seg-
ment duration in natural speech. One of the goals of TTS sys-
tems is to provide an accurate estimate and model of this duration
variation, based on factors that can be identified and computed
from text. This paper presents an analysis of vowel durations in
Tokyo Japanese read speech for implementation in the Bell Labs
Japanese TTS system.

One of the main problems in investigating contextual effects on
segmental durations isdata sparsity. It is certainly impossible
to measure durations of every factor combination (or “cell”) in a
given language, and due to the large number of very rare combi-
nations, it is not sufficient to simply model only the most com-
mon combinations. However, in most cases these contextual ef-
fects are well-behaved in terms ofdirectional invariance. That
is, the direction of an effect of a given factor is the same in all
cases (e.g. phrase-final vowels are longer, regardless of the vowel
identity), and there are no reversals of such effects. Phenomena
having this property can be described reasonably accurately with
Sum-of-Products (SoP) models [10].

Sum-of-Products models are a generalization of additive and mul-
tiplicative models, and consist of sums of terms, each term itself
being a multiplicative model for a subset of one or more factors.
These models can capture any interaction pattern, provided it is
well-behaved. The key advantage of SoP models over, for exam-
ple, Classification and Regression Trees (e.g. [5]), is that they pro-
vide good estimates of missing combinations, viainterpolation;

this interpolation rests on the fact that directional invariance im-
plies that factor combinations are intrinsically ordered, so that val-
ues for missing combinations are constrained by observed values
of adjacent combinations. We will show that the SoP model ap-
proach yields robust prediction of Japanese long and short vowel
durations.

2. SPEECH DATABASE

For sentence selection, we used a set of approximately 34,000
sentences contained within a larger newspaper text database. The
sentences were all 20-40 characters in length, and contained at
least one comma. The phonetic makeup and prosodic groupings
of each sentence were determined using text analysis methods de-
veloped at Bell Labs [7]. Each of the phones was coded by a
vector of features (factors) describing the phone and the context
in which it occurred. The factors (and levels of each factor) used
in this study are listed below, and are among those known to affect
segment durations in Japanese and other languages [1, 3, 6, 8, 9].

� current phone identity: This study examines short vowels
(/a/, /i/, /u/, /e/, /o/) and long vowels (/A/, /I/, /U/, /E/, /O/).

� preceding phone identity: Voiceless stop, voiceless frica-
tive/affricate, voiced stop, voiced fricative, flap, nasal, glide,
vowel.

� following phone identity: Voiceless stop/affricate, voice-
less fricative, voiced stop, voiced fricative, flap, nasal, glide,
vowel.

� left prosodic context: The syllable is: major phrase
(MaP)-initial, minor phrase (MiP)-initial, intonation phrase
(IP)-initial, accentual phrase (AP)-initial, non-initial.

� right prosodic context: The syllable is: major phrase-
final, minor phrase-final, intonation-phrase final, accentual
phrase-final, non-final.

� accent status: The syllable is: accented (acc), downstep
accented (dnstp), preceding an accent in an accented AP
(pre), following an accent in an accented AP (post), in an
unaccented AP (unacc).

� syllable structure: The syllable is: open (V, CV, CyV)
or closed by a geminate or moraic consonant (VC, CVC,
CyVC).

� special morpheme status: The phone is part of one of
the following: copula /desu/, verbal ending /masu/, perfect
marker /ta/, copula /da/, topic marker /wa/, particle /ga/, par-
ticle /to/, other case particles, or none of the above.

It is important to note that the prosodic categoriesmajor phrase
andminor phrasediffer from the standard usage in Japanese in-
tonational phonology (e.g. [4]). We follow the conventions in our



text analysis module, which define a major phrase as a sequence
of phones delimited by an orthographic period, and a minor phrase
as that delimited by a comma. Each sentence in our database is
comprised of exactly one major phrase, and two or more minor
phrases. Intonational (aka. intermediate) phrasing and accentual
phrasing were hand-coded from the spoken utterances, using the
J ToBI prosodic transcription system [11].

Factors were grouped together by those which were expected to
interact (e.g. phone identity with previous context, etc.), produc-
ing a list of several sub-feature-vectors characterizing each phone.
With the entire database coded as such, a greedy algorithm [10]
was used to select the smallest set of sentences which completely
cover the entire set of unique sub-feature-vectors occurring in the
34,000 sentence database. The selection process resulted in a total
of 197 sentences covering this space.

The selected sentences were recorded by a male native speaker
of Tokyo Japanese in a sound-attenuated room at Bell Labs, and
were segmented by a trained human labeler. Coded factors of
each phone were adjusted to reflect the actual production of the
utterances.

3. ANALYSIS

The duration analysis and modeling were conductedusing a statis-
tical analysis package developed at Bell Labs [10]. In this paper,
we report only on the analysis of vowel durations (6092 vowels
total). A full description of our Japanese duration model, includ-
ing consonants, can be found in [12].

Campbell [1] proposes that the sentence-final shortening and
other durational effects described by Kaiki et al. [3] are due to
an imbalance in their database involving special morphemes. To
investigate this hypothesis further, we partitioned the vowel data
into two subsets: vowels contained in one of the special mor-
phemes listed above (1039 vowels), and all others (5053 vowels).
Due to space constraints, the current paper will focus on the ef-
fects on vowelsnotcontained within special morphemes. See [12]
for an analysis of special morphemes.

3.1. Vowel devoicing

One very well-known effect on vowel duration in Japanese is
the phenomenon of devoicing, which causes high vowels to be
partially or totally devoiced when flanked by voiceless conso-
nants (hereafter, the 'devoicing context' ). In our database, totally-
devoiced (hereafter 'devoiced' ) vowels are marked by having 0
ms duration. Figure 1 shows the percentage of devoiced vowels
in four voicing environments.

While a majority of the devoiced vowels are high vowels sur-
rounded by voiceless consonants, this is neither a necessary nor
sufficient criterion. Over 20% of high vowels in theunvoi voi en-
vironment are devoiced. The fact that vowels are not devoiced in
thevoi unvoi environment indicates that the voicelessness of the
preceding consonant has more influence on devoicing than that
of the following consonant. In addition, 20% of high vowels in
the canonical devoicing environment are not devoiced, suggesting
that there are other factors at work in preventing total-devoicing.
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Figure 1: Percentage of devoiced vowels by voicing environment
and vowel identity.
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Figure 2: Percentage of devoiced vowels in canonical devoicing
context. Total number of observations is given below each type.

Figure 2 shows the percentages of devoiced vowels in the devoic-
ing environment, arranged by factors coded in our database. There
is a clear categorical distinction between vowels in this environ-
ment which tend to be devoiced, and those that do not. While the
number of observations are admittedly low, we observe that the
majority of IP-final, accented (see also [2]), and vowels followed
by voiceless geminates tend not to be devoiced.

Based on these observations, we model the categorical nature of
vowel devoicing in Japanese by setting durations of high vowels
in the devoicing context to 0 ms, with the exception of the three
categories with very low devoicing percentagesshown in Figure 2.
All remaining vowels are modeled using Sum-of-Products mod-
els, as described below.

3.2. Effects on short vowels

One of the contextual effects on Japanese vowel duration reported
in the literature is that of prosodic position. Kaiki et al. [3]
found accentualphrase-initial shortening, and AP-final and breath
group-final (our MiP-final) lengthening effects. In addition, they
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Figure 3: Corrected means (ms) of short vowels, arranged by
prosodic position.

observed sentence-final shortening. Campbell [1] suggests that
an imbalance in their speech corpus gives the false impression of
shortening, due to the frequent occurrence of the short /-ta/ per-
fect marker in this position, and the long /wa/ topic marker in
MiP-final position. In the current analysis, vowels in special mor-
phemes have been removed. Figure 3 shows thecorrected means
(means of the levels on the factor of interest which have been
corrected for the effects of the remaining factors, using a multi-
ple regression method [10]) for short vowels (4481 vowels) in the
prosodic positions that were coded in our study.

We observe initial shortening in MiP-initial position (post-pausal
but not utterance-initial), and lengthening in major/minor phrase-
final position (pre-pausal). This lengthening effect runs contrary
to Kaiki et al.'s sentence-final shortening. However, it is the case
that, of the two phrase levels, MaP-final vowels are lengthened to
a lesser degree. This effect cannot be accounted for by the con-
founds Campbell proposes, since special morpheme vowels are
not included in this analysis. We conjecture that MiP-final vowels
are lengthened to a greater extent in order to cue continuation, or
some forward-looking function in the discourse.

Because of the confounding of initiality/finality and surround-
ing phones (i.e. silences), the short vowel data were divided
into 4 subgroups for subsequent analysis: minor/major phrase-
final (pre-pausal), minor/major phrase-initial (divided into #and
#C cases), and non-initial/non-final. Figure 4 shows the cor-
rected mean values for each of the other coded factors, for non-
initial/non-final short vowels (3542 vowels).

In these plots, the distinctions in preceding and following phone
identity have been reduced to voicing status. We find that vow-
els are shorter when preceded by voiceless consonants than by
voiced consonants or flaps. Similar effects hold for the voic-
ing of the following consonant, albeit to a lesser degree. This
suggests that the preceding consonant has a greater effect on the
vowel duration, which is consistent with the effects on devoic-
ing shown in Figure 1. Non-downstepped accented vowels in
our database are longer than those in other accent positions, with
post-accentual vowels being shortest. As for syllable type, vow-
els are shortest when preceded by a /y/ consonant off-glide, and
are longest in syllables closed by a geminate or moraic consonant.
All else being equal, vowels in syllables containing onset conso-
nants are shorter than in their onset-less counterparts. These plots
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Figure 4: Corrected means (ms) of short vowels, arranged by
phonetic environment, accent status, and syllable type.

4
0

8
0

1
2

0
4

0
8

0
1

2
0

4
0

8
0

1
2

0

unvoi
voi
flap

short long

ID x PREV

Figure 5: Two-way corrected means (ms) showing the interaction
of vowel length with preceding consonant identity.

of non-initial/non-final vowels are representative of the effects in
the other vowel subgroups as well.

3.3. Effects on long vowels

Contextual effects on long vowel durations in our corpus are com-
parable to the results for short vowels presented above. However,
the magnitude of the effects are not as great. Figure 5 shows an
example of one such interaction. Both short and long vowels are
shorter when preceded by a voiceless consonant than by a voiced
consonant or flap, though the effect is greater for short vowels.

4. MODEL

Given that the contextual effects on long and short vowels are
comparable but of different magnitudes, we collapse both long
and short vowels and apply a Sum-of-Products approach, which
is able to incorporate the observed interactions. A separate SoP
model was applied to each of the four vowel subgroups, with
the exact nature of the model depending on a careful analysis of
which factors interact in each subgroup. For example, to estimate



vowel category N (cells) RMS dev. corr.

non-init/non-final 740 9 ms .87
final 78 8 ms .94
initial (#C ) 176 13 ms .90
initial (# ) 35 15 ms .85
all vowels 1029 — .89

Table 1: Results of SoP model parameter estimation for both long
and short vowels combined.
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Figure 6: Observed vs. predicted values for all vowels.

durations in the non-init/non-final subgroup, we use the following
model, where Si;j are parameters corresponding to specific factor
levels (j) in specific terms (i).

DUR(id; prev; foll; left pos; right pos; acc; syll) =
S1;1(id) + [S2;1(id) � S2;2(prev)] + [S3;1(id) � S3;3(foll)] +
S4;4(left pos) + [S5;1 (id) � S5;5 (right pos)] +
[S6;1(id) � S6;6(acc)] + [S7;3(foll) � S7;7(syll)]

Table 1 gives the results of the parameter estimations. The num-
ber of observed factor combinations (N), the root mean squared
(RMS) deviation between observed and predicted values, and the
correlation coefficient are given for each vowel subgroup.

Figure 6 shows a scatter plot of observed and predicted values
for all of the vowels analyzed in this study. The size of the plot
characters are roughly proportional to the number of observations
in each cell. Cells with many observations lie close to thex=y
diagonal line, while points lying away from the diagonal tend to
be cells containing only one observation. The overall correlation
is 0.89.

5. SUMMARY

This paper presents a quantitative model of Japanese vowel dura-
tions, for use in text-to-speech synthesis. We discuss constraints

on vowel devoicing, and effects of phone identity and contextual
factors on durations of long and short vowels. Sum-of-Products
models are used to model the key interactions observed in the
data, and to predict missing values based on interpolation. The
result is a robust prediction of segmental duration, while at the
same time being phonetically-motivated in that qualitative analy-
sis of the data drives the modeling process.
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