E6998-02: Internet Routing

Lecture 20 IP Multicast Routing Protocols

John Ioannidis

AT&T Labs – Research

ji+ir@cs.columbia.edu

Announcements

Lectures 1-20 are available.

Homework 5 will be out soon.

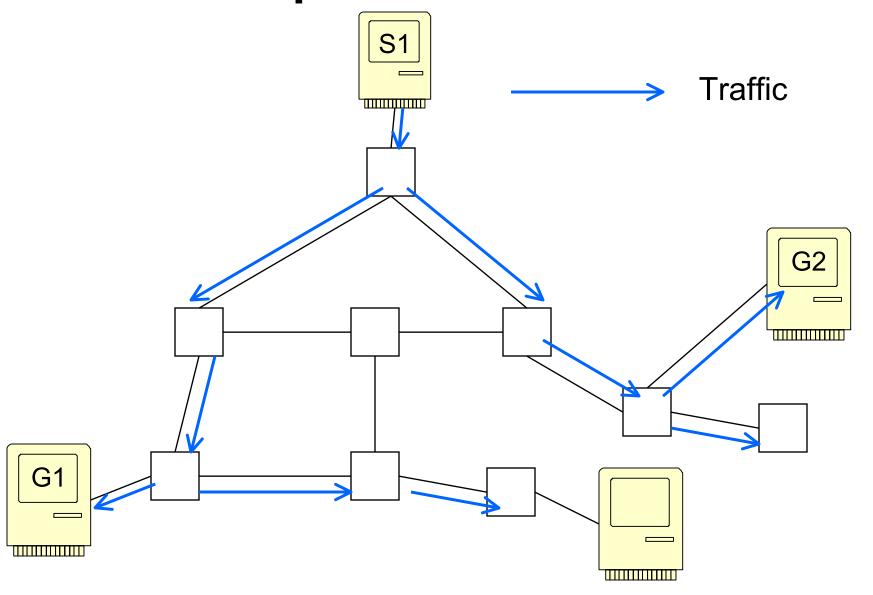
I'll be grading all your homeworks next week.

Joel Gottlieb from AT&T Research is giving the guest lecture on Tuesday the 19th.

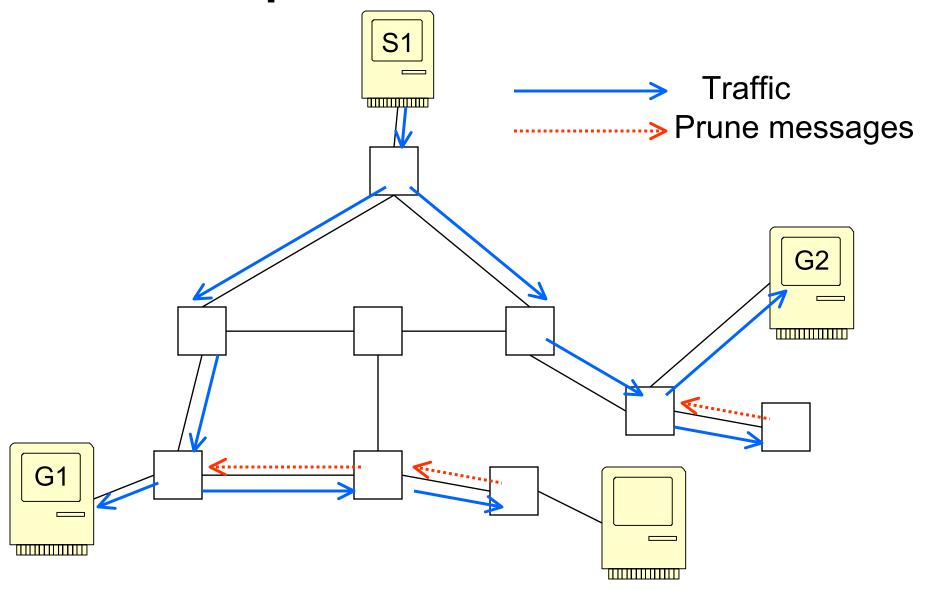
Al Broscius from Morgan-Stanley may be giving the guest lecture on Thursday the 21st.

Sparse vs. Dense Topologies

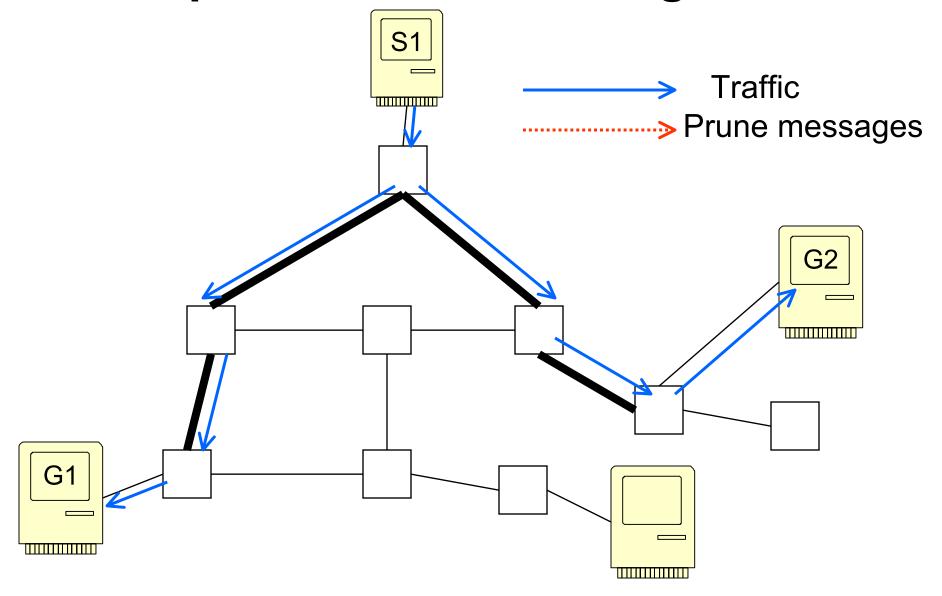
- Protocol performance depends on "density".
- Dense topology: large fraction of hosts belong to multicast groups.
 - DVMRP
 - MOSPF
 - PIM-DM
- Sparse topology: small fraction of hosts belong to multicast groups.
 - CBT
 - PIM-SM


Joins

- How do group members join a WAN Multicast group?
- Implicit joins:
 - Sender-initiated.
- Explicit joins:
 - Client-initiated.


Implicit Joins

- Broadcast-and-prune / flood-and-prune.
- Sender initiates session.
- Router uses reverse-path-broadcasting.
 - Sends packets to all interfaces but the upstream.
- Initially, all internet routers get the traffic.
- When a router with no group members in its attached LANs, and no downstream routers gets a packet, it sends back a prune message.
- Prune messages propagate back to the source.
- Taking entire branches off the multicast tree.


Implicit Joins: RPB

Implicit Joins: Prunes

Implicit Joins: Resulting Tree

Implicit Joins, cont'd

- Each router is in either the prune or the forward state.
- Prune state has timer.
- When timer expires, router moves to forward state.
 - This way new group additions can be discovered.
- B&P is better suited to dense topologies.
- Maintenance of prune states results in high resource utilization.
 - Why should a router that would never have any multicast members have to know about all this?
- DVMRP and PIM-DM are implicit-join protocols.

Explicit Joins

- Router gets IGMP message from one of its nodes.
- Sends a graft message upstream.
 - Propagated further upstream all the way to the source.
 - Routers in the path join the tree.
- Source must be known.
- When no more nodes remain, router prunes itself from the tree.
- Better suited to sparse topologies.
- MOSPF, PIM-SM, and CBT are explicit-join protocols.

Source-Based vs. Shared Trees

- Source-based trees: rooted at the source.
 - Separate tree for each multicast source.
- But: multicast group membership changes.
- Sources can also change.
- Or there can be multiple sources.
- However: there will usually be a shared subtree.

Shared Trees

- Many multicast trees share some routers.
- Tree is rooted at a shared router: Rendezvous Point (RP).
 - Or core.
- Source registers with RP.
 - Source's router may have to find best path to RP.
 - RP may have to find path to each source.
- Shared trees are more scalable:
 - Preferred for sparse topologies (PIM-SM and CBT).

Multicast Scoping

- Some traffic may not be of interest to the entire network.
- TTL (ab)used to specify the scope of traffic.
 - 0: host
 - 1: subnet
 - 15: site
 - 63: region
 - 127: worldwide
 - 191: worldwide limited bandwidth
 - 255 Unrestricted
- Administrative scoping: RFC2365 (similar to IPv6 scoping).

Scoping in IPv6

IPv6 multicast addresses are in the FF00::/8 range.

0xFF 000T scope	Group ID (112 bits)	
------------------------	---------------------	--

- FF00::/12 are well-known addresses
- FF10::/12 are transient addresses
- Scope:
 - 0, 3, F: reserved
 - 1: interface-local
 - 2: link-local
 - 4: admin-local
 - 5: site-local
 - 8: organization-local
 - E: global
 - 6, 7, 9, A, B, C, D: unassigned.