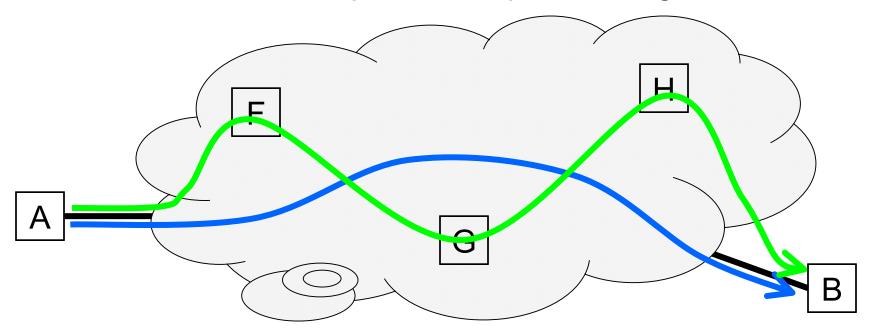
E6998-02: Internet Routing

Lecture 18 Overlay Networks

John Ioannidis

AT&T Labs – Research

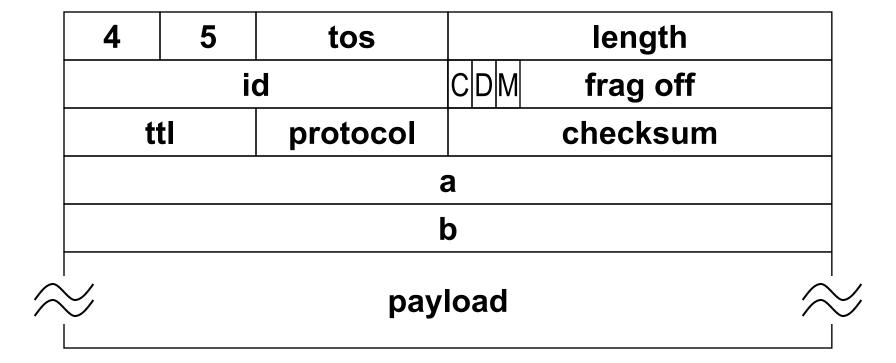
ji+ir@cs.columbia.edu


Announcements

Lectures 1-18 are available.

There are no more announcements.

Source Routing


- Normally, the path a packet takes from its source to its destination is determined by each intermediate router.
- A packet can be source-routed: the source determines
 - all (strict source routing)
 - some (loose source routing)
 of the routers that the packet will pass through.

Recall the IPv4 packet format:

	v=4	hl	tos	length			
		į.	d	CDM frag off			
	t	tl	protocol	checksum			
	src						
			d	st			
	Options (up to 44 bytes)						
$\langle \rangle$	Payload (up to 64K – 4*hl bytes)						

When sending from a to b (no source routing):

When sending from A to B (loose source routing via F, G, H):

4	9	tos	len	gth	
	i	d	CDM frag	off	
t	tl	protocol	chec	ksum	
a					
f					
1 (n	юр)	131 (LSRR)	15 (length)	4 (pointer)	
		•	9		
		ł	า		
		k)		
<u>/</u>	payload				

• We're at F...

4	9	tos	length			
	id CDM frag off					
t	tl	protocol	checl	ksum		
	a					
		Ç				
1 (n	op)	131 (LSRR)	15 (length)	8 (pointer)		
		•	f			
		ł	1			
	b					
	payload					

• We're at G...

4	9	tos	length			
	j	d	CDM frag	off		
t	tl	protocol	chec	ksum		
	a					
	h					
1 (n	ор)	131 (LSRR)	15 (length)	12 (pointer)		
		•	F			
		Ç)			
	b					
 ✓ I	/ payload					

We're at H...

4	9	tos	length			
	j	d	CDM frag	off		
t	tl	protocol	chec	ksum		
a						
	b					
1 (n	юр)	131 (LSRR)	15 (length)	16 (pointer)		
		•	f			
		Ç	3			
	h					
 ✓	\sim payload \sim					

- B sees that the LSRR pointer is beyond the end of the option, so it accepts the packet as its own.
- Actually, the addresses replaced in the option are not exactly as shown.
 - The next address should be the next-hop interface ("left").
 - The replaced address is the egress interface ("right").
 - This way, the LSRR is ready to be reversed and use by B.

Back to A

• A fills out the "left" addresses of F, G, H:

4	9	tos	length			
	i	d	CDM frag	off		
ť	tl	protocol	checl	ksum		
a						
	f-left					
1 (n	юр)	131 (LSRR)	15 (length)	4 (pointer)		
		g-l	eft			
		h-l	eft			
	b					
<u></u>	\sim payload \sim					

At F

• F puts its egress address in the option.

4	9	tos	length		
id CDM frag				off	
ť	tl	protocol	chec	ksum	
a					
g-left					
1 (nop) 131 (LSR		131 (LSRR)	15 (length)	8 (pointer)	
		f-ri	ght		
		h-l	eft		
b					
1	$payload \sim$				

At G

• G puts its egress address in the option.

4	9	tos	length		
	i	d	CDM frag	g off	
ť	tl	protocol	chec	ksum	
a					
h-left					
1 (n	1 (nop) 131 (LSI		15 (length)	12 (pointer)	
		f-ri	ght		
		g-ri	ght		
b					
<u> </u>	payload				

At H

About to take the last hop

4	9	tos	len	gth		
	i	d	CDM frag	off		
ť	tl	protocol	chec	ksum		
a						
	b					
1 (n	op)	131 (LSRR)	15 (length)	16 (pointer)		
		f-ri	ght			
		g-ri	ght			
	h-right					
 ∀	\sim payload \sim					

Reversing the Source Routing

 To source-route the packet back to A, B reverses the Recorded Route:

4	9	tos	length		
	i	d	CDM frag	off	
t	tl	protocol	chec	ksum	
b					
h-right					
1 (n	op)	131 (LSRR)	15 (length)	4 (pointer)	
		g-ri	ght		
		f-ri	ght		
a					
<u>/</u>	\sim payload \sim				

Back at H

Otherwise, LSRR processing proceeds the same way.

4	9	tos	length		
	i	d	CDM frag	off	
ť	tl	protocol	checl	ksum	
b					
g-right					
1 (n	юр)	131 (LSRR)	15 (length)	8 (pointer)	
		h-l	eft		
		f-ri	ght		
а					
\sim payload \sim					

Back at G

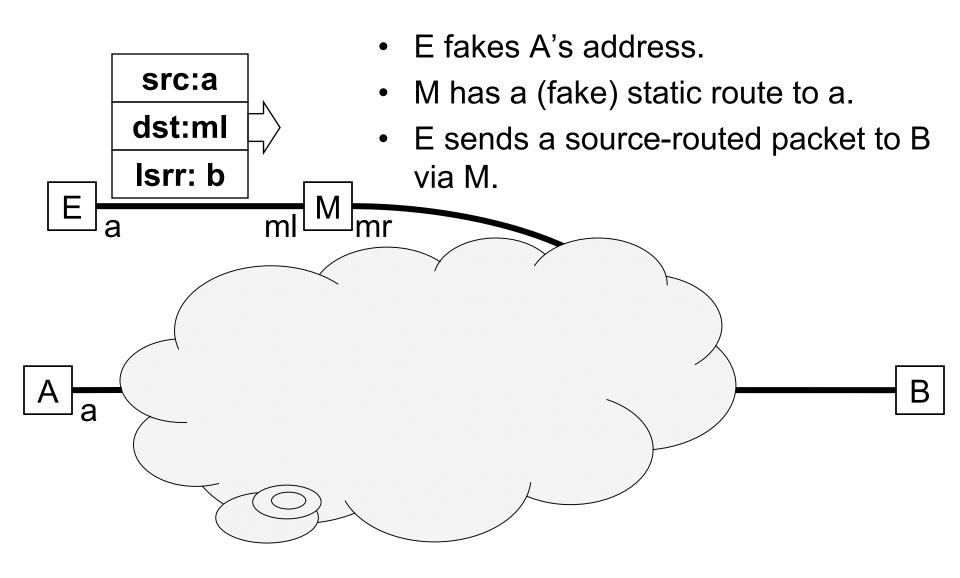
• On to F...

4	9	tos	len	gth		
	i	d	CDM frag	g off		
ť	tl	protocol	chec	ksum		
В						
	f-right					
1 (n	юр)	131 (LSRR)	15 (length)	12 (pointer)		
		h-l	eft			
		g-l	eft			
	a					
	payload					

Back at F

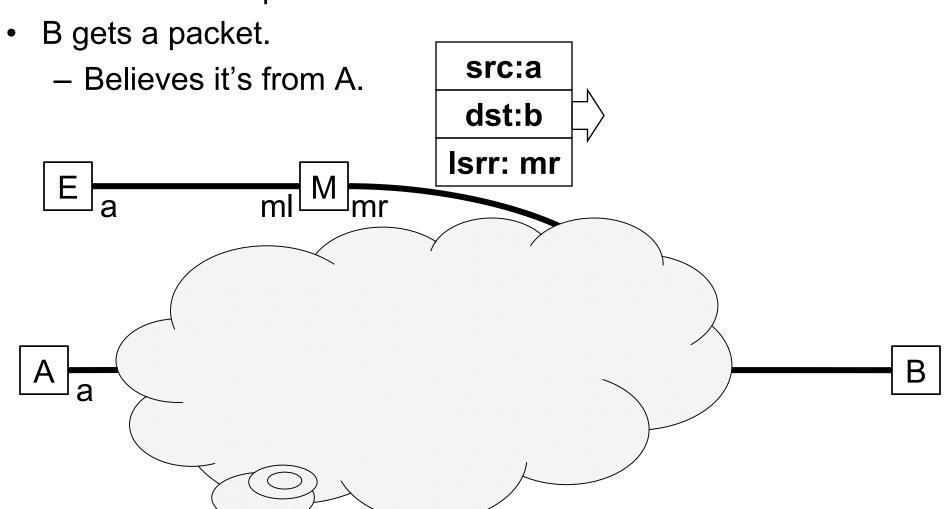
Final hop...

4	9	tos	length	
	i	d	CDM frag off	
ttl		protocol	checksum	
b				
a				
1 (nop)		131 (LSRR)	15 (length)	16 (pointer)
h-left				
g-left				
f-left				
\simeq payload \approx				

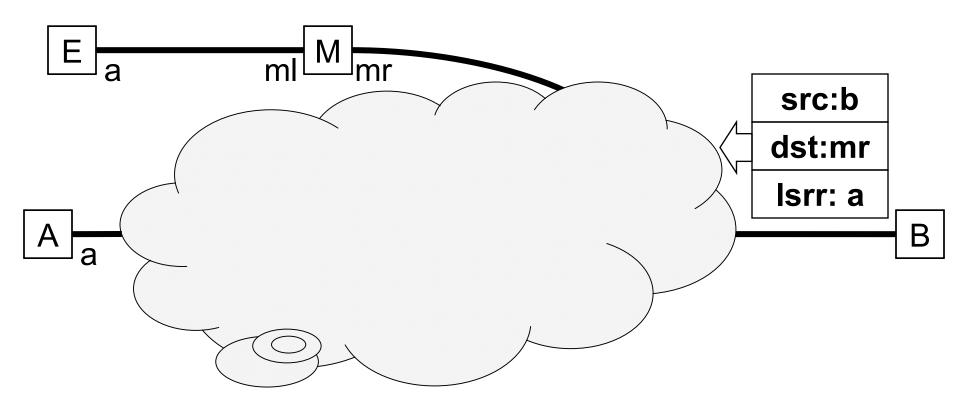

Back at A again

- A now gets the packet with the same LSRR it sent it out.
- We could have used SSRR, but we would have had to list (and know) all intermediate routers.
- There is also a RR option that just records the route.
 - Not very useful, only good for 10 hops.

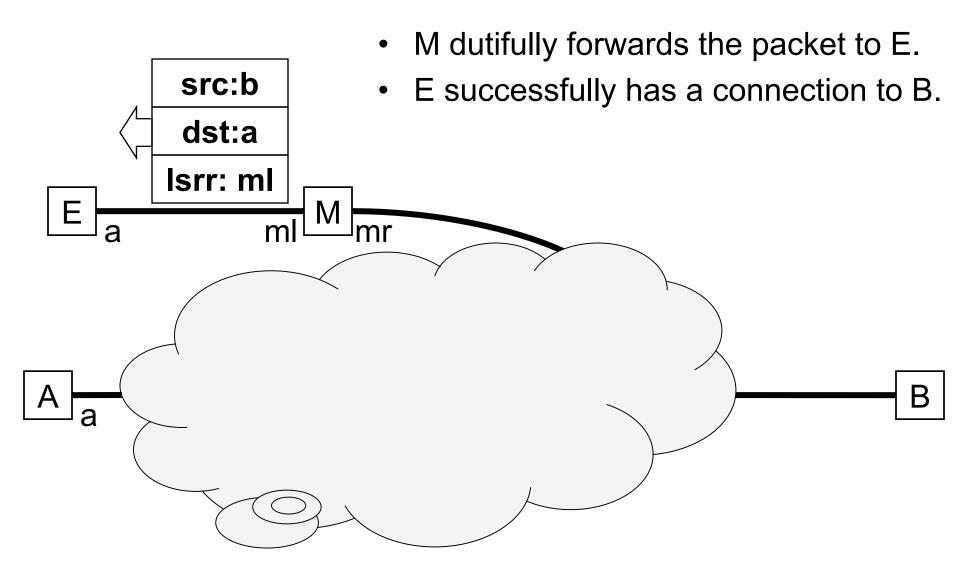
Source Routing Considered Harmful


- All routers in the path (not just the ones listed in the LSRR option) are affected.
 - Routers are optimized for packets with no options.
 - If options are present, CPU has to get involved.
 - Slows things down.
- Routing systems should know best path.
 - But LSRR allows packets to go through when routing is broken.
- Source should not dictate return path to destination.
 - Return path may not even be routable.
 - But destination can always ignore it.
- Security issues.
 - But hosts shouldn't be relying on IP address for auth.

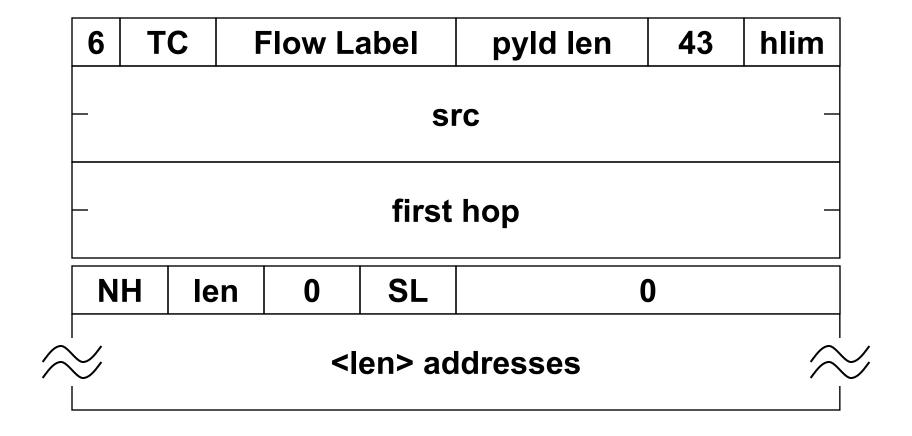
E fakes A's address


M Colludes

M forwards the packet.



B Responds


- B reverses the LSRR
 - Thinking it's sending to A.
- Packet is source-routed to M.

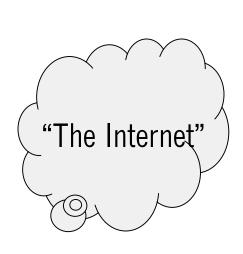
M is Still Colluding

- Routing Header (43).
- It's a routing header, so it appears directly after the IPv6 header (and any hop-by-hop options).

Tunneling

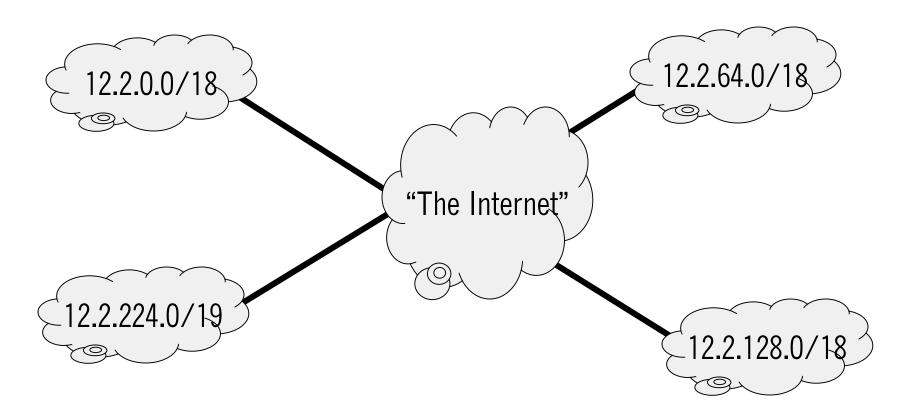
- Source routing is a form of tunneling.
- Tunnel: a (virtual) link between two network nodes.
 - At the same layer in the network stack.
 - Uses underlying network as virtual wire.
 - "switching fabric".
 - Routing is circumvented.
 - In the LSRR examples, we cause traffic to follow a different path from what the underlying routing would have dictated.

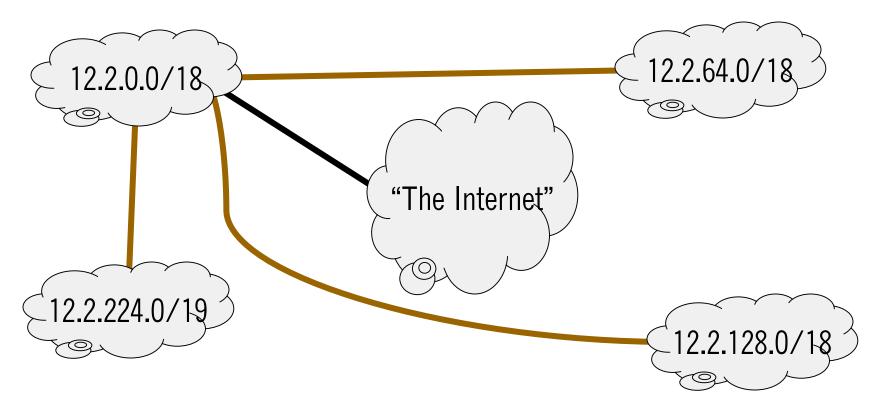
Encapsulation

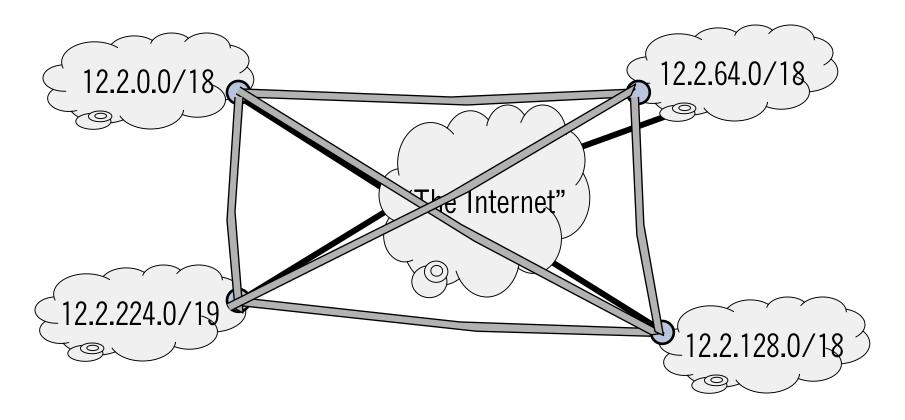

- Putting one kind of network frame inside another.
 - An IP packet is *encapsulated* in ethernet, PPP, etc. frames.
- An IP packet may be encapsulated in another IP packet.
 - IP protocol 4 ("IP-in-IP").
 - GRE encapsulation, IPIP (proto 94) encapsulation.
- An IP packet may also be encapsulated in a higher-level protocol.
 - IP over UDP (over IP).
 - IP over HTTP (over TCP (over IP)).
- Encapsulation is another Tunneling technique.

Virtual Private Networks (VPNs)

- What's a Private Network?
- "Private" as in "mine", not as in "secret".
- Consider a geographically-distributed organization.
- Various parts want to connect to each other, and potentially to the Internet.






- Each part advertises its more-specific prefix.
- Pollutes the routing tables.
- Was not possible in pre-CIDR days.
- Is still not possible when using private address space.
- Lots of security implications.

- The old way:
 - Get point-to-point circuits from telco.
- The somewhat more modern way:
 - Get fixed ATM or FR virtual circuits from telco.
- Only the aggregate gets advertised to the network.
- But: high cost of point-to-point links.

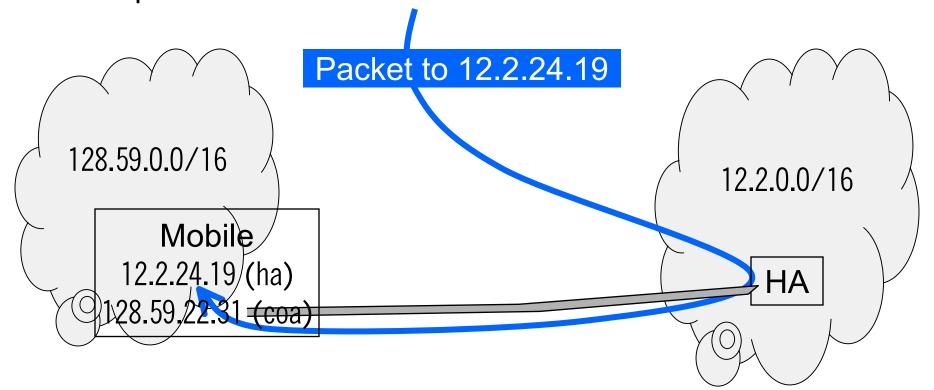
- The VPN way:
- Looks like a partitioned network.
- Heal the partition with tunnels.
- (There are lots of other ways to heal the partition).

31

VPN Implementation

- Each *tunnel endpoint* has a "real" IP address (since the "inside" space can be private address space).
- Forwarding rules on each tunnel endpoint.
 - Look like routes.
 - Usually implemented with a virtual interface.
 - "If destination prefix is foo/n then tunnel via bar.
- Encapsulation can be as simple as IP in IP (protocol 4).
 - "Inner header" vs. "outer header".
- GRE encapsulation (RFC1701 and 1702).
- IPsec encapsulation (RFC2401-series RFCs).
- Other forms of IP-in-foo encapsulation.

Problems with IP Encapsulation


- Max IP packet size and Path MTU:
 - Encapsulation adds an extra header to the packet.
 - Max packet size gets reduced by that amount.
 - Not usually a problem (no one sends 65K datagrams).
 - As does PMTU.
 - Hosts should be running PMTU discovery.
 - Or interfaces should be configured with lower MTUs.
- Who gets ICMP messages?
 - If generated while traversing the tunnel.
 - If generated by the tunnel endpoints.
 - If generated by the end hosts.
- What to do with TOS, DF, TTL.

Overlay Networks

- Any network at layer-n that (recursively) uses layer-n for forwarding.
 - Uses existing network as a switching fabric (a virtual linklayer).
 - Bypasses existing routing.
- Examples:
 - VPNs.
 - Multicast.
 - Mobile IP.
 - Peer-to-peer networks (these can also be at higher layers).
 - Route traffic around faults, congestion, etc.

Overlay Networks cont'd

- Overlay networks are used when a different forwarding path is required from the one provided by the underlying routing.
- This is functionally equivalent to source routing.
 - Obviously!
- Example: Mobile IP

Overlay Networks Extend Routing

- Tunneling can also be used to create new routing infrastructures out of existing ones.
- Examples:
 - M-BONE (Multicast backbone).
 - 6BONE (IPv6 backbone).

MBONE

- Multicast was not natively supported by routing protocols in 1992.
- Most providers still don't have it turned on.
- MBONE is a collection of routers that forward multicast traffic.
 - "Links" between these routers are tunnels.
 - They have their own routing protocol.
 - "Next Hop" is really next router in the overlay network.
- "Outside" (tunnel) header src and dst addresses are those of the sending and receiving mbone routers.
- "Inside" source address is the (unicast) address of the originator.
- "Inside" destination address is the multicast destination address.

MBONE cont'd

- Each MBONE router receives a (tunneled) packet.
- Strips the encapsulation.
- Decides which tunnels to forward the packet to.
 - (This is multicast, there will usually be more than one).
- Re-encapsulates the packet for each destination router.
- If the router has (local) hosts in the multicast group, it also sends a copy of the (multicast) packet to the corresponding link-layer multicast address.
- If the router sees a multicast destination address on one of its interfaces, it picks it up and forwards it.

6BONE

- Same idea, for IPv6.
- Couldn't wait for providers to offer natively-routed IPv6.
- Preconfigured tunnels.
- "Outer" (tunnel) header is IPv4.
- "Inner" header is IPv6.
- Allocated 3ffe::/15, further allocations from there.
- Runs multiprotocol extensions to BGP.
- IPv4 links look like link-layer links.

Six-to-four

- Automatic way to tunnel v6 in v4.
- First sixteen bits are (hex) 2002.
- Next 32 bits show (ipv4) tunnel endpoint.
- Packets from 2002:803b:1012::/48 to 2002:c014:e10f::/48 get tunneled from 128.59.16.18 to 192.20.225.15.