E6998-02: Internet Routing

Lecture 1 Introduction

John Ioannidis

AT&T Labs – Research

ji+ir@cs.columbia.edu

Administrivia

Instructor: John Ioannidis, pronounced jay-eye

Email: <ji+ir@cs.columbia.edu>

Mail to anything else will not be answered.

Class web page: http://www.cs.columbia.edu/~ji/F02/

- Check frequently!
- Slides will be available there.
- As will additional reading material (papers, RFCs, source code, man pages, etc.).

Class BBoard: TBA

Office hours: Tuesdays 16:00-17:30 or by appointment.

TA(s): TBD

TA office hours: TBD

The Necessary Evil

- Five homeworks: 50% of grade.
- Project: 50% of grade.
- Class participation: ±20% of grade.
- No midterm or final.

Homeworks

- 1-2 weeks each.
- Look at the web site for announcements.
- Don't start the night before, you won't finish it.
- Involve some coding, some reading, some writing.
- Useful for your project.
- Each counts for 10% of your grade.
- Submitted over email, TBD how.
- Individual submissions.
 - Cheaters will be given an F in the course and sent to the Dean.

Project

- Sizeable project to demonstrate your mastery of the material:
 - Coding.
 - Simulation.
 - Survey or original research paper.
- Half the grade; homeworks will help.
- Individual or in groups of up to 3 people.
 - Group gets grade; members decide how to apportion the grade.

Class Participation

- Fun for me.
- Shows you are paying attention!
- May affect your grade.
- Ask questions early and often:
 - I may be assuming that you know something when you don't (frequent).
 - I may not be explaining something well enough (rare!).
- If you are having trouble with the material, talk to me or the TA. Don't wait until it's too late!

Prerequisites

- Formal:
 - W4118 and W4119.
- Essential:
 - Fluency in C. C++ and Java recommended.
 - Sockets programming.
 - Some kernel programming.
 - TCP/IP operations.
 - Have heard of the concept of routing.

Course Outline

(Subject to change without notice)

3-Sep	01: Intro, History.	5-Sep	02: All about addressing
•	03: Layer 2 bridging	•	04: Routing and forwarding
•	05: Unix routing	•	06: Routing implementations
24-Sep	07: About IGPs	26-Sep	08: OSPF
1-Oct	09: Guest lecture, TBD	3-Oct	10: Guest lecture, TBD
8-Oct	11: Interdomain routing	10-Oct	12: BGP
15-Oct	13: BGP (cont'd)	17-Oct	14: More BGP
22-Oct	15: Even more BGP	24-Oct	16: BGP operations
29-Oct	17: BGP extensions	31-Oct	18: BGP extensions
5-Nov	ELECTION DAY	7-Nov	19: Overlay networks
12-Nov	20: Multicast	14-Nov	21: Mobility
19-Nov	22: Ad hoc networks	21-Nov	23: More on wireless
26-Nov	24: VPNs	28-Nov	THANKSGIVING DAY
3-Dec	25: Current Research	5-Dec	26: Future Research
10-Dec	Project demos		

Networking in a Nutshell

- Nodes (hosts and routers) connected by links.
- Each node has an address.
 - Unique (usually).
 - Used to find node in network.
- Internet is a packet-switched network.
- Based on IP, a best-effort, connectionless protocol.
- "The Network delivers bits" (and does little else).
 - No guaranteed delivery.
 - No guaranteed in-order delivery.
 - No guaranteed correct delivery.
- Additional functionality implemented at the end nodes.
- Ancillary protocols needed to make it work.

No Such Thing as Presentation Layer!

- Forget what you learned about the 7-layer model!
- Layering as a conceptual tool.
 - Lots of "layer violations" in practice.
 - Don't be fundamentalist!
- Several layers:
 - Application
 - Transport
 - NetworkInternetSubnet

We'll be concentrating on these

- Link
- Physical

PDUs, PSUs, and other TLAs

- Protocol Data Units/Protocol Service Units.
- ISOisms, we don't like them we don't use them.
- Link and below: "frame" (ethernet frame, PPP frame).
- Network: "packet" (IP packet).
- Transport:
 - "packet" (UDP packet, ICMP packet).
 - "segment" (TCP segment).
 - Some implication about block-oriented vs. stream-oriented abstractions.
- Above transport: wrong course.

Addresses, Names, Routes

- Name: "who/what it is"
- Address: "where it is"
- Route: "how to get there"
- Human-readable?
- Hierarchical/topological?
- By layer?
- By need for protocols?
- What is "20.16.59.128.in-addr.arpa"?

Functional Definitions

- Name: location-independent.
 - Aka "Identifiers"
 - "Henry Kissinger"
- Address: dependent on entity location only.
 - Place in the topology/geography.
 - "1 Microsoft Way, Redmond, WA"
- Route: depends on both source and destination.
 - Directions on how to get there.
 - "Follow path, take left fork, climb stairs, through gate".

Sometimes we'll use these terms loosely.

What's an email address?

There are protocols to get one from the other.

Names/Addresses/Routes cont'd

- Various namespaces:
 - DNS names, human names, service names.
 - IP addresses, MAC addresses, phone numbers.
 - IP routes, token-ring source routes, mail relays.
- Tools to translate:
 - DNS, NIS, Hesiod.
 - DNS, ARP, NDP.
 - Routing protocols.
- Many-to-many relationships.

Routing in a Nutshell

- Node has packet to send.
- If it is for that node, send it up to higher-layer protocols.
- Figure out which network interface to send it out on and/or what the next hop is.
- · Iterate.
- Forwarding: the problem of deciding which interface to send it out on.
 - Code/hardware on nodes (hosts/routers) does that.
- Routing: the problem of figuring out which interface/next hop is appropriate.
 - Combination of code on nodes and routing protocols.

Routing can happen at all layers

- Physical: move connectors around!
- Link: "bridging"
- Network: "routing"
- Transport: redirectors (avoid).
- Application: ALG
- We shall briefly examine bridging.
- We shall mostly learn about network-layer routing.

LANs

- Nodes connected to a common medium.
 - Ethernet, radio, etc.
- Nodes "hear" each other's transmissions.
 - Broadcast/multicast.
- Nodes talk to each other directly.
- Limited in number/scope/location.
- Meaning of "node", "medium", "transmission" and "directly".
- "Subnet layer"

Link-layer Addressing

- You should already know about this.
- Ethernet-like LANs, MAC address:
 - 48-bit, unique.
 - Flat namespace as far as addressing is concerned.
 - Appears at the beginning of a frame.
 - It's a name, really.
 - Unicast/multicast addresses.
- Point-to-point connections:
 - No need for a station address.
 - Still need for service/higher layer protocol identifiers.

Connecting LANs

- Plugging them together usually not an option.
 - Distance limitations.
 - Capacity limitations.
 - Administrative/security limitations.