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Introduction

Ever since its discovery in 1807, the Fourier transform has been one of the mainstays of pure
mathematics, theoretical physics, and engineering. The ease with which it connects the analytical
and algebraic properties of function spaces; the particle and wave descriptions of matter; and the
time and frequency domain descriptions of waves and vibrations make the Fourier transform one
of the great unifying concepts of mathematics.

Deeper examination reveals that the logic of the Fourier transform is dictated by the structure
of the underlying space itself. Hence, the classical cases of functions on the real line, the unit
circle, and the integers modulo n are only the beginning: harmonic analysis can be generalized
to functions on any space on which a group of transformations acts. Here the emphasis is on
the word group in the mathematical sense of an algebraic system obeying specific axioms. The
group might even be non-commutative: the fundamental principles behind harmonic analysis are
so general that they apply equally to commutative and non-commutative structures. Thus, the
humble Fourier transform leads us into the depths of group theory and abstract algebra, arguably
the most extensive formal system ever explored by humans.

Should this be of any interest to the practitioner who has his eyes set on concrete applications
of machine learning and statistical inference? Hopefully, the present thesis will convince the reader
that the answer is an emphatic “yes”.

One of the reasons why this is so is that groups are the mathematician’s way of capturing
symmetries, and symmetries are all around us. Twentieth century physics has taught us just how
powerful a tool symmetry principles are for prying open the secrets of nature. One could hardly
ask for a better example of the power of mathematics than particle physics, which translates the
abstract machinery of group theory into predictions about the behavior of the elementary building
blocks of our universe.

I believe that algebra will prove to be just as crucial to the science of data as it has proved to be
to the sciences of the physical world. In probability theory and statistics it was Persi Diaconis who
did much of the pioneering work in this realm, brilliantly expounded in his little book [Diaconis,
1988]. Since then, several other authors have also contributed to the field. In comparison, the
algebraic side of machine learning has until now remained largely unexplored. The present thesis
is a first step towards filling this gap.

The two main themes of the thesis are (a) learning on domains which have non-trivial algebraic
structure; and (b) learning in the presence of invariances. Learning rankings/matchings are the
classic example of the first situation, whilst rotation/translation/scale invariance in machine vision
is probably the most immediate example of the latter. The thesis presents examples addressing
real world problems in these two domains. However, the beauty of the algebraic approach is that
it allows us to discuss these matters on a more general, abstract, level, so most of our results apply
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equally well to a large range of learning scenarios.
The generality of our approach also means that we do not have to commit to just one learning

paradigm (frequentist/Bayesian) or one group of algorithms (SVMs/graphical models/boosting/etc.).
We do find that some of our ideas regarding symmetrization and learning on groups meshes best
with the Hilbert space learning framework, so in Chapters 4 and 5 we focus on this methodology,
but even there we take a comparative stance, contrasting the SVM with Gaussian Processes and a
modified version of the Perceptron.

One of the reasons why up until now abstract algebra has not had a larger impact on the applied
side of computer science is that it is often perceived as a very theoretical field, where computations
are difficult if not impossible due to the sheer size of the objects at hand. For example, while
permutations obviously enter many applied problems, calulations on the full symmetric group
(permutation group) are seldom viable, since it has n! elements. However, recently abstract algebra
has developed a strong computational side [Bürgisser et al., 1997]. The core algorithms of this new
computational algebra, such as the non-commutative FFTs discussed in detail in Chapter 3, are
the backbone of the bridge between applied computations and abstract theory. In addition to our
machine learning work, the present thesis offers some modest additions to this field by deriving
some useful generalizations of Clausen’s FFT for the symmetric group, and presenting an efficient,
expandable software library implementing the transform. To the best of our knowledge, this is the
first time that such a library has been made publicly available.

Clearly, a thesis like this one is only a first step towards building a bridge between the theory of
groups/representations and machine learning. My hope is that it will offer ideas and inspiration to
both sides, as well as a few practical algorithms that I believe are directly applicable to real world
problems.

Risi Kondor
London
May 2008
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Overview

This thesis aims to be as self-contained as possible and accessible to both the machine learning and
the applied harmonic analysis communities. Part I is dedicated to giving a broad overview of the
algebra side: we introduce some of the fundamental concepts of group theory and representation
theory (Chapter 1), explain why Fourier transforms are important (Chapter 2), and give a brief
introduction to the machinery of fast Fourier transforms (Chapter 3). Our intent in these chapters
is two-fold: to impress upon the reader the generality and power of modern abstract algebra (as
well as its aesthetic appeal); and to lay down some of the technical terms and notations that we
use in the rest of the thesis.

While group theory has amassed a huge literature over the past more than one hundred years,
it is not necessarily easy to find references which describe all the concepts needed for computational
work but do not delve deep into abstract theory. We aim to address this gap between the pure
and applied literature by presenting a wide-ranging overview, pulling together threads from many
different sources, but steering clear of special cases and technical proofs. There are relatively few
original contributions of our own described in this part of the thesis, the notable exceptions being
the twisted and sparse Fourier transforms of Section 3.3.1, and the Snob software library for Fourier
analysis on the symmetric group (Section 3.4).

As a converse to Part I, Part II begins with an introduction to the supervised learning paradigm
of machine learning and the field of Hilbert space learning algorithms (Chapter 4). We quickly
progress to discussing symmetries, which leads to the first connection with group theory. As far as
we are aware, the general symmetrization result of Theorem 4.4.3 has never been explicitly stated
in the literature before. More generally, in Section 4.5 we discuss how to construct positive definite
kernels on group structured domains. This work is original, but it has not been published yet.

Chapter 5 presents a direct application of the above ideas to learning permutations. We develop
three different diffusion kernels on the symmetric group and discuss their interpretation in terms
of the regularization of functions on permutations. Permutation learning demands a special sym-
metrization step, and from a computational point of view this is a major bottleneck. The rest of
the chapter is taken up by describing two potential ways of getting around this: Bürgisser’s result
on immanants, our new PerMceptron algorithm. The material of this chapter is original and has
not been published elsewhere.

Chapter 6 also involves permutations, but applied to a completely different domain, namely
the identity management problem in multi-object tracking. While there are no kernels here, and
the setting is online filtering as opposed to batch learning, we find that harmonic analysis on the
symmetric group is again the key ingredient to developing a principled approach. This chapter is
based on [Kondor et al., 2007], which was the first paper to propose using the low-order Fourier
components of the matching distribution for identity management.

7



Whereas Part II explored problems where groups are the space on which learning takes place,
in Part III we discuss invariances, where the group action is what we want to eliminate from the
learning process. Chapter 7 introduces the powerful machinery of generalized spectral invariants,
including the non-commutative power spectrum and the bispectrum. The foundations of this
field were laid down by Kakarala [1992], but we go beyond his work by discussing in detail its
generalization to homogeneous spaces (Section 7.3) and introducing the skew spectrum (Section
7.2). This work was published in preprint form in [Kondor, 2007a]. We end the thesis with a
chapter describing a specific application of the bispectrum formalism to constructing translation
and rotation invariant features for computer vision. The corresponding preprint is [Kondor, 2007b].
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Algebra
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Chapter 1

Groups and representations

Group theory is a well developed branch of mathematics with an enormous literature, and it is
hardly possible to give the entire field justice in a single introductory chapter. Rather, our goal
will be to introduce the main players and set the scene for the rest of the thesis.

For background material the reader can turn to any one of many introductory texts on group
theory. As a general reference to abstract algebra we recommend [Lang, 1984], while as a more
applied text that still covers almost all the concepts we need, we found [Barut and Ra̧czka, 1977]
to be an excellent source. We are also indebted to some classics such as [Weyl, 1946],[Boerner,
1970] and [Fulton and Harris, 1991]. One of the most accessible introductions to representation
theory is [Serre, 1977], while the particulars of the representation theory of the symmetric group
are described in [Sagan, 2001], [Kerber, 1971], [James, 1978] and [James and Kerber, 1981].

1.1 Groups

The concept of groups is one of the cornerstones of modern mathematics. Technically, a group

G is a set endowed with an operation G × G → G satisfying certain axioms. In line with the
majority of the literature we use multiplicative notation for the group operation. Hence, applying
the operation to group elements x and y, we denote the resulting group element xy or x · y and
refer to xy as the product of x and y. The axioms that the group operation must satisfy are the
following:

1. For any x, y ∈ G, xy is also an element of G (closure).

2. For any x, y, z ∈ G, (xy)z = x(yz) (associativity).

3. There is a unique element of G, denoted e, and called the identity element, for which
ex = xe = x for any x∈G.

4. For any x ∈ G there is a corresponding element x−1 ∈ G, called the inverse of x, which
satisfies xx−1 = x−1x = e.

While seemingly trivial, these axioms give rise to an astonishingly rich theory that has been occu-
pying mathematicians for over a century.

Two groups G and G′ are said to be isomorphic, denoted G ∼= G′, if there is a one-to-one
mapping φ : G → G′ such that φ(x)φ(y) = φ(xy) for all x, y ∈ G. Since the emphasis in group
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theory is on structure rather than the identities of the actual group elements, isomorphic groups
are often regarded and referred to as the same group.

1.1.1 Taxonomy of groups

Group theory splits into broad areas depending on whether G is finite or infinite, discrete or
continuous. The simplest to study are finite groups, which only have a finite number of elements.
The cardinality of G is called the order of G and is denoted |G|.

Finite groups can be specified explicitly, by listing their elements and defining the group op-
eration in a multiplication table. For example, Felix Klein’s Viergruppe, denoted V , has four
elements {e, a, b, c}, which multiply according to

e a b c

e e a b c
a a e c b
b b c e a
c c b a e

.

There are several regular series of finite groups. For any n ≥ 1, the integers 0, 1, 2, . . . , n−1 form a
group under the operation of addition modulo n. This is called the cyclic group of order n, and is
denoted Zn (sometimes the alternative notations Z/nZ or Cn are used). Another important series
is formed by the symmetric groups Sn, which will be the topic of Section 1.3.

The study of infinite but countable groups is a natural extension of the theory of finite
groups. Some of the most elementary collections of objects in mathematics are countable groups.
The integers, Z, for example, form a group under the usual arithmetic operation of addition. In this
particular case using multiplicative notation for the group operation is confusing, so it is customary
to change to denoting the group operation by + and denoting the inverse of x by −x. Another
familiar example of a countable group is the set of non-zero rationals Q \ {0} under multiplication.

Group theory also extends to uncountable groups, in which case, in addition to the group
structure, one generally also endows G with a topology (formally, a topology is a system of subsets
of G, called open sets, that obey certain axioms). A topological group is a group G with a
topology such that f(x) = x−1 is a continuous map f : G→ G; and g(x, y) = xy is a continous map
g : G×G→ G. It makes a significant difference in developing the theory if we can appeal to some
form of compactness. Recall that a topological space X is compact if any collection of open sets
that collectively cover X has a finite subcollection that also covers X. A compact group is a
topological group that is compact. A locally compact group is a topological group in which any
group element has a compact neighborhood.

By far the most intensely studied topological groups are the Lie groups. The idea here is to
introduce a concept of differentiation on the group. A topological group G is a Lie group if G is
also a differentiable manifold and if the maps f(x) = x−1 and g(x, y) = xy are differentiable G→ G
and G×G→ G maps, respectively.

As the most fundamental class of Lie groups, consider any vector space V , and the set of
invertible linear transformations on V . Under composition of maps this set forms a Lie group
called the general linear group of V , denoted GL(V ). When V is of finite dimension n, elements
of GL(V ) can be thought of as n×n matrices. Some of the most important Lie groups are groups of
matrices. Such so-called linear groups are always subgroups of the corresponding general linear
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group. The simplest non-trivial example is SO(3), the group of 3 × 3 orthogonal matrices with
determinant +1. Since SO(3) is the group of rotations of R3, it is no surprise that it turns out to
be crucially important in many different contexts in the physical sciences. In general, the group of
n× n orthogonal matrices of unit determinant is denoted SO(n).

A rather prosaic series of Lie groups are the Euclidean spaces Rn under addition of vectors. The
identity is the 0 vector, and the group inherits the familiar differential and topological structures of
Rn. As a group, Rn is commutative but not compact. The simplest example of a compact Lie group
is the circle group T of complex numbers of unit modulus, forming a group under multiplication.
In fact, provided we remove the origin, the complex plane itself forms a group under multiplication.
This group we denote C∗. Note that C∗ is the same as GL(C).

A crucial feature of the groups axioms, perhaps at first sight obscured by the multiplicative
notation, is that they do not require the group operation to be commutative, i.e., in general,
xy 6= yx. The distinction between commutative and non-commutative groups is a crucial dividing
line in group theory. Commutative groups are also called Abelian groups and their theory is
much simpler than that of their non-Abelian relatives. This is especially true of locally compact

Abelian (LCA) groups.
While a small finite group, such as S5, and a Lie group, such as SO(3), are very different objects,

one of the revelations of group theory is that many important concepts transfer seamlessly from
one domain to the other, or at least have close analogs. In what is to follow, as much as possible,
we attempt to give a unified treatment of all the different types of groups described above.

1.1.2 Elementary concepts

Two group elements x and y are said to be conjugate if there is a t ∈ G such that t−1xt = y.
Conjugacy is an equivalence relation, partitioning G into conjugacy classes. Functions on G (i.e.,
functions f : G→ S for some S) that are constant on conjugacy classes are called class functions.

If a subset H of G forms a group by itself under the group operation of G (i.e., it satisfies closure
and the existence of inverses), then H is said to be a subgroup of G, and this is denoted H ≤G.
Trivially, any group is a subgroup of itself, and the single element group {e} is a subgroup of any
group. If H ≤ G is not one of these trivial cases we say that it is a proper subgroup and use
the notation H <G. For any t∈G, the elements

{
tht−1 | h ∈ H

}
form a subgroup isomorphic to

H, called the conjugate subgroup and denoted Ht. If Ht = H for any t, then H is said to be
a normal subgroup of G. This relation is denoted H⊳G. All subgroups of Abelian groups are
normal.

A mapping φ : G → H between two groups that preserves the group structure in the sense
that φ(x)φ(y) = φ(xy) for any x, y ∈ G, is called a homomorphism. A homomorphism that
is one-to-one is an isomorphism. It is easy to show that the kernel of a homomorphism (i.e.,
{ x∈G | φ(x) = e }) is a normal subgroup of G.

For H < G and x ∈ G we call the set xH = { xh | h∈H } the left coset of x and the set
Hx = { hx | h∈H } the right coset of x. The cardinality of any coset is the same as that of
H. Any two left cosets of G are either disjoint or the same, hence the set of left cosets provides
a partition of G, called the quotient space of left cosets and denoted G/H. The quotient space
of right cosets is denoted H\G. An easy corollary known as Lagrange’s theorem is that the order
of any subgroup of a finite group must divide the order of the group itself. A set A is called a
transversal or a set of coset representatives with respect to the collection of left cosets of H
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if for any two distinct x, y ∈ A, xH 6= yH and
⋃
x∈A xH = G. Right transversals are defined

analogously.
We can also talk about two-sided cosets, which are sets of the form x1Hx2 = { x1hx2 | h∈H }

(with x1, x2 ∈ G), and if H1 and H2 are both subgroups of G, we can talk about double cosets

H1xH2 = { h1xh2 | h1 ∈H1, h2 ∈H2 } (with x ∈ G). The latter form the double quotient space
H1\G/H2.

If H is a normal subgroup, then xH = Hx for any x ∈G, hence the systems of left and right
cosets are the same. In fact, in this case G/H forms a group under the operation (xH) (yH) =
(xy)H. To see that this operation is well defined, consider any x′ in the same coset as x and any
y′ in the same coset as y. In this case x′ = h1x for some h1 ∈H and y′ = h2y for some h2 ∈H. By
normality y−1x−1x′y′ = y−1x−1h1xh2y = y−1h3h2y for some h3 ∈H. Multiplying on the left by xy
and again applying normality, x′y′ = xyh4 for some h4 ∈ H and hence (x′y′)H = (xy)H. In other
words, no matter what x′ and y′ we choose to represent the cosets xH and yH, the product coset
is always the same.

If A is a set of elements of G, the subgroup generated by A is the smallest subgroup of G that
contains A. We say that A is a set of generators of G if A generates the entire group G.

An isomorphism mapping a group to itself is called an automorphism. The set of auto-
morphisms of G forms a group under composition, denoted Aut(G). We can also talk about the
automorphism group of other mathematical objects. For example, the automorphism group of a
graph is the group of permutations of its vertices that leave the graph topology (which vertices are
connected to which others) invariant. A similar concept is that of isometry groups, which is the
group of transformations of a metric space which leave the metric invariant.

1.1.3 Decomposing groups

Science is preoccuppied with decomposing complicated objects into simpler ones. In group theory
there is more than one way of assembling smaller groups into larger groups.

Given two groups G and H, their direct product, denoted G×H, is the group of pairs (g, h),
g ∈ G, h ∈ H with multiplication defined (g1, h1) (g2, h2) = (g1g2, h1h2). The identity of G×H
is (eG, eH). A trivial example is Rn, which, as a group, is the direct product of n copies of R.
Similarly, the n-dimensional unit torus Tn is a direct product of n copies of the circle group.

Now let G be a group and let H be a subgroup of Aut(G). The semi-direct product G⋊H
is the group of all ordered pairs (x,Λ) (x∈G, Λ∈H) with group multiplication defined

(
x′,Λ′

)
(x,Λ) =

(
x′Λ′(x),Λ′Λ

)
.

The unit element of G⋊H is (eG, eH) and the inverse of (x,Λ) is
(
Λ−1(x−1),Λ−1

)
. As an example,

take the isometry group ISO+(3) of R3 (excluding reflections), composed of transformations x 7→
Rx+b, where R is a rotation matrix and b is a translation vector. This group and its generalizations
to n dimensions are also called the rigid body motions groups. The effect of (R, b) followed by
(R′, b′) is x 7→ R′(Rx + b) + b′, giving the composition rule (R′, b′) (R, b) = (b′+Rb,R′R). The
rotation matrices form SO(3), the translation vectors form R3, and the former is the automorphism
group of the latter. Hence ISO+(3) ∼= R3 ⋊ SO(3). Other, less trivial, examples of semi-direct
products are considerably more interesting.
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1.1.4 G-modules and group algebras

Since much of what is to following will pertain to functions on groups, we introduce some of the
corresponding structures early in the discussion. By a function on a group G we simply mean a
function f : G→ S mapping each group element to a member of some set S.

Most of the time S will be a field F. Recall that a field is a set with two operations +: F×F→ F
and · : F×F→ F, and two special elements 0F and 1F, called the additive and multiplicative identity,
respectively. A field has to obey the following axioms:

F is a commutative group with respect to + with identity 0F;
F \ 0F is a commutative group with respect to · with identity 1F;
α (β+γ) = αβ + αγ for all α, β, γ ∈ F.

The elementary examples of fields are the rationals Q, the reals R, and the complex numbers C.
Typically in machine learning S will be the set of real numbers R, or the set of complex numbers
C. We denote the set of all functions f : G→ C by L(G).

A vector space V over a field F is a set endowed with the operations of addition and multi-
plication by elements of F. A vector space must contain a zero vector 0V , and must satisfy

x+y ∈ V ;
x+y = y+x;
0V +x = x+0V = x;
αx ∈ V ;

0Fx = 0V ;
1Fx = x;
α(x+y) = αx+αy;
(α+β)x = αx+βx;

for any v, w ∈ V and α, β ∈ F. If G is a finite group and V is a vector space over C of dimension
|G |, taking any basis of V and labeling the basis vectors with the group elements {ex}x∈G, we
identify L(G) with V by mapping each f ∈ L(G) to the vector

∑
x∈G f(x) ex.

Another way to relate groups and vector spaces is via G-modules. A G-module of a group G
is a vector space V over a field F which also also boasts an operation G × V → V satisfying

xv ∈ V ;
x(αv + βw) = α(xv) + β(xw);
(xy)v = x(yv);
ev = v;

for all x, y ∈ G, v, w ∈ V and α, β ∈ F. According to these axioms, each x∈G effects on V a linear
map φ(x) : V → V and these maps compose according to φ(x)φ(y) = φ(xy). Hence, a G-module is
a vector space V which admits a homomorphism φ : G→ GL(V ). This viewpoint will be important
in our discussion of group representations.

A different way to introduce multiplication into vector spaces is provided by algebras. An
algebra is a vector space V over a field F endowed with an operation V × V → V denoted
multiplicatively and satisfying

(u+v)w = uw+vw;
u(v+w) = uv+uw;
(αu)v = u(αv) = α(uv);

for all u, v, w ∈ V and α ∈ F. We are particularly interested in the group algebra of G, denoted
F[G], which has a basis {ex}x∈G obeying exey = exy. Clearly, the group algebra is also a G-module
with respect to the multiplication operation defined xv = ex v, for x ∈ G and v ∈ F[G]. A subspace
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U of on algebra V is called a subalgebra of V if it is closed with respect to multiplication. V is
called an irreducible algebra if its only subalgebras are ∅ and itself. Whenever we need to refer
to an inner product on F[G], we will assume that it is an inner product with respect to which the
basis {ex}x∈G is orthonormal.

One of the recurring ideas in this thesis is that if we have a function f : G→ S, we can talk about
translating it by t ∈ G, which will yield f t : G→ S given by f t(x) = f(t−1x). If G is non-Abelian,
we must distinguish this so-called left-translate from the right-translate f (t)(x) = f(xt−1). By
analogy, if µ is a measure on G, its left-translate is µt(X) = µ({ x ∈ G | tx ∈ X }). Measures
which are invariant to left- (resp. right-) translation by any t ∈ G are called Haar measures.
Remarkably, any compact group admits a Haar measure which is both left- and right-invariant and
unique up to scaling. The scaling is usually set so that

∫
G µ(x) = 1.

1.1.5 Group actions and homogeneous spaces

Many of the most important groups arise in the guise of transformations of an underlying object S.
Given a set of bijective mappings T = {Ti : S → S}i, we say that T is a closed set of transformations
if for any T1, T2 ∈ T , their composition T2 ◦T1 is an element of T , and if for any T ∈T , the inverse
map T−1 is an element of T . These operations turn T into a group.

Formally, we say that a group G acts on a set S if to every group element x, we can associate a
function Tx : S → S in such a way that Te(s) = s for all s∈ S and Txy = Tx(Ty(s)) for all x, y ∈ S
and s∈S. When there is no danger of confusion, we use the same symbols to denote group elements
and the corresponding action, hence Tx(s) becomes x(s) or simply xs. Note that according to our
definition group actions compose from the right, i.e., (xy)(s) = x(y(s)). Given s∈S, the subset of
S that we get by applying every element of G to s, {x(s)}s∈G we call the orbit of s. The orbits
partition S into disjoint subsets.

If there is only one orbit, we say that G acts transitively on S. In this case, fixing any s0 ∈S,
the map φ : G → S given by x 7→ xs0 is surjective, (i.e., sweeps out the entire set S) and we say
that S is a homogeneous space of G. It is easy to see that the group elements fixing s0 form
a subgroup of G. We call this subgroup H = { h∈G | hs0 = s0 } the isotropy subgroup of G.
Since xhs0 = xs0 for any h∈H, there is a one-to-one correspondence between S and the left cosets
G/H. Left quotient spaces and homogeneous spaces are just two aspects of the same concept.

As a simple example of a homogeneous space, consider the action of the three dimensional
rotation group SO(3) on the unit sphere S2. It is clear that taking any point on S2, for example
the unit vector ez pointing along the z axis, {Rez | R ∈ SO(3) } sweeps out the entire sphere, so
S2 is a homogeneous space of SO(3). The isotropy group in this case is the subgroup of rotations
about the z axis, which is just SO(2). From an algebraic point of view S2

∼= SO(3)/SO(2), and in
fact in general, Sn−1

∼= SO(n)/SO(n− 1) for any natural number n.

1.1.6 Lie groups

The differentiable manifold nature of Lie groups imparts on them additional structure. To unravel
this, first recall some general concepts pertaining to any n-dimensional differentiable manifoldM.

A chart at x ∈ M is a homeomorphism φ from an open neighborhood U of x to an open
subset of Rn. Every point of a differentiable manifold is covered by at least one chart. The i’th
component of φ is a function [φ(x)]i : U → R, which we shall simply denote φi. We say that a
function f : M→ R is differentiable at x if f ◦ φ−1 is differentiable at φ(x), and use the notation
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∂f
∂xi

for ∂
∂xi

(f ◦ φ−1). Let A(x) be the space of functions differentiable at x. A tangent vector at
x is a linear mapping T : A(x) → R satisfying T (fg) = T (f)g(x) + f(x)T (g) for all f, g ∈ A(x).
This condition is sufficient to establish a close link with differentiation. Specifically, T is a tangent
vector if and only if

T (f) =
n∑

i=1

∂f

∂xi
T (φi).

The collection of tangent vectors at x form an n-dimensional vector space Tx, called the tangent

space. The natural interpretation of the vectors T ∈ Tx is that they specify directions along the
manifold at the point x. To make the connection to differentiation more explicit, we will also write
∇T f for T (f). A mapping V that assigns to each point x∈M a tangent vector V (x)∈ Tx we call
a vector field onM. We can also regard V as a linear operator on differentiable functions onM,
in which context we write V f for the function (V f)(x) = ∇V (x)f(x).

The connection between the differential and algebraic structures is provided by invariant vector
fields. Let G act on functions on G by f 7→ fy such that fy(x) = f(y−1x) for all x∈G. The vector
field V is said to be left-invariant on G if (V f)y = V (fy) for any differentiable f . Any T ∈ Te
determines a unique left-invariant vector field VT satisfying VT (e) = T . Now it is possible to show
that T also determines a unique curve γ : R→ G with the property that d

dt (f ◦ γ) (t) = (VT f) (γ(t))
for all differentiable functions on M. Moreover, the image of this curve will be a one-parameter
subgroup of G, and its elements satisfy γ(s+ t) = γ(s)γ(t). This justifies the notation etT for γ(t).

Using this notation, given a basis T1, T2, . . . , Tn of Te, any element of G in a neighborhood of
the identity can be written in the form

x(α1, α2, . . . , αn) = exp

( n∑

i=1

αiTi

)
(1.1)

for some α1, α2, . . . , αn ∈ R. The Ti’s are called the infinitesimal generators of the Lie group G. In
general for A,B ∈ Te it is not true that eAeB = eA+B. We can, however, express the product of
two group elements given in exponential form by the Baker-Campbell-Hausdorff formula

expA · expB = exp

(
A+B +

1

2
[A,B] +

1

12
[A, [A,B]]− 1

12
[B, [A,B]]− . . .

)
, (1.2)

where the Lie bracket [A,B] is defined by [A,B](f) = A(B(f)) − B(A(f)) and it can be shown
that [A,B] ∈ Te. The Lie bracket operation turns Te into a Lie algebra L, which is characteristic of
G, and equations (1.1) and (1.2) tell us that at least locally, L completely determines the structure
of G.

When Lie groups arise as groups of matrices (such Lie groups are called linear groups), the
generators T1, T2, . . . , Tn are themselves matrices, the exponentiation in (1.1) is just matrix expo-
nentiation, and [A,B] is equal to the commutator AB − BA. For example, SO(3) is generated
by

Tx =




0 0 0
0 0 −1
0 1 0



 , Ty =




0 0 1
0 0 0
−1 0 0



 , and Tz =




0 −1 0
1 0 0
0 0 0



 ,

the Lie algebra has a basis {I, Tx, Ty, Tz}, and is determined by the single relation [Ta, Tb] = ǫabcTc,
where ǫabc is +1 if (a, b, c) is a cyclic shift of (x, y, z); ǫabc = −1 if it is a cyclic shift of the reverse
permutation (z, y, x) and ǫabc = 0 in all other cases.
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1.2 Representation Theory

Groups are quite abstract mathematical objects. One way to make them more concrete is to model
their elements by matrices. This is the fundamental idea behind representation theory. A matrix

representation ρ of a compact group G over a field F associates to each element x of G a matrix
ρ(x) ∈ Fdρ×dρ in such a way that

ρ(xy) = ρ(x)ρ(y)

for all x, y ∈ G. We also require ρ(e) = I. We say that dρ is the order of the representation. Note
that ρ(x−1) = (ρ(x))−1. In this thesis we restrict ourselves to the canonical choice of ground field,
which is the field of complex numbers, C.

It is possible to extend the concept of representations to the infinite dimensional realm by
promoting the ρ(x) to linear operators (see section 1.2.2). While this is important, especially for
non-compact groups, in the present work we focus on finite dimensional matrix representations. In
the following, unless specified otherwise, by “representation” we will mean a “finite dimensional
matrix representation over C”.

Two representations ρ1 and ρ2 are said to be equivalent if there is an invertible square matrix
T such that

ρ1(x) = T−1ρ2(x)T ∀x ∈ G.
For our purposes equivalent representations are regarded as the same. We say that a representation
ρ is reducible if each matrix ρ(x) has the block structure

ρ(x) =

(
A(x) B(x)

0 C(x)

)
.

In fact, whenever this happens there is always a similarity transformation ρ 7→ T−1ρ T that reduces
ρ to a direct sum

T−1ρ(x)T =

(
ρ1(x) 0

0 ρ2(x)

)
∀ x∈G

of smaller representations ρ1 and ρ2. We say that ρ is irreducible if there is no invertible matrix
T that can simultaneously block diagonalize all the ρ(x) matrices in this way. The real significance
of irreducible representations is due to the following theorem, variously known as the theorem of
complete reducibility, Wedderburn’s theorem or Maschke’s theorem [Serre, 1977, p.7][Fulton and
Harris, 1991, p.7][Barut and Ra̧czka, 1977, p.169].

Theorem 1.2.1 Any representation ρ of a compact group G may be reduced by appropriate choice
of invertible transformation T into a direct sum

ρ(x) = T−1
[ ⊕

i

ρi(x)
]
T, x ∈ G

of irreducible representations ρ1, ρ2, . . . , ρN of G. Moreover, this decomposition is unique, up to
equivalence of representations and changing the order of the terms in the direct sum. Note that the
different ρi’s are not necessarily distinct.

Because of this theorem, given a specific compact group G, there is a lot of interest in finding
a complete set RG (or just R for short) of inequivalent irreducible representations of G. There
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is considerable freedom in the choice of R, since any ρ ∈ R can be replaced by an equivalent
representation ρ′(x) = T−1ρ(x)T . It is possible to show that this freedom always allows one to
choose the irreducible representations to be unitary, which means that ρ(x)−1 = ρ(x−1) = ρ(x)†

for all x ∈ G. This will prove to be important in many applications, so we will often assume that
R has been chosen in this way.

The irreducible representations of compact groups are always finite dimensional. If G is finite,
then R is a finite set. If G is compact but not finite, then R is countable. It is for these reasons
(starting with Theorem 1.2.1) that in this thesis we mostly restrict ourselves to working with
compact groups.

We can immediately write down two representations for any finite group. The trivial repre-

sentation is just the one dimensional (and hence irreducible) constant representation ρtr(x) = 1.
At the other extreme is the |G |-dimensional regular representation based on the action of G
on itself. Labeling the rows and columns of the representation matrices by the group elements, the
matrix entries of the regular representations are

[ρreg(x)]y,z =

{
1 if xy= z

0 otherwise.

It is possible to show that if we decompose ρreg into a direct sum of irreducibles, each ρ ∈ R is
featured at least once (up to equivalence).

1.2.1 Character theory and Abelian groups

Every representation has a corresponding character χ : G → C, which is just the trace of the
representation matrices, χ(x) = tr(ρ(x)). The character corresponding to an irreducible represen-
tation we call an irreducible character. By the identity tr(T−1AT ) = tr(A) it is apparent that
equivalent representations share the same character. The same identity also shows that the char-
acters are class functions. In fact, the complete set of irreducible characters forms an orthogonal
basis for the space of class functions [Serre, 1977, Theorem 6]. This means that the irreducible
characters, and the conjugacy classes, can in turn be used to unambiguously label the irreducible
representations of a finite group. This is one of the main reasons that characters are important in
representation theory.

It is not difficult to prove that for finite groups
∑

ρ∈R d
2
ρ = |G |. If G is finite and Abelian, then

every function on G is a class function, therefore G has exactly |G | irreducible representations. We
deduce that all irreducible representations of G are one dimensional if and only if G is Abelian. In
this case the irreducible characters and the irreducible representations are one and the same. Noting
that for one dimensional representations | ρ(x) |= 1, both can be regarded as homomorphisms from
G to the unit circle in the complex plane. These results also generalize to infinite Abelian groups
[Barut and Ra̧czka, 1977, p.159]. For example, the irreducible representations of R are the functions
ρk(x) = e−2πikx with k ∈ R, and the irreducible representations of Zn are ρk(x) = e−2πikx with
k ∈ {0, 1, 2, . . . , n−1}. In the theory of Abelian groups the terms irreducible representation and
character are used interchangeably.

The space of characters is called the dual space of G. In the case of Abelian groups, the
characters themselves form a group under the operation (χ1χ2) (x) = χ1(x)χ2(x). This group, Ĝ,
is called the dual group of G. As stated in a celebrated theorem due to Pontryagin, the double

dual
̂̂
G is isomorphic to G, and the isomorphism is canonical in the sense that there is a unique
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ξ ∈ ̂̂
G satisfying ξ(χ) = χ(x) for any χ∈ Ĝ [Barut and Ra̧czka, 1977, p.163]. The dual of a locally

compact Abelian (LCA) group is a discrete LCA group and vica versa. Pontryagin duality is what
lies behind the theory of harmonic analysis on LCA groups that we develop in Section 2.2. When
G is finite the theory is considerably simpler because in that case Ĝ itself is isomorphic to G.

1.2.2 G-modules

A slightly more abstract way to define representations is in terms of G-modules. Recall that
a G module over C is a vector space V over C supporting a homomorphism φ : G → GL(V ). A
representation, as defined above, is just such a mapping. Hence, each equivalence class of equivalent
representations may be identified with aG-module V and its corresponding homomorphism φ. With
slight abuse of notation we set ρ=φ.

We can go back and forth between our two definitions of representation by noting that given a
basis e1, e2, . . . ,edρ

of V , the matrix entries of the earlier definition can be recovered as [ρ(x)]i,j =
[ρ(x)ej ]i. The module theoretic view of representations is more elegant in that it removes the
arbitrariness of choosing a particular representation from a class of equivalent ones, and often leads
to cleaner proofs.

Defining representations as homomorphisms ρ : G → GL(V ) is also more general than our
original definition in that it allows for infinite dimensional representations. For example, letting V
be any space with a basis {ex}x∈G, we can generalize the concept of regular representation to infinite
groups by setting φ(x)(ey) = exy. Theorem 1.2.1 will continue to hold for such infinite dimensional
representations, as long as G is compact. For non-compact groups, on the other hand, infinite
dimensional representations are crucial because some of their irreducibles fall in this category.

Group actions also give rise to G-modules. If a G is acting on a set S, then the permutation

representation GS associated with S is a G-module with basis vectors labeled by elements of S
on which G acts by g(es) = eg(s). This is a natural way to construct group representations.

1.2.3 Restricted and induced representations

Given a subgroup H of G, relating representations of G to representations of H will be important
in the following. Given a representation ρ of G, its restriction to H, denoted ρ↓GH is given simply
by ρ ↓GH (x) = ρ(x), x ∈H. As a collection of matrices, ρ ↓GH is just a subset of ρ; as maps, ρ and
ρ ↓GH are different, though, and this is what is emphasized by the notation. Where unambiguous,
we shall refer to ρ↓GH as just ρ↓H.

Now let ρ be a representation of H and let t1, t2, . . . , tl be a transversal for the left cosets of H
in G. The induced representation denoted ρ↑GH is of the block diagonal form

ρ↑GH (x) =




ρ̃(t−1
1 xt) ρ̃(t−1

1 xt2) . . . ρ̃(t−1
1 xtl)

ρ̃(t−1
2 xt) ρ̃(t−1

2 xt2) . . . ρ̃(t−1
2 xtl)

...
...

. . .
...

ρ̃(t−1
l xt) ρ̃(t−1

l xt2) . . . ρ̃(t−1
l xtl)


 , x∈G,

where ρ̃(x) = ρ(x) if x∈H and otherwise it is zero. We refer the reader to the literature for proving
that ρ↑GH is actually a representation. Where unambiguous, we shall refer to ρ↑GH as ρ↑G.
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1.3 The symmetric group

In Section 1.1.5 we described how groups can be defined by their action on a set S. A prime
example of this is the case when S is the set {1, 2, . . . , n} and we consider all n! permutations of
its elements. The permutations form a group under composition called the symmetric group

of degree n and denoted Sn. Hence, for σ1, σ2 ∈ Sn, σ2σ1 is the permutation that we get by
permuting {1, 2, . . . , n} first according to σ1 and then according to σ2.

The symmetric group enjoys a special, canonical status in group theory, and is also the group
with the most immediate applications in statistics and machine learning. Any group G acting on
a finite set S can be regarded as a subgroup of S|S|. In particular, any finite group G acts on itself
by Tx(y) = xy, x ∈ G, y ∈ G = S, hence G is a subgroup of S|G| (Cayley’s theorem). From the
point of view of applications, the symmetric group is important because of the connection between
permutations and rankings or matchings. Some of the most comprehensive texts on the symmetric
group, where many of the following results were taken from are [James, 1978],[James and Kerber,
1981] and [Sagan, 2001].

There are several ways to notate elements of Sn. In two-line notation we write 1, 2, . . . , n on
top and the image of these elements under the permutation on the bottom. For example,

σ =

[
1 2 3 4 5
2 3 1 4 5

]
(1.3)

is an element of S5. We denote the mapping corresponding to each group element by the same
symbol as the one we use to denote the group element itself. Hence, the above permutation is
specified by the relations σ(1) = 2, σ(2) = 3, σ(3) = 1, etc.. In terms of these maps the group
operation is defined by the relations σ2(σ1(i)) = (σ2σ1)(i) for all σ1, σ2 ∈ Sn and i = 1, 2, . . . , n.

A more compact way to specify permutations is based on the observation that any permutation
can be written as a combination of cycles. By cycle we mean an ordered subset s1, s2, . . . , sk of
{1, 2, . . . , n}, such that σ(si) = si+1 for i < k and σ(sk) = s1. For example, in cycle notation

(1.3) becomes σ = (123)(4)(5). Cycles of length one can be omitted without ambiguity, so σ can
also be denoted simply as (123).

The cycle-type of σ is a list of the lengths of all the cycles making up σ. This is usually
encoded in a partition of the integer n, by which we mean a sequence

λ = (λ1, λ2, . . . , λk)

of weakly decreasing natural numbers (i.e., λi≥ λi+1 for i = 1, 2, . . . , k−1) such that
∑k

i=1 λi = n.
We call k the length of the the partition λ. In our case, the partition corresponding to (1.3) would
be (3, 1, 1). Note that the concept of partitions of the integer n is distinct from the concept of
partitions of the set {1, 2, . . . , n}. In the following λ will always denote integer partitions of some
number n. We will also use the notation λ ⊢ n. It is easy to see that the conjugacy classes of
Sn correspond exactly to the collection of elements of a given cycle type. Hence, the irreducible
representations of Sn can conveniently be labeled by the integer partitions λ ⊢ n.

Of particular interest is the conjugacy class of transpositions, which are permutations of the
form (i, j). Since any cycle (s1, s2, . . . , sk) can be written as the product (s1, s2) · (s2, s3) · . . . ·
(sk−1, sk), the set of transpositions generates the entire symmetric group.

In fact, we can say more. Any transposition (i, j) (assuming without loss of generality i < j)
can be written as a product of adjacent transpositions τk = (k, k+1) as

(i, j) = τj−1 . . . τi+1 τi τi+1 . . . τj−1,
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hence adjacent transpositions alone generate Sn. Taking this minimalistic approach even further,
since we can produce any τk as

τk = (k, k+1) = (1, 2, . . . , n)k · (1, 2) · (1, 2, . . . , n)−k ,

the two group elements (1, 2) and (1, 2, . . . , n) by themselves generate the whole of Sn.
Related to transpositions is the important concept of the sign of a permutation. Consider the

quantity

∆σ =
∏

σ(i)<σ(j)

(i− j) σ ∈ Sn.

Applying any transposition to σ changes the sign of ∆ but not its absolute value. Hence if a given
permutation σ can be written as the product of m transpositions, sgn(σ) ≡ (−1)m, called the sign

of σ, is a well defined quantity. Permutations for which sgn(σ) = 1 are called even and those for
which sgn(σ) = −1 are called odd.

The function sgn(σ) is our first example of a representation of Sn, called the alternating

representation. The subgroup of even permutations is called the alternating group of degree
n, denoted An. The alternating groups form a family of non-Abelian finite groups, much like the
symmetric groups do.

1.3.1 Representations

The trivial representation ρ(σ) = 1 and the alternating representation ρ(σ) = sgn(σ) are both
irreducible representations, in fact, they are the only two one-dimensional ones. By describing Sn
in terms of its action on (1, 2, . . . , n), we have implicitly also met the n-dimensional representation

[ρdef(σ)]i,j =

{
1 if σ(i) = j

0 otherwise,

called the defining representation. The actual ρdef(σ) matrices are often called permutation

matrices. The defining representation is not irreducible. In particular, permutation matrices leave
the subspace generated by (1, 1, . . . , 1) invariant, which means that ρdef is a direct sum of the trivial
representation and some n−1 dimensional representation.

Tableaux, tabloids and permutation modules

The systematic study of the irreducible representations of Sn was pioneered by the Reverend Alfred
Young and has a strong combinatorial flavor. Much of the theory revolves around operations on
diagrams called tableaux, tabloids and polytabloids introduced by Young.

We start with a graphical representation for integer partitions consisting of simply laying down
λ1, λ2, . . . , λk empty boxes in k consecutive rows. This is variously called the Ferres diagram,
the frame, or the shape of λ. As an example, the shape of the (3, 2) partition of 5 is

.

Thanks to the bijection between partitions and irreducible representations of Sn, Ferres diagrams
can be used to label the irreducible representations.
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A Young tableau is a Ferres diagram bijectively populated by the numbers 1, 2, . . . , n, such
as

t = 3 2 5
1 4

. (1.4)

A tabloid is an equivalence class of tableau under permutations of the numerals in each of the
rows. For example, the set of tableaux

{
3 2 5
1 4

, 3 5 2
1 4

, 2 3 5
1 4

, 2 5 3
1 4

, 5 2 3
1 4

, 5 3 2
1 4

,

3 2 5
4 1

, 3 5 2
4 1

, 2 3 5
4 1

, 2 5 3
4 1

, 5 2 3
4 1

, 5 3 2
4 1

}

is a tabloid of shape (3, 2), which we denote

{t} =
3 2 5

1 4
. (1.5)

Clearly, there are d = n!/ (λ1!λ2! . . . λk!) tabloids of shape λ.

Permutation modules

Members of Sn act on tableaux by permuting the numerals. This action extends naturally to
tabloids, since if t and t′ are two members of some tabloid {t}, then their images σ(t) and σ(t′) for
some σ ∈ Sn will also be members of a common tabloid σ ({t}). In other words the set of tabloids
of a given shape λ form a homogeneous space of Sn. Hence the matrices

[ρ(σ)]{t′},{t} =

{
1 if σ ({t}) = {t′}
0 otherwise,

form a real valued representation of Sn. This is called the permutation representation of shape
λ. As an example, the defining representation is just the permutation representation of shape
(n− 1, 1):

.

The trivial representation is the permutation representation of shape (n):

;

while the regular representation corresponds to the shape (1, 1, . . . , 1):

.
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Keeping to our running example, in all the diagrams above we have taken n= 5.
To paint a more algebraic picture of permutation representations, we define the row stabilizer

Rt of a tableau t of shape λ to be the subgroup of Sn which leaves the rows of t invariant, i.e., only
permutes numerals within each row. Clearly, Rt ∼= Sλ1 ×Sλ2 × . . .×Sλk

, which is called the Young

subgroup of shape λ. Now we identify each tabloid with the group algebra element

{t} =
∑

σ∈Rt

σe.

The elements corresponding to tabloids of shape λ form a submodule of C [Sn], called the permu-

tation module and denoted Mλ.

Irreducible modules

The starting point for constructing the irreducible representations of Sn are the permutation mod-
ules. Unfortunately, the Mλ themselves are in general not irreducible. However, each Mλ contains
a submodule Sλ, called the Specht module, that is irreducible. It is possible to prove that the
collection of Specht modules {Sλ}λ forms a complete set of irreducible G-modules for G. Thus, we
get a complete set of irreducible representations.

To get a handle on the Specht modules, Young introduced yet another type of diagram, called
a polytabloid. Analogously to the row stabilizer Rt, we can also talk about the column stabilizer

Ct of a tabloid. A polytabloid is a linear combination of tabloids that is antisymmetric with
respect to this subgroup:

et =
∑

π∈Ct

sgn(π)π({t}).

The corresponding element of the group algebra is then

et =
∑

π∈Ct, σ∈Rt

sgn(π)π(t)σ(t),

and the polytabloid corresponding to our running example (1.5) is

et =
3 2 5

1 4
− 1 2 5

3 4
− 3 4 5

1 2
+

1 4 5

3 2
.

The Specht module is the submodule of the group algebra spanned by the set of polytabloids of
shape λ.

To provide some examples, M (n) corresponding to the trivial representation is one dimensional
and hence irreducible, so in this case S(n) = M (n). Regarding M (n−1,1), the module of the defining
representation, we have already noted that it contains a copy of the trivial module S(n). In fact,
we will shortly be able to prove that M (n−1,1) = S(n) ⊕ S(n−1,1). At the opposite extreme to these
two cases, M (1,1,...,1), the module of the regular representation, decomposes into a direct sum of
Sλ’s, where λ runs over all partitions of n. Its own Specht module, S(1,1,...,1), is the module of the
sign representation.
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Young’s standard representation

While the polytabloids span Sλ, they don’t immediately give rise to an irreducible representation
because they are not linearly independent. Once again, the combinatorial properties of Young
tableaux come to the rescue. Young defined standard tableaux to be tableaux in which the
numbers in each row and each column are increasing. Hence,

1 3 4
2 5

is a standard tableau, but none of the tableaux in the tabloid of (1.4) are standard. Considering
standard tableaux of a given shape, the corresponding polytabloids both span Sλ and are linearly
independent. The corresponding irreducible representation is called the standard representa-

tion. We compute the matrix coefficients of the standard representation by letting permutations
act on standard polytabloids and expressing the result as the linear combination of other standard
polytabloids. The standard representation is only one of several equivalent named representations,
however, and from a computational point of view, not necessarily the most attractive.

The standard tableaux based labeling scheme gives us a way to compute the dimensionality of
each irreducible representation. As an example, recall that the defining representation ρdef is the
permutation representation of shape

(for S5). Clearly, there are n−1 possible standard tableaux of this shape. We have seen that ρdef

contains one copy of the trivial representation. Now we see that the remaining n−1 dimensional
representation is irreducible.

For a general shape λ, the number of standard tableaux of shape λ is given by the so-called
hook length formula of Frame, Robinson and Hall [Fulton, 1997, p. 53]. Given any box in a Ferres
diagram, the corresponding hook consists of that box, all the boxes in the same row to its right
and the all boxes in the same column below it. The length of a hook is the total number of boxes
in such an inverted L-shape. The hook length formula states that the number of standard tableaux
of shape λ is

fλ =
n!∏
i li
,

where li is the length of hook centered on box i, and the product extends over all boxes of the
Ferres diagram of λ. Table 1.1 shows some applications of this formula to a few specific shapes.
Note the general rule that for k << n if there are n− k boxes in the first row, then fλ is order nk.

Young’s orthogonal representation

Historically the standard representation was discovered first, but in some respects Young’s or-

thogonal representation (YOR) is simpler. In YOR it is again convenient to label the dimensions
of ρλ by standard tableaux of shape λ, but this time we do not need to invoke polytabloids or the
group algebra. Instead, restricting ourselves to the adjacent transpositions {τ1, τ2, . . . , τn−1}, we
can specify the matrix entries of ρλ(τk) explicitly. These matrices turn out to be very sparse: the
only non-zero entries in any row, indexed by the standard tableau t, are the diagonal entry

[ρλ(τk)]t,t = 1/dt(k, k+1), (1.6)
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λ fλ

(n) 1
(n− 1, 1) n− 1

(n− 2, 2) n(n−3)
2

(n− 2, 1, 1) (n−1)(n−2)
2

(n− 3, 3) n(n−1)(n−5)
6

(n− 3, 2, 1) n(n−2)(n−4)
3

λ fλ

(n− 3, 1, 1, 1) (n−1)(n−2)(n−3)
6

(n− 4, 4) n(n−1)(n−2)(n−7)
24

(n− 4, 3, 1) n(n−1)(n−3)(n−6)
8

(n− 4, 2, 2) n(n−1)(n−4)(n−5)
12

(n− 4, 2, 1, 1) n(n−2)(n−3)(n−5)
8

Table 1.1: The number of standard tableaux of shape λ for some specific λ ⊢ n. Note that by the
bijection between partitions and irreducible representations of the symmetric group, fλ is also the
dimensionality of ρλ. For concreteness the diagrams are drawn as if n = 8.

and, if τk(t) happens to be also a standard tableau, the single off-diagonal entry

[ρλ(τk)]t,τk(t) =
√

1− 1/dt(k, k+1)2. (1.7)

Here dt(k, k+1) is a special signed distance defined on Young tableaux. If x is a numeral in t, then
the content of x, denoted c(x) is the column index minus the row index of the cell where x is to
be found. The distance dt(i, j) is then defined as c(j)− c(i). Since adjacent transpositions generate
the whole of Sn, (1.6) and (1.7) are sufficient to fully define the representation.

While at first sight seemingly cryptic, the orthogonal representation has several advantages. As
its name implies, the different rows of its representation matrices are orthogonal. From a practical
point of view, the fact that representation matrices of transpositions are easy to compute and are
sparse is important. Finally, we can readily see that considering the subgroup of Sn holding n fixed,
the action of the transpositions τ1, τ2, . . . , τn−2 generating this subgroup on the 1, 2, . . . , n− 1 part
of the tableau is exactly the same as in a representation of Sn−1. This property will be the key to
constructing a fast Fourier transform on Sn in Section 3.3. YOR is described in detail in [Boerner,
1970].

The Murnaghan-Nakayama rule

A little more combinatorial wizardry gives an explicit formula for the irreducible characters. Recall
that characters are constant on conjugacy classes. Hence, we can talk about χλ(µ), the character
corresponding to the partition λ evaluated at any permutation of cycle type µ, where µ is another
partition of n.

There is a natural partial order on partitions induced by inclusion. We set λ′ ≤ λ if λ′i ≤ λi
for each row i = 1, 2, . . . , k of λ. In case the length k′ of λ′ is less than k, we just set λ′i = 0 for
k′ < i ≤ k. We can generalize Ferres diagrams by defining the so-called skew shapes, denoted
λ/λ′ as the difference of their respective diagrams. For example, the skew shape (4, 3, 2, 2) / (2, 2)
is

.

A skew shape is said to be a border strip if it is both connected (i.e, one can get from any box
to any other box via a series of boxes of which any two consecutive ones share an edge) and it
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does not contain any 2 × 2 block of boxes. The weight of a border strip λ/λ′ is defined to be

wt (λ/λ′) = (−1)length(λ/λ′)−1.
Now for a partition µ ⊢ n of length k, a µ-border strip tableau of shape λ ⊢ n is a sequence of

skew shapes
λ = λ(k) ≥ λk−1 ≥ . . . ≥ λ(0) = ∅

such that each λ(i)/λ(i−1) is a border strip and has exactly µi boxes. The whole sequence can be
encoded in a tableau T of shape λ filled in with the numbers 1, 2, . . . , k, according to which stage
in the sequence each box is eliminated. The weight of such a so-called µ-border strip tableau T
is then defined

wt(T ) =
k∏

i=1

wt
(
λ(i)/λ(i−1)

)
.

Murnaghan and Nakayama’s remarkable formula states that if λ and µ are partitions of n, then

χλ(µ) =
∑

T

wt(T ), (1.8)

where the sum is taken over all µ-border strip tableaux of shape λ. This formula will be of use to
us in evaluating kernels on the symmetric group in Section 5.3.

1.4 The General Linear Group

The representation theories of the classical Lie groups such as GLn, SU(n), SO(n), are closely re-
lated. Unfortunately, an introduction to the general theory goes well beyond the scope of this work.
We restrict ourselves to giving a highly specialized but elementary description of the representation
theory of the one group that will be important to us in the future, namely the general linear group
GLn.

Recall that GLn≡GL(Cn) is the group of invertible linear maps of Cn, hence its elements can
be conveniently represented by n× n complex matrices M = (mij)

n
i,j=1. Departing from our usual

notation, we denote the elements of GLn by M , instead of x.

1.4.1 Representations

There are multiple, at first sight very different approaches to describing the irreducible represen-
tations of the general linear group. In keeping with the spirit of the previous sections and bearing
in mind our computational goals, we opt for a fundamentally combinatorial approach. An added
benefit of this will be the appearance of remarkable parallels with the representation theory of Sn.
In order to keep this section brief, most of the results we state without proof.

The first point of contact with the representation theory of Sn is that the irreducible representa-
tions of GLn are labeled by partitions λ. Now, however, m= |λ | is unconstrained, accommodating
the fact that the actual number of irreducible representations is infinite. Only the length of λ is
upper bounded by n. The exact statement, much less trivial to prove than its analog for Sn, is that
there is a bijection between the irreducible representations of GLn and partitions of length at most
n of natural numbers m ≥ 1.

Specht modules also have a close analog. Again, we start by constructing a larger, reducible
module, V λ, with basis vectors et labeled by Young tableaux of shape λ. However, now the tableaux
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are filled with the integers 1, 2, . . . , n as opposed to 1, 2, . . . ,m = |λ |. Naturally, repetitions are
permitted. GLn acts on V λ by

ρ(M) : et 7→
n∑

i,j=1

Mi,j et[i,j]

where t [i, j] denotes the tableau derived from t be replacing each occurrence of i by j. In exact
analogy with the Sn case, we introduce the Young symmetrizer, and let it act on basis vectors to
form equivalence classes corresponding to the analogs of polytabloids. The resulting module, called
the Weyl module will be our irreducible GLn-module.

Matrices of the form

M =




m1,1 m1,2 . . . m1,n−1 0
m2,1 m2,2 . . . m2,n−1 0

...
...

. . .
...

...
mn−1,1 mn−1,2 . . . mn−1,n−1 0

0 0 . . . 0 1




form a subgroup of GLn isomorphic to GLn−1. Whenever we talk of the latter as a subgroup of
the former, we shall be referring to this particular embedding.

The actual irreducible representationsDλ : GLn → GL(V λ) we undertake to find by constructing
a Gelfand-Tsetlin basis adapted to the tower of subgroups

GLn > GLn−1 × C∗ > GLn−2 × (C∗)2 > . . . > (C∗)n .

The key is again the way that Dλ ↓GLn−1
splits into irreducible representations of GLn−1, and this

turns out to be only slightly more complicated than in the Sn case. Let us introduce the notation
λ′ ≤ λ to denote that λ′i ≤ λi for each row i = 1, 2, . . . , k of λ. If the length of λ′ is less than k, we
just set λi = 0 for i > k. With this notation,

Dλ =
⊕

λ′≤λ

Dλ′ × C∗|λ |−|λ′ | ,

where Dλ′ are the irreducible representations of GLn−1, and the sum includes the empty partition
λ′ = (). In contrast to the Sn case, the graph of this branching rule is not a tree (Figure 1.1). Since
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Figure 1.1: The branching structure of the irreducible representations (2, 1) of GL3

GL1 = C∗ is Abelian, the irreducible representations at the bottom of the branching diagram are
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one-dimensional. The basis vectors of V λ are labeled by paths in the diagram from top to bottom,
and such paths can in turn be labeled by Young tableaux of shape λ, putting the number i in every
slot of the tableau which gets eliminated at level i, as we descend the path. The numbers in the
resulting tableaux are strictly increasing in each column and weakly increasing in each row. These
are the so-called semi-standard tableaux. We see that semi-standard tableaux of shape λ are in
bijection with the basis vectors of V λ.
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Chapter 2

Harmonic analysis

Fourier analysis is a unifying theme, spanning almost all branches of mathematics. Part of what
makes it so powerful is its ability to relate the analytical to the algebraic properties of abstract
spaces. One of the goals of this thesis is to show that this can be generalized to the non-commutative
realm, and that generalized Fourier transforms can help in solving statistical and learning problems.

We begin with a review of the classical Fourier transforms, a careful discussion of their algebraic
interpretation, and a discussion of how that generalizes to compact non-Abelian groups. We then
present two examples that show how these seemingly abstract ideas relate to concrete problems in
statistical data analysis.

A hugely entertaining and very informative book on classical Fourier analysis with many insights
into the history and development of the subject is [Körner, 1988]. Of the many books written on
abstract harmonic analysis [Rudin, 1962] is a true classic, but it only deals with the locally compact
Abelian case. Very closely in line with our algebraic approach are Audrey Terras’s books [Terras,
1999] and [Terras, 1985].

One of the best sources of inspiration for applications of these ideas is the sequence of papers
[Maslen and Rockmore, 1997][Rockmore, 1997] and [Healy et al., 1996], while without question the
key book on applying ideas from finite group theory to statistics is [Diaconis, 1988].

2.1 The classical Fourier transforms

The three classical Fourier transforms are defined on the space of functions on the unit circle
(equivalently, periodic functions on the real line with period 2π),

f̂(k) =
1

2π

∫ 2π

0
e−ikx f(x) dx, k ∈Z; (2.1)

functions on the real line,

f̂(k) =

∫
e−2πikx f(x) dx, k ∈R; (2.2)

and functions on {0, 1, 2, . . . , n−1},

f̂(k) =
n−1∑

x=0

e−2πikx/n f(x), k ∈ {0, 1, 2, . . . , n−1} . (2.3)
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The first of these cases is sometimes called the Fourier series, and the third one the discrete

Fourier transform. In all three cases we assume that f may be complex valued.
The corresponding inverse transforms are

f(x) =
∞∑

k=−∞

f̂(k) eikx,

f(x) =

∫
e2πikx f̂(k) dk, (2.4)

f(x) =
1

n

n−1∑

k=0

e2πikx/n f̂(k).

We will sometimes use the notation F : f 7→ f̂ for the forward transform and F−1 : f̂ 7→ f for
the inverse transform. Note that cases (2.1) and (2.2) require some restrictions on f , namely
integrability for the forward transform, and certain continuity conditions for the existence of the
inverse. These conditions are quite technical, and not of primary concern to us here, so we refer
the reader to the literature for details [Körner, 1988].

Instead, we focus on the properties shared by all three transforms. The first of these is that
with respect to the appropriate inner products

〈f, g〉 =
1

2π

∫ 2π

0
f(x) g(x)∗ dx, 〈f̂ , ĝ〉 =

∞∑

k=−∞

f̂(k) ĝ(k)∗,

〈f, g〉 =

∫
f(x) g(x)∗ dx, 〈f̂ , ĝ〉 =

∫
f̂(k) ĝ(k)∗ dx,

〈f, g〉 =
n−1∑

x=0

f(x) g(x)∗, 〈f̂ , ĝ〉 =
n−1∑

k=0

f̂(k) ĝ(k)∗,

all three transforms are unitary, i.e., 〈f, g〉 = 〈f̂ , ĝ〉. This is sometimes referred to as Parseval’s

theorem or Plancherel’s theorem.
The second property is related to the behavior of f̂ under translation. If f is a function on the

real line, its translate by t∈R is f t(x) = f(x− t). In the other two cases f t(x) = f([x− t]2π) and
f t = f([x− t]n), respectively, where [ · ]z denotes modulo z. The translation property in the three

different cases reads f̂ t(k) = eitk f̂(k), f̂ t(k) = e2πitk f̂(k), and f̂ t(k) = e2πitk/n f̂(k).
As an extension of the translation property by linearity we have the convolution theorems.

Convolution in the three different cases is defined respectively

(f ∗ g) (x) =

∫
f([x−y]2π) g(y) dy,

(f ∗ g) (x) =

∫
f(x− y) g(y) dy,

(f ∗ g) (x) =
n−1∑

y=0

f([x− t]n) g(y) dy,

and the convolution theorem reads F(f ∗ g)(k) = f̂(k) · ĝ(k).
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When the underlying space has a natural differential structure, the Fourier transform also relates
to that in a canonical way: on the unit circle (parametrized by angle) we have ∂̂f(k) = ik f̂(k),

while on the real line ∂̂f(k) = 2πik f̂(k). This is one of the reasons why Fourier analysis is central
to the study of partial differential equations as well.

2.2 Fourier analysis on groups

From an algebraic point of view the striking feature of the exponential factor appearing in (2.1) is
the multiplicative property eik(x1+x2) = eikx1eikx2 . Similar relations hold for (2.2) and (2.3). Noting
that in each case the domain of f is a group G (namely, T = R/Z, R and Zn), a group theorist
will immediately notice that these factors are just the irreducible characters of G. Hence, all three
classical Fourier transforms are special cases of the general formula for the Fourier transform on a
locally compact Abelian group:

f̂(χ) = F(f)(χ) =

∫

G
χ(x)f(x) dµ(x), (2.5)

where χ ranges over the characters of G, and µ is the Haar measure on G. Since the irreducible
characters of an LCA group form a dual group Ĝ, the inverse transform is given by a similar integral
over the dual group:

f(x) = F−1(f̂)(x) =

∫

bG
χ(x−1) f̂(χ) dµ̂(χ). (2.6)

Taking advantage of the fact that the irreducible characters of an Abelian group form an orthonor-
mal basis for the group algebra, (2.5) and (2.6) provide a straightforward extension of harmonic
analysis to locally compact Abelian groups, preserving many of the properties of the classical
Fourier transforms.

The difficulty in extending harmonic analysis to non-commutative groups is that in the non-
Abelian case the irreducible characters (while still orthogonal) are no longer sufficient to form a
basis of the group algebra C[G]. Harmonic analysis is not just any projection of functions to an
orthonormal basis, however. The convolution theorem, in particular, tells us that F is special
because it corresponds to a decomposition of L(G) (the class of all complex valued functions on G)
into a sum of spaces which are closed under convolution. This is a purely algebraic property, put
into even starker relief by noting that when G is compact, L(G) may be identified with the group
algebra C[G], where convolution becomes just multiplication: fg = f ∗ g. In other words, Fourier
transformation is nothing but a decomposition of the group algebra into irreducible sub-algebras.

Algebras that have a unique decomposition into a sum of irreducible sub-algebras are called
semi-simple. Once again, compactness is key: it is possible to show that the group algebra of any
compact group is semi-simple. The Vη irreducible subalgebras in the corresponding decomposition

C[G] ∼=
⊕

η

Vη

are called isotypals. When G is Abelian, each Vη is one-dimensional, and the form of the Fourier
transform (2.5) is essentially uniquely determined. When G is non-Abelian, however, the Vη sub-
spaces may be multidimensional and demand further interpretation.

Since Vη is irreducible, it must be isomorphic to GL(V ) for some vector space V over C.
Denoting projection onto Vη by ↓η , for any two basis vectors ex and ey of C[G] we must have
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ex ↓η · ey ↓η= (exey) ↓η= exy ↓η . In other words, the map φη : G → GL(V ) given by φη : x 7→ ex ↓η
is a representation. Since Vη is irreducible, φη must be an irreducible representation. One can
also show that each irreducible of G is featured in the sum exactly once. In summary, we have an
isomorphism of algebras

C[G] ∼=
⊕

ρ∈R

GL(Vρ). (2.7)

Giving an explicit basis to Vρ allows us to express ex↓ρ in matrix form ρ(x), and corresponds to
choosing one specific representation from a class of equivalent ones. The elements of Vρ then take
the form of d-dimensional complex matrices, and the projection of a general f ∈ C[G] onto the
Vρ-isotypal can be expressed explicitly as

f ↓ρ=
∑

x∈G

〈f, ex〉 ex ↓ρ=
∑

x∈G

f(x) ρ(x).

By the Fourier transform of f we mean this collection of matrices

f̂(ρ) =
∑

x∈G

f(x) ρ(x) ρ ∈ R. (2.8)

The Fourier transform F : f 7→ f̂ is unitary with respect to the norms

‖ f ‖2 =
1

|G |
∑

x∈G

| f(x) |2 and
ww f̂

ww2
=

1

|G |2
∑

ρ∈R

dρ
ww f̂(ρ)

ww2

Frob
. (2.9)

and the inverse transform is

f(x) =
1

|G |
∑

ρ∈R

dρ tr
[
f̂(ρ) ρ(x−1)

]
. (2.10)

In the continuous but compact case, as usual, we have analogous formulae except that summation
is replaced by integration with respect to Haar measure.

Defining convolution on a group as (f ∗g)(x) =
∑

y∈G f(xy−1)g(y), by construction, the Fourier

transform satisfies the convolution theorem f̂ ∗ g(ρ) = f̂(ρ)ĝ(ρ), and consequently also the left- and
right-translation properties f̂ t(ρ) = ρ(t) f̂(ρ) and f̂ (t)(ρ) = f̂(ρ) ρ(t). From a computational point
of view, these propeties are a large part of the reason that there is so much interest in Fourier
transforms.

It is interesting to note that while as algebras the Vρ are irreducible, as G-modules under
left-translation g(v) = egv or right-translation gR(v) = veg (with g ∈ G and v ∈ Vρ) they
are not. Indeed, since ρ : G → Vρ is a dρ-dimensional irreducible representation, the G-module
Gv = { g(v) | g ∈G } generated by any v ∈ Vρ is dρ-dimensional, while Vρ-itself is d2

ρ dimensional.

Naturally, the same holds for the right G-modules vG = { g(R)(v) | g ∈G }. On the other hand,
{ g1vg2 | g1, g2 ∈ G } spans the whole of Vρ. Thus, setting an orthonormal basis

{
ν1, ν2, . . . , νdρ

}

for Gv induces a decomposition of Vρ into right G-modules W1 = ν1G, W2 = ν2G, . . . ,Wdρ
= νdρ

G,

Vρ =

dρ⊕

i=1

Wi; (2.11)
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while setting an orthonormal basis {ν ′1, ν ′2, . . . , ν′dρ
} for vG induces a decomposition

Vρ =

dρ⊕

i=1

Ui (2.12)

into left G-modules U1 = Gν ′1, U2 = Gν ′2, . . . , Udρ
= Gν ′dρ

. In contrast to (2.7), however, these

decompositions are not unique, but depend on the choice of v and the {ν} and {ν ′} bases. Once
again, this corresponds to the choice of representation: in matrix terms Wi is the space spanned
by the i’th row of f̂(ρ), while Ui is the space spanned by its i’th column. While (2.7) captures the
fundamental structure of the group algebra, (2.11) and (2.12) are only a consequence of how we
choose to represent its elements.

2.3 Spectral analysis on finite groups

Engineers are accustomed to the idea that looking at data in the frequency domain is often much
more revealing than looking at it as a time series. Similarly, in natural science, from earthquake
prediction to astronomy, Fourier transformation is well entrenched as the first step in approaching
various types of data.

In general, by spectral analysis we mean the principle of analyzing data in terms of its projection
to orthogonal subspaces. In the context of data on groups, the natural choice of subspaces are the
isotypals. We now give two examples of this technique, one relating to the direct product of Abelian
groups, and one relating to the symmetric group.

2.3.1 Factorial designs

Interestingly, one of the pioneering applications of Fourier analysis on groups other than the classical
Rd,Td,Zn came from statistics. Without explicitly calling it as such, the British statistician Frank
Yates not only developed a systematic approach to analyzing data on Zn2 by Fourier transformation,
but also proposed what amounts to a fast transform algorithm for this case [Yates, 1937]. In the
following we closely follow the summary of this work in the survey article [Rockmore, 1997].

Assume that we are interested in studying the effect of sunlight(s), weed killer(w) and fertilizer(f)
on the yield of wheat. As a simplification, we assume that each of these three factors has only two
possible values: high and low. In general, the problem of analyzing the combined effect of k binary
factors on some variable of interest is called a 2k factorial design. In our example k = 3, so we
denote the observed yield corresponding to each of the 8 possibilities f+++, f++−, f+−+, . . .. As
statisticians, we are interested in different linear combinations of these observations. The zeroth
order effect is the grand mean

µ =
1

8
(f+++ + f++− + f+−+ + f+−− + f−++ + f−+− + f−−+ + f−−−) ,

giving an indication of the expected yield independent of each of the factors. The three first order
effects µs, µw and µf tell us how the yield changes relative to the grand mean due to each factor in
isolation. For example,

µs =
1

4
(f+++ + f++− + f+−+ + f+−−)− 1

4
(f−++ + f−+− + f−−+ + f−−−) .
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The second order effects µsw, µwf and µsf give information about how the first order effects are
modified by the interaction between pairs of factors, for example,

µsw =
1

2
(f+++ + f++−)− 1

2
(f+−+ + f+−−)− 1

2
(f−++ + f−+−) +

1

2
(f−−+ + f−−−) .

Finally, the lone third order effect

µswf =
1

8
(f+++ − f++− + f+−− − f+−+ + f−−+ − f−++ + f−++ − f−−−)

captures third order interactions and completes the picture. The grand mean, the three first order
effects, the three second order effects and the single third order effect together give a complete
representation of the data, in the sense that the original data can be reconstructed from them.

Going from the original data to n’th order effects can be seen as a linear transformation




µ
µs

µw

µf

µsw

µwf

µsf

µswf




=




1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1




·




f+++

f++−

f+−+

f+−−

f−++

f−+−

f−−+

f−−−




. (2.13)

We recognize the transform matrix as the character table of Z3
2, and the vector of µ’s as the Fourier

transform of f over this group,

µk =
∑

x∈Z3
2

χk(x) f(x).

The ordering of the k indices implied by (2.13) establishes an isomorphism x 7→ χk from Z3
2 to its

dual, and if we define a notion of “norm” on Z3
2 from the identity (+,+,+) based on how many −

components a group element has, and maps this to the dual, then the zeroth order effect will have
norm 0, the first order effects will have norm 1, etc., just as one analyzes functions on Rn in terms
of a hierarchy of Fourier components of increasing frequency.

2.3.2 Analysis of data on the symmetric group

It is because of the connection to rankings that of all non-Abelian groups the symmetric group has
enjoyed the most attention from the statistics community. The pioneering figure in developing a
systematic approach to the analysis of data on Sn has been the astonishingly versatile mathemati-
cian Persi Diaconis. In this section we sketch an outline of this procedure based on his monograph
[Diaconis, 1988]. We will return to a more detailed discussion of the connection between rankings
and Sn in chapter 5.

Given n people, movies, flavors of ice cream, etc., denoted x1, x2, . . . , xn, any ranking of these
n items can be represented by listing them in the order xσ(1), xσ(2), . . . , xσ(n) for the appropriate
σ ∈ Sn. There is a one-to-one relationship between rankings and permutations. The ranking data
we analyze, such as the number of people voting for a particular ordering of the n items, we regard
as a function f(σ) on the Sn.

34



The easily interpretable Fourier components are those corresponding to small permutation rep-
resentations. For concreteness, as in section 1.3, we assume that n= 5 and use Ferres diagrams to
label the irreducible representations. As always, the transform at the trivial representations returns
the grand mean

f̂( ) =
∑

σ∈Sn

f(σ)

which we take as the zeroth order effect.
The next level of analysis involves averaging f over all permutations that rank element i in

position j. This gives rise to a 5× 5 matrix with elements

M
(1)
i,j =

∑

σ:σ(j)=i

fσ ,

which can easily be written in terms of the defining representation as

M (2) =
∑

σ∈Sn

ρdef(σ) f(σ) .

As we have seen in (1.3.1), ρdef = ρ ⊕ ρ , so M is immediate from the Fourier transform of
f . Similarly to the Zn2 case, the “pure” first order effect is given by the Fourier transform at an
irreducible representation, in this case .

The second order summary we define as the
(
n
2

)
×

(
n
2

)
matrix giving the averages over permu-

tations which rank elements {i1, i2} in positions {j1, j2}:

M
(2)
{i1,i2},{j1,j2}

=
∑

σ:{σ(i1),σ(i2)}={j1,j2}

f(σ).

A few moments of reflection show that this is equal to

M
(2)
{i1,i2},{j1,j2}

=
∑

σ∈Sn

ρ (σ) f(σ)

weighted by the permutation representation. Since ρ = ρdef ⊕ ρ , the matrix M is easy to
calculate from the Fourier transform. Once again, the irreducible ρ captures the pure second
order effect. The rest of the analysis we leave to the reader’s imagination.
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Chapter 3

Fast Fourier transforms

Given the central role of harmonic analysis in pure mathematics, it is not surprising that Fourier
transforms are also a crucial device in engineering applications. Fourier transforms would not be
nearly as ubiquitous in real world system, though, were it not for a family of powerful algorithms
collectively called Fast Fourier Transforms (FFT’s).

The Fast Fourier Transform revolutionized signal processing when it first appeared in a paper
by Cooley and Tukey [1965]. The motivation for developing the FFT at the time was no less than
to build a global observation system that would enable the United States to monitor whether the
Soviet Union is adhering to the global nuclear test ban treaty. Given how important the FFT has
proved to be in engineering and signal processing, the reader will not be surprised to hear that it
had, in fact, already been discovered by Gauss, with the rather more modest intention of saving
himself time in performing certain tedious astronomical calculations [Gauss, 1886].

When G is a finite group of order n, the Fourier transform is a unitary transformation F : Cn →
Cn, so the naive way to implement it is by multiplying an n×n transformation matrix by an n×1
data vector, resulting in a total complexity of O(n2). In contrast, FFTs typically accomplish the
same transformation in O(n(logn)p) operations for some small integer p.

All FFTs build on a few deep ideas from representation theory, in which light the Gauss-
Cooley-Tukey algorithm is just a special case of a more general and powerful approach, called the
matrix separation of variables method. We describe this connection in detail, because studying
the internal structure of FFTs reveals a lot about the structure of the group algebra, and is key
to developing applications of non-commutative algebra to real-world problems. This is highlighted
by our discussion of sparse, partial and twisted FFTs, which go beyond Clausen’s original FFT for
the symmetric group, and are original contributions to the field.

For more detailed and wide ranging discussions of the still juvenile field of fast non-commutative
Fourier transforms, we recommend [Rockmore, 1997], [Maslen and Rockmore, 1997], [Clausen and
Baum, 1993], and references cited therein.
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3.1 Fast Fourier transforms on Zn

Given a prime factorization p1p2, . . . pl of n, the Cooley-Tukey algorithm computes the discrete
Fourier transform of length n,

f̂(k) =
n−1∑

j=0

ωjkf(j), k = 0, 1, 2, . . . , n−1, with ω = ei2π/n, (3.1)

in O(n
∑k

i=1 pi) operations.
To see how the algorithm works, consider the case n=pq for integers p, q ≥ 2 (not necessarily

prime) and the indexing scheme

j = j2 + j1q, k = k1 + k2p,

with j1, k1 ∈ {0, 1, 2, . . . , p−1} and j2, k2 ∈ {0, 1, 2, . . . , q−1}, which allow us to factor (3.1) in the
form

f̂(k1 +k2p) =

q−1∑

j2=0

ωj2(k1+k2p)
p−1∑

j1=0

(ωq)j1k1f(j2 +j1q). (3.2)

Note that the factor (ωq)j1k2p has dropped out, since ωpq=1. The key observation is that (3.2) is
really q separate DFTs of length p of the functions fj2(j1) = f(j2 + j1q):

f̂j2(k1) =

p−1∑

j1=0

(ωq)j1k1fj2(j1);

followed by p DFTs of length q of the functions gk1(j2) = ωj2(k1)f̃j2(k1):

ĝk1(k2) =

q−1∑

j2=0

(ωp)j2k2gk1(j2).

Finally, the full transform is assembled according to f̂(k1+k2p) = ĝk1(k2). Each of the q DFTs of
length p take p2 operations and each of the p DFTs of length q take q2 operations, so computing the
transform this way reduces its complexity from O(p2q2) to O(pq(p+q)). Clearly, for n = p1p2, . . . pl
this idea can be extended to an l-level scheme of p1 p2 . . . pl−1 DFTs of length pl followed by
p1 p2 . . . pl−2pl DFTs of length pl−1, etc., giving an overall complexity of O(n

∑k
i=1 pi). For n = 2m,

as promised, this achieves O(n logn).
It is important to note that the Cooley-Tukey trick is not the only device for constructing

FFTs on Zn. In particular, the reader might ask what do if n is a prime. In this case a different
algorithm due to Rader comes to the rescue. Rader’s algorithm is based on the convolution theorem.
Observe that if n is prime, then Zn \ {0} forms a cyclic group of order n−1 under multiplication
modulo n. This group we denote G. Although G is isomorphic to Zn−1, we do not label it as
such, because we still want to label its elements according to their role in Zn under the additive
structure. Now let a be any generator of G (any element other than 1 will do). As j traverses
0, 1, 2, . . . , n−2, aj traverses 1, 2, . . . , n−1, but not in numerical order. Furthermore, if · denotes
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arithmetic multiplication modulo n, then (a−j) · (ak) = ak−j . One way to rewrite the DFT (3.1)
then is

f̂(0) =

n−1∑

j=0

f(j),

f̂(ak) = f(0) +
n−2∑

j=0

ωa
k−j

f(a−j).

The second summation above is just the convolution over Zn−1 of the function f̌(j) = f(a−j) with
the function g(i) = ωa

i
. By the convolution theorem, in Fourier space this can be computed in just

n−1 operations. Since n−1 is not prime, we can use the Cooley-Tukey FFT to transform g and f̌
to Fourier space, perform convolution there, and use an inverse FFT to transform back.

3.2 Non-commutative FFTs

To find how the Cooley-Tukey algorithm might be generalized to non-commutative groups, we start
with the following observations.

1. The decomposition of (3.1) into smaller Fourier transforms hinges on the fact that H =
{0, q, 2q, . . . , (p−1)q} is a subgroup of G = Zn isomorphic to Zp.

2. The corresponding cosets are yH = { x ∈ G | x mod q = y }, thus Y = {0, 1, 2, . . . , q−1}
forms a transversal. The indexing scheme j = j2 + j1q corresponds to decomposing x ∈ G
in the form x= yh. In this light, the inner summation in (3.2) runs over H, while the outer
summation runs over Y .

3. The factors ωjk are the representations ρk(j) = ωjk of Zn, and the factorization ω(j2+j1q)k =
ωj2kωj1qk generalizes to the non-commutative case in the form ρ(x) = ρ(t)ρ(h) (t∈ T, h∈H),
which is now of course a matrix equation.

What does not generalize to the non-Abelian setting is the indexing scheme for k, since the
identification between the k indices and group elements is based on Pontryagin duality, which does
not hold for non-commutative groups. The irreducible representations of non-commutative groups
do not form a group, so it is more difficult to determine how to combine the components of the
“sub-transforms” into components of the global Fourier transform.

Non-commutative fast Fourier transforms based on the so-called matrix separation of variables
idea start with the analog of (3.1), which is

f̂(ρ) =
∑

y∈Y

ρ(y)
∑

h∈H

(ρ↓H) (h) f(yh) ρ ∈ RG. (3.3)

This does not by itself give a fast Fourier transform, because it does not take advantage of any
relationships between the different irreducibles. In particular, the inner summations are not true
sub-transforms, since they are expressed in terms of the irreducibles of G and not of H.

However, the theorem of complete reducibility tells us that ρ↓H is always expressible as

(ρ↓H) (h) = T †

[ ⊕

ρ′∈RH(ρ)

ρ′(h)

]
T,
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where RH(ρ) is some sequence of irreducible representations of H (possibly with repeats) and T
is a unitary matrix. We are particularly interested in the special case when T is a unit matrix, in
which case we say that RG and RH are adapted representations.

Definition 3.2.1 Let RG be a set of matrix representations of a finite group G and let H be a
subgroup of G. We say that RG is H-adapted if there is a set RH of irreducible representations
of H such that for all ρ ∈ RG, for some appropriate sequence RH(ρ) of irreducible representations
of H (possibly with repeats), (ρ ↓ H)(h) is expressible as

(ρ ↓ H) (h) =
⊕

ρ′∈RH(ρ)

ρ′(h), ∀ h ∈ H. (3.4)

A set of representations of G is said to be adapted to a chain of subgroups Hk < . . . <H2<H1<G
if it is adapted to each subgroup in the chain.

An equivalent concept is that of Gel’fand-Tsetlin bases. Given a G-module V , we say that
a basis B is a Gel’fand-Tsetlin basis for V relative to H <G if the matrix representation induced
by B is adapted to H. When RG satisfies (3.4), we can rewrite the inner summation in (3.3) as

⊕

ρ′∈RH(ρ)

∑

h∈H

ρ′(h) f(yh),

which, introducing the functions fy : H → C defined fy(h) = f(yh), reduces into

⊕

ρ′∈RH(ρ)

∑

h∈H

ρ′(h) fy(h) =
⊕

ρ′

f̂y(ρ
′),

where f̂y are now Fourier transforms over H. This leads to an algorithm which is analogous to the
Cooley-Tucker FFT:

1. For each y ∈ Y , compute the Fourier transform {f̂y(ρ)}ρ′∈RH
(over H) of fy.

2. If ρ∈RG decomposes into irreducibles of H in the form ρ = ρ′1⊕ ρ′2⊕ . . .⊕ ρ′k, then assemble

the matrix f̃y(ρ) = f̂y(ρ
′
1)⊕ f̂y(ρ′2)⊕ . . .⊕ f̂y(ρ′k) for each y ∈ Y .

3. Finally, complete the transform by computing the sums

f̂(ρ) =
∑

y∈Y

ρ(y) f̃y(ρ), ρ ∈ RG. (3.5)

If instead of just H < G, we have a chain of subgroups 1 < G1 < G2 < . . . < G, we can apply the
above decomposition scheme recursively to first compute |G | / |G1 | Fourier transforms over G1,
then from these compute |G | / |G2 | Fourier transforms over G2, etc., all the way up to G. Maslen
and Rockmore [1997] provide a detailed analysis of fast Fourier transforms of this type.

Before closing this section we remark that assuming that all our irreducible representations are
unitary, Fourier transforms based on the matrix separation of variables principle automatically give
us inverse transforms as well. At a fundamental level, if we represent the FFT as a computation on
a lattice, where each edge of weight a between x and y stands for “multiply the value at x by a and
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Figure 3.1: The Bratelli diagram for S5. The first column lists a complete set of irreducible
representations of S5, the second column lists a complete set of irreducible representations of S4,
etc.. The arrows indicate how the representations of Sk decompose when restricted to Sk−1. From
the FFT’s point of view the crucial aspect of this diagram is that each irreducible representation
of Sk−1 get “reused” multiple times in constructing the larger representations.

add it to y”, we can exploit unitarity to show that to get the lattice of the inverse transform, all
that we need to do is invert the direction of the edges ad renormalize. More explicitly, the inverse
transform uses the recursive structure as the forward transform, but instead of (3.5), at each step
it computes the sub-transforms f̂y from f̂ by forming the sums

f̂(ρ′) =
|H |
dρ′

∑

ρ∈R

m(ρ,ρ′)∑

i=1

dρ
|G |

[
ρ(y)† f̂(ρ)

]
[ρ′,i]

,

where m(ρ, ρ′) is the multiplicity of ρ in RH(ρ′) and [M ][ρ′,i] stands for “extract the i’th block

corresponding to ρ′ from the matrix M”. In the case of the symmetric group, to be discussed next,
this formula simplifies because each of the multiplicities is either 0 or 1.

3.3 Clausen’s FFT for the symmetric group

Historically, the first non-commutative FFT was proposed by Clausen in 1989 for Fourier trans-
formation on the symmetric group [Clausen, 1989]. Clausen’s algorithm, which we now describe,
follows the matrix separation of variables idea tailored to the chain of subgroups

S1< S2< . . . < Sn−1< Sn. (3.6)

Here and in the following whenever for k <n we refer to Sk as a subgroup of Sn, we identify it with
the subgroup permuting the letters 1, 2, . . . , k amongst themselves and fixing k+1, . . . , n.

The structure of Young’s orthogonal representation described in Section 1.3.1 reveals how each
irreducible representation ρλ of Sn splits when restricted to Sn−1. The key observations are that
in the standard tableaux indexing the dimensions of ρλ, the number n must always be at an inner
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Figure 3.2: An extended Bratelli diagram for S3 showing the standard tableaux of each irreducible
representation. Assuming Young’s orthogonal representation, the arrows indicate how the basis
vectors of each representation of Sk get promoted to basis vectors of various representations of
Sk+1.

corner, and that the only adjacent transposition which “mixes” dimensions labeled by standard
tableaux which have n at different inner corners is τn−1 = (n− 1, n). For example, the standard
tableaux of shape λ = (4, 2, 2, 1) fall into three groups based on which of the following three
positions the number 9 occupies:

9

9
9

.

Since σ ∈ Sn−1 does not involve τn−1, the representation matrices ρλ↓Sn−1
(σ) must be block diagonal,

with each block corresponding to one of the possible positions of n in the standard tableaux. Closer
inspection shows that each such block is in fact identical to ρλ−(σ), where λ− is the Young shape
derived from λ by removing the box containing n. In summary, YOR is adapted to Sn > Sn−1 and

ρλ ↓Sn−1
(σ) =

⊕

λ−∈R(λ)

ρλ−(σ), σ ∈ Sn−1, (3.7)

where R(λ) = { λ− ⊢n− 1 | λ−≤ λ }. While for systems of representations other than YOR, (3.7)
might involve conjugation by a matrix T , the general branching behavior still remains the same.
This is called Young’s rule and is captured in the so-called Bratelli diagram (Figure 3.1).

From a computational point of view the fact that YOR is adapted to the chain (3.6) is a major
advantage. For concreteness in the following we assume that all the representation matrices are ex-
pressed in YOR. An appropriate choice of coset representatives for Sn/Sk are then the contiguous
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cycles defined

Ji, nK(j) =






j + 1 for i ≤ j ≤ n− 1

i for j = n

j otherwise

i ∈ {1, 2, . . . , n} .

Note that Ji, nK is expressible as the n− i-fold product τi τi+1 . . . τn−1 and that in YOR the ρλ(τj)
matrices are very sparse.

Combining these elements with the general matrix separation of variables technique described
in the previous section yields the following theorem. Note that here and in the following, we use
the simplified notation f̂(λ) for f̂(ρλ).

Theorem 3.3.1 [Clausen] Let f be a function Sn → C and let

f̂(λ) =
∑

σ∈Sn

ρλ(σ) f(σ) λ ⊢ n (3.8)

be its Fourier transform with respect to Young’s orthogonal representation. Now for i = 1, 2, . . . , n
define fi : Sn−1 → C as fi(σ

′) = f(Ji, nKσ′) for σ′ ∈ Sn−1, and let

f̂i(λ
−) =

∑

σ′∈Sn−1

ρλ−(σ′) fi(σ
′) λ− ⊢ n−1 (3.9)

be the corresponding Fourier transforms, again with respect to Young’s orthogonal representation.
Then up to reordering of rows and columns,

f̂(λ) =
n∑

i=1

ρλ(Ji, nK)
⊕

λ−∈R(λ)

f̂i(λ
−), (3.10)

where R(λ) = { λ− ⊢n−1 | λ−≤λ }.

Clausen’s FFT proceeds by recursively breaking down Fourier transformation over Sn into smaller
transforms over Sn−1,Sn−2, . . ., and computing each Sk-transform from the k independent Sk−1-
transforms below it by

f̂(λ) =

k∑

i=1

ρλ(Ji, kK)
⊕

λ−∈R(λ)

f̂i(λ
−), λ ⊢ k, (3.11)

with R(λ) = { λ− ⊢n−1 | λ−≤ λ }. This prescribes a breadth-first traversal of the tree of left
Sk cosets (figure 3.3). The pseudocode for Clausen’s algorithm (to be called with k = n) is the
following:
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function iFFT(k, f̂ , σ){

if k = 1 { f(σ)← f̂; }

else {

for i← 1 to k {

for each λ− ⊢ k − 1 do { f̂i(λ
−) = 0; }

for each λ ⊢ k do {

M ← ρλ(Ji, kK
−1) · f̂(λ);

c← 1;
for each λ− ∈ R(λ) do {

f̂i(λ
−)← f̂i(λ

−) + dλ

k d
λ−

M (c : c+ dλ− − 1, c : c+ dλ− − 1);

c← c+ dλ;
}}

iFFT(k − 1, f̂i, σ · Ji, kK);
}}}

The inverse FFT appears to be more complicated than the forward FFT, but that is mostly
due to the fact that decomposing M into blocks of specified sizes is more difficult to notate than
assembling it from similar blocks. The notation M(a : b, c : d) stands for the block of elements
in M from row a to row b and from column c to column d (inclusive). The factor dλ

k d
λ−

is re-

quired to compensate for the dλ/n! multipliers in the inner products in (3.12). Note that in YOR
ρλ(Ji, kK

−1) = [ρλ(Ji, kK)]
⊤.

Given a computational model where copying information is free and computational complexity
is measured in terms of scalar operations consisting of a single multiplication followed by a single
addition, the cost of Clausen’s algorithm can be computed from the following considerations:

1. In YOR ρλ(τj) has at most 2 non-zero entries in each row, so for a general matrix M the
multiplication ρλ(τj)M takes 2d2

λ operations.

2. Using the factorization Ji, nK = τi τi+1 . . . τn−1, computing ρλ(Ji, kK)
⊕

λ−∈R(λ) f̂i(λ
−) in (3.11)

thus takes 2(k− i)d2
λ time.

3. By unitarity
∏
λ⊢k d

2
λ = k!, but at level k the FFT needs to compute n!/k! independent

Fourier transforms on Sk, and in each of them the index i ranges from 1 to k.

Multiplying all these factors together yields a total complexity of

2n!
n∑

k=1

k∑

i=1

(k− i) = 2n!
n∑

k=1

k(k−1)

2
=

(n+1)n (n−1)

3
n! ,

in accordance with our expectation that FFTs on finite groups generally run in O(|G| logp|G|) time
for some small integer p.

It is important to note that Clausen’s algorithm is not the fastest known algorithm for Fourier
transformation on Sn. The so-called double-coset method yields a somewhat more efficient, albeit
more complicated algorithm [Maslen and Rockmore, 2000], while David Maslen has a specialized
algorithm which improves on even that result [Maslen, 1998]. Clausen’s FFT, however, has the im-
portant distinctions of being the archetypal example of the matrix separation of variables technique,
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Figure 3.4: Two forms of sparsity: partial Fourier transforms restrict us to a subtree of the Bratelli
diagram, while sparse functions restrict us to a subtree of the coset tree.

and of having an intuitive, flexible structure that can easily be adapted to specialized transforms,
as we now investigate.

3.3.1 Extensions

The appealing internal structure of Clausen’s algorithm lends itself to specialization to certain
sub-classes of function of practical interest.

If the support of f : Sn → C is confined to a subset S of the full symmetric group, then the
FFT can be made much faster by only traversing the appropriate subtree of cosets. For example,
the right hand pane of of Figure 3.4 shows which transforms need to be computed when f : S3 → C
is confined to the set of permutations S = {(2, 3), (1, 2), e}.

More interestingly, we can also take advantage of situations where f is band-limited in the
sense that f̂ is restricted to a subset of irreducibles labeled by Rf ⊂ {λ⊢n}. In this case
the savings come from only having to compute Fourier components labeled by the partitions⋃
k=1,2,...,n { λ′ ⊢ k | ∃ λ∈R such that λ′ ≤ λ }, i.e., the subtree of the Bratelli diagram terminat-

ing in leaves in R. In many cases of practical interest, as in Figure 3.4, R will form a relatively
compact block, inducing a subtree which is much smaller than the full Bratelli diagram.

Sparsity and band-limited representations are most helpful when they occur in tandem, because
in that case a specialized FFT taking advantage of both can run in time less than n!. Indeed,
while the FFT is always much faster than a naive transform, considering that 12! is already close
to 500 million, any algorithm that scales with n! quickly becomes infeasible with increasing n.
Appropriately confining Clausen’s algorithm both in the “time” and “frequency” domains can
yield a polynomial time algorithm.

As a further extension of these ideas, we consider alternative ways of partitioning Sn into cosets.
While the original algorithm splits Sn into the left cosets {J1, nK Sn−1, J2, nK Sn−1, . . . , Jn, nK Sn−1},
we can equally well take {Sn−1 J1, nK, Sn−1 J2, nK, . . . , Sn−1 Jn, nK}, or, at a slight computational
penalty, for fixed j, we could use the two-sided cosets

{ J1, nK Sn−1 Jj, nK, J2, nK Sn−1 Jj, nK, . . . , Jn, nK Sn−1 Jj, nK} .

The corresponding recursion rules are summarized in the following theorem.
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Theorem 3.3.2 Let f be a function Sn → C and let

f̂(λ) =
∑

σ∈Sn

ρλ(σ) f(σ) λ ⊢ n (3.13)

be its Fourier transform with respect to Young’s orthogonal representation. Let j be a fixed integer
1 ≤ j ≤ n. Now for i = 1, 2, . . . , n define fL

i , f
R
i : Sn−1 → C as fL

i (σ) = f(Ji, nKσ Jj, nK) and
fR

i (σ) = f(Jj, nKσ Ji, nK). Let

f̂L

i (λ−) =
∑

σ′∈Sn−1

ρλ−(σ′) fL

i (σ′) and f̂R

i (λ−) =
∑

σ′∈Sn−1

ρλ−(σ′) fR

i (σ′) λ ⊢ n−1

be the corresponding Fourier transforms, again with respect to Young’s orthogonal representation.
Then up to reordering of rows and columns,

f̂(λ) =

[
n∑

i=1

ρλ(Ji, nK)
[ ⊕

λ−∈R(λ)

f̂L

i (ρλ−)
] ]
· ρλ(Jj, nK), (3.14)

and

f̂(λ) = ρλ(Jj, nK) ·
[

n∑

i=1

[ ⊕

λ−∈R(λ)

f̂R

i (ρλ−)
]
ρ(Ji, nK)

]
, (3.15)

where R(λ) = { λ− ⊢ n−1 | λ−≤ λ }.

Clausen-type transforms which use this result to run on trees of two-sided cosets we call twisted

Fourier transforms. Twisted transforms will be critical to the multi-object tracking application
discussed in Chapter 6.

3.4 The Snob library

While Clausen’s FFT is well known in computational harmonic analysis, we have not been able
to find any actual computer implementations of the algorithm, much less of the above described
extensions, which, to our knowledge, have never been described in the literature. The Snob C++
library is an attempt to fill this gap by providing a fast, highly structured and extendible set of
library functions for Fourier transformation and other algebraic operations on the symmetric group.
The name Snob comes from “an object oriented library for computations on Sn ”.

The development version of Snob was released into the public domain in August 2006, and
since then has been downloadable from http://www.cs.columbia.edu/~risi/SnOB in source code
format under the GNU Public License. The package is fully documented and has a clean, object
oriented application programming interface. In its current public form Snob can

1. Compute the Fourier transform and inverse Fourier transform of functions on Sn using
Clausen’s algorithm;

2. Compute partial Fourier transforms, sparse Fourier transforms, and twisted transforms of any
structure;
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3. Compute the representation matrices of Sn in Young’s orthogonal representation as well as
the corresponding characters;

4. Perform various operations on the group elements of Sn.

Additional code has been developed to extend Snob to operations on homogeneous spaces of Sn,
and to wreath product groups, but this code has not yet been made publicly available.

Classes

Snob follows a strictly object oriented approach with a system of classes corresponding to algebraic
objects:

Partition

Cycles

StandardTableau

Sn::Sn

Sn::Element

Sn::Irreducible

Sn::Function

Sn::FourierTransform

Sn::Ftree.

All the library functions are implemented as methods of these classes. For example, to compute a
forward Fourier transform, one first constructs an Sn::Sn object with n as an argument to represent
the group Sn, then constructs an Sn::Function object to hold f : Sn → C, and finally gets f̂ in
the form of an Sn::FourierTransform object by calling the FFT method of Sn::Function. The
reason that all these classes are defined within the “super-class” Sn is to allow for future expansions
of the system to other finite groups, and to be able to define general methods applicable to any of
these groups, corresponding to, for example, forming direct, semi-direct and wreath products.

Possibly the most powerful class in the current implementation is Sn::Ftree, which is used to
construct coset trees for sparse/partial Fourier transforms, as well as run calculations on them.

Implementation

To make Snob efficient, considerable effort has gone into optimizing the core low-level functions,
such as the function implementing the recursive step in Clausen’s algorithm. To avoid any overhead
associated with objects and STL containers, these functions are implemented in pure C.

Since memory is often as much of bottleneck as computation time, Snob is also organized to mini-
mize its memory footprint, while some data structures are cached to facilitate further computations.
In particular, before any computations on Sn can take place, the user must construct an Sn object,
which automatically constructs objects corresponding to the whole cascade Sn−1,Sn−2, . . . ,S1, as
well as each of their irreducible representations. Typically this only needs to be done once, and the
objects are retained until the program terminates. The YOR coefficients are computed on demand,
but once computed, are stored in the corresponding Sn::Irreducible object.

At this time Snob does not explicitly take advantage of parallel architectures. The floating
point precision, as well as the base field (R or C) is specified in a master header file.
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On a desktop PC Snob can compute full FFTs for n up to about 10 or 11, the limiting factor
being simply fitting f into memory. Computation time is still on the order of seconds. With partial
FFTs meaningful computations can be performed with n in the 30–40 range.
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Part II

Learning on groups
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Chapter 4

Hilbert space learning algorithms

In artificial intelligence by (supervised) learning we mean the problem of inferring a relationship,
sometimes called the hypothesis, between x and y values presented in (x, y) pairs called exam-

ples. The job of a learning algorithm is to formulate such a hypothesis after seeing m examples,
{(x1, y1) , (x2, y2) , . . . , (xm, ym)}, called the training set. The quality of the hypothesis is deter-
mined by how well it predicts the y values corresponding to further x’s. A collection of m′ (x, y)
pairs intended for measuring this is called the testing set.

Note the essential asymmetry between x and y. With nomenclature going back to the neural
networks era, the x’s are usually referred to as inputs and the y’s as outputs. The inputs come
from the input space X , the outputs come from the output space Y. Both of these spaces are
presumed to be known in advance.

In this section we show how learning can be formulated in a statistical framework and introduce
kernel methods, which are currently some of the most popular algorithms for solving learning prob-
lems of this type. Since kernel methods are based on the machinery of reproducing kernel Hilbert
spaces, we take some time to review this formalism. Our contribution to this area concerns the
form that kernel methods take under symmetry: either when the examples have hidden symmetries
captured by a group, or when the input/output spaces are themselves groups. These cases are
investigated in sections 4.4 and 4.5.

4.1 The statistical learning framework

A simple minded approach to learning might be to look up each testing input x in the training
set and return the corresponding y. Such an approach is unlikely to lead to good results, however,
because in most machine learning problems the probability of finding an exact match of x in the
training set is very small. Even if we did find an exact match, predicting the same y as we saw
in the training set might not be optimal, since the relationship between the x’s and the y’s is
not necessarily deterministic. Machine learning tries to infer more general relationships between x
and y than what can be accomplished by database lookup. The ability to make good predictions
on inputs that we have not explicitly seen in the training set is called generalization, and the
perilous case of finding a hypothesis that does well on the training data but doesn’t generalize well
is called overfitting. The ultimate performance measure of a machine learning algorithms is its
generalization ability.

The 1990’s saw learning problems of this kind being put on a firm mathematical footing by
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formulating them in a probabilistic framework. The framework assumes that there is a single
probability distribution D on X×Y which both training and testing examples are drawn from, each
draw being statistically independent of the others. The distribution D is not known, and we make
no attempt to infer it. Our goal is merely to “learn” a function f : X → Y which tells us what
to guess for y given x. Specifically, for a given loss function L : Y × Y → R, our objective is to
minimize E(x,y)∼D [L(f(x), y)], where E(x,y)∼D denotes expectation with respect to D.

Learning problems of the form we just described abound in practical applications. Conceptually
the simplest type are binary classification problems, where Y = {−1,+1} and regression, where
Y = Rn. In the former case the loss function might be the zero-one loss

L(ŷ, y) =

{
1 if ŷ 6= y

0 otherwise.

whereas for regression we may use the squared error loss L(ŷ, y) = (ŷ − y)2. In recent years
statistical machine learning has developed a wide range of variations on these basic cases to suit
more elaborate scenarios.

While the probabilistic formulation puts learning squarely in the realm of probability theory
and statistics, in general the approach favored by these long-standing disciplines is quite different
from that of machine learning. In supervised machine learning we focus strictly on prediction, as
opposed to model building or trying to estimate the distribution D. We make no attempt to predict
what x’s are likely to appear in the testing set, only to predict the y value once we know x. We are
not even interested in estimating the conditional probability of y given x. All that our algorithm
has to do is to give one specific estimate ŷ for each testing input x.

4.1.1 Empirical risk minimization

It is a natural idea to solve learning problems by searching some space F for the hypothesis

femp = arg inf
f∈F

[
1

m

m∑

i=1

L(f(xi), yi))

]
, (4.1)

which minimizes the loss on the training set, i.e., the training error. The quantity in square
brackets is also called the empirical risk, and the general philosophy of learning this way is called
the principle of empirical risk minimization (ERM).

Empirical risk minimization seems like a promising inductive principle because Etrain[f ] =
1
m

∑m
i=1 L(f(xi), yi)) is an unbiased estimator (over random draws of the training set) of the true

error ED[f ] = E(x,y)∼D [L(f(x), y)]. This makes it plausible that by driving down Etrain[f ] we should
be able to find a hypothesis with close to optimal ED[f ] as well. Unfortunately, for the particular
choice f = femp, the unbiased approximation argument breaks down because f itself depends on the
choice of training set. In fact, in terms of the excess generalization error Egen[f ] = ED[f ]−Eemp[f ],
we are likely to find that femp is one of the worst possible choices in all of F , since it has explicitly
been selected to minimize the second term in Egen.

In less abstract terms, this anomaly is a manifestation of the fact that ERM by itself is almost
guaranteed to overfit. Narrowly focusing on the training data alone, it is likely to return a hypothesis
which describes the training set very well, but performs poorly on testing examples.

What the above argument is telling us is that we cannot hope to achieve effective learning
with ERM without introducing some form of capacity control. Typically, this means one of two
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things: either explicitly restricting F to a carefully chosen and suitably small class of well-behaved
hypotheses on which overfitting is unlikely to occur; or adding an extra term Ω[f ] to (4.1), which
penalizes f based on some a priori measure of how likely f is to overfit. In this thesis we take the
second route and focus on algorithms which minimize the so-called regularized risk

Rreg[f ] =
1

m

m∑

i=1

L(f(xi), yi)) + λΩ[f ], (4.2)

where λ ∈ R is a tunable so-called regularization parameter. The regularizer Ω[f ] is often
some measure of the smoothness of f , and its exact form typically depends on the specific learning
problem at hand. The Hilbert space algorithms discussed in the following set Ω[f ] = 〈f, f〉 for
some appropriately defined inner product between hypotheses. As we shall see in the next section,
this leads to an elegant and powerful formalism. The loss function, on the other hand, is related
to the choice of algorithm, which we discuss in Section 4.3.

At a conceptual level what is important is that (4.2) expresses a compromise between between
smoothness and good performance on the training data. The idea that generalization ability will
emerge as a consequence of this type of trade-off is at the very heart of modern machine learning.

4.2 The Hilbert space formalism

One of the most fruitful ideas to have emerged in machine learning is to formulate regularized risk
minimization problems in Hilbert spaces, and identify Ω[f ] with the squared Hilbert space norm
‖ f ‖2 = 〈f, f〉. The simple and highly regular nature of Hilbert spaces make them particularly well
suited to learning on group structured input or output spaces.

Formally, a (real) Hilbert space is a complete linear inner product space. Let us unravel this
definition a little. First, an inner product on a vector space V over R is a function V × V → R
denoted 〈v, w〉, satisfying

〈u+v, w〉 = 〈u,w〉+ 〈v, w〉 ,
〈αu, v〉 = α 〈u, v〉 ,
〈u, v〉 = 〈v, u〉,
〈u, u〉 ≥ 0 with equality only when u = 0V ,

for all u, v, w ∈ V and α ∈ F. Such an inner product gives rise to the norm ‖u ‖ =
√
〈u, u〉, and

this provides V with a topology and a distance metric d(x, x′) = ‖x− x′ ‖.
A sequence a1, a2, . . . in a metric space is said to converge to a∈M if limi→∞ d(ai, a) = 0 and

is called a Cauchy sequence if limmin(i,j)→∞ d(ai, aj) = 0. The space M is said to be a complete

metric space if every Cauchy sequence in M converges to some a∈M .
A Hilbert space is a vector space H endowed with an inner product such that with respect to

the norm induced by the inner product it is a complete metric space. The power of the Hilbert space
formalism comes from the simultaneous presence of three different but closely related structures:
the vector space, the inner product, and the topology.

It is important to note that one can also define Hilbert spaces over fields other than R. Since
machine learning almost exclusively deals with real Hilbert spaces, however, in the following when-
ever we refer to “Hilbert space” we will assume that the base field is R. The simplest examples
of such Hilbert spaces are the Euclidean spaces Rn. In fact, any finite dimensional Hilbert space
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over R is isomorphic to Rn. In this sense, when H is finite dimensional, calling it a “Hilbert space”
amounts to little more than glorifying an already familiar structures with a new name.

Things become more interesting when H is infinite dimensional. In this case we can still define
a basis for H, and if we label the basis vectors with elements of some countably or uncountably
infinite set S, we can expand any v ∈H as

v =
∑

s∈S

αs es, αs ∈ R,

or the corresponding integral in the uncountable case. This makes it natural to view H as a space of
functions v(s) = αs. As function spaces, Hilbert spaces are very well behaved. Almost all of linear
algebra carries over, even to the infinite dimensional setting, making Hilbert spaces very attractive
from the computational point of view. Hilbert spaces generated by a kernel function, which we now
discuss, are particularly “computer-friendly”.

4.2.1 Reproducing kernels

In the machine learning literature the concept of kernels has become so inseparable from that of
Hilbert spaces that Hilbert space algorithms are often referred to as “kernel methods”. Given a
mapping Φ from some set X to a Hilbert space H, the kernel k is simply the pull-back of the
Hilbert space inner product to X :

k(x, x′) =
〈
Φ(x),Φ(x′)

〉
.

Clearly, k must be symmetric, k(x, x′) = k(x′, x). Furthermore, any linear combination f =∑m
i=1 αiΦ(xi) (with x1, x2, . . . , xm ∈ X and α1, α2, . . . , αm ∈ R) must satisfy

〈f, f〉 =
m∑

i=1

m∑

j=1

αi αj 〈Φ(xi),Φ(xj)〉 ≥ 0,

hence
m∑

i=1

m∑

j=1

αi αj k(xi, xj) ≥ 0. (4.3)

A symmetric function k : X ×X → R satisfying this condition for any choice of xi’s, αi’s and m is
called a positive semi-definite kernel on X . To streamline the terminology in the following we
refer to positive semi-definite kernels simply as positive definite kernels or just kernels. Kernels
which satisfy (4.3) with strict inequality we distinguish by calling them strictly positive kernels.

A related concept is that of conditionally positive definite kernels. A symmetric function k : X ×
X → F is said to be conditionally positive definite if it satisfies (4.3) under the additional
restriction on the coefficients

∑n
i=1 αi = 0. Confusingly, instead of using the term conditionally-

positive, some authors refer to such a kernel by saying that −k is negative definite.
Remarkably, symmetry and positive definiteness are not only necessary, but also sufficient for

the existence of a Hilbert space corresponding to k. We show this constructively, by building the
so-called reproducing kernel Hilbert space (RKHS) corresponding to a given k : X ×X → R
positive definite kernel. The construction proceeds in stages:
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1. Define the functions kx(·) = k(x, ·), and form a vector space V with basis labeled by {kx}x∈X .

2. Define an inner product between basis vectors by 〈kx, kx′〉 = k(x, x′) and extend this by
linearity to the rest of V .

3. Finally, complete V to H by adjoining to it the limits of all Cauchy sequences and extending
the inner product by continuity.

On a more abstract level, any Hilbert space in which the evaluation maps φx : f 7→ f(x) are
continuous is a reproducing kernel Hilbert space, since in such spaces by the Riesz representation
theorem there must exist a unique kx ∈ H satisfying φx(f) = 〈f, kx〉 for any f ∈ H. The function
defined k(x, x′) = kx(x

′) is then symmetric and positive definite, and the RKHS it induces is H.
The reproducing property

f(x) = 〈f, kx〉 (4.4)

alone is sufficient to define the concept of reproducing kernel Hilbert space [Schölkopf and Smola,
2002, chapter 2]. The close link between function evaluation and inner products is what makes
Hilbert space algorithms computationally efficient.

4.2.2 The representer theorem

There is a long history in analysis and approximation theory of using the sequence of balls

Br = { f ∈ H | ‖ f ‖ < r }
to capture classes of functions of increasing complexity. In accordance with this principle, in the
Hilbert space learning setting we define the regularized risk as

Rreg[f ] =
1

m

m∑

i=1

L(f(xi), yi)) + λ ‖ f ‖2 . (4.5)

In certain learning algorithms ‖ f ‖ is raised to a power different than 2, but for now we restrict our-
selves to this simplest choice. In addition to mathematical elegance, this choice also has important
computational advantages, thanks to the celebrated representer theorem:

Theorem 4.2.1 (Kimeldorf and Wahba [1971]) Let X be an input space, Y an output space,
T = {(xi, yi)}mi=1 a training set, L : Y ×Y → R a loss function, and H a reproducing kernel Hilbert
space induced by some positive definite kernel k : X × X → R. Then the minimizer fT of any
regularized risk functional of the from (4.5) with λ> 0 is expressible as a linear combination

fT (x) =
m∑

i=1

αi kxi
(x), αi ∈ R. (4.6)

Much of the power of Hilbert space learning algorithms stems from the fact that Theorem
4.2.1 reduces searching the dauntingly large space H to just finding the optimal values of the m
coefficients α1, α2, . . . , αm.

The statistics community generally regards Hilbert space algorithms as nonparametric methods
because we are not fitting a fixed model with a finite number of pre-determined parameters. The
number of α’s in Equation (4.6) is, of course, finite, in fact, there are as many of them as we have
training data points, but the form of (4.6) is dependent on the input data via the xi indices. Even
the best computers we have today would find it difficult to deal with a variational problem that
cannot be reduced to operations on a finite number of variables.
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4.2.3 Regularization theory

To complete our survey of the Hilbert space formalism it is important to ask what features of f
are captured by the regularization schemes induced by different choices of k. When X is Lebesgue
measurable, the clearest way to do this is to compare the Hilbert space inner product 〈f, f〉F (note
the subscript F emphasizing that this is the inner product induced by k) with the usual L2-type
inner product

〈f, g〉L2(X ) =

∫
f(x) g(x) dx .

Given a kernel k and corresponding RKHS F , we define the kernel operator K : L2(X )→ L2(X )
as

(K(f)) (x) =

∫
k(x, x′) f(x′) dx′ ,

and assume that it is invertible. By the RKHS property of F , for any pair of functions α1, α2 ∈
L2(X ) with finite support, 〈Kα1,Kα2〉F = 〈α1,Kα2〉L2(X ). In particular, for any f, g ∈ F , 〈f, g〉F =〈
K−1f,KK−1g

〉
L2(X )

. If we then define the so-called regularization operator Υ = K−1/2, we

have

〈f, g〉F = 〈Υf,Υg〉L2(X ) =

∫
(Υf)(x)(Υg)(x) dx ,

which explicitly tells us that using k is equivalent to L2 regularization of Υf [Girosi et al.,
1995][Schölkopf and Smola, 2002].

As an example, consider what is probably the most popular kernel on Rn, the Gaussian (RBF)
kernel

k(x, x′) = e−‖x−x′ ‖2/(2σ2) (4.7)

with length scale parameter (or variance parameter) σ. Letting f̂ denote the Fourier transform of

f and Υ̂ the frequency space regularization operator Υ̂f̂ = Υ̂f , Girosi et al. [1995] show that in
this case

(Υ̂f̂) (ω) = e|ω |2σ2
f̂(ω).

This is perhaps the most natural regularization scheme possible, penalizing high frequency compo-
nents in f by a factor exponential in |ω |2. An alternative description of Υ in terms of derivatives
of f (following [Yuille and Grzywacz, 1988]) gives

‖Υf ‖2F =

∫

X

∞∑

i=0

σ2i

i! 2n
ww (Oif)(x)

ww2

L2
dx (4.8)

where for i even Oi = ∆i/2, and for i odd Oi = ∇∆(i−1)/2, and ∆ is the Laplacian operator. Again,
this corresponds well to our intuitive notion that functions which have a large amount of energy
in their high order derivatives are not smooth. The beginnings of the connection between learning
theory and the spectral world view of Chapter 2 are already starting to emerge.

Unfortunately, the Gaussian kernel having such an easily interpretable regularization scheme is
more of an exception than a rule. The best theoretical motivation behind many kernels frequently
used in machine learning, especially kernels defined on structured objects like strings, graphs, etc.,
is that high kernel values correspond to some intuitive sense of “similarity” between the pair of
objects. This is a much vaguer notion than rigorous arguments phrased in terms of regularization
theory.
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4.3 Algorithms

While the choice of inner product (i.e., kernel) determines the regularization scheme, the choice of
loss function L in (4.5) determines the algorithm. Maybe somewhat surprisingly, and stretching
our concept of empirical risk minimization a little, this loss function might not be the same as the
loss function in the formula for the training and test errors.

To distinguish between the two, we switch to using ℓ to denote the loss involved in how we
measure training, test, and expected error, and reserve L for the loss term in the regularized risk
(4.5). One reason for this bifurcation is purely algorithmic: in general, convex loss functions lead
to efficiently solvable optimization problems, while ℓ is often non-convex and not even continuous,
as in the case of the zero-one loss for classification. The other reason is statistical: an appropriate
choice of loss function can lead to more robust estimators.

4.3.1 Gaussian processes

Probably the simplest conceivable loss function is the squared error loss

L(y, ŷ) = (ŷ − y)2

that we already encountered in Section 4.1 in the context of regression. While in some situations
more sophisticated loss functions do have advantages over the squared error loss, in simple real-
valued regression problems, despite our earlier arguments regarding the distinction between ℓ and
L, it is not unreasonable to choose both losses to be the squared error loss. Two things that are
particularly attractive about the regularized risk minimization problem (4.5) corresponding to this
loss are that: (a) its solution can be expressed in closed form; (b) it has an attractive Bayesian
interpretation as the maximum a posteriori estimate of a Gaussian process. For an excellent
introduction to Gaussian processes see [Mackay, 1997].

Given a countable or uncountable set X , a corresponding set of real valued random variables
G = {Yx}x∈X is said to form a Gaussian process if for any finite {x1, x2, . . . , xm} ⊂ X , the random
variables Yx1 , Yx2 , . . . , Yxm are jointly Gaussian distributed. Similarly to finite collections of jointly
Gaussian distributed variables, G is completely specified by its mean µ(x) = E[Yx] and covariance
function k(x, x′) = Cov[Yx, Yx′ ]. From elementary arguments in probability, k must be positive
definite. Conversely, any µ : X 7→ R and any symmetric and positive definite k : X × X 7→ R gives
rise to a corresponding Gaussian Process over X .

Another way to regard G is as a probability measure over functions f in the reproducing kernel
Hilbert space H induced by k. We now show that assuming zero mean, the distribution

p(f) ∝ e−〈f,f〉/2. (4.9)

is equivalent to G, in the sense that it reproduces the marginals, i.e. that for any x1, x2, . . . , xm
and t = (t1, t2, . . . , tm)⊤

p ( f(x1) = t1 , . . . , f(xm) = tm ) =
1

(2π)m/2 |K |1/2
exp

(
−1

2
t⊤K−1 t

)
, (4.10)

where K is the so-called Gram matrix with elements Kij =K(xi, xj). To this end we decompose
H into V = span{kx1 , kx2 , . . . , kxm} and its orthogonal complement V c and note that any f obeying
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f(x1) = t1, . . . , f(xm) = tm may be written as

f = fV + f⊥ =

( m∑

i=1

αi kxi

)
+ f⊥

with f⊥ ∈ V c. The vector of coefficients α = (α1, α2, . . . , αm)⊤ can be found from

f(xj) =
m∑

i=1

αi kxi
(xj) =

m∑

i=1

αi k(xi, xj) = tj

leading to the matrix equation Kα = t. We can marginalize p to V just as in the finite dimensional
case by

pV (fV ) = p( f(x1) = t1, . . . ) ∝
∫

V c

p(fV +f⊥) df⊥ = e−〈fV ,fV 〉/2 (4.11)

and expand

〈fV , fV 〉 =
m∑

i=1

m∑

j=1

[
K−1t

]
i

[
K−1t

]
j

〈
kxi
, kxj

〉
= t⊤K−1KK−1t = t⊤K−1t

proving (4.10).
In the following we make extensive use of Dirac’s bra-ket notation. Functions f ∈ H will be

denoted by “kets” |f〉 and members of the dual-space by the “bras” 〈f |. Hence the inner product
becomes 〈f, g〉 = 〈f |g〉. In contrast, linear combinations of the form

∑
ij |fi〉Fi,j 〈fj | for some

matrix F , or more generally,
∫ ∫

dxd
′
x |fx〉F (x, x′) 〈fx′ | where F is now a function are bilinear

operators on H.
For inference Gaussian Processes are used as a Bayesian tool for estimating functions f : X 7→ R

from observations D = ((x1, y1), (x2, y2), . . . , (xm, ym)) with xi ∈ X and yi ∈ R. For notational
simplicity assuming that the mean is zero, we assert a prior over functions

p(f) ∝ e−〈f |f〉/2

by specifying the kernel (covariance function) corresponding to the inner product. The noise model
for the data is typically also Gaussian:

p( y |x, f ) =
1√

2πσ2
e−(y−f(x))2/(2σ2).

The posterior can then be computed via Bayes rule

p(f |D) =
p(D|f) p(f)∫
p(D|f) p(f) df

(4.12)

with p(D|f) =
∏m
i=1 p( yi|xi, f ). Since all distributions here are Gaussian, we need not worry about

normalizing factors and we can write the negative log posterior straight away as

− log p(f |D) =
1

2
〈f |f〉+ 1

2σ2

m∑

i=1

(f(xi)− yi)2. (4.13)
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At this point the reproducing property of H becomes crucial, allowing us to write

− log p(f |D) =
1

2
〈f |f〉+ 1

2σ2
0

m∑

i=1

(〈f |kxi
〉 − yi)2 (4.14)

and to complete the square

−2 log p(f |D) =
[
〈f | − 〈u| Ŝ

]
Ŝ−1

[
|f〉 − Ŝ |u〉

]

with

u =
1

σ2

∑
yi kxi

and Ŝ−1 = I +
1

σ2

∑
|kxi
〉 〈kxi

| .

To express Ŝ, we extend kx1 , kx2 to a countable basis of H and define the matrix S−1 with elements

S−1
i,j = 〈kxi

| Ŝ−1
∣∣kxj

〉
= K(I + 1

σ2K).

This matrix can readily be inverted with ordinary matrix algebra to give another matrix S =
K−1(I + 1

σ2K)−1. Writing

∑

i

∑

j

〈kxa |kxi
〉Si,j

〈
kxj

∣∣ Ŝ−1 |kxb
〉 =

∑

i

〈kxa |kxi
〉 [SS−1]i,b = 〈kxa |kxb

〉 (4.15)

then shows that
Ŝ =

∑

i

∑

j

|kxi
〉Si,j

〈
kxj

∣∣

is the correct operator inverse of Ŝ−1.
We can now read off the posterior mean

E[|f〉] = Ŝ |u〉 =
1

σ2

m∑

i=1

m∑

j=1

m∑

l=1

|kxi
〉Si,j

〈
kxj
|kxl

〉
yl =

m∑

i=1

|kxi
〉 [(σ2I+K)−1y]i

and the posterior variance

Var[|f〉] = Ŝ =
∑

i

∑

j

|kxi
〉Si,j

〈
kxj

∣∣ .

It is sometimes helpful to describe the posterior in terms of the mean and variance of f(x) for
fixed x. Note that this is not the whole story, though: the posterior will also have a new covariance
structure (effectively a new K) which this does not shed light on. Computing the mean is easy:

E[f(x)] = E [〈kx|f〉] = 〈kx|E[|f〉] =

m∑

i=1

〈kx|kxi
〉 [(σ2I +K)−1y]i = k⊤(σ2I +K)−1y (4.16)

with k = (K(x, x1),K(x, x2), . . . ,K(x, xm))⊤. Computing the variance requires somewhat more
work, since now that the inner product and covariance do not match any more, marginalization
is not quite as simple as applying (4.11) to a one dimensional subspace. Instead, we opt to take
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advantage of the property that any finite subset of variables is jointly Gaussian distributed. In
particular, the distribution over y∗x = (y1, y2, . . . , ym, f(x)) is

p(y∗) ∝ e−y∗⊤K
−1
y∗ (4.17)

with covariance matrix

K
∗

=




K + σ2I k

k⊤ κ




where κ = K(x, x). Given y1, y2, . . . , ym, the variance of f(x) can be read off from (4.17) as(
K∗−1

m+1,m+1

)−1
, which, using the technique of partitioned inverses can be written as

Var[f(x)] =
(
K∗−1

m+1,m+1

)−1
= κ− k⊤K−1k. (4.18)

From a practitioner’s point of view it is significant that (4.16) and (4.18) only depend on x through
k and κ. For given data ((x1, y1), (x2, y2), . . . , (xm, ym)) only a single m × m matrix has to be
inverted. Afterwards, to probe the posterior at various points is only a matter of matrix/vector
multiplications.

As a learning algorithm, a Gaussian process is “trained” onD = ((x1, y1), (x2, y2), . . . , (xm, ym)),
and predicts the label corresponding to x according to the maximum a posteriori (MAP) estimate

ŷ = E[f(x)] = k⊤(σ2I +K)−1 y.

However, since the MAP estimator of f is the minimizer of the negative log posterior (4.13), this
is equivalent to solving the regularized risk minimization problem

fMAP = arg inf
f∈F

[ m∑

i=1

L(f(xi), yi) + λ 〈f |f〉
]

with squared error loss L(ŷ, y) = (ŷ − y)2 and regularization parameter λ = σ2. This is sometimes
also called ridge regression and provides a nice example of the way that Bayesian and frequentist
methods can mesh together, forging a link between two very different learning paradigms. Thanks
to this connection, considerations of regularization theory and the symmetries that we examine
towards the end of this chapter also carry over to the Bayesian realm.

4.3.2 Support vector machines

The algorithm which first directed the machine learning community’s interest to Hilbert space
methods and which is still by far the most famous as well as most widely used kernel method is
the Support Vector Machine (SVM). To the extent that such a thing as a universal black-box
algorithm can ever exist, the SVM comes very close to being one. When Vapnik developed SVM’s,
his fundamental insight was the relationship between robustness and sparsity [Vapnik, 1995].

Robustness is achieved by the choice of loss function. The easiest case to develop is binary
classification, where we learn a real-valued function f : X → R, and predict according to its sign,
ŷ = sgn(f(x)). In this case the SVM loss function is the so-called hinge loss

L(ŷ, y) = (1− ŷy)+ (4.19)
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with (y)+ ≡ max (0, y). The idea behind the hinge loss is to not only penalize examples which are
incorrectly classified (i.e., ŷ = −y) but also examples which are correctly classified, but with not
enough confidence in the sense that ŷy < 1. On the other hand, examples with ŷy ≥ 1 drop out
of the loss term of the regularized risk completely, and hence will feature in the kernel expansion
(4.6) with zero weight.

Because the SVM is formulated in Hilbert space, f(x) = 〈f, kx〉, and in this sense it is just a
linear classifier, albeit in Hilbert space. In fact, in the limit C →∞, if the SVM has a solution at
all it will guarantee a “cordon sanitaire” called the margin of width 1/ ‖ f ‖ on either side of the
separating hyperplane 〈f, kx〉 = 0. Such large margin algorithms are surprisingly robust, and
show impressive generalization ability both in theoretical analyses and in practical applications.

We cannot possibly hope to cover here the entire arsenal of algorithms that machine learning
has developed inspired by the success of the RKHS, regularized risk minimization, and large margin
ideas. By the generality of the Hilbert space framework, however, the group theoretical ideas that
we discuss in the following apply equally to any of these algorithms.

4.4 Symmetries

Symmetries are one of the primary motivations for studying groups in the first place. It is not
surprising then that the first points of contact between Hilbert space learning methods and repre-
sentation theory should be the implementation of symmetries of the input space X . In this section
we discuss the case when we have a group G acting on X by x 7→ Tg(x) for each g ∈G, and we are
interested in finding kernels inducing RKHS of functions which are invariant to this action in the
sense that f(Tg(x)) = f(x) for all g ∈G. In the next section we discuss the case when X itself is
a group or a homogeneous space and we want to find a kernel that is compatible with its algebraic
structure.

As a motivating example consider invariant kernels between images. Image classification, object
recognition, and optical character recognition have been key applications of Machine Learning from
the start. Images are typically represented as n×n arrays of real numbers corresponding to pixel
intensities. The key to applying one of the Hilbert space learning algorithms to this domain is
defining an appropriate kernel between such arrays. The baseline choice is to treat the array as
a n2-dimensional vector, and simply use the Gaussian kernel between such vectors. Surprisingly,
even such a rather ad-hoc choice of kernel can lead to reasonably good results.

The Gaussian kernel makes no attempt to account for the natural invariances of the data,
however. From our prior knowledge about the nature of images we know that translating an image
by a small number of pixels ought not to affect what the algorithm “perceives” the image as, even if
the representation of the image as a vector in Rn2

changes drastically. Ideally, we would like to set
up equivalence classes of vectors in Rn2

that represent translated versions of the same image and let
our algorithm operate on these equivalence classes. Taking this idea to the extreme, consider all k
horizontal cyclic translations (meaning that the image wraps around at the edges) and all n vertical
cyclic translations. Clearly, the combination of the two form a group isomorphic to G = Zn×Zn.
By working in an RKHS where f(Tg(x)) = f(x) for all translations g ∈G, the learning algorithm is
forced to treat all n2 translated versions of a given image as the same. Effectively we have reduced
the size of X by identifying all the vectors corresponding to translated versions of the same image.
The question that we address in this section is how to modify the Gaussian RBF or some other
kernel so as to achieve this.
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Our starting point is a notion of translation invariance of the kernel itself. This is much weaker
than the our ultimate goal, which is to make the RKHS invariant to the action of G.

Definition 4.4.1 Let G be a group acting on the space X by x 7→ Tg(x), g ∈ G. We say that
a positive definite kernel k : X × X → R is invariant with respect to this action if k(x, x′) =
k(Tg(x), Tg(x

′)) for all x, x′ ∈X and g ∈G [Krein, 1950].

Many popular kernels possess some invariance of this form. A trivial example is the translation
invariance of kernels on Rn, amounting to k(x+ z, x′ + z) = k(x, x′). Here the group is Rn itself,
acting by Tz(x) = x + z. For example, the Gaussian kernel is clearly translation invariant. A
different type of invariance is invariance with respect to permuting the coordinates of x and x′.
This is exactly how Zk×Zk acts on X in our example of translated images. It is easy to see that
the (spherical) Gaussian kernel is invariant to this action as well.

Invariant RKHSs

The following two theorems connect the notions of invariant kernels and invariant RKHSs.

Theorem 4.4.2 Let G be a group acting on the space X by x 7→ Tg(x) (with g ∈G) and let k be
a positive definite kernel on X inducing an RKHS H of functions f satisfying f(x) = f(Tg(x)) for
x∈X and g ∈G. Then k is invariant with respect to the x 7→ Tg(x) action.

Proof. Defining kx(·) = k(x, ·), by the properties of RKHSs kx ∈ H ∀x ∈ X . Hence k(x, x′) =
kx(x

′) = kx(Tg(x
′)) = kTg(x′)(x) = kTg(x′)(Tg(x)) = k(Tg(x), Tg(x

′)) for any x∈X and g ∈G. �

The invariance of the kernel by itself is not sufficient to ensure the invariance of H. We now
show that to induce an invariant RKHS we also need to symmetrize the kernel. Symmetrized ker-
nels are not new to machine learning, but to the best of our knowledge the following theorem has
never been stated in full generality before. Note that G is now assumed to be a finite group.

Theorem 4.4.3 Let G be a finite group acting on the space X by x 7→ Tg(x), (with g ∈G) and let
k be a positive definite kernel on X with RKHS H that is invariant to this action. Then

kG(x, x′) =
1

|G |
∑

g∈G

k(x, Tg(x
′)) (4.20)

is a positive definite function. Furthermore, the RKHS HG induced by kG is the subspace of H of
functions satisfying f(x) = f(Th(x)) for all x∈X and h∈G.

Proof. By the invariance property

kG(x, x′) =
1

|G |
∑

g∈G

k(x, Tg(x
′)) =

1

|G |2
∑

g∈G

∑

h∈G

k(Th(x), Thg(x
′)).

Because G is a group, we can rewrite the above as

kG(x, x′) =
1

|G |2
∑

h∈G

∑

g∈G

k(Th(x), Tg(x
′)).
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Recall that the RKHS of k is spanned by the representer functions {kx = k(x, · )}x∈X and that
〈kx, kx′〉H = k(x, x′). To prove that kG is positive definite all that we need is that for any m ∈N,
x1, x2, . . . , xm ∈X and α1, α2, . . . , αm ∈R

m∑

i=1

m∑

j=1

αiαj k
G(x, x′) =

1

|G |2

〈
m∑

i=1

∑

g∈G

αi kTg(xi),
m∑

j=1

∑

h∈G

αj kTh(xj)

〉

H

=
1

|G |2
wwww

m∑

i=1

∑

g∈G

αi kTg(xi)

wwww
2

H

≥ 0.

Clearly, H can be identified with a subspace of H. Let Hinv be the subspace of H satisfying
f(x) = f(Th(x)) ∀x∈X , h∈G. The functions

kGx′(x) =
1

|G |
∑

g∈G

k(x′, Tg(x)) x′ ∈X

spanning HG satisfy this invariance, hence HG ⊂ Hinv. On the other hand, for any ffin ∈ Hinv

that has the additional property that it can be expressed as a finite linear combination ffin(x) =∑m
i=1 αi k(xi, x),

ffin(x) =
1

|G |
∑

g∈G

ffin(Tg(x)) =
1

|G |
∑

g∈G

m∑

i=1

αi k(xi, Tg(x)) =
1

|G |
∑

g∈G

m∑

i=1

αi k(Tg−1(xi), x),

showing that ffin ∈ HG. The space of such functions expressible as finite linear combinations is
dense in Hinv, hence Hinv ⊂ HG. Together with the earlier result, this proves that HG = Hinv.

It remains to prove that for any f1, f2 ∈ HG, 〈f1, f2〉H = 〈f1, f2〉HG . Assume that f1 and f2 are

expressible as finite linear combinations of the representers of HG as fj(x) =
∑mj

i=1 α
(1)
i kG(x

(j)
i , x)

for some {x(1)
i }m1

i=1, {α
(1)
i }m1

i=1, {x
(2)
i }m2

i=1 and {α(2)
i }m2

i=1. Then they are also expressible in terms of

the representers of H as fj(x) = 1
|G |

∑mj

i=1

∑
g∈G α

(j)
i k(Tg(x

(j)
i ), x). Now

〈f1, f2〉HG =

m1∑

i=1

m2∑

j=1

α
(1)
i α

(2)
j kG(x

(1)
i , x

(2)
j ) =

1

|G |

m1∑

i=1

m2∑

j=1

∑

g∈G

α
(1)
i α

(2)
j k(x

(1)
i , Tg(x

(2)
j ))

and

〈f1, f2〉H =
1

|G |2
m1∑

i=1

m2∑

j=1

∑

g∈G

∑

h∈G

α
(1)
i α

(2)
j kG(Tg(x

(1)
i ), Th(x

(2)
j )) =

1

|G |

m1∑

i=1

m2∑

j=1

∑

g∈G

α
(1)
i α

(2)
j kG(x

(1)
i , Tg(x

(2)
j ))

give the same value for the inner product. Since such linear combinations are dense in HG and the
evaluation functional is continuous, this result then extends to the rest of HG. �
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4.5 Kernels on groups and homogeneous spaces

As opposed to kernels on sets acted on by a group G, we now consider kernels on G itself which in
some sense match the algebraic structure of G. Our starting point is the following definition, which
is equivalent to Definition 4.4.1 when we consider G as acting on itself by z(x) = zx for x, z ∈ G.

Definition 4.5.1 Given a group G, we say that a positive (semi-)definite kernel k : G×G→ R is
left-invariant on G if k(x, y) = k(zx, zy) for all x, y, z ∈ G.

Now that we are working on a group, however, we have a second notion of invariance, as well.

Definition 4.5.2 Given a group G, we say that a positive (semi-)definite kernel k : G×G→ R is
right-invariant on G if k(x, y) = k(xz, yz) for all x, y, z ∈ G.

If k is both left- and right-invariant, we say that it is bi-invariant. Naturally, on an Abelian
group, there is no distinction between left- and right-invariance: any left-invariant kernel will also
be right-invariant and vica versa. For example, the Gaussian kernel is a (left-, right-, bi-) invariant
kernel on the group Rn.

If k is a right-invariant kernel on a group G, then k(x, y) = k(xy−1, e), hence it is fully specified
by r(x) = k(x, e). By symmetry r(x) = k(x, e) = k(e, x) = k(x−1, e) = r(x−1). Similarly, any
left-invariant kernel is specified by r(x) = k(x, e). Functions r : G → F that give rise to positive
definite kernels in this way are called positive definite functions on G. The topic of the next
subsection is characterizing the class of such functions. For now we concentrate on the algebraic
properties of the kernel.

Theorem 4.5.3 Let r be a positive definite function on a group G and let k(x, y) = k(xy−1, e) =
r(xy−1) be the corresponding right invariant kernel. Then the following statements are equivalent:

1. k is bi-invariant;

2. r is a class function;

3. r(xy) = r(yx) for any x, y ∈ G;

4. k(x−1, y−1) = k(x, y).

Proof. For (1)⇒(2) note that r(y−1xy) = k(y−1xy, e) = k(x, y−1y) = k(y, e) = r(x). For (2)⇒(3),
r(xy) = r(yxyy−1) = r(yx). For (3)⇒(4), k(x, y) = r(xy−1) = r(y−1x) = k(y−1, x−1) = k(x−1, y−1)
Finally for (4)⇒(1), k(zx, zy) = k(x−1z−1, y−1z−1) = k(x−1, y−1) = k(x, y). �

Once we have a kernel on G, we can define the inner product 〈ex, ey〉 = k(x, y) on C[G], and
identify it with the RKHS of k by kx(y) = 〈ex, ey〉. This also provides the natural way to induce
kernels on homogeneous spaces of G, since xH left cosets are naturally identified with the group
algebra elements

exH =
1

|H |
∑

h∈H

exh.

Accordingly, overloading notation, the kernel on G/H becomes

k(xH, x′H) = 〈exH , ex′H〉 =
1

|H |2
∑

h∈H

∑

h′∈H

k(xh, x′h′). (4.21)
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Clearly, this is a positive definite function on G/H. If k is right invariant on G, the above simplifies
to

k(xH, x′H) =
1

|H |
∑

h∈H

k(x, x′h).

Note the similarity to (4.20) under the substitutions X 7→ G, G 7→ H and Tg(x) 7→ hx. The
algebraic approach provides a coherent framework for establishing kernels on a variety of objects.
However, at the core of it all is the theory of positive definite functions, and its correspondence to
regularization.

4.5.1 Positive definite functions

As early as 1923, Mathias proved that if f : R→ R is a function with Fourier transform f̂ , then f
is positive definite if and only if f̂(x) > 0 [Mathias, 1923]. However, results of this type are more
commonly associated with the name of Bochner, who generalized Mathias’s result to functions
which do not necessarily have a Fourier Transform. Bochner proved that if f is a continuous
positive definite function on R, then there exists a bounded monotone increasing function V on R
such that

f(x) =

∫
eikxdV (k)

[Bochner, 1932]. This result was extended to Rn in [Bochner, 1933]; and further generalized to
measurable but not necessarily continuous functions in [Riesz, 1933].

The generalization of Bochner’s theorem to locally compact Abelian groups was provided by
Weil [1940], Povzner [1940] and Raikov [1940]. The irreducible representations of Abelian groups are
one dimensional, hence in this case continuous characters and irreducible representations coincide.
The Weil-Povzner-Raikov theorem states that any continuous positive definite function on G is
expressible as

f(x) =

∫

Ĝ
χ(x) dµ(χ)

for some positive bounded measure µ on Ĝ.
All these results show that positive definiteness is closely related to the form of the Fourier

transform. It should not come as a surprise then that positive definite functions on non-commutative
groups can also be characterized by their Fourier transform.

Theorem 4.5.4 A right-invariant (resp. left-invariant) symmetric function k : G × G → R is a
positive definite kernel on the finite group G if and only if letting r(x) = k(x, e), as ρ ranges over
R, the matrices r̂(ρ) are all positive definite.

Proof. Assume without loss of generality that k is right-invariant. Then k is positive definite
if and only if

Q =
∑

x∈G

∑

y∈G

a(x) r(xy−1) a(y) > 0 (4.22)

for any non-zero a : G→ C. Now by the Fourier inversion formula

Q =
∑

x∈G

∑

y∈G

a(x) a(y)
1

|G |
∑

ρ∈R

dρ tr
[
r̂(ρ)ρ(yx−1)

]
, (4.23)
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which, by ρ(yx−1) = ρ(y) ρ(x−1) and tr(AB) = tr(BA), we can also write as

Q =
1

|G |
∑

ρ∈R

dρ tr

[(∑

y∈G

a(y)ρ(y)

)
r̂(ρ)

(∑

x∈G

a(x)ρ(x−1)

)]
. (4.24)

Assuming, without loss of generality that all ρ are unitary representations,

Q =
1

|G |
∑

ρ∈R

dρ tr
[
â(ρ)†r̂(ρ)â(ρ)

]
. (4.25)

Clearly, if each r̂(ρ) is positive definite, then Q > 0. To prove the converse, note that since
{⊕ρ∈R ρ(x)}x∈G form a basis for

⊕
ρ∈R Rdρ×dρ , the â(ρ) are general matrices. Hence if Q> 0 for

any a, then each r̂(ρ) must be positive definite. �

There is special interest in the case that k is bi-invariant. By theorem 4.5.3 in this case r is a
class function, and hence, as stated in section (1.2.1), it is a sum of characters. Now from the
Fourier inversion formula it is immediate that the Fourier transform of χ̂ρ(ρ) = I and χ̂ρ(ρ

′) = 0
for all other irreducibles ρ′ ∈ R\ ρ. We thus have the following corollary showing that bi-invariant
kernels are determined by setting |R | real coefficients.

Corollary 4.5.5 A bi-invariant symmetric function k : G×G→ R is a positive definite kernel on
finite group G if and only if the Fourier transform of its associated function r(x) = k(x, e) is of the
form r̂(ρ) = rρI for some real coefficients rρ ≥ 0. Furthermore, r(x) =

∑
ρ∈R rρχρ(x).

In the next chapter we will use Theorem 4.5.4 and Corollary 4.5.5 to construct kernels on the
symmetric group for learning permutations, and in Chapter 6 we will find that the same results
dictate the form of our noise model of matchings in multi-object tracking.
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Chapter 5

Learning permutations

As a concrete example of learning on non-commutative groups, we develop the theory of learning
permutations. In this scenario training data consists of a set of multi-instancesX = (x1, x2, . . . , xn),
xi ∈X and associated permutations σ ∈ Sn, with the interpretation that according to some criterion
the correct way to order x1, x2, . . . , xn is xσ(1), xσ(2), . . . , xσ(n). The task of permutation learning
is to learn this association between sets of elements and permutations. In testing we are presented
with m′ testing multi-instances and our job is to predict the corresponding σ̂1, σ̂2, . . . , σ̂m′ ∈ Sn.

Permutation learning is related to, but more general than ranking. While the exact definition
of ranking varies, in general, by learning a ranking most authors mean learning a rule to predict
for any x and x′ in X , whether x should be ranked higher than x′ (denoted x > x′) or the other
way round [Freund et al., 2003] [Clemençon et al., 2005] [Rudin et al., 2005]. A ranking algorithm
is typically trained on a collection of ranked list x1 > x2 > . . . > xk of fixed or varying lengths, or
just a collection of pairwise relationships of the form xi>x

′
i.

Ranking is subtly different from permutation learning because it implicitly assumes that given
a set S = {x1, x2, . . . , xk}, whether xi is ranked above or below xj is independent of the other
members of S. In permutation learning we do not enforce this a priori. Consider, for example,
sports tournaments, where S denotes a set of players playing together in a match. While in general
whether player i finishes before player j largely just depends on their relative playing ability, their
performance is also influenced by which other players are present. Hence, the relative performance
of xi and xj depends on the entire set S.

Other permutation learning scenarios do not have any ranking character at all. One class of
such problems is learning the temporal order of events. As an example, take the academic hurdles
faced by Ph.D. students in a Computer Science department. Each student is required to pass
a certain number of core courses, but which order she takes the courses in is her choice. After
some years, patterns might start to emerge in students’ choices. Which order a particular student
will favor might be predictable from covariates such as her background, specialization area and
so forth. However, even for fixed covariates, the induced distribution over permutations can be
non-trivial. Some students might prefer starting with the easy courses and progressing to the
harder ones, while others might prefer to take the opposite route. Such bi-modal distributions over
permutations cannot be captured by a simple ranking model.

As far as we are aware, permutation learning has never been addressed in full generality, and
certainly not in a consistent algebraic framework. However, the related problem of rank aggregation
and voting schemes does have a considerable literature, both in the theoretical computer science
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literature (see, e.g., [Ailon et al., 2005]) and in statistics [Critchlow, 1985][Diaconis, 1988].

5.1 Regularized Risk Minimization

In permutation learning we assume that individual instances xi come from the input space X , and
as usual let R [Sn] denote the group algebra of the symmetric group. Following the methodology
developed in Chapter 4, we formulate our problem as that of learning a function f : X n → R [Sn]
which predicts the permutation corresponding to a testing input X as σ̂ = arg maxσ∈Sn 〈f(X), eσ〉.

Given a training set (X1, σ1) , (X2, σ2) , . . . , (Xm, σm), where each Xi is a multi-instance Xi =

(x
(i)
1 , x

(i)
2 , . . . , x

(i)
n ), we find f by minimizing the regularized risk

R [f ] =
1

m

m∑

i=1

L(f(Xi), σi) + ‖ f ‖2F (5.1)

over an appropriately chosen Hilbert space F .
The loss function L is chosen to reflect the fact that we are choosing σ̂ above all other permu-

tations. As in multiclass classification, the natural generalization of hinge loss to use in this case
is

L(f(Xi), σi) = max
(
0 , 1−

(
f(Xi) · eσi

− max
σ ∈ Sn\σi

f(Xi) · eσ
) )
, (5.2)

corresponding to a concept of margin

min
σ 6=σi

[
f
(
x

(i)
1 , x

(i)
2 , . . . , x(i)

n , σ
)
− f

(
x

(i)
1 , x

(i)
2 , . . . , x(i)

n , σi
)]
. (5.3)

It remains to define the Hilbert space F by choosing an appropriate kernel on X n × Sn. In
accordance with the general methodology of input/output kernels we look for this in the form
k((X,σ), (X ′, σ′))) = kSn(σ, σ′) kXn(X,X ′). The first factor in this product will be a right in-
variant kernel the construction of which we describe in the next section, while kXn is meant to
capture similarity between the two ordered sets (x1, x2, . . . , xn) and (x′1, x

′
2, . . . , x

′
n). Since this

is an essentially pairwise comparison, it is natural to define kXn itself as the product kernel
kXn(X,X ′) =

∏n
i=1 kX (xi, x

′
i) leading to

k
(
(x1, . . . , xn, σ) ,

(
x′1, . . . , x

′
n, σ

′
))

= kSn

(
σ, σ′

) n∏

i=1

kX
(
xi, x

′
i

)
. (5.4)

We assume that kX is some suitable pre-defined kernel between whatever objects we are trying to
learn the permutations of.

The right invariance of kSn guarantees that that our algorithm will be invariant to simultane-
ously permuting (x1, x2, . . . , xn) and (x′1, x

′
2, . . . , x

′
n) by the same permutation. In the context of

permutation learning this is certainly desirable. However, in permutation learning we also have
an additional relabeling symmetry that the RKHS F0 induced by (5.4) does not satisfy. Assume
that the permutation corresponding to the multi-instance (x1, x2, . . . , xn) is σ. Now consider the
pre-permuted multi-instance (xτ(1), xτ(2), . . . , xτ(n)) for some τ ∈ Sn. To match the semantics we
attach to σ, the permutation corresponding to the latter must be στ−1. This restricts the RKHS
F to the subspace of functions satisfying

f
(
xτ(1), xτ(2), . . . , xτ(n), στ

−1
)

= f(x1, x2, . . . , xn, σ) ∀ τ ∈ Sn. (5.5)
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Equivalently, each f ∈F must be invariant to the action of Sn on X n×Sn by

Tτ : (x1, x2, . . . , xn, σ) 7→
(
xτ(1), xτ(2), . . . , xτ(n), στ

−1
)

τ ∈ Sn. (5.6)

According to our general result in Theorem 4.4.3, the subspace of F0 satisfying (5.5) is an RKHS
induced by the kernel

k
(
(x1, . . . , xn, σ) ,

(
x′1, . . . , x

′
n, σ

′
))

=
1

n!

∑

τ∈Sn

kSn

(
σ, σ′τ−1

) n∏

i=1

kX
(
xi, x

′
τ(i)

)
. (5.7)

Applying (5.5) allows us to rewrite this as

1

n!

∑

τ∈Sn

kSn

(
e, σ′τ−1

) n∏

i=1

kX
(
xσ−1(i), x

′
τ(i)

)
,

then applying right invariance gives

1

n!

∑

τ∈Sn

kSn

(
τ, σ′

) n∏

i=1

kX
(
xσ−1(i), x

′
τ(i)

)
,

to which we can again apply (5.5) to get

1

n!

∑

τ∈Sn

kSn(τ, e)

n∏

i=1

kX
(
xσ−1(i), x

′
τσ′−1(i)

)
.

Thus, (5.7) is equivalent to

k
(
(x1, . . . , xn, σ) ,

(
x′1, . . . , x

′
n, σ

′
))

=
1

n!

∑

τ∈Sn

kSn(τ, e)
n∏

i=1

Mi,τ(i), (5.8)

where M is the matrix Mi,j = kX (xσ−1(i), xσ′−1(i)). This is the form of the kernel that we employ
in permutation learning, and because of the summation over n! terms, it immediately presents us
with a computational challenge. We address this issue in Section 5.3.

5.2 Diffusion Kernels

While Section 4.5 provided a general characterization of invariant positive definite kernels on groups,
it did not address the question of what kernel exactly is appropriate to use in specific learning
problems. Beyond just algebra, answering this question requires introducing knowledge about the
way the structure of the group is reflected in the data.

Section 4.2.3 suggests that one of the best ways of inducing a regularization scheme by a kernel
is to start from the differential properties of the underlying space. While on a discrete space,
especially an abstract one such as a finite group, we might not have the same concepts of partial
derivatives as on Rn, some aspects of our discussion in 4.2.3 are so fundamental that they have
natural analogs.

In particular, the diffusion kernels formalism [Kondor and Lafferty, 2002][Smola and Kondor,
2003] reveals that the Gaussian kernel is just a special case of the more general concept of kernels
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induced by local similarities captured by a Laplacian. Whereas (4.8) expresses the regularization
operator corresponding to the Gaussian kernel in terms of differential operators on Rn, when
working on Sn or any other finite group G, we need a discrete notion of neighborliness. In effect,
this means turning G into an undirected graph. Letting x ∼ y denote the fact that x, y ∈ G are
neighbors, and letting dx denote the number of edges incident on x, Kondor and Lafferty [2002]
show that if we define the graph Laplacian as the |G| × |G| matrix

∆x,y =






1 if x ∼ y
−dx if x = y

0 otherwise ,

then the diffusion kernel

k(x, y) =
[
eβ∆

]
x,y

=

[
lim
n→∞

(
1 +

β∆

n

)n ]

x,y

(5.9)

is not only positive definite, but also an attractive and natural way to capture similarity and
regularize functions.

In particular, regarding ∆ as an operator on functions on G by (∆f)(x) =
∑

y∈G ∆x,yf(y), we
have

〈f,∆f〉 = −1

2

∑

x∼y

(f(x)− f(y))2

suggesting that −∆ in some sense captures the extent to which f violates the graph structure. If
v1, v2, . . . , v|G| are the eigenvectors of ∆ with corresponding eigenvalues ν1, ν2, . . . , ν|G|, then the
kernel operator may be expressed in the form

K =

|G|∑

i=1

eβνi vi v
⊤
i ,

and the regularization operator is

Υ =

|G|∑

i=1

e−βνi/2 vi v
⊤
i .

This is the exact discrete analog of (4.8), showing that the diffusion kernel penalizes functions
according to how much any energy they have in the “high frequency” modes on the graph, i.e., the
ones which violate many edges.

There is also a more mechanistic, intuitive analogy between diffusion on continuous spaces (the
solution to which is the Gaussian kernel) and diffusion on graphs, which we shall not go into here.
The reader is referred to [Kondor and Lafferty, 2002] for details.

The most natural graphs on finite groups are the so called Cayley graphs. Such graphs are
induced by a set W ⊂ G, and the rule defining the graph topology is that two group elements x
and y are neighbors if and only if y = zx for some z ∈W . We shall assume that W is a generating
set for G, since otherwise the induced Cayley graph would not be connected.

The graph Laplacian of a Cayley graph is right invariant in the sense that ∆x,y = ∆xz,yz, and
is thus characterized by a function u(xy−1) = ∆x,y. Matrices that have this type of symmetry
are called G-circulants. As the following theorem shows, Cayley graphs induce right-invariant
diffusion kernels, so the results of Section 4.5 apply.
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(a) (b) (c)

Figure 5.1: Three diffusion kernels on the permutation polytope of S4: (a) ktransp with β = 0.5; (b)
kadj with β = 2.0; and (c) kcyc with β = 1. The size of the sphere at each vertex corresponds to
k(e, σ).

Theorem 5.2.1 Let ∆ be a G-circulant matrix with ∆x,y = u(xy−1). Then K = eβ∆ is a G-
circulant matrix Kx,y = r(y−1x) with r̂(ρ) = exp (β û(ρ)) for ρ ∈ R.

Proof. In terms of the regular representation ρreg of G, ∆ can be written in the form ∆ =∑
z∈G u(z)ρ

reg(z), where

[ρreg(z)]x,y =

{
1 if x= zy

0 otherwise .

By total reducibility, for some invertible matrix T , ∆ decomposes in the form

T−1∆T =
⊕

ρ

∑

z∈G

u(z)ρ(z),

where the direct sum runs over irreducible representations of G with possible repeats. By Corollary
1, section 2.4 of Serre [1977], each ρ∈R is featured in this sum with multiplicity at least one. We
recognize each inner sum as the Fourier Transform of u at the irreducible representation ρ. Now
exp

(
β T−1∆T

)
= T−1 exp(β∆)T , hence T−1KT =

⊕
ρ exp (β û(ρ)) =

⊕
ρ r̂(ρ). �

In the special case that W is a union of conjugacy classes, u is a class function, hence it can
be written as a weighted sum of characters, and its Fourier transform will consist of diagonal
matrices. Thus by Corollary 4.5.5 we have the following result.

Corollary 5.2.2 The diffusion kernel on the Cayley graph of a finite group G induced by a gener-
ating set W is bi-invariant if and only if W is a weighted sum of conjugacy classes.

Three kernels on Sn

It is natural to regard two permutations σ1, σ2 ∈ Sn as “neighbors” if they only differ by a trans-
position, σ2 = σ1 · (i, j). This motivates looking at diffusion kernels induced by one of the following
three generating sets:

1. Ttransp, the set of all transpositions;

2. Tadj, the set of adjacent transpositions;

70



id partition

A (4)
B (3, 1)
C (2, 2)
D (2, 1, 1)
E (1, 1, 1, 1)

E D C B A

A 1 1 1 1 1
B 3 1 -1 0 -1
C 2 0 2 -1 0
D 3 -1 -1 0 1
E 1 -1 1 1 -1

id partition

A (5)
B (4, 1)
C (3, 2)
D (3, 1, 1)
E (2, 2, 1)
F (2, 1, 1, 1)
G (1, 1, 1, 1, 1)

G F E D C B A

A 1 1 1 1 1 1 1
B 4 2 0 1 -1 0 -1
C 5 1 1 -1 1 -1 0
D 6 0 -2 0 0 0 1
E 5 -1 1 -1 -1 1 0
F 4 -2 0 1 1 0 -1
G 1 -1 1 1 -1 -1 1

Table 5.1: The character tables of S4 and S5. The right hand tables show χλ(µ), λ indexing the
rows and µ the columns according to the scheme laid out in the left hand tables. Reproduced from
[James and Kerber, 1981].

3. Tcyc = Tadj ∪ {[1, n]}, the set of cyclically adjacent transpositions.

Figure 5.1 shows the corresponding kernels, labeled ktransp, kadj and kcyc, on the permutation poly-
tope of S4. The permutation polytope of Sn is the convex hull of the points ((σ(1), σ(2), . . . , σ(n)))σ∈Sn

.
This is an n−1-dimensional polygon contained in the hyperplane x1 + x2 + . . .+ xn = n(n+ 1)/2,
hence the largest symmetric group for which it can be plotted in three dimensions is S4. The edges
of the permutation polytope connect permutations that differ by a single adjacent transposition.

From a purely algebraic point of view, ktransp is by far the most natural choice. Indeed, one
sense in which the symmetric group is “symmetric” is that it treats the objects 1, 2, . . . , n that
it operates on on an exactly equal footing, having no sense of which object is adjacent to which
others. Unlike Tadj and Tcyc, Ttransp is a conjugacy class, so by Corollary 5.2.2, ktransp is bi-invariant,
leading to several attractive properties.

One potential problem with ktransp is that the diameter of Sn in terms of transpositions is
relatively small. The corresponding graph distance on Sn is called the Cayley distance. It is easy
to see that if the cycle type of σ−1

1 σ2 is λ , then dCayley(σ1, σ2) =
∑

i(λi− 1). Hence, the maximum
distance on G is dCayley (e, [1, 2, . . . , n]) = n − 1. Fixing σ1, many other permutations will be the
same distance from σ1, limiting the discriminative power of this kernel.

Adjacent transpositions are a natural metric to use between rankings. Clearly, exchanging
adjacent items in a ranking is less of a change than exchanging more distant items. Finally,
kcyc is a variation on kadj for problems with cyclic symmetry. An example would be the seating
arrangement of people around a circular table.

The kernels kadj and kcyc are best computed by explicit matrix exponentiation or Fourier trans-
formation. In contrast, by virtue of bi-invariance, ktransp can be expressed in terms of characters.
Since ktransp is induced by the indicator function of transpositions, which have cycle type (2, 1, 1, . . .)
by Corollary 5.2.2, have the explicit formula

ktransp(σ1, σ2) =
1

|G |
∑

ρ∈R

dρ exp

(
βn(n− 1)

dρ
χρ((2, 1, 1, . . .))

)
χρ(µ), (5.10)

where µ is the cycle type of σ−1
2 σ1.

The characters may simply be looked up in a table, [see, e.g., James and Kerber, 1981]. By way
of example, the character tables of S4 and S5 are given in Table 5.1. Alternatively, the characters
may be computed using a general theorem called the Murnaghan-Nakayama rule (1.8). For the
special case of χρ((2, 1, 1, . . .)) a short calculation gives the following particularly simple result.
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Lemma 5.2.3 Let pρ be the number of standard tableaux of shape ρ where 2 is to the right of the

1 , and let qρ be the number of standard tableaux where it is below it. Then χρ((2, 1, 1, . . .)) = pρ−qρ.

5.3 Immanants and the PerMceptron

The complexity of permutation learning is determined by the number of training examples m, and
the “degree” of the examples, n, determining which symmetric group we are working on. While
m may be in the thousands or tens of thousands, n is severely limited by the fact that both the
evaluation time of the symmetrized kernel (5.7) and the number of constraints in (5.3) scale with
n!. In this section we describe two computational tricks that ease this burden to some extent.

The first of these applies to the case when kSn is bi-invariant. Recall that in this case r(x) =
k(x, e) may be expressed as a weighted sum of characters r(x) =

∑
ρ∈R rρχρ(x), thus (5.8) becomes

k
(
(X,σ) ,

(
X ′, σ′

))
=

1

n!

∑

λ⊢n

rλ
∑

τ∈Sn

χλ(τ)
n∏

i=1

Mi,τ(i). (5.11)

The inner summation appearing in this expression is called the λ-immanant of M and denoted
Imλ(M). The two well known examples of immanants are the determinant, which corresponds to
the alternating character of Sn, and the permanent, which corresponds to the constant character.

The cost of computing immanants varies greatly with λ. The determinant can be computed
in time O(n3) by matrix diagonalization, while the best currently known exact algorithm for com-
puting the permanent is due to Ryser [1963] and runs in O(n2n) time. Recently, Jerrum et al.
[2001] have proposed a polynomial time approximation algorithm for computing the permanent of
a non-negative matrix based on Markov Chain Monte Carlo sampling.

Remarkably, immanants are closely related to representations of the general linear group. In
particular, for M ∈GL(n),

Imλ(M) =
∑

t

[Dλ(M) ] t,t ,

where Dλ is now the irreducible representation of GL(Cn) of shape λ, and the sum runs over those
semi-standard tableaux of shape λ which are also standard tableaux [Bürgisser, 2000, Lemma 4].
This reduction is significant because Bürgisser has recently presented an O(n2(mult(λ)+logn)sλdλ)
algorithm for computing Dλ(M), where sλ and dλ are respectively the number of semi-standard
and standard tableaux of shape λ, and mult(λ) is the maximum multiplicity of any irreducible
representation of GL(Cn−2) in the decomposition of Dλ ↓GL(Cn−2). This improves significantly on
the complexity of computing symmetrized kernels, especially when the coefficients αλ drop off fast
enough to allow us to cut off the expansion of kSn(σ, e) after a relatively small number of characters.

5.3.1 The “PerMceptron”

Carrying out a full QP optimization to solve (5.1) is often prohibitively expensive. The size of the
problem is m · n!, and using a loss function such as (5.2), for any given training example (Xi, σi)
we can expect many αiσ coefficients in the kernel expansion

f(X,σ) =
m∑

i=1

∑

σ∈Sn

αiσ k((Xi, σi), (X,σ)) (5.12)
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to be non-zero, i.e., the solution is not going to be sparse. In addition, in the general case when
we cannot use the immanants trick, each kernel evaluation (5.7) takes O(n!) time. We propose
to circumvent these computational limitations by essentially converting our problem to the on-line
setting.

It is well-known that the venerable perceptron can not only be “kernelized” but in a certain
sense also approximates the solution of batch large-margin algorithms [Freund and Schapire, 1999].
Recently, the Perceptron has been enjoying renewed attention, in particular, various extensions to
the multi-class setting have been proposed [Crammer and Singer, 2003]. For permutation learning
the following very simple variant is already a viable learning algorithm:

Let f ← 0;
For each training example (Xi, σi) do {

Predict σ̂ = arg maxσ∈Sn f(Xi, σ);
If σ̂ 6= σi

then f ← f + k((Xi, σi), · )− k((Xi, σ̂), · ) ;
else do nothing ;

}

The current hypothesis f can be stored in the form of an expansion

f(X,σ) =
∑

j=1

∑

σ∈Sn

αj k((Xj , σj), (X,σ)) (5.13)

similar to (5.12). A perceptron may cycle through the training data multiple times, these are called
training epochs. It is also possible to test the final hypothesis on an independent testing set, so the
perceptron can function as a batch algorithms as well. The advantages over SVM-type algorithms
are that sparsity is guaranteed a forteriori and no expensive QP needs to be solved.

However, at each step of the algorithm, to compute the arg max involved in prediction, hi(σ) =
f(Xi, σ) must be evaluated for each σ ∈ Sn. Recalling that each kernel evaluation takes time O(n!),
this puts us back in the O((n!)2) regime. Once more, the algebraic properties of Sn come to the
rescue. The crucial observation is that plugging in (5.8) to (5.13) gives

hi(σ) = f(Xi, σ) =
1

n!

∑

j

αj
∑

τ∈Sn

kSn(τ, e)
n∏

l=1

M
(j)
l,τ(l), [M (j)]a,b = kX (x

(i)
σ−1(a)

, x
(j)

σ−1
j (b)

),

and assuming right invariance, kSn(σ, σ′) = r(σσ′−1), and using r(σ) = r(σ−1) this is just a convo-
lution

hi(σ) =
1

n!

∑

τ∈Sn

r(στ−1) g(τ) = (r ∗ g)(σ) (5.14)

of r with g(τ) =
∑

j αj
∏n
l=1M

(j)
l,τ(l). Convolution can be computed fast by transforming to Fourier

space, multiplying the appropriate components, and transforming back. Using Clausen’s FFT from
Section 3.3, this reduces the complexity of a single perceptron update step from O(n!2) to O(n3n!).
In keeping with the tradition of giving ranking-related algorithms silly names such as pranking

[Crammer and Singer, 2002] and cranking [Lebanon and Lafferty, 2002], we call the resulting
fast algorithm the perMceptron. To our knowledge the Permceptron is unique amongst kernel-
based learning algorithms in that for computational efficiency it does not compute kernel values
individually, but in batch.
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Chapter 6

Multi-object tracking

Multi-object tracking systems associate tracks r1, r2, . . . , rn with real world objects o1, o2, . . . , on
called targets. When the objects are well separated and good quality observations are available,
following which track corresponds to which target is relatively easy. However, when two objects
come very close, are occluded, or observations are not available, the association between tracks
and objects becomes uncertain. This is what is referred to as the identity management or data
association problem in multi-object tracking.

Most tracking systems in practical use today are probabilistic, in the sense that at time t,
each ri(t) stands for a probability distribution describing our belief of where the corresponding
object is likely to be in space. It is then natural to address the identity management problem in
a similarly probabilistic fashion, by maintaining a probability distribution p over the n! possible
matchings between objects and tracks. Equivalently, we may regard p as a probability distribution
over permutations of the objects o1, o2, . . . , on. Missing observations, occlusion, random noise,
etc. tend to smear out p(σ), while positively observing some target at a particular track makes
the distribution more concentrated again. The central challenge in maintaining p is the factorial
blow-up in the number of permutations.

Multi-object tracking has many applications in vision, security, control, observational problems
in the natural sciences and even in sports [Bar-Shalom and Formann, 1988][Stone et al., 2000]. The
method we propose is particularly well suited to problems where location information is relatively
abundant, but identity information is scarce. A typical example is air traffic control, where aircraft
are more or less continuously visible on radar, but in the absence of transponders their identity is
only revealed when the pilot reports by radio. A similar application is tracking animals released
into the wild. Information about the animals might include sightings, or indirect evidence for their
presence, such as killed prey, but only a small fraction of these observations reveal the identity of
the specific animal. The task is to extrapolate to the rest of the observations and reconstruct the
paths of individual animals. The identity management problem is also critical in sensor networks,
such as “wired” office buildings. Security cameras, motion detectors, or even light switches can all
detect the presence of people, but positively identifying an individual person is only possible when
he or she comes in contact with potentially more intrusive sensors, such as RFID transmitters, or
an identity card reader.

Sensor networks are the motivating application for recent papers on the information-form data
association filter [Schumitsch et al., 2005][Shin et al., 2006], which is perhaps closest in spirit to our
approach. In particular, the combination of identity observations and a continuous noise process
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operating in the background is similar to our framework. However, in a certain sense the two
approaches are complementary: our preliminary experiments indicate that the data association filter
performs better when the association distribution is concentrated on a small set of permutations,
while our method, based on smoothness arguments, performs better when the distribution is more
vague. The data association filter scales very favorably with n, but it is limited to an n2 dimensional
projection of the distribution over matchings. In contrast, we can choose from a whole spectrum of
representations at different levels of complexity, but the interesting ones scale worse and hence limit
us to about n ≤ 30. It is possible that in the future the two approaches can be fused, combining
their respective strengths.

The present chapter is based on [Kondor et al., 2007] and all the results presented in the following
pages are original material. After this thesis was defended, Huang et al. [2008] have published a
paper that takes this work even farther.

6.1 A band-limited representation

An online multi-object tracking system following n targets needs to maintain n separate distribu-
tions pi describing the spatial location of each track, and a single distribution p over the n! possible
matchings of targets to tracks. In real-world systems these two types of approximation problems
are closely coupled. For now, however, we focus purely on the identity management side.

Matchings between targets and tracks are readily identified with permutations σ ∈ Sn, if we
let σ(i) = j denote that target i is located at track rj . The identity management problem then
becomes an online estimation problem on Sn. Assuming that the system starts out in a fully
observed state (say, without loss of generality, each target i is at track ri), our job is to design an
algorithm which maintains an internal representation of the association distribution updated by
(a) observations linking targets to particular tracks; (b) the effects of some random noise process
modeling our increasing uncertainty in-between observations. The simplest way of doing this is to
just maintain a n×n matrix describing the probabilities of finding object i at track j. Such an
approach, however, vastly oversimplifies the problem, since it ignores all higher order interactions
between the targets.

Assume, for example that we have just three targets: A, B and C, and corresponding tracks
labeled r1, r2 and r3. Consider first what happens if we find that A and B approach each other so
closely that we are no longer able to tell which one of them is associated with track r1 and which
one is associated with track r2. In this case p must reflect that all information about the relative
associations of A and B have been lost. Even if A and B (and hence, tracks r1 and r2 ) subsequently
separate, we will not know whether track r1 is now following A and track r2 is following B or the
other way around. To make things even worse, now imagine that a short time later the same thing
happens to C and whichever object is at track r2. Now we can’t be certain about the locations of
any of the targets. However, receiving observations can disambiguate the situation.

For example, if we observe C at track r3, we are back to the situation we had before the second
encounter: we know where C is, but we have complete uncertainty about the relative association
of A and B to tracks r1 and r2. On the other hand, observing B at track r3 not only disambiguates
the association of that target, but also allows us to infer that C must be at track r2 and A at
track r1. It is this type of inference which is not possible without maintaining a rich, ideally exact,
representation of p.

Unfortunately, due to the extremely rapid growth of the factorial function, for n greater than
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about 10 or 11, maintaining an exact representation of p in practical systems would be prohibitively
expensive. Inspired by the theory of non-commutative harmonic analysis we developed in Chapters
2 and 5, our novel way of addressing this problem will be to project p from R|n! | to a carefully
chosen subspace W satisfying at least the following criteria:

1. It should be possible to reconstruct p from its projection pW with minimal loss of information.

2. The projection must be symmetric in the sense that each component of p(σ) suffers the same
loss when projected to W .

3. It should be possible to apply observations and noise updates directly to pW , without recon-
structing the full distribution p.

Unsurprisingly, the optimal choice of W turns out to be a sum of isotypals (see Section 2.2). We
argue that a good projection of p is one which is relatively insensitive to noise: we want to retain
the robust “low frequency” components, while we are not too concerned about throwing out the
more noisy “high frequency” part of p. Whatever the exact form of the noise process is, in tracking
it is almost always expressible as pairwise exchanges of targets. In the absence of factors breaking
the symmetry, the probability of an exchange is the same for any pair of targets. In other words,
the noise process is just a random walk on the Cayley graph or transpositions, bringing us back to
the framework of Section 5.2.

Since transpositions are a conjugacy class, the Fourier transform of ∆ will be of the form
∆̂(λ) = αλI, and the eigenspectrum of ∆ will be highly degenerate: each partition λ will have dλ
orthogonal eigenvectors collectively spanning the λ-isotypal. The actual αλ values are given by the
formula

αλ =

(
n

2

)(
1− χλ((2, 1, 1, . . .))

dλ

)
. (6.1)

Our band-limited representation will consist of a projection of p onto the isotypals with low αλ. In
general, these follow the following sequence:

1. The lowest α is α(n) = 0 corresponding to the isotypal which is one dimensional
and is associated with the trivial representation.

2. The next lowest isotypal corresponds to and is n− 1 dimensional.

3. Following these are the and isotypals of dimensionality n(n − 3)/2 and

(n− 1)(n− 2)/2.

4. The , and isotypals of dimensionality n(n−1)(n−5)/6, n(n−2)(n−4)/3

and
(
n−1

3

)
.

5. etc.

For concreteness in drawing the above diagrams we assumed n = 8. Depending on how much
computational time we can afford, we typically project to the isotypals in the first two, first three
or first four sets. Since ρ(n) and ρ(n−1,1) together make up the defining representation, maintaining
just the and isotypals corresponds to the traditional method of approximating
p by its marginals pi,j = P [p(i) = j].
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6.1.1 Noise model

We model the uncertainty seeping into p by assuming that at each time t with some small probability
β the targets corresponding to tracks i and j get exchanged, and this probability β is independent
of i and j. If previously the correct assignment was σ, then the new assignment will be (i, j)σ.
Considering all possible exchanges, the corresponding transition matrix is I−β∆, where ∆ is again
the Laplacian. Since this noise process is assumed to operate in the background in a continuous
manner, we take the limiting case of infintesimally small time intervals, leading to the update
equation pt′ = exp (−β (t′− t)∆) pt, where

e−β(t′−t)∆ := lim
k→∞

(
I − β (t′− t)

k
∆

)k

(6.2)

is the matrix exponential. This, however, is just a diffusion process on the Cayley graph [Kondor
and Lafferty, 2002]. In particular, the Fourier space updates of p take on the particularly simple
form

p̂t′(ρλ) = e−βαλ(t′−t) p̂t(ρλ).

In our bandwidth-limited Fourier space scheme this update equation is not only very efficient to
implement, but it is also exact: diffusion does not take us outside the subspace of distributions
restricted to W .

6.1.2 Observations

The simplest type of observations consist of receiving information that with probability π, target
oi is at track rj :

p (Oi→j |σ ) =

{
π if σ(i) = j,

(1− π)/(n−1) if σ(i) 6= j.
(6.3)

Fixing j, p (Oi→j |σ ) is to be regarded as a probability distribution over which target i is observed
at track j. The posterior over permutations is given by Bayes’ rule:

p (σ |Oi→j ) =
p (Oi→j |σ ) p(σ)∑

σ′∈Sn
p (Oi→j |σ′ ) p(σ′)

, (6.4)

giving rise to the update rule

p′(σ) =

{
1
Z π · p(σ) for σ(i) = j,
1
Z

1−π
n−1 p(σ) for σ(i) 6= j,

(6.5)

where Z is the normalizer Z = π · p([σ(i) = j]) + 1−π
n−1 · (1− p([σ(i) 6= j])). In summary, observation

updates hinge on (a) marginalizing p over sets of the form Ci→j = { σ ∈ Sn | σ(i) = j } and (b)
rescaling the projections of p onto subspaces corresponding to Ci→j and Ci→j′ , j

′ 6= j.
A naive implementation of this update requiring explicit enumeration of group elements would

run in time O(n!). The next section will present a much faster algorithm. The observation updates
couple the different Fourier components. This means when restricted to W the update step can
only be approximate: an exact update would push some energy into some of the “higher frequency”
Fourier components which we do not maintain in our bandwidth-limited representation of p. This
is the only source of approximation error in our framework.
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6.1.3 Inference

The third component to our identity management system is a procedure for reading off the predicted
association between targets and tracks. In the simplest case this consists of returning the marginal
probabilities p([σ(i) = j]) for a fixed object i as the track variable j ranges over 1, 2, . . . , n, or for a
fixed track j as i ranges over 1, 2, . . . , n.

A more challenging task is to find the optimal association σ̃ = arg maxσ∈Sn p(σ). Again, the
techniques presented in the next section lead to a search algorithm which can beat the apparent
O(n!) complexity of this operation.

6.2 Efficient computation

We generalize Clausen’s FFT by modifying (3.10) to

f̂(λ) =
n∑

j=1

ρ(Jj, nK)
[⊕

λ−

f̂i→j(ρλ−)
]
ρ(Ji, nK−1),

where 1 ≤ i ≤ n, and fi→j(σ
′) = f(Jj, nKσ′ Ji, nK−1), leading to what we call “twisted” FFTs.

The connection to the identity management problem is that the two-sided coset Jj, nK Sn−1 Ji, nK−1

to which fi→j corresponds is exactly the set Ci→j introduced in 6.1.2. In particular, since ρ(n−1)

is the trivial representation of Sn−1, the Fourier component p̂i→j(ρn−1) is equal to the marginal
p([σ(i) = j]).

Our Bayesian update step can then be performed by transforming to the p̂i→j(ρλ−) matrices
from the original p̂(ρλ), reading off p̂i→j(ρ(n−1)), rescaling the p̂i→j according to (6.5), and then
transforming back to p̂. For band-limited functions all these computations can be restricted to
the subtree of the Bratelli diagram leading to those Fourier components p̂(ρλ) which we actually
maintain, and the total complexity of the update step becomes O(D2n). This algorithmic viewpoint
of information passing back and forth between the p̂(ρλ) matrices and the p̂i→j(ρλ−) matrices also
sheds light on the nature of the coupling between the Fourier components: this arises because in
the Bratelli diagram each partition of n− 1 is linked to multiple partitions of n.

As regards the inference step, our proposed solution is a “branch and bound” type search over
the cosets that the FFT successively decomposes Sn into (Figure 6.1). The algorithm is based on
the fact that the total energy ‖ p(σSk) ‖2 in any Sk-coset is the sum of the total energies of the
constituent Sk−1-cosets, and that by unitarity this energy is fast to compute. We cannot give a
theoretical complexity guarantee for this algorithm, but in practical applications it is expected to
be much faster than O(n!).

6.2.1 Performance

In summary, our computational strategy is based on carefully avoiding complete Fourier transforms
or any other O(n!) computations. This makes our framework viable up to about n = 30. To
indicate performance, on a 2.6 GHz PC, a single observation update takes 59ms for n = 15 when
W is spanned by the first 4 Fourier components, and 3s when maintaining the first 7 components.
For n = 30 and 4 components an update takes approximately 3s. Recall that the third and fourth
Fourier components have O(n4) scalar components. When storing and updating this many variables
is no longer feasible, we are reduced to the just the first two components with 1 and (n− 1)2 scalar
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find_largest_in_subgroup(σSk){

if k = 1 {

if ‖ p(σ) ‖2 > ‖ p(σ̃) ‖2 { σ̃ ← σ; }

}

else {

order {η1, η2, . . . , ηk} so that ‖ p(ση1Sk−1) ‖2 ≥
‖ p(ση2Sk−1) ‖2 ≥ . . . ≥ ‖ p(σηkSk−1) ‖2;

i← 1;

while ‖ p(σηiSk−1) ‖2 > ‖ p(σ̃) ‖2 {

find_largest_in_subgroup(σηiSk−1);

i← i+ 1;
}

}}

Figure 6.1: Fast algorithm for finding the maximum probability permutation. The recur-
sive procedure is called with the argument eSn, and σ̃ is initialized to any permutation. For
σ ∈ Sn, ‖ p(σSk) ‖2 stands for 1

k!

∑
τ∈Sk
‖ p(στ) ‖2, which can be efficiently computed by partial

Fourier transform methods, particularly when p̂ is sparse. Finally, ηi ≡ Ji, kK.

entries, respectively. At this point we lose the advantage in terms of detail of representation over
other, simpler algorithms. Our spectral method is most likely to be of use in the 8 ≤ n ≤ 30 range.

6.3 Experiments

We performed experiments on a dataset of (x, y) radar positions of aircraft within an approximately
30 mile diameter area about New York’s John F. Kennedy International Airport on a given day
in May, 2006, updated at few second intervals. The data is available in streaming format from
http://www4.passur.com/jfk.html. The presence of three major airports in the area (JFK,
La Guardia and Newark), together with specific local procedures, such as the routing of aircraft
over the Hudson river for noise abatement, and simultaneous approaches at closely spaced parallel
runways at JFK, result in aircraft frequently crossing paths in the (x, y) plane, making this dataset
particularly interesting for our purposes.

The number of simultaneously tracked aircraft was n = 6, 10 and 15, and whenever an aircraft’s
tracking was terminated either because it has landed or because it has left the area, its track was
reassigned to a new aircraft. Our method could be extended to tracking varying numbers of objects,
but that is beyond the scope of our work at this time. The number 15 is significant because it is
large enough to make storing a full distribution over permutations impossible (15! ≈ 1.3 · 1012), yet
with up to 4 Fourier components our algorithm can still run on an entire day’s worth of data in
a matter of hours. The original data comes pre-labeled with track/target assignment information.
We introduce uncertainty by at each time-step t for each pair (j1, j2) of tracks, swapping their
assignment with probability pmix exp

(
−‖xj1(t)− xj2(t) ‖2 /

(
2s2

))
, where xj(t) is the position of

track j at time t (s = 0.1 and pmix = 0.1). This models noisy data, where the assignment breaks
down when targets approach each other.

The algorithm has access to track locations, from which it can model this shifting distribution
over assignments using the pairwise diffusion updates discussed in Section 6.1.1. In addition, with
probability pobs for each t and each j, the algorithm is provided with a first order observation of
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Figure 6.2: Trajectories of some of the flight tracks in the data (runways of LGA and JFK are
clearly visible) and the error of our tracking algorithm for n = 6, 10 and 15 for varying number of
Fourier components (pobs = 0.05, 0.1 and 0.3)

the form Oi→j , with π = 1. The task of the algorithm is to predict the target currently assigned
to track j by computing arg maxi p([σ(i) = j]). The evaluation measure is the fraction of incorrect
predictions.

Experimental results are promising (Figure 6.2) and clearly show that performance generally
improves with the number of irreducibles. It is difficult to compare our algorithm directly with
other identity management and data association methods, since most of them do not accept prob-
abilistic observation and diffusion updates in the form supplied by the data. However, the best
performance we could achieve with the information-form filter Schumitsch et al. [2005] for n = 6
was 0.2996 error and for n = 10 was 0.2885, which is significantly worse than our own result.
Time limitations prevented us from more extensive comparisons, but our preliminary results indi-
cate that the information form filter is better suited to domains where the distribution is highly
peaked, whereas our method performs better when there is more uncertainty and the distribution
is smooth. We are engaged in a thorough evaluation of our method in different domains, varying
the observation frequency, π, n and the types of observations.
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Part III

Invariance
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Chapter 7

Invariant functionals

Since groups ultimately capture symmetries, the study of invariants has been inseparable from
group theory from the start. In this chapter we concentrate on the case when G acts transitively
on a set X , and we wish to find invariants of functions f : X → C with respect to the induced
(translation) action f 7→ fg defined fg(x) = f(g−1(x)), g ∈ G. The simplest example is G = X
acting on itself by left-multiplication, in which case fg is the familiar left-translate of f .

We are particularly interested in constructing sets of invariants {(q1(f), q2(f), . . . , qm(f))} which
are provably complete, in the sense that up to translation they uniquely determine f . Formally,
this means that q1(f) = q1(f

′), . . . , qm(f) = qm(f ′) implies f ′ = fg for some g ∈ G.
This type of problem occurs in machine learning in the representation of individual data in-

stances. The translation- rotation- and scale-invariance of images already mentioned in Section
4.4 is perhaps the most obvious case, but there are many other situations where such invariances
appear in learning problems.

In contrast to Section 4.4 we now address the invariance problem in its most general form,
independent of the RKHS framework, or any specific learning algorithm. While the symmetrization
arguments in Chapter 4 were essentially linear operations, our quest for completeness will lead us
to quadratic and cubic invariants.

Unless stated otherwise, the results of this chapter pertain to any finite group or compact Lie
group. While for notational simplicity we often present our arguments in terms of the former, it
should be understood that the arguments apply equally to the latter by substituting integration
with respect to Haar measure for summation over group elements.

Non-compact Lie groups, while important from the point of view of applications, are more
problematic for two reasons: having to deal with infinite dimensional irreducible representations,
and the breakdown of so-called Tannaka–Krein duality, which is crucial for certain completeness
results. For these reasons, except for a short discussion at the end of Section 7.1, we will confine
ourselves to the compact case. As we will see in Chapter 8, one of the key issues in applying our
methods to real world problems is to find the right way of compactifying problems.
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7.1 The power spectrum and the bispectrum

Our starting point for developing invariants is the translation property of the Fourier transform,
f̂ t(ρ) = ρ(t) f̂(ρ), which we derived in Section 2.2. In general, any matrix valued functional
s : L(G) → Cdρ×dρ which obeys s(f t) = ρ(t)s(f) we call ρ-covariant. We also introduce ρ-
contravariant functionals, which transform according to s′(f t) = s′(f)ρ(t)†. A trivial example of
a ρ-contravariant function is s′ : f 7→ f̂(ρ)†.

The power spectrum

Assuming as always that the irreducible representations ρ ∈ R are unitary, it is clear that the
product of a ρ-contravariant and a ρ-covariant function is invariant to translation: s′(f t) s(f t) =
s′(f) ρ(t)†ρ(t) s(f) = s′(f) s(f). In particular,

âf (ρ) = f̂(ρ)†f̂(ρ) ρ ∈ R (7.1)

furnishes a system of translation invariant matrices, called the power spectrum of f .
For G = R or G = Zn (7.1) does indeed reduce to the classical power spectrum, â(k) = | f̂(k) |2.

One property inherited from these classical cases is that the power spectrum is the Fourier transform
of the autocorrelation, which on a group is defined

af (x) =
∑

y∈G

f(yx−1)∗f(y), (7.2)

where ∗ denotes complex conjugation. To see this, rewrite (7.2) in the form
∑

y∈G f
−(xy−1) f(y),

where f− is the reflection of f , defined f−(x) = f(x−1). By unitarity, f̂−(ρ) =
∑

x∈G f(x−1) ρ(x) =∑
x∈G f(x) ρ(x−1) = f̂(ρ)†. Hence, by the convolution theorem âf (ρ) = f̂−(ρ) · f̂(ρ) = f̂(ρ)† · f̂(ρ).
Another respect in which the non-commutative power spectrum is similar to its classical coun-

terpart is that it is only a very impoverished representation of the original signal f . In the classical
cases â(k) = |f̂(k)|2 measures the energy in each frequency mode, and is oblivious to phase in-
formation. While translation-invariance does make the overall phase of the signal irrelevant, the
relative phases of the different components contain important information which is all lost.

In the non-commutative case we face a similar situation. By construction, the matrices âf (ρ)
are positive definite, and hence, by the results of Section 4.5, af is restricted to the cone of positive
definite functions on G. Hence, the mapping f 7→ af is necessarily lossy. In particular, for any

collection (Uρ)ρ∈R of unitary matrices, the function with Fourier transform f̂U (ρ) = Uρ · f̂(ρ) will
have the same power spectrum as f . This is the non-commutative analog of losing the “relative
phase information” between the different isotypals.

The bispectrum

The bispectrum addresses the issue of lost phase information by coupling different Fourier com-
ponents. We first describe the classical case, then derive its generalization to the non-commutative
setting. Without question, the key piece of work in this domain is Kakarala’s PhD thesis [Kakarala,
1992], and in particular, his completeness result, which we present below as Theorem 7.1.1. While
the material of this subsection mirrors Kakarala’s work, the angle of the presentation is somewhat
different, and the notations have been changed to conform to the rest of the present thesis.
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In the classical case f : Zn → C, the definition of the bispectrum is

b̂f (k1, k2) = f̂(k1)
∗ f̂(k2)

∗ f̂(k1 + k2). (7.3)

Note that b̂ takes two real arguments and not just one, so it is a much larger object than the original
signal. In general, b̂f is a highly redundant representation of f .

The invariance of b̂ under translation is immediate:

b̂f t = (e−i2πk1x f̂(k1))
∗ (e−i2πk1x f̂(k2))

∗ (e−i2π(k1+k2)x f̂(k1 + k2)) = b̂f .

It is also easy to see that b̂ is the (two dimensional) Fourier transform of the so called triple

correlation

bf (x1, x2) =
n−1∑

y=0

f(y − x1)
∗ f(y − x2)

∗ f(y),

which is manifestly shift-invariant. The most important property of the bispectrum, however, is
that (provided that | f̂(k) | > 0 for all k) it is complete, in the sense that it uniquely determines f ,
up to translation.

The completeness property is easiest to prove by giving an explicit algorithm to reconstruct
f from b̂f . The algorithm proceeds by iteratively computing f̂(0), f̂(1), . . ., starting with f̂(0) =

(̂bf (0, 0))1/3. Now f̂(1) can be set to (bf (0, 1)/f̂(0))1/2, but we can equally well take f̂(1) =

eiφ(bf (0, 1)/f̂(0))1/2 for any phase factor φ ∈ [0, 2π). This indeterminacy is inevitable, since it is a

reflection of translation invariance. Once we have set f̂(1), however, all the other coefficients are
uniquely determined by

f̂(k) =
bf (1, k−1)

f̂(k−1)2
, k = 2, 3, . . . . (7.4)

It is easy to see that the bispectrum of f computed in this manner is indeed b̂f , and that any pair
of functions fφ1 and fφ2 corresponding to different choices of φ are left-translates of one-another.
The only circumstance under which the reconstruction algorithm would break down is if one of the
f̂(k−1) coefficients that we divide by in (7.4) were zero. Since beyond φ, there is no other freedom
in the reconstruction process, we conclude that the original f must be equal to fφ for some φ.

The generalization of the bispectrum to non-commutative compact groups similarly involves
multiplying together different Fourier components, but now these components are matrices. While
the individual f̂(ρ) transform according to f̂(ρ) 7→ ρ(t) f̂(ρ), the matrix product of two such
matrices does not follow any such simple transformation rule. Instead of the matrix product, we
therefore take the tensor product, which transforms according to

f̂ t(ρ1)⊗ f̂ t(ρ2) = (ρ1(t)⊗ ρ2(t)) (f̂(ρ1)⊗ f̂(ρ2)).

To form cubic invariants as in (7.5), we must multiply this product with a linear function of f in
such a way that the various ρ(t) factors appearing on translation will cancel.

The way this may be done is revealed by the general way in which tensor product representations
decompose into irreducible representations. First note that since

ρ1(xy)⊗ ρ2(xy) = (ρ1(x)⊗ ρ2(x)) · (ρ1(y)⊗ ρ2(y)) , x, y ∈ G,
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the tensor product of any two representations is always a representation. In general, ρ1⊗ ρ2 is
not irreducible. By the theorem of complete decomposability (Theorem 1.2.1), however, it must
decompose into a direct sum of irreducibles in an essentially unique way

(ρ1 ⊗ ρ2)(x) = Cρ1,ρ2

[ ⊕

ρ∈R

ρ(x)⊕mρ

]
C†
ρ1,ρ2 x ∈ G.

This is called the Clebsch-Gordan decomposition and the Cρ1,ρ2 unitary matrices are called
Clebsch-Gordan matrices. The mρ ≥ 0 multiplicities are well defined and M⊕m is a shorthand for⊕m

i=1M .
Assuming that the Clebsch-Gordan decomposition is known, it is evident that multiplying the

conjugate of f̂(ρ1) ⊗ f̂(ρ2) by Cρ1,ρ2
[ ⊕

ρ∈R f̂(ρ)
⊕mρ ]

C†
ρ1,ρ2 will yield an invariant matrix. The

bispectrum on a non-commutative group is the system of matrices

b̂f (ρ1, ρ2) =
(
f̂(ρ1)⊗ f̂(ρ2)

)†
Cρ1,ρ2

[ ⊕

ρ∈R

f̂(ρ)
⊕mρ

]
C†
ρ1,ρ2 , ρ1, ρ2 ∈ R. (7.5)

When there is no risk of ambiguity, we shall sometimes omit the index f from b̂f . In numerical

computations it can save some computational time to omit the final multiplication by C†
ρ1,ρ2 , and

use the modified bispectrum

b̂′(ρ1, ρ2) =
(
f̂(ρ1)⊗ f̂(ρ2)

)†
Cρ1,ρ2

⊕

ρ∈R

f̂(ρ)
⊕mρ

, ρ1, ρ2 ∈ R, (7.6)

which is unitarily equivalent to the original, and hence has the same invariance and completeness
properties.

Non-commutative bispectra have been extensively investigated by Ramakrishna Kakarala in the
article [Kakarala, 1993] and in his thesis [Kakarala, 1992]. To find what form the non-commutative
triple correlation takes on non-commutative groups, i.e., what invariant function b : G×G → C
the bispectrum is the Fourier transform of, first recall from general representation theory that the
irreducible representations of G×G are tensor products of the irreducible representations of G. It
follows that

f̂(ρ1)⊗ f̂(ρ2) =
∑

x1∈G

∑

x2∈G

(ρ1(x1)⊗ ρ2(x2)) f(x1)f(x2)

in (7.5) is the Fourier transform of u(x1, x2) = f(x1) f(x2), while

Cρ1ρ2

[ ⊕

ρ∈R

f̂(ρ)
⊕mρ

]
C†
ρ1ρ2 =

∑

x∈G

Cρ1ρ2

[ ⊕

ρ∈R

ρ̂(x)⊕mρ

]
C†
ρ1ρ2 f(x) =

∑

x∈G

(ρ1(x)⊗ ρ2(x)) f(x)

is the Fourier transform of

v(x1, x2) =

{
f(x1) if x1 = x2

0 otherwise .

By the convolution theorem (on G×G), (7.5) must therefore be the Fourier transform of u− ∗ v
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(recall that u−(x1, x2) = u(x−1
1 , x−1

2 )), hence the non-commutative triple correlation is

b(x1, x2) =
∑

y1∈G

∑

y2∈G

u−(x1y
−1
1 , x2y

−1
2 )∗ v(y1, y2) =

∑

y1∈G

∑

y2∈G

u(y1x
−1
1 , y2x

−1
2 )∗ v(y1, y2) =

∑

y∈G

f(yx−1
1 )∗ f(yx−1

2 )∗ f(y). (7.7)

Once again, this function is manifestly translation invariant.
All of the above results can be found in Kakarala’s thesis, up to some slight differences in the

exact definition of the triple correlation and the bispectrum. Kakarala’s most significant result,
however, is that at least for compact groups, the non-commutative bispectrum exhibits the same
completeness property as its classical counterpart:

Theorem 7.1.1 ([Kakarala, 1992, Theorem 3.2.4]) Let f and f ′ be a pair of complex valued inte-
grable functions on a compact group G, and let the bispectrum be defined as in (7.5). Assume that
f̂(ρ) is invertible for each ρ ∈ R. Then f ′ = fz for some z ∈ G if and only if bf (ρ1, ρ2) = bf ′(ρ1, ρ2)
for all ρ1, ρ2 ∈ R.

This is a remarkable and non-trivial result, the proof of which we shall not attempt to repro-
duce here. The proof hinges on Tannaka–Krein duality, which in loose terms states that given a
compact group G with irreducible representations R and a collection of non-zero unitary matrices{
Uρ ∈ Cdρ×dρ

}
ρ∈R

obeying the same decomposition rule

Uρ1 ⊗ Uρ2 = Cρ1,ρ2

[ ⊕

ρ∈R

U
⊕mρ
ρ

]
C†
ρ1,ρ2

as the representation matrices, there is an x ∈ G such that Uρ = ρ(x) for each ρ ∈ R [Kakarala,
1992, Theorem 3.2.2].

Kakarala manages to generalize Theorem 7.1.1 to a specific subset of globally non-compact
but separable and locally compact groups, which he calls Tatsuuma duality groups. Significantly,
the affine transformation group of R, the Euclidean groups ISO(n), and the n-dimensional proper
inhomogeneous Lorentz group all belong to this class. Note that non-compact groups have infinite
dimensional irreducible representations, therefore the Fourier transform and the bispectrum need
to be generalized to the linear operator realm.

Theorem 7.1.2 ([Kakarala, 1992, Theorem 3.4.5]) Let G be a Tatsuuma duality group and let
f, f ′ be complex valued functions on G in L1(G). Let the bispectrum be defined as in (7.5), and
assume that f̂(ρ) is invertible for each ρ ∈ R. Then f ′ = fz for some z ∈ G if and only if
bf (ρ1, ρ2) = bf ′(ρ1, ρ2) for all ρ1, ρ2 ∈ R.

7.2 The skew spectrum

From a computational point of view, both the bispectrum and the triple correlation can be problem-
atic. The former demands Clebsch-Gordan matrices, which are often surprisingly hard to compute,
even for such fundamental groups as Sn, and computing (7.5) involves multiplying very large ma-
trices. The latter involves summing (integrating) over the whole group, and cannot easily be
specialized to band-limited functions.
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These are the considerations that motivated us to develop a third, unitarily equivalent form of
the bispectrum, which we named the skew spectrum. The skew spectrum is midway between the
triple correlation and the bispectrum in the sense that each of its components is indexed by a pair
(z, ρ), where z is an element of G and ρ is an irreducible.

Definition 7.2.1 Let G be a compact group, f a function f : G→ C, and let rz(x) = f(xz) f(x).
The skew spectrum of f is then defined as the collection of matrices

q̂z(ρ) = r̂z(ρ)
† · f̂(ρ), z ∈ G, ρ ∈ R. (7.8)

To see that the skew spectrum and the triple correlation are unitarily equivalent, it is sufficient to
observe that by the convolution theorem

qz(x) =
∑

y∈G

r−z (xy−1)∗ f(y) =
∑

y∈G

rz(yx
−1)∗ f(y) =

∑

y∈G

f(yx−1)∗ f(yx−1z)∗ f(y) = b(x, z−1x),

and that as z sweeps out G, (b(x, z−1x))z,x covers the entire triple correlation b. We thus have the
following theorem.

Theorem 7.2.2 Let f and f ′ be complex valued integrable functions on a compact group G with
skew spectra q̂ and q̂ ′, with respect to a complete set of inequivalent irreducible representations R
of G. Assume that f̂(ρ) is invertible for all ρ ∈ R. Then f ′ = f t for some t ∈ G if and only if
q̂ ′z(ρ) = q̂z(ρ) for all z ∈ G and all ρ ∈ R.

Since the bispectrum, triple correlation, and skew spectrum are unitarily equivalent sets of in-
variants, in a computational setting the choice between them will largely be determined by their
respective computational and storage complexities. We now present an analysis of these factors for
finite groups.

The triple correlation consists of |G|2 scalars, and by unitarity the total number of entries in
the bispectrum matrices must be the same. The symmetry b(x1, x2) = b(x2, x1) and its counterpart
b̂(ρ1, ρ2) = b̂(ρ2, ρ1) (up to reordering of rows and columns) reduce the number of relevant com-
ponents to |G|(|G| + 1)/2, but to keep the analysis as simple as possible we ignore this constant
factor. Another technical detail that we ignore for now is that if all we need is a complete set of
invariants, then it is sufficient to compute b̂ (ρ1, ρ2)Cρ1ρ2 , avoiding the final multiplication by C†

ρ1ρ2

in (7.5).
The cost of computing the bispectrum involves two factors: the cost of the Fourier transform,

and the cost of multiplying the various matrices in (7.5). As discussed in Chapter 3, fast Fourier
transforms typically reduce the complexity of Fourier transformation (and inverse Fourier trans-
formation) from O(|G|2) to O(|G| logk |G|) scalar operations for some small integer k. We assume
that for whatever group we are working on, an O(|G| logk |G|) transform is available. This makes
matrix multiplication the dominant factor in the cost of computing the bispectrum.

The complexity of the naive approach to multiplying two D-dimensional matrices is D3, hence
the cost of computing (7.5) for given (ρ1, ρ2) is O(d3

ρ1d
3
ρ2). Summing over all ρ1, ρ2 ∈ R and

assuming that
∑

ρ∈R d
3
ρ grows with some power 1 < θ < 2 of |G| (note that since

∑
ρ∈R d

2
ρ = |G|,

even
∑

ρ∈R d
4
ρ grows with at most |G|2) gives an overall complexity bound of O(|G|2θ). Thus,

the critical factor in computing the bispectrum is matrix multiplication and not the fast Fourier
transform.
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The complexity analysis of the triple correlation is much simpler. Equation (7.7) involves an
explicit sum over G, which is to be computed for all |G|2 possible values of (x1, x2). Hence, the
total time complexity is O(|G|3).

In contrast, the skew spectrum involves |G|+1 separate Fourier transforms followed by |G| se-
quences of multiplying {Cdρ×dρ}ρ∈R matrices. The cost of the former is O(|G|2 logk |G|), while the
cost of the latter is O(|G|θ+1), potentially improving on both the triple correlation and the bispec-
trum. Further advantages of the skew spectrum become apparent when extending our discussion
to functions on homogeneous spaces.

7.3 Generalization to homogeneous spaces

In machine learning the objects that want to find invariants of with respect to G are not necessarily
functions on G itself. Often f is defined on some other space X , which G is acting on. In this case
we still have a natural interpretation of left-translation by t ∈ G, namely f t(x) = (t−1(x)). In this
section we investigate the way bispectral techniques generalize to this case.

Clearly, the interesting case is when the action of G on X is transitive. Otherwise we can
decompose X into orbits (on which, by definition, G acts transitively) and find invariants of f
restricted to each orbit. Accordingly, in the following we can assume that X is a homogeneous
space of G, and by the results of Section 1.1.5 we can regard f as a function on the quotient space
G/H where H is the isotropy subgroup. The generalization of the Fourier transform to this case is

f̂(ρ) =
∑

x∈G

ρ(x) f(xH) ρ ∈ R, (7.9)

which factors in the form

f̂(ρ) =
∑

x∈G/H

f(xH) ρ(x)
∑

h∈H

ρ(h) ρ ∈ R. (7.10)

Any f : G/H → C induces a function f ↑G: G → C by f ↑G (x) = f(xH), which is constant
on each xH coset. Such functions we call G/H-coset functions. Equation (7.9) tells us that
f̂(ρ) = f̂ ↑G(ρ), so harmonic analysis on G/H is essentially just the harmonic analysis of G/H-coset
functions. Consequently, all the important properties of Fourier transformation, including unitarity,
the translation property f̂ t(ρ) = ρ(t) f̂(ρ), etc., generalize without change (note, however, that the
right-translate of G/H-coset function is no longer necessarily a G/H-coset function).

An important feature of the Fourier transform of coset functions is that they are potentially
very sparse. In particular, if the irreducible representation ρ in (7.10) when restricted to H splits
into irreducible representations of H in the form

ρ↓H (h) = T †

[⊕

ρ′

ρ′(h)

]
T, h ∈ H, (7.11)

then the Fourier transform can be rewritten as

f̂(ρ) =

[ ∑

x∈G/H

f(x) ρ(x)

]
Mρ , (7.12)
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where Mρ is the constant matrix

Mρ = T †

[⊕

ρ′

∑

h∈H

ρ′(h)

]
T.

If ρ′ is the trivial representation ρHtriv of H, then
∑

h∈H ρ
′(h) = |H|. However, for any other

irreducible, by the unitarity of Fourier transformation over H we must have
∑

h∈H ρ
′(h) = 0, so

the rank of M (and hence of f̂(ρ)) is at most equal to the multiplicity of the trivial representation
of H in (7.11).

In practice this means that depending on the choice of G and H we will often find that many
f̂(ρ) components are identically zero, because ρ ↓H does not contain any copies of ρHtriv at all.

Furthermore, if R is adapted to G>H, then Mρ will be block diagonal, so even if f̂(ρ) does not
identically vanish, it will only have as many non-zero columns as the multiplicity of ρHtriv in ρ↓H.

From a computational point of view these restrictions on the form of f̂(ρ) are a blessing, reducing
both the time complexity and the storage requirements associated with computing the Fourier
transform of functions on G/H. On the other hand, they also mean that the f̂(ρ) matrices become
singular, which blatantly violates the conditions of Theorems 7.1.1 and 7.2.2. The bispectrum and
the skew spectrum will still be invariants of f with respect to left-translation, however, since that
property only depends on the translation property of the Fourier transform. To be explicit, we
state the following theorem.

Theorem 7.3.1 Let H be a subgroup of a compact group G, and let f, f ′ ∈ L1(G/H). Assume
that the Fourier transform of f is defined as in (7.12), the bispectrum is defined as in (7.5), and the
skew spectrum is defined as in (7.8). Then if f ′ = f t for some t ∈ G, then b̂f ′ = b̂f and q̂f ′ = q̂f .

The potential computational savings involved in computing the bispectrum of functions on G/H
arise from the special form of their Fourier transform. In the case of the skew spectrum this is
compounded by redundancies in the z index. The following theorem shows that we may restrict z
to a complete set of H\G/H double coset representatives without losing any information.

Theorem 7.3.2 Let H be subgroup of a compact group G and let f ∈ L1(G/H). Then the skew
spectrum q̂f is uniquely determined by its subset of components { q̂z(ρ) | ρ ∈ R, z ∈ H\G/H }.

Proof. For any h ∈ H,

rzh(x) = f(xzhH)f(xhH) = f(xzH)f(xH) = rz(x),

so q̂zh(ρ) = r̂z(ρ)
†f̂(ρ) = r̂(ρ)†f̂(ρ) = qz(ρ). Now for h′ ∈ H

rh′z(x) = f(xh′zH)f(xH) = f(xh′zH)f(xh′H) = r(h
′−1)

z (x),

and thus by the translation property of the Fourier transform,

q̂h′z(ρ) = (r̂z(ρ) ρ(h
′−1

))†f̂(ρ) = ρ(h′) r̂z(ρ)
† f̂(ρ) = ρ(h′) q̂z(ρ),

so q̂h′z(ρ) and q̂z(ρ) albeit not equal, are related by an invertible linear mapping. �

89



Before closing this section we mention that Kakarala presents a completeness result for the bispec-
trum of functions on homogeneous spaces, but one that is only applicable to functions on G\H and
not G/H. One crucial difference between these cases is the fact that if f is a G\H-coset function,
that does not imply that its left-translates will also be in the same class. Unlike the G/H case,
the left translation of such functions does not have a clear interpretation in terms of G acting on a
space X on which f is defined. Consequently, this case is of less relevance to capturing real-world
invariances. At the same time, if f ∈ L(G\H), then any g, g′ ∈ G related by g′ = gh for some h ∈ H
will have the same action on f , effectively reducing the set of possible translations to members of
G/H. In this sense the G\H-coset case is easier.

Below we reproduce Kakarala’s result paraphrased to conform to our notation. Note that
in contrast to our previous theorems, this result is asymmetric: it compares f ∈ L1(G\H) to
f ′ ∈ L1(G).

Theorem 7.3.3 [Kakarala, 1992, Theorem 3.3.6] Let H be any closed subgroup of a compact group
G, and let f ∈ L1(G\H) be such that for all ρ ∈ R, the matrix rank of f̂(ρ) is equal to the
multiplicity of ρH

triv
in the decomposition of ρ into irreducible representations of H. Then b̂f = b̂f ′

for some f ′ ∈ L1(G) if and only if there exists some t ∈ G such that f ′ = (f ↑G)t.

To summarize this section, the machinery of bispectra and skew spectra does carry over to
homogeneous spaces of compact groups, but the completeness property is lost. Nonetheless, as we
shall see in the following chapter, in machine learning applications we often find that the bispectrum
and the skew spectrum contains more than enough information to solve the practical problem at
hand.
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Chapter 8

Invariant features for images

The most immediate application of the invariants of the previous chapter is in pattern recognition
and computer vision, since natural images exhibit a wide range of invariances, including translation-
rotation- and to some extent scale invariance. In this chapter we focus on just the first two of these.

The difficulty with directly applying the bispectral methods of the previous chapter to this
problem is that the relevant group, the group ISO+(2) of rigid body motions of R2, is not compact.
Although ISO+(2) belongs to the class of special non-compact groups to which Theorem 7.1.2
applies, non-compactness leads to various computational complications, not the least of which is
that the irreducible representations, and hence the Fourier components, become operator-valued.
The key idea of this chapter is to compactify the translation/rotation problem by exploiting a local
isomorphism between the action of ISO+(2) on R2 and the action of SO(3) on the two-sphere S2.

8.1 A projection onto the sphere

Our approach to compactifying the ISO+(2) invariance problem is based on the observation that
while ISO+(2) itself is not compact, the images that we are operating on are confined to a compact
region, and the translations/rotations that we care about are also restricted to a compact subset
of the full transformation group. Asymptotically, any group that is locally isomorphic to ISO+(2)
acting on any space locally isomorphic to R2 leads to the same invariance problem. Here we take
the simplest case of SO(3) acting on the sphere S2.

To find the local isomorphism we need to fix a way of parametrizing both groups as well as
the spaces that they are acting on. Taking advantage of the fact that any T ∈ ISO+(2) may be
decomposed into a rotation followed by a translation, we use the parametrization T = (tx, ty, α)
given by (

x
y

)
H7−→

(
cosα − sinα
sinα cosα

)(
x
y

)
+

(
tx
ty

)
.

We use the notation Bǫ =
{

(x, y) ∈ R2 | ‖ (x, y) ‖< ǫ
}

to denote an ǫ-radius circular patch in R2

around the origin, and the convention x = r cosφ and y = r sinφ to label points in R2 in polar
coordinates (r, φ).

The surface of S2 will be parametrized by spherical polar coordinates (θ, φ), where 0 ≤ θ ≤ 2π
measures the polar angle from the positive z axis, and 0 ≤ φ < 2π measures the azimuthal angle
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from the positive x axis: 


x
y
z



 =




sin θ cosφ
sin θ sinφ

cos θ



 .

For R ∈ SO(3) we use Euler angles (θ, φ, ψ), which correspond to decomposing R into a sequence
of three rotations about the z axis, the y axis, and again the z axis:

R(θ, φ, ψ) =




cosφ − sinφ 0
sinφ cosφ 0

0 0 1








cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ








cos(ψ − φ) − sin(ψ − φ) 0
sin(ψ − φ) cos(ψ − φ) 0

0 0 1



 .

(8.1)
The intuitive picture is that R = (θ, φ, ψ) rotates the z axis to spherical coordinates (θ, φ), and
then rotates the other two basis vectors around the rotated image of ez by ψ. We also introduce
the notation ISO+

ǫ (2) =
{

(tx, ty, α) ∈ ISO+(2) | (tx, ty) ∈ Bǫ
}
.

We identify points in B1 with points on the S+
2 (the Northern hemisphere of the sphere) by the

projection
ω : (r, φ

R2 ) 7→ (θ, φ
S2

) with r = sin θ and φ
R2 = φ

S2
. (8.2)

The R2 and S2 subscripts are to clarify whether we are referring to spherical or planar polars.
We also set up a correspondence Υ: (α, tx, ty) 7→ (θ, φ, ψ) between rigid body motions and three
dimensional rotations defined by

α = ψ, tx = sin θ cosφ, ty = sin θ sinφ. (8.3)

Note that the domain of Υ must be restricted to ISO+
1 (2). The following theorem establishes that

these correspondences indeed lead to a local isomorphism.

Theorem 8.1.1 If x = (x, y)∈Bǫ and T ∈ ISO+
ǫ (2) for some 0 < ǫ < 1/2, and R = Υ(T ), then

wwT (x)− ω−1(R(ω(x)))
ww = O(ǫ2).

Proof. Multiplying the second two matrices in (8.1) gives

R(θ, φ, ψ) =




cosφ − sinφ 0
sinφ cosφ 0

0 0 1








cos(ψ − φ) − sin(ψ − φ) sin θ
sin(ψ − φ) cos(ψ − φ) 0

− sin θ cos(ψ − φ) sin θ sin(ψ − φ) cos θ



 .

Performing the multiplication and using ǫ2 > t2x + t2t = sin2 θ(sin2 φ + cos2 φ) = sin2 θ, and the
Taylor series approximations sin2 θ = O(ǫ2) and cos θ = 1−O(ǫ2) gives

R(θ, φ, ψ) =




cosψ − sinψ cosφ sin θ
sinψ − cosψ sinφ sin θ

− sin θ cos(ψ − φ) sin θ sin(ψ − φ) 1



 +O(ǫ2).

Now in Cartesian coordinates ω(x) is just v = (x, y,
√

1−x2−y2)⊤ = (x, y, 1)⊤ +O(ǫ2), and both
x sin θ and y sin θ are O(ǫ2), whence

R(θ, φ, ψ) · v =




cosψ − sinψ cosφ sin θ
sinψ − cosψ sinφ sin θ

0 0 1








x
y
1



 +O(ǫ2).
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Figure 8.1: (a) The local isomorphism between the action of rotations and translations on functions
on the plane and the action of 3D rotations on the same functions projected on the sphere. (b) A
NIST handwritten digit projected onto the sphere. The band-limit is L = 15. Note that there is a
small amount of “ringing”.

Taking advantage of the fact that in Cartesian coordinates ω−1 : (vx, vy, vz) 7→ (vx, vy), and using
(8.3), this gives

ω−1(R(ω(x))) =

(
cosα − sinα
sinα cosα

)(
x
y

)
+

(
tx
ty

)
+O(ǫ2).

�

If in our original problem images are represented by functions h : R2 → R with support confined to
Bǫ, Theorem 8.1.1 suggests projecting them onto the sphere by Ω: h 7→ f , where f(ω(x)) = h(x).

We say that a homeomorphism Φ: R2 → R2 is a δ-homeomorphism, if ‖x− Φ(x) ‖ ≤ δ for all
x ∈ R2. Theorem 8.1.1 then immediately gives the following result.

Corollary 8.1.2 For any T ∈ ISO+
ǫ (2) with 0<ǫ< 1/2 there is a δ-homeomorphism ΦT , such that

for any image h with support confined to Bǫ,

(Ω−1((Ωf)ΥT ))(x) = f(ΦT (x)), (8.4)

with δ = O(ǫ2).

The somewhat cumbersome notation of (8.4) belies the intuitive nature of this corollary. In
plain words, it simply states that up to O(ǫ2) distortion, translations/rotations no greater than ǫ of
images no larger than ǫ can be imitated by projecting the image down to the sphere and rotating
the sphere (Figure 8.1). Although Theorem 8.1.1 and Corollary 8.1.2 are asymptotic results, in
practice the distortion is tolerable even for ǫ = 1/2, while for ǫ < 0.1, its effect is negligible: it is
legitimate to say that we have reduced our problem to finding invariants of f to rotations.
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8.2 Bispectral invariants of functions on S2

Regarding rotations as “translation of functions on S2 by elements of SO(3)” makes the framework
of bispectral invariants (bispectrum, triple correlation, skew spectrum and tangent spectra) directly
applicable to finding rotational invariants of the projected images. In fact, the action of SO(3) on
S2 is probably the simplest non-trivial case of the theory of non-commutative bispectral invariants,
and has already been briefly described in [Healy et al., 1996]. To make the method as transparent
as possible, we derive the invariants from first principles and then show that they are indeed a
special case of the bispectrum framework.

Our starting point is to expand f as

f(θ, φ) =
∞∑

l=0

l∑

m=−l

f̂l,m Y
m
l (θ, φ) (8.5)

in terms of the spherical harmonics

Y m
l (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ) eimφ,

where Pml are the associated Legendre polynomials. It can be shown that for any sufficiently
smooth integrable function on S2 such an expansion exists, and the expansion coefficients are given
by f̂l,m = 〈f, Y m

l 〉, where 〈·, ·〉 is the inner product

〈f, g〉 =
1

4π

∫ π

0

∫ 2π

0
f∗(θ, φ) g(θ, φ) sin θ dφ dθ.

In numerical applications we will truncate (8.5) at some finite L, corresponding to a high frequency
cutoff. We also introduce the vectors f̂ l = (f̂l,−l, f̂l,−l+1, . . . , f̂l,l).

In the image invariants application, starting with an n×n pixel imageM of width 0 < w < 1/
√

2,
the vectors f̂0, f̂1, . . . , f̂L can be computed in O(L3n2) time by

f̂l,m =
n∑

i,j=1

Mi,jY
m
l (θ, φ), (8.6)

where by (8.2) for x = w ((i− 1)/(n− 1)− 0.5) and x = w ((i− 1)/(n− 1)− 0.5),

θ = arcsin
√
x2 + y2, φ =

{
arctan(y/x) if y > 0

2π − arctan(y/x) if y < 0
.

The key to constructing invariants from f̂0, f̂1, . . . , f̂L is that Y m
l are the −l2 eigenvalue eigen-

functions of the Laplacian

∆ =
1

sin2 θ

∂

∂φ2
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
,

which is a rotation invariant operator, hence under rotation any given Y m
l must transform into a

linear combination of Y −l
l , Y −l+1

l , . . . , Y l
l . In other words, if for some R ∈ SO(3), f ′ is the rotated
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function fR, then 

f̂ ′l,−l

...

f̂ ′l,l


 = D(l)(R)



f̂l,−l

...

f̂l,l


 (8.7)

for some matrix D(l)(R) ∈ C(2l+1)×(2l+1). Clearly D(l) must be a representation of SO(3); in fact,
D(0), D(1), D(2), . . . turn out to be exactly the unitary irreducible representations of SO(3). Thus,
in the language of section 7.1, the vector f̂ l is D(l)-covariant.

As before, this give rise to the concept of power spectrum

pl =
l∑

m=−l

∣∣ f̂l,m
∣∣2 = f̂

†

l · f̂ l, l = 0, 1, 2, . . .

which is invariant. Since each pl only measures the total energy in each Fourier mode, the power
spectrum by itself would not be a very good rotation invariant representation of f , however.

As in section 7.1, we remedy the problem by considering the Clebsch-Gordan decomposition,
which for SO(3) takes the particularly simple form

D(l1)(R)⊗D(l2)(R) =
(
C l1,l2

)†
[ l1+l2⊕

l=| l1−l2 |

D(l)(R)

]
C l1,l2 . (8.8)

It is convenient to split C l1,l2 into a collection of tall and thin matrices C l1,l2,| l1−l2 |, . . . , C l1,l2,l1+l2

collecting those columns of C l1,l2 which match up with the same l index in (8.8). With this notation,

each
(
f̂ l1 ⊗ f̂ l2

)†
C l1,l2,l is D(l)-contravariant, giving rise to the invariants

pl1,l2,l =
(
f̂ l1 ⊗ f̂ l2

)†
C l1,l2,l f̂ l. (8.9)

This is the appropriate generalization of the bispectrum to S2, and these are the features that we
will use to characterize 2D images in a rotation and translation invariant manner.

For SO(3) the Clebsch-Gordan coefficients C l1,l2,lm1,m2,m = [C l1,l2 ](l,m),(m1,m2) can be computed
relatively easily by using recursion relations. The final form of our bispectral invariants is

pl1,l2,l =
l∑

m=−l

l1∑

m1=−l1

C l1,l2,lm1,m−m1,m f̂
∗
l1,m1

f̂∗l2,m−m1
f̂l,m, 0 ≤ l1, l2 ≤ L, | l1 − l2 | ≤ l ≤ l1 + l2.

(8.10)
In total this gives O(L3) invariants. If the original images were n × n pixels in size, Nyquist-type
considerations dictate that L scale linearly with n, and lead to a computation time ofO(L5) = O(n5)
per image. Of course, if the width w is very small, the constant of proportionality might be large.
In our practical experiments, we had success with w values as large as 0.5, and L ≈ n.

8.2.1 Relation to the bispectrum on SO(3)

Since the sphere can be identified with SO(3)/SO(2), the general formula for the Fourier transform
of f : S2 → C would be

f̂(D(l)) =

∫

R∈SO(3)
f(Rez)D

(l)(R) dµ(R),
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Figure 8.2: (a) Classification error for each pair of digits using the bispectral vs. baseline represen-
tation of NIST digits. (b) The first three principal components in bispectrum space of 100 images
of the digit ”6” mapped back to image space by BFGS. Row i shows the perturbation of the mean
image by −2, 1, 0, 1, 2 “standard deviations” along the i’th eigenvector.

where ez is the unit vector pointing in the positive z direction. Changing to Euler angles makes it
clear that this expression factors just like (7.10), since Rez is insensitive to the ψ-parameter of R:

f̂(D(l)) =

[
1

4π

∫

S2

f(θ, φ)D(l)(θ, φ, ψ) sin θ dθdφ

]
·
[

1

2π

∫ 2π

0
D(l)(0, 0, ψ) dψ

]
.

However, the irreducible representations of SO(3) are closely related to the spherical harmonics. In
particular, indexing the rows of D(l)(R) by −l ≤ m ≤ l and its columns by l ≤ m′ ≤ l, the most
popular choice for the actual form of D(l) is [D(l)]m,m′ = e−ilψY m

l (θ, φ), which immediately makes
it clear that [

1

2π

∫ 2π

0
D(l)(0, 0, ψ) dψ

]

m,m′

= δm′,0.

In other words, f̂(D(l)) has but one non-zero column, and that column is exactly f̂ l from (8.5).
Substituting (8.8) into (7.6), the SO(3)-bispectrum formed from these matrices would be

b̂′(l1, l2) =
(
f̂(D(l1))⊗ f̂(D(l2))

)†
C l1,l2

l1+l2⊕

l=| l1−l2 |

f̂(D(l)), l1, l2 ∈ N.

It is convenient to index the rows of these matrices by (m′
1,m

′
2) corresponding to the rows of the two

matrices in the tensor product, and to label the columns by (l,m′) specifying which column of which
element in the direct sum is relevant. Given this convention, when we compute (8.2.1), the sparsity
pattern of the f̂(D(l)) matrices zeros out every element of b̂′(l1, l) except ([̂b′(l1, l)](0,0),(l,0))

l1+l2
l=| l1−l2 |

.

Comparing with (8.9) shows that these elements are exactly the same as the pl1,l2,l invariants that
we had before.

96



8.3 Experiments

We conducted experiments on randomly translated and rotated versions of hand-written digits from
the well known NIST dataset [LeCun and Cortes, 2007]. The original images are 28× 28 pixels in
size, but most of them only occupy a fraction of the image patch. The characters are rotated by a
random angle between 0 and 2π, clipped, and embedded at a random position in a 30× 30 patch.

The experiments consisted of comparing linear and Gaussian RBF SVMs trained on the bis-
pectral representations of images to similar SVMs trained on the original 900-dimensional pixel
intensity vectors. We used L = 15, which is a relatively low resolution for images of this size. The
width parameter was set to w = 1/2. We trained separate 2-class SVMs for all

(
10
2

)
digit pairings,

and cross-validated the regularization parameter and the kernel width σ independently for each
such task. We used 10-fold cross validation to set the parameters for the linear kernels, but to save
time only 3-fold cross validation for the Gaussian kernels. Testing and training was conducted on
the relevant digits from the second one thousand images in the NIST dataset. The results we report
are averages of error for 10 random even splits of this data. Since there are on average 100 digits
of each type amongst the 1000 images in the data, our average training set and test set consisted of
just 50 digits of each class. Given that the images also suffered random translations and rotations
this is an artificially difficult learning problem.

The results are shown graphically in Figure 8.2 and in tabular form in the table below. For
both the linear kernels and the Gaussian kernels, the bispectral features far outperform the baseline
bitmap representation. Indeed, it seems that in many cases the baseline cannot do better than what
is essentially random guessing. In contrast, the bispectrum can effectively discriminate even in the
hard cases such as 8 vs. 9 and reaches almost 100% accuracy on the easy cases such as 0 vs. 1.
Surprisingly, to some extent the bispectrum can even discriminate between 6 and 9, which in some
fonts are exact rotated versions of each other. However, in handwriting, 9’s often have a straight
leg and/or a protrusion at the top where right handed scribes reverse the direction of the pen.

The results make it clear that the bispectral features are able to capture position and orientation
invariant characteristics of handwritten figures. Short of a handwriting-specific algorithm which
extracts explicit landmarks we do not expect other methods to yield a comparable degree of position
and rotation invariance.

In contrast to most other invariant features employed in vision, the richness of the bispectral
representation makes it possible to reconstruct images. However, since the bispectrum consists of
a collection of cubic polynomials, inverting the mapping, i.e., finding the image the bispectrum of
which is closest to a given bispectrum requires gradient descent (with BFGS). The PCA results
shown in Figure 8.2 are notable for two reasons: (a) the mean is a remarkably good “average”
6; (b) the eigenvectors capture much more interesting forms of variation than the Gabor wavelet-
type patterns which often appear in such experiments, but are to a large extent just a artifact of
translations and rotations. Reconstructibility suggests that the bispectral representation is close
to complete and opens up a host of other possible applications beyond classification.
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1 2 3 4 5 6 7 8 9
0.77(0.41) 6.22(2.41) 5.09(1.54) 5.03(1.07) 2.90(1.53) 4.11(2.39) 2.73(1.11) 4.98(1.64) 5.86(2.88) 0
17.12(3.67) 33.87(3.59) 42.06(3.59) 30.64(2.53) 37.82(3.51) 31.42(5.85) 29.36(3.83) 42.58(4.33) 27.61(3.16)

0.68(0.81) 0.39(0.98) 3.07(1.30) 0.00(0.00) 1.37(0.88) 1.77(1.48) 2.68(2.02) 1.02(1.00) 1
30.78(2.90) 29.34(4.50) 34.96(3.41) 30.66(2.85) 34.46(4.47) 38.32(4.05) 24.60(2.57) 34.78(3.57)

8 10.06(2.04) 15.89(5.79) 15.82(3.22) 8.06(3.60) 9.64(2.00) 11.11(2.29) 9.26(1.63) 10.55(2.95) 2
44.06(3.93) 49.06(4.18) 47.12(4.72) 45.20(4.26) 51.44(5.21) 47.20(5.54) 47.44(6.23) 46.70(2.95)

7 8.81(2.81) 4.68(2.30) 4.81(1.68) 16.42(5.69) 7.54(2.75) 4.00(1.13) 10.70(3.79) 7.66(3.01) 3
46.22(4.13) 37.33(2.21) 44.64(3.03) 49.07(4.81) 49.38(5.26) 44.74(4.42) 50.37(4.21) 47.60(5.55)

6 21.37(3.81) 6.16(2.30) 9.30(3.33) 6.26(1.90) 10.94(4.09) 14.95(2.89) 6.27(3.57) 16.95(1.84) 4
50.73(4.31) 41.19(4.47) 40.43(5.16) 40.08(6.67) 50.11(5.26) 45.30(3.30) 46.26(2.63) 49.82(4.68)

5 7.07(2.93) 6.23(3.05) 6.26(1.54) 16.56(1.66) 14.63(2.42) 5.31(2.27) 6.62(2.72) 6.84(2.23) 5
43.23(2.46) 41.63(3.29) 46.39(3.41) 47.04(4.21) 50.00(4.02) 41.70(4.09) 44.63(3.31) 46.01(4.37)

4 12.09(2.47) 6.45(2.26) 13.92(2.63) 10.67(1.47) 5.75(1.22) 7.68(4.05) 9.00(2.93) 20.15(3.62) 6
52.73(3.65) 42.29(4.44) 46.73(6.47) 46.82(5.32) 39.21(4.29) 48.19(4.10) 46.13(5.82) 53.75(2.69)

3 5.08(1.50) 10.21(3.89) 3.50(1.48) 6.98(3.46) 16.88(2.73) 5.12(2.35) 3.50(2.28) 8.06(3.49) 7
44.87(3.91) 46.00(4.97) 41.90(4.09) 45.86(5.27) 52.53(3.39) 43.07(9.05) 41.16(5.18) 53.21(5.01)

2 10.34(2.51) 12.14(2.27) 12.73(3.39) 8.89(3.09) 8.83(4.22) 13.20(2.56) 14.68(4.60) 9.43(2.14) 8
45.95(4.84) 44.02(3.14) 43.84(4.38) 45.63(5.49) 50.09(4.78) 45.26(5.11) 47.75(3.46) 45.13(2.87)

1 3.05(0.88) 0.52(0.55) 1.22(1.09) 1.35(0.43) 0.21(0.45) 2.48(0.97) 0.00(0.00) 0.99(0.48)
28.01(4.56) 20.16(2.93) 32.12(6.34) 28.52(9.47) 30.86(9.99) 33.98(9.44) 22.61(8.82) 27.29(4.00)

0 6.34(2.57) 3.74(2.23) 4.48(1.39) 3.07(1.77) 3.90(2.25) 3.35(1.69) 4.78(1.08) 5.06(1.52) 0.80(0.42)
19.16(2.65) 29.99(4.20) 24.96(3.73) 23.51(4.93) 29.52(3.99) 32.45(12.63) 33.72(4.58) 26.30(4.32) 12.50(3.60)
9 8 7 6 5 4 3 2 1

Table 8.1: Classification error in percent for each pair of digits for the linear kernels (top wedge,
refer to column labels on top and row labels on right) and the Gaussian kernels (bottom wedge,
refer to column labels on bottom and row labels on left). In each cell, the performance of the
bispectrum-based classifier is shown on top, and the baseline on bottom; standard errors are in
parentheses.
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Conclusions

This thesis presented a framework for harnessing some of the power of group theory and non-
commutative harmonic analysis in machine learning. Some of our main results were the following:

• the symmetrization theorem for kernels invariant under the action of a group (Theorem 4.4.3
on page 61);

• the characterization of translation invariant positive definite kernels on groups in terms of
their Fourier spectra (Theorem 4.5.4 on page 64);

• the introduction of the concept of diffusion kernels on groups and their interpretation in terms
of spectral graph theory (Section 5.2);

• the PerMceptron algorithm for learning permutations;

• the mathematical framework set forth in Chapter 6 for identity management in multi-object
tracking, in particular, our algorithm for efficient inference based on the twisted Fourier
transform of Theorem 3.3.2;

• the introduction of the skew spectrum and showing its equivalence to the bispectrum (Section
7.2);

• the new bispectral invariants of Chapter 8 for representing images in a rotation and translation
invariant way.

Clearly, there is room for more work, both along the lines begun in this thesis, and in exploring
other connections between learning and abstract algebra. Some of the most immediate goals might
be the following:

• getting the PerMceptron to work on real problems and exploring its connection to ranking;

• extending the identity management algorithm to the case when some of the targets are ex-
changeable (red team vs. blue team);

• developing the distributed version of the identity management algorithm;

• giving a better description of exactly what information is lost when the bispectrum is re-
stricted to a homogeneous space, and finding extensions of the bispectrum to minimize this
loss of uniqueness;

• devising general recovery algorithms for the bispectrm/skew spectrum;

• exploring other bispectral invariants, in particular scale and homeomorphism invariant rep-
resentations of images.

Between the defense of this thesis and its final submission some related publications have already
appeared. In Chapter 6 we already mentioned that Huang et al. [2008] have proposed an identity
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management model essentially identical to ours, but also added some new features. Regarding
invariants, we have a new paper taking the skew spectrum to the discrete domain, and showing
how it can be used to construct practical graph invariants [Kondor and Borgwardt, 2008].

On the longer term, my hope is that many more connections between algebra and machine
learning will be discovered, increasing the intensity of interaction between the two communities.
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Sn, the n-dimensional unit sphere, 14
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fast Fourier transform, 35
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on Zn (Rader), 36

Ferres diagram, 20

field, 13

Fourier series, 29

Fourier transform, 29

discrete, 29, 36
generalized, 30
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on Abelian groups, 30

on homogeneous space, 87

twisted, 45
frame, 20

G-module, 13

Gaussian process, 55

Gel’fand-Tsetlin basis, 38

general linear group, 10
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Gram matrix, 55

group, 9
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action, 14

transitive, 14

algebra, 13, 30
alternating, 20

automorphism, 12

commutative, 11

compact, 10

countable, 10

cyclic, 10

finite, 10

isometry, 12

Lie, see Lie, group
linear, 10, 15
locally compact, 10

locally compact Abelian, 18
order of, 10

symmetric, see symmetric group
topological, 10

Haar measure, 14, 30
harmonic analysis, see Fourier transform
Hilbert space, 51

homogeneous space, 14, 87
homomorphism, 11

hook, 23

hypothesis, 49

identity element, 9

immanant, 71

inner product, 51

input space, 49

invariant
kernel, 60

invariants, 81
complete, 81

inverse, 9

ISO+(2), 90
isomorphism, 9, 11
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kernel
bi-invariant, 62

conditionally positive definite, 52

Gaussian, 54
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left-invariant, 62
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operator, 54
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right-invariant, 62

Lagrange’s theorem, 11

Laplacian
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large margin algorithms, 59

LCA groups, see locally compact Abelian group,
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Lie
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bracket, 15
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locally compact Abelian group, 11

loss
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function, 50
hinge, 58
squared error, 50, 55
zero-one, 50

Maschke’s theorem, 16

Murnaghan-Nakayama rule, 24

neural networks, 49
norm, 51

orbit, 14, 87
output space, 49

overfitting, 49

Parseval’s theorem, 29

partition
length of, 19

of integers, 19

perceptron, 72

permanent, 71
perMceptron, 72

permutation, 19

even, 20

matrix, 20

module, 22

odd, 20

representation, 18

sign of, 20

permutation learning, 65

Plancherel’s theorem, 29

polytabloid, 22

positive definite
function, 62

kernel, see kernel
power spectrum, 82

on S2, 94

pranking, 72

quotient space, 11

Rader’s algorithm, 36

ranking, 65

reflection
of function, 82

regression, 50

regularization

operator, 54, 68
parameter, 51

regularizer, 51

representation, 16

adapted, 38, 88
equivalence of, 16

induced, 18

infinite dimensional, 18

irreducible, 16

order of, 16

permutation, 18

reducible, 16

regular, 17, 18
restriction of, 18

trivial, 17

unitary, 17
representer theorem, 53

reproducing kernel Hilbert space, 52

ridge regression, 58

rigid body motions group, 12, 90
risk

empirical, 50

regularized, 51

true, 50

RKHS, see reproducing kernel Hilbert space
row stabilizer, 22

S2, 14, 90
semi-direct product, 12

shape, 20

skew shape, 24

skew spectrum, 85, 88
Snob , 45

SO(3), 11, 14, 15, 90
SO(n), 11

Specht module, 22

spherical harmonics, 93

subalgebra, 14

subgroup, 11

conjugate, 11

isotropy, 14

normal, 11

proper, 11

support vector machine, 58

symmetric group, 10, 19

characters of, 24
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degree of, 19

representations of, 20

alternating, 20

defining, 20

permutation, 21

standard, 23

Young’s orthogonal (YOR), 23, 39

tableau, 21

border strip, 24, 25

hook, 23

semi-standard, 27

standard, 23

Young, 21

tabloid, 21

tangent space, 15

tangent vector, 15

testing set, 49

topological space
compact, 10

training set, 49

translation
of functions, 14
on R, T and Zn, 29

property of Fourier transform, 29

transposition, 19

adjacent, 19

transversal, 11

triple correlation
classical, 83
on groups, 84

two-line notation, 19

vector field, 15

vector space, 13

Viergruppe, 10

Wedderburn’s theorem, 16

Weyl module, 26

YOR, see symmetric group, repr.’s of, orthog-
onal

Young subgroup, 22

Young’s
orthogonal representation, see symmetric

group, repr.’s of, orthogonal
rule, 40
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