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ABSTRACT

Large Margin Transformation Learning

Andrew G. Howard

With the current explosion of data coming from many scientific fields and industry, ma-

chine learning algorithms are more important than ever to help make sense of this data in

an automated manner. Support vector machine (SVMs) have been a very successful learn-

ing algorithm for many applied settings. However, the support vector machine only finds

linear classifiers so data often needs to be preprocessed with appropriately chosen nonlinear

mappings in order to find a model with good predictive properties. These mappings can

either take the form of an explicit transformation or be defined implicitly with a kernel

function.

Automatically choosing these mappings has been studied under the name of kernel

learning. These methods typically optimize a cost function to find a kernel made up of a

combination of base kernels thus implicitly learning mappings. This dissertation investi-

gates methods for choosing explicit transformations automatically. This setting differs from

the kernel learning framework by learning a combination of base transformations rather

than base kernels. This allows prior knowledge to be exploited in the functional form of the

transformations which may not be easily encoded as kernels such as when learning mono-

tonic transformations. Additionally, kernel based SVMs are often hard to interpret because

they lead to complex decision boundaries which are only linear in the implicitly defined

space. However, by working with explicit mappings, models with an intuitive meaning can

be learned. The learned transformations can be visualized to lend insight into the problem,

and the hyperplane weights indicate the importance of transformed features.

The two basic models that will be studied are the a mixture of transformations Φ(x) =
∑

i miφi(x) and the matrix mixture of transformations which defines kernels of the form

k(x, x′) =
∑

i,j mimjφi(x)T φj(x′). The matrix mixture reduces to mixture of transfor-



mation learning when M is rank 1 and mixture of kernel learning when M is a diagonal

matrix. First, greedy algorithms are proposed to simultaneously learn a mixture of trans-

formations and a large margin hyperplane classifier. Then, a convex semidefinite algorithm

is derived to find a matrix mixture of transformations and large margin hyperplane. More

efficient algorithms based on the extragradient method are introduced to solve larger prob-

lems and extend the basic framework to a multitask setting. Another cost function based

on kernel alignment is explored to learn matrix mixture of transformations. Maximizing the

alignment with a cardinality constraint on the mixture weights gives rise to approximation

algorithms with constant factor approximations similar to the Max-Cut problem. These

methods are then applied to the task of learning monotonic transformations which are built

from a mixture of truncated ramp functions. Experimental results for synthetic data, image

histogram classification, text classification and gender recognition demonstrate the utility

of these learned transformations.
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Chapter 1 1

Chapter 1

Introduction

1.1 Preliminaries

In the past decade, large margin classifiers based on the support vector machine formulation

have been very successful in applied domains [CV95, SS02]. A large part of this success

can be attributed to the use of explicit nonlinear transformations or implicit mappings de-

fined by reproducing kernels. These mappings are used so that the resulting linear decision

boundary in the new space is nonlinear in the original space thus extending the flexibility

of a linear classifier. An open question and subject of much research is how to pick an

appropriate transformation or kernel. Although there are various heuristics and rules of

thumb that are used in practice, approaches that learn the kernel from data are receiv-

ing much attention [BLJ04, SRSS06, RBCG08, CSTK02, OSW05, BH03, CKS02, WB98,

WR95, TAA03, LJN06].

This dissertation investigates a new data driven method to learn transformations that

extends the previous kernel learning paradigm. We start with a mixture of transforma-

tions and formulate a joint optimization of the mixing weights and a maximum margin

hyperplane. This nonconvex optimization is relaxed to yield a convex semidefinite program

(SDP) which learns a matrix mixture of transformations, a formulation that can be seen

as a generalization of the multiple kernel learning framework [LCB+04]. The large margin
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x

Figure 1.1: The input space (left) is mapped to a transformed space by two transformations

φ1(x), φ2(x) and their mixture .5φ1(x) + .5φ2(x) (right).

mixture of transformations formulation was initially proposed to learn monotonic transfor-

mations from a mixture of truncated ramp functions [HJ08b] and extended to a general

setting in [HJ08a].

Previous kernel learning methods learned a hyperplane in conjunction with a kernel made

up of a mixture of base kernels, k(~x, ~x′) =
∑

i miki(~x, ~x′). Rather than learning a mixture

of kernels, we will investigate mixtures of transformations Φ(~x) =
∑

i miφi(~x) as depicted in

Figure 1.1. This leads to learned kernels of the form: k(~x, ~x′) =
∑

i,j mimjφi(~x)φj(~x′). We

also explore the matrix mixture of transformations: k(~x, ~x′) =
∑

i,j Mi,jφi(~x)φj(~x′) which

subsumes the previous two formulations. The mixture of kernels can be replicated with a

diagonal M and the mixture of transformations can be replicated when M is rank one.

Chapter 1 presents an introduction to the large margin transformation learning prob-

lem and reviews some important basics of kernel methods, optimization and previous kernel

learning algorithms. Chapter 2 formally introduces the large margin mixture of transfor-
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mation learning problem and proposes greedy local algorithms for solving it. In Chapter

3, a convex relaxation is derived and cast as a semidefinite program to find approximate

global solutions. This relaxed optimization defines the matrix mixture of transformations.

Chapter 4 applies the extragradient algorithm to the learning task in order to handle larger

datasets and as a stepping stone to various extensions. Chapter 5 generalizes the mixture

of transformations to multitask learning where one transformation is used in multiple re-

lated tasks. Chapter 6 deals with the specific case of learning monotonic transformations.

Chapter 7 looks at learning mixtures of transformations via kernel alignment and develops

connections between sparse transformation learning via alignment and constant factor ap-

proximable NP Hard combinatorial problems. Chapter 8 demonstrates the usefulness of the

proposed methods in experiments. We conclude in Chapter 9 with a discussion and future

work.

1.2 Kernel Methods

Kernel methods typically start with a linear algorithm and replace the inner products with

inner products between (implicitly) mapped points through the use of a kernel function

k(x, x′) = 〈Φ(x), Φ(x′)〉. Kernel functions allow these linear algorithms to find nonlinear

decision surfaces and to extend algorithms to cases where the data is made up of more

complicated objects than vectors. Some basic examples of kernels are the radial basis

function (RBF):

k(x, x′) = exp
(
−‖x− x′‖2

2σ2

)
(1.1)

and the polynomial kernel:

k(x, x′) = (〈x, x′〉+ 1)2. (1.2)

These kernels are defined on vectors in <n but more complicated kernels leveraging the

structure on the underlying objects have been explored. An example of a general method

to derive these more complicated kernels is the probability product kernel (PPK) [JKH04].

The PPK is a kernel defined on probability distributions. These probability distributions

capture the structure and subtleties of the data and are used in the following kernel:

k(p, p′) =
∫

x
p(x)ρp′(x)ρdx (1.3)
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where p(x) and p′(x) are probability distributions defined by data points x and x′. For the

case of ρ = 1/2, this is simply the Bhattacharyya affinity between distributions [Bha43]. The

PPK also reduces to the RBF kernel when p(x) and p′(x) are Gaussian distributions with

the same isotropic covariance and ρ = 1. Many other kernels exist to take advantage of the

unique structure of data such as rational kernels for sequence data [CHM04], Boolean kernels

for learning conjunctions of Boolean variables [KS05] and diffusion kernels for learning data

on a graph [KL02].

Because we are going to be focusing on learning explicit mappings, it is important to

characterize what types of function k(x, x′) give rise to implicit mappings. The Mercer

condition gives necessary and sufficient conditions.

Theorem 1 A symmetric and real valued function k(x, x′) ∈ L∞ can be expressed as

k(x, x′) = 〈Φ(x),Φ(x′)〉 if and only if k(x, x′) satisfies
∫

k(x, x′)g(x)g(x′)dxdx′ ≥ 0 (1.4)

for all g(x) ∈ L2.

This follows from Mercer’s theorem which defines the eigenfunction expansion of a kernel

k(x, x′) =
∑

j λjΨ(x)Ψj(x′) for k(x, x′) satisfying theorem 1 where Ψj(x) is the normalized

orthogonal eigenfunctions associated with the eigenvalue λj for the integral operator Tk

defined by k(x, x′):

(Tkf)(x) :=
∫

k(x, x′)f(x′)dx′. (1.5)

This defines the mapping defined by k(x, x′) as a concatenation of these basis functions

Φ(x) =
(√

λjΨj(x)
)
j=1,...,N

.

The kernel method that is the main topic of this document is the support vector machine

algorithm for classification. The support vector machine produces a large margin linear

classifier over inputs ~x ∈ <D which makes binary predictions y ∈ {−1, 1}. The classification

rule, f(x) = sign(~wT~x + b), is defined by an unknown hyperplane with parameters ~w, b.

This hyperplane can be learned from training data S = {(~x1, y1), . . . , (~xN , yN )} by solving

a very well studied quadratic program:
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min
~w,~ξ,b

‖~w‖2
2 + C

N∑

i=1

ξi (1.6)

subject to yi

(
~wT~xi + b

) ≥ 1− ξi ∀i

ξi ≥ 0 ∀i

where ~ξ are the standard SVM slack variables.

The usefulness of support vector machines often hinges upon finding, either manually

or automatically, good nonlinear transformations Φ(~x) or equivalently, kernel functions

k(~x, ~x′) = Φ(~x)T Φ(~x′). In order to use these kernel functions with the SVM, an alternative

quadratic program is derived from the dual of the SVM formulation which is expressed

using only inner products between pairs of data points. This yields the following quadratic

program only expressed in terms of kernel functions:

min
~α

−2
∑

i

αi +
∑

i,j

αiαjyiyjk (~xi, ~xj) (1.7)

0 ≤ αi ≤ C ∀i ,
∑

i

αiyi = 0

where αi is the i’th dual variable corresponding to the classification constraint for xi.

1.3 Semidefinite Programming and Optimization

In this dissertation, we will be making extensive use of convex programming. One of the

main forms of interest will be semidefinite programs (SDP). There are two basic forms that

these SDPs can take. The first is the inequality form defined by optimizing over a vector

with a linear cost function, a linear matrix inequality (LMI) and a linear equality constraint:

min
x

cT x (1.8)

subject to: F0 + x1F1 + . . . + xmFm ¹ 0

Ax = b
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Another equivalent formulation is the so-called standard form which is defined as an op-

timization over a positive semidefinite matrix with a linear cost function, linear equality

constraint, and positive semidefinite constraint:

max
X

trace(CX) (1.9)

subject to trace(AiX) = bi

X º 0.

The inequality and standard forms are Lagrange dual pairs and therefore can represent

the same class of problems. SDPs are of great interest because they generalize linear, and

quadratic programs as well as define many new practical problems. Additionally, they can

be solved efficiently with interior point methods.

Another useful concept which will be used in many of the subsequent derivations and

relaxations is Lagrange duality. Given an arbitrary optimization problem which will be

called the primal:

min
x

f(x) (1.10)

subject to hi(x) = 0

gj(x) ≤ 0,

the Lagrangian function is defined as:

L(x, λ, µ) = f(x) + λT h(x) + µT g(x). (1.11)

The Lagrangian dual function is then defined as:

q(λ, µ) = inf
x∈<n

L(x, λ, µ) (1.12)

with λ ∈ <m, µ ∈ <r and µ ≥ 0.

This dual function is concave in λ and µ and has a convex domain. For all feasible

settings of λ, µ, the Lagrange dual function gives a lower bound on the optimum of the
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primal q(λ, µ) ≤ p∗ where p∗ = minx f(x). Because q(λ, µ) is concave with a convex

domain, the supremum can be found in polynomial time q∗ = supλ,µ q(λ, µ). This best

lower bound q∗ can be used to find efficient approximations which is known as weak duality.

The difference between the optimal solution and the lower bound is known as the dual gap

p∗ − q∗. Optimizing the dual function is also useful when an exact solution is sought. A

sufficient condition for zero dual gap is known as Slater’s condition which states that if

the original problem is convex and strictly feasible then p∗ = q∗. Optimizing the Lagrange

dual function in both the exact and the approximate case will be useful in many of the

derivations that follow.

Another useful technique for converting convex optimizations into SDPs is the Schur

complement lemma. It gives a recipe for converting certain quadratic forms into linear

matrix inequalities.

Theorem 2 Let A Â 0 and X =


 A B

BT C


. Then

X Â 0 ⇐⇒ S = C −BT A−1B Â 0

where S is called the Schur complement of X.

1.4 Related Kernel Learning Techniques

We now look at previously proposed kernel learning algorithms. The simplest way to choose

a kernel is to cross validate over a finite fixed set of base kernel functions {k1, . . . , kM} that

are manually specified. Equivalently, one may specify a set of Gram matrices K1, . . . ,KM

where an individual Gram matrix K ∈ <N×N is a positive semidefinite matrix defined

elementwise as K(i, j) = k(~xi, ~xj). The SVM problem is then solved for each kernel indi-

vidually, and the kernel with the best cross validation score is used. This method suffers

from the fact that it can only explore a small set of kernels and requires the SVM learning

algorithm to be run many times. This has led to many proposed strategies for automatically

searching a larger space of kernels.

A general convex optimization framework for learning the kernel has been proposed as
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the following min max problem [LCB+04]:

min
K∈K

max
~α

2~αT~1− ~αT (Y KtrY )~α : ~0 ≤ ~α ≤ C~1, ~αT ~y = 0 (1.13)

where K is a convex set of positive semidefinite kernel matrices over training and testing

data, Ktr is the kernel matrix involving only the training data, ~1 is the vector of ones,

~0 is a vector of zeros, X is a matrix with ~xi in the ith column, Y is a matrix with the

training labels on the diagonal with zeros elsewhere and ~y is a vector of training labels. The

problem as specified solves the transduction problem [Vap98] by finding kernels over both

training and testing data, but the optimization can also be restricted to Gram matrices of

only training data to solve the inductive learning problem.

Different learning algorithms are derived depending on how the set K is specified. Typi-

cally, K is chosen to be a linear combination of base kernels. In order to ensure that a valid

kernel is learnt, a positive semidefinite constraint is applied to the kernel matrix:

K =
M∑

i=1

miKi, K º 0 ∀i. (1.14)

This requires a semidefinite program (SDP) to learn the kernel:

min
~m,t,λ,~ν,~δ

t (1.15)

subject to trace




J∑

j=1

mjKj


 = c

J∑

j=1

mjKj º 0


 Y

(∑J
j=1 mjKj

)
Y ~1 + ~ν − ~δ + λ~y

(~1 + ~ν − ~δ + λ~y)T t− 2C~δT~1


 º 0

~ν ≥ ~0, ~δ ≥ ~0.

By using non-negativity constraints on the mixing weights mi, semidefiniteness of the

learned kernel is enforced if each base kernel is a valid positive semidefinite matrix:

K =
M∑

i=1

miKi, mi ≥ 0 ∀i. (1.16)
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Kernels of this form are learned with a quadratically constrained quadratic program (QCQP):

max
~α,t

2~αT~1− ct (1.17)

subject to t ≥ ~αT Y Kj,trY ~α, j = 1, . . . , J

~αT ~y = 0

C~1 ≥ ~α ≥ ~0.

A large body of work has built on this framework mainly focusing on algorithmic improve-

ments for finding conic combinations of kernels as in (1.16) [BLJ04, SRSS06, RBCG08].

In the original multiple kernel learning paper [LCB+04] a bound on the estimation error

was given for simultaneously learning the kernel and the maximum margin hyperplane. The

bound was in the form of
√

Õ( J
γ2 )/N where J is the number of kernels, γ is the margin, N is

the number of training examples and Õ() notation hides logarithmic factors as well as some

terms involving the sample size and the failure probability. This bound was derived based

on Rademacher averages but unfortunately it depends multiplicatively between the margin

term 1
γ2 and the number of kernels. Srebro and Ben-David [SBD06] derived another bound

based on covering numbers and the pseudo-dimension that was of the form
√

Õ(dp + 1
γ2 )/N

where dpis the pseudo-dimension. The pseudo-dimension is bounded by the number of base

kernels J which yields a bound that is additive between the number of kernels and the

margin term. They also proved that the bound proposed in [BH03] is vacuous.

The first algorithm proposed for speeding up the conic combinations of kernels were

based on sequential minimal optimization (SMO) [BLJ04]. First, a new formulation called

the support kernel machine was introduced:

min
~w,b,~ξ

1
2




J∑

j=1

dj‖wj‖2




2

+ C
N∑

i=1

ξi (1.18)

subject to yi

(
~wT~xi + b

) ≥ 1− ξi ∀i

ξi ≥ 0 ∀i.

The dual of this formulation can be shown to be equivalent to the QCQP in 1.17. This

formulation gives an intuition on why kernel learning often gives sparse solutions. The cost
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function involves minimizing the square of a blockwise l1 norm which sparsifies the blocks

and equivalently the kernel weights. Another equivalent optimization is then proposed to

derive the SMO optimization:

min
~α

max
j
{1
2
~αT Y Kj,trY ~α− ~αT~1} (1.19)

subject to ~αT ~y = 0

C~1 ≥ ~α ≥ ~0.

SMO cannot be applied directly to this formulation because is it a nonsmooth optimization

due to the maximization over j. This requires a smoothing technique called Moreau-Yosida

regularization which is used in the optimization literature for nonsmooth problems.

The next algorithmic improvement to multikernel learning was based on semi-infinite

linear program (SILP) [SRSS06]. A SILP was derived that yielded an equivalent solution

to 1.17:

max
t,~m

t (1.20)

subject to
∑

j

mj
1
2
~αT Y Kj,trY ~α− ~αT~1 ≥ t (1.21)

~0 ≤ ~m,
∑

j

mj = 1

∀ ~α with ~0 ≤ ~α ≤ C~1, ~yT ~α = 0.

This is a SILP because there is an infinite number of linear inequalities based on every

possible setting of ~α. The authors propose to solve this SILP with column generation which

iteratively adds the most violated constraint. Finding the most violated constraint reduces

to solving an SVM with a fixed kernel that allows for an efficient reuse of existing fast

solvers for the SVM problem.

A gradient based method called simpleMKL [RBCG08] was proposed that allowed for

a simple implementation and was demonstrated to solve the multiple kernel learning prob-

lem faster than the SILP implementation. The authors proposed optimizing the following
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equivalent formulation via a reduced gradient algorithm:

min
~m

J(~m) s.t. ~0 ≤ ~m,
∑

j

mj = 1, (1.22)

J(~m) =





min
~w,b,~ξ

1
2

∑
j

1
mj
‖ ~wj‖2

2 + C
∑

i ξi

s.t. yi(
∑

j ~wT
j xi + b) ≥ 1− ξi

ξi ≥ 0∀i.
(1.23)

The gradient of J(~m) can be expressed in terms of the dual SVM solution for the current

kernel setting:
∂J

∂mk
= −1

2

∑

i,j

α?
i α

?
jyiyjKm(xi, xj) (1.24)

where α?
i is the optimal dual variable for the current kernel combination. Similar to the

SILP program formulation, this method can reuse efficient SVM solvers. At the most

recent kernel learning workshop, a method improving on the gradient based algorithm by

incorporating second order information was shown to be more efficient than the first order

gradient method [CR08].

Another method related to learning a conic combination of kernels is to learn sequence

kernels based on weighted transducers [CMR08]. The method basically learns weights for

transducers where the squared weights can be seen as kernel weights in the MKL framework

and the base kernels are simply the inner product between the counts of the number of times

a string (for example a bigram) appears as a substring in an example string. This is exactly

the multikernel framework, but because each kernel’s features can be calculated directly

rather than implicitly, there is a more efficient QP that can be solved. This is quite similar

to the original QCQP originally derived in 1.17 for learning conic combinations of kernels.

max
~α,t

2~αT~1− ct2 (1.25)

subject to −t ≤ ~αT Y T Xj

‖Xj‖ ≤ t, j = 1, . . . , J

~αT ~y = 0

C~1 ≥ ~α ≥ ~0

where Kj = XT
j Xj . This QP could be used for solving the original MKL problem if each

kernel were decomposed via Cholesky or eigenvalue decomposition or if the kernel’s feature
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vector could be computed directly.

Another interesting method suggested at the kernel learning workshop was to constrain

the l2 norm of the mixing weights instead of the l1 norm as in the standard MKL framework

[KBLS08]. The formulation was shown to be robust against noisy and redundant features.

This yielded a similar semi-infinite quadratic program which can be solved with column

generation and standard SVM solvers which is exactly the same as 1.20 except the l1

constraint
∑

j mj ≤ 1 is replaced with the l2 constraint
∑

j m2
j ≤ 1.

Other methods for kernel learning include the kernel alignment method [CSTK02]. Con-

trary to the previous method, which learns the kernel and the classifier simultaneously,

kernel alignment is run prior to the training algorithm. Kernel alignment is often used to

maximally align a kernel with an idealized one based on the labels. This is measured by its

alignment score:

A(K, yyT ) =

〈
K,~y~yT

〉
F√

〈K, K〉F 〈~y~yT , ~y~yT 〉F
=

〈
K,~y~yT

〉
F

N
√〈K, K〉F

. (1.26)

The alignment can be optimized with convex programs similar to the previous technique:

max
K

〈
K,~y~yT

〉
F

(1.27)

subject to ‖K‖F = 1

K ∈ K.

Another interesting theme in kernel selection is to find an optimal kernel as a small

combination of kernels chosen from an infinite set of base kernels. It was shown that a

representer theorem exists for learning the kernel, meaning that only a finite subset of

kernels form the optimal solution when learning from an infinite set of kernels [AMP05].

Initially, a greedy algorithm was defined to find an approximately optimal solution to the

problem. Subsequently, a difference of convex functions (DC) programming solution was

proposed to solve the problem [AHMP06].

Another recent kernel learning approach was proposed via so-called hyperkernels [OSW05].

This method defines a reproducing kernel Hilbert space on the kernels themselves. Within

this framework, a representer theorem can be derived which leads to an estimation prob-

lem with a finite number of terms. Semidefinite programs are formulated to find the best
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kernel in the space of hyper reproducing kernels but in practice this is computationally

cumbersome. A specific class of hyperkernels called Gaussian and Wishart hyperkernels

was proposed in [KJ07]. In the recent kernel learning workshop hyperkernels were used

for kernel density estimation [GVG08] and for distance learning in a K nearest neighbor

classifier [OG08].

As kernel learning is a currently popular subject of exploration, there are a number

of other strategies for learning optimal kernels. In [BH03] gradient descent is used to

optimize a bound on the Rademacher complexity of the kernel. [CKS02] uses boosting

to choose kernels. In the Gaussian process framework, Bayesian methods can be used to

choose kernels [WB98, WR95]. If auxiliary data is known the EM algorithm can be used

for learning the kernel [TAA03]. Finally, non stationary kernels were explored within the

maximum entropy discrimination framework [LJN06].

These previous techniques focus on learning kernels which correspond to implicit map-

pings of the input features. Our technique learns explicit mappings and transformations.

This allows prior knowledge to be exploited in the functional form of these mappings. Kernel

based SVMs are often hard to interpret because they lead to complex decision boundaries

which are only linear in the implicitly defined space. However, by working with explicit

mappings, models with an intuitive meaning can be learned. The learned transformations

can be visualized to lend insight into the problem, and the hyperplane weights indicate

the importance of transformed variables. We next develop the mixture of transformations

framework more formally and propose algorithms to efficiently find solutions.
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Chapter 2

Large Margin Mixtures of

Transformations

This chapter will formally present the large margin mixture of transformation learning

problem and some simple algorithms for solving it. For an unknown distribution P (~x, y)

over inputs ~x ∈ <D and labels y ∈ {−1, 1}, assume that there is an unknown transfor-

mation Φ(~x), and an unknown hyperplane parameterized by ~w and b such that predicting

with f(~x) = sign(~wT Φ(~x) + b) yields a low expected test error R =
∫

1
2 |y − f(x)|dP (~x, y).

The transformation, Φ(~x) =
∑J

j=1 mjφj(~x), is defined by a set of basis transformations

{φ1(~x), . . . , φJ(~x)} with associated mixing weights {m1, . . . ,mJ : mj ∈ [0, 1],
∑

j mj ≤ 1}.
Any linear combination of the transformations would give a new valid transformation, how-

ever the mixing weights need to be constrained so that the margin does not become infinite.

The positivity constraint is used explicitly when learning monotonic transformations to im-

pose monotonicity, however it is not needed in general to learn transformations. Maximum

margin transformation learning addresses the task of recovering Φ(~x), ~w, b from an input

set of base transformations and a labeled training set S = {(~x1, y1), . . . , (~xN , yN )} which is

sampled i.i.d. from P (~x, y). The method accomplishes this by learning a maximum margin

hyperplane and the unknown transform Φ(~x) simultaneously which leads to the following

augmented SVM-like optimization:
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min
~w,b,~ξ,~m

‖~w‖2
2 + C

N∑

i=1

ξi (2.1)

subject to yi




〈
~w,

J∑

j=1

mjφj(~xi)

〉
+ b


 ≥ 1− ξi ∀i

ξi ≥ 0,mj ≥ 0,
∑

j

mj ≤ 1 ∀i, j

where ~ξ are the standard SVM slack variables and ~w, b are the maximum margin solution

for the training set that has been transformed via Φ(~x) with learned ~m, the vector of mixing

weights.

This problem is nonconvex due to the quadratic term involving ~w and ~m in the clas-

sification constraints, and although it is difficult to find a globally optimal solution, the

structure of the problem suggests a simple method for finding a locally optimal solution.

The optimization can be divided into two convex subproblems that can be easily solved

within a simple greedy coordinate descent algorithm. This algorithm iteratively solves for

~w, b and ~ξ with ~Φ fixed by using an SVM solver to optimize:

min
~w,b,~ξ

‖~w‖2
2 + C

N∑

i=1

ξi (2.2)

subject to yi (〈~w, Φ(~xi)〉+ b) ≥ 1− ξi, ξi ≥ 0 ∀i.

It then finds ~m and ~ξ with ~w and b fixed via a linear program:

min
~m,~ξ

N∑

i=1

ξi (2.3)

subject to yi




〈
~w,

J∑

j=1

mjφj(~xi)

〉
+ b


 ≥ 1− ξi ∀i

ξi ≥ 0,mj ≥ 0,
∑

j

mj ≤ 1 ∀i, j.

Note that ~ξ is optimized in both subproblems as it is part of the hinge loss and not part of

the model. This EM like algorithm quickly finds a locally optimal solution. Pseudo code

for this optimization is listed as Algorithm 1.

Although the proposed greedy algorithm finds locally optimal solutions, the linear pro-

gram has the unattractive characteristic of only minimizing the hinge loss while leaving
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Algorithm 1 Greedy Large Margin Mixture of Transformations Learning
while not converged do

Solve C (or ν) SVM for ~w, b, ~ξ (and ρ) with Φ(x) locked

Solve LP for Φ(x) =
∑

i miφi(x), ~ξ (and ρ) with ~w, b locked

end while

the margin unchanged. One way to address this is to use the ν-SVM algorithm [SSWB00]

augmented for transformation learning:

min
~w,b,~ξ,ρ,~m

‖~w‖2
2 − νρ +

N∑

i=1

ξi (2.4)

subject to yi




〈
~w,

J∑

j=1

mjφj(~xi)

〉
+ b


 ≥ ρ− ξi ∀i

ξi ≥ 0, ρ ≥ 0,mj ≥ 0,
∑

j

mj ≤ 1 ∀i, j

where ν takes the role of C in trading off between margin and accuracy. The previously

proposed C-SVM formulation has a margin of 1/‖~w‖ and the ν-SVM has a margin of

2ρ/‖~w‖. The two formulations yield equivalent solutions when Φ(x) is fixed, ρ > 0 and

C is set to 1/ρ a priori. The advantage of the ν-SVM formulation for transformation

learning is that the linear program for learning the transformation weights maximizes the

margin while minimizing the hinge loss thus (hopefully) finding better local solutions. The

quadratic SVM used in the greedy iterative algorithm for this formulation with Φ(x) fixed

is:

min
~w,b,~ξ,ρ

‖~w‖2
2 − νρ +

N∑

i=1

ξi (2.5)

subject to yi (〈~w, Φ(~xi)〉+ b) ≥ ρ− ξi, ξi ≥ 0, ρ ≥ 0 ∀i.

The linear program with ~w and b fixed is:

min
~m,~ξ,ρ

N∑

i=1

ξi − νρ (2.6)

subject to yi




〈
~w,

J∑

j=1

mjφj(~xi)

〉
+ b


 ≥ ρ− ξi ∀i

ξi ≥ 0, ρ ≥ 0,mj ≥ 0,
∑

j

mj ≤ 1 ∀i, j
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These two convex optimizations can again be solved iteratively as Algorithm 1 to find a lo-

cally optimal solution. This method now has the attractive property that both independent

optimizations trade off between hinge loss and margin.

The models learned by these algorithms often predict well, but the methods get stuck in

local minima. One way to mitigate this issue is to try multiple initializations. In practice,

mixing weights ~m, are initialized uniformly and alternative initializations do not yield much

if any improvement. Due to these issues with local minima, it would be preferable to find

an algorithm that can find global solutions, even if they are only approximate.
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Chapter 3

Large Margin Matrix Mixtures of

Transformations

3.1 Convex Relaxations

This chapter will look at learning large margin matrix mixtures of transformations. The

matrix mixture will be derived as a convex relaxation of the previous transformation learning

formulation. Although the locally optimal solutions found by the previous algorithms work

well in practice, a method for finding global solutions would be preferred. When dealing

with nonconvex quadratic terms in optimization problems, a typical approach is to relax

these variables. This type of relaxation is well studied; it was originally proposed in [Sho87]

and is the first in a sequence of convex relaxations introduced in [Las00]. It has been used

to successfully approximate combinatorial problems such as Maximum Cut in [GW95] and

to solve various machine learning problems such as sparse SVMs [CVL07] and transduction

[BC04].

Convex relaxations for nonconvex quadratic problems can be derived in a number of

different ways yielding the same relaxation. The simplest way to derive a relaxation is the

use the Lagrangian relaxation or to derive the so-called semidefinite relaxation. These will

yield the same relaxation and are in fact dual optimization problems. As a precursor to

deriving a relaxation for the mixture of transformations, we will derive the semidefinite
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relaxation for a general nonconvex quadratic optimization problem:

min
~x

~xT A0~x + bT
0 ~x (3.1)

subject to ~xT Ai~x + bT
i ~x + c ≤ 0, ∀i.

First, the trace operator is introduced and ~x is grouped in the quadratic terms to form

outer products, ~x~xT :

min
~x

trace(A0~x~xT ) + bT
0 ~x (3.2)

subject to trace(Ai~x~xT ) + bT
i ~x + c ≤ 0, ∀i.

The outer products ~x~xT are then replaced with a matrix variable X and a nonconvex

equality constraint, X − ~x~xT = 0, is introduced yielding an equivalent optimization:

min
~x

trace(A0X) + bT
0 ~x (3.3)

subject to trace(AiX) + bT
i ~x + c ≤ 0, ∀i

X − ~x~xT = 0.

The equality constraint, X−~x~xT = 0, is replaced with a semidefinite constraint X−~x~xT º 0

yielding a convex relaxation:

min
~x

trace(A0X) + bT
0 ~x (3.4)

subject to trace(AiX) + bT
i ~x + c ≤ 0, ∀i

X − ~x~xT º 0.

In order to convert this into a semidefinite program, the Schur complement lemma must be

invoked:

X − ~x~xT º 0 ⇐⇒

 1 ~xT

~x X


 º 0. (3.5)

Substituting this result producers the following SDP:
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min
~x

trace(A0X) + bT
0 ~x (3.6)

subject to trace(AiX) + bT
i ~x + c ≤ 0, ∀i

 1 ~xT

~x X


 º 0.

This derivation yields a general recipe for deriving convex relaxations for nonconvex quadratic

optimizations which can be solved with standard SDP interior points algorithms.

3.2 A Convex Algorithm for Learning Matrix Mixture of

Transformations

We now show how to apply convex semidefinite relaxations to the large margin mixture of

transformations formulation in an efficient manner. The original nonconvex optimization

problem introduced in Chapter 2,

min
~w,~ξ,b,~m

‖~w‖2
2 + C

N∑

i=1

ξi (3.7)

subject to yi




〈
~w,

J∑

j=1

mjφj(~xi)

〉
+ b


 ≥ 1− ξi ∀i

ξi ≥ 0,mj ≥ 0,
∑

j

mj ≤ 1 ∀i, j,

is quadratic in both ~w and ~m. If these terms are relaxed using the recipe from the previous

section, it would result in a (D + J + 1)× (D + J + 1) semidefinite matrix variable where

D is the dimension of the mapped data and J is the number of transformations. This is

problematic because the relaxed matrix grows with both the number of transformations

and the dimension of the data. Many of the learning tasks that are addressed later in this

dissertation involve high dimensional data.

With the proper reformulation, a relaxation can be derived so that only quadratic terms

involving ~m need to be replaced with entries in a semidefinite matrix. This yields a tighter

relaxation and avoids excessive computational costs involved with optimizing a matrix that

scales with the dimension of the data. In order to derive this improved relaxation, the
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problem must first be transformed into the dual with respect to ~w, ~ξ, and b similar to the

dual SVM. First, for a fixed ~m, the Lagrangian function for the optimization in (3.7) is

introduced:

L(~w, ~ξ, b, ~α, ~β) = ‖~w‖2
2+C

N∑

i=1

ξi−
∑

i

αi


yi




〈
~w,

M∑

j=1

mjφj(~xi)

〉
+ b


− 1 + ξi


−

∑

i

βiξi.

(3.8)

The Lagrange dual is then defined by minimizing the Lagrange function over the primal

variables, min
~w,~ξ,b

L(~w, ~ξ, b, ~α, ~β). Because the initial problem (with ~m fixed) is convex,

maximizing the Lagrange dual function over the dual variables, ~α and ~β yields the same

solution as the original problem. To eliminate the primal variables, ~w, ~ξ, b, from this dual

formulation, the corresponding partial derivatives of L are computed and set to 0. These

optimality conditions are used to derive the dual optimization:

min
~m

max
~α

2~αT~1− ~αT


Y


∑

i,j

mimjKi,j


Y


 ~α (3.9)

subject to ~0 ≤ ~α ≤ C~1, ~αT ~y = 0, ~m ≥ ~0, ~mT~1 ≤ 1

where Ki,j = φi(X)T φj(X) is the inner product matrix of transformed examples. The

mixing weights ~m are then relaxed by substituting the matrix variable M by using the recipe

from the previous section. An additional (seemingly) redundant constraint
∑

j m2
j ≤ 1 can

be added to ensure a tighter relaxation:

min
M

max
~α

S(M,α) = 2~αT~1− ~αT


Y


∑

i,j

Mi,jKi,j


Y


 ~α (3.10)

subject to M º 0,
J∑

j=1

Mj,j ≤ 1,M0,i ≥ 0,
J∑

j=1

M0,j ≤ 1,M0,0 = 1 ∀i

~0 ≤ ~α ≤ C~1, ~αT ~y = 0.

Equation 3.10 is a saddle point problem whose solution, which is equivalent with the min

and max reversed: minM max~α S(M, α) = max~α minM S(M, α), is known as a saddle value.
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The equality when interchanging the minimization and maximization and the existence of

the saddle value are due to Sion’s minimax theorem [Sio58] which is a generalization of the

Von Neumann minimax theorem [Neu28]. Sion’s theorem can be stated as in [Kom88]:

Theorem 3 Let X be a compact convex subset of a linear topological space and Y a convex

subset of a linear topological space. Let f be a real-valued function on X × Y such that:

(i) f(x, ·) is upper semicontinuous and quasi-concave on Y for each x ∈ X

(ii) f(·, y) is lower semicontinuous and quasi-convex on Xfor each y ∈ Y

Then minx∈X supy∈Y f(x, y) = supy∈Y minx∈X f(x, y).

S(M,α) fits these criteria because it is linear in M and quadratic in α. Additionally, M is

constrained to be in a convex set and α is constrained to be in a compact convex set.

Sometimes in kernel learning, it is possible to exploit additional structure in the problem

by rearranging the min and max to yield a simpler optimization problem. Learning a convex

combination of kernels [LCB+04] and learning sequence kernels [CMR08] are examples

where a either a QCQP or QP (respectively) can be solved instead of the more general SDP

formulation through this rearrangement. Unfortunately in the large margin transformation

learning problem, such a simple modification does not yield additional structure that can

be exploited for a simpler algorithm.

Working with Equation 3.10, the next step will be to transform this constrained saddle

point problem into a semidefinite program that can be solved with standard solvers. The

dual formulation with respect to ~α can be found by first defining a new Lagrangian with

M held fixed:

L(~α, λ, ~ν, ~δ) = 2~αT~1− ~αT


Y


∑

i,j

Mi,jKi,j


Y


 ~α + 2~νT ~α + λ~yT ~α + 2~δT (C~1− ~α) (3.11)

where λ, ~ν, ~δ are dual variables. The Lagrangian dual function maxα L(~α, λ, ~ν, ~δ) can be

minimized over the dual variables to yield an alternative equivalent optimization. Again,

in order to eliminate ~α, the gradient of L(~α, λ, ~ν, ~δ) with respect to α is computed and set

to 0. Solving this optimality condition for ~α yields:
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~α =


Y


∑

i,j

Mi,jKi,j


Y



−1 (

~1 + ~ν − ~δ + λ~y
)

. (3.12)

Substituting for ~α yields a minimization problem over the dual variables and M :

min
M,λ,~ν,~δ

(
~1 + ~ν − ~δ + λ~y

)T


Y


∑

i,j

Mi,jKi,j


Y



−1 (

~1 + ~ν − ~δ + λ~y
)

+ 2C~δt~1

s.t. M º 0,

J∑

j=1

Mj,j ≤ 1,M0,i ≥ 0,

J∑

j=1

M0,j ≤ 1,M0,0 = 1, ~ν ≥ ~0, ~δ ≥ ~0, ∀i.

The cost function can be transformed into a constraint yielding a linear cost:

min
M,λ,~ν,~δ,t

t

s.t.
(
~1 + ~ν − ~δ + λ~y

)T


Y


∑

i,j

Mi,jKi,j


Y



−1 (

~1 + ~ν − ~δ + λ~y
)

+ 2C~δt~1 ≤ t

M º 0,
J∑

j=1

Mj,j ≤ 1,M0,i ≥ 0,
J∑

j=1

M0,j ≤ 1,M0,0 = 1, ~ν ≥ ~0, ~δ ≥ ~0, ∀i.

In order to convert this optimization problem into a semidefinite program, the Schur comple-

ment lemma can be used to transform the quadratic inequality constraint into a semidefinite

constraint. For Y
∑

i,j Mi,jKi,jY Â 0,

t− 2C~δt~1−
(
~1 + ~ν − ~δ + λ~y

)T


Y


∑

i,j

Mi,jKi,j


 Y



−1 (

~1 + ~ν − ~δ + λ~y
)
≥ 0

⇐⇒

 Y

∑
i,j Mi,jKi,jY ~1 + ~ν − ~δ + λ~y

(~1 + ~ν − ~δ + λ~y)T t− 2C~δT~1


 º 0.

If Y
∑

i,j Mi,jKi,jY is not positive definite, a small value can be added to the diagonal

to increase any eigenvalues that are zero. Substituting this back into the optimization

results in a positive semidefinite program similar to the multiple kernel learning framework

[LCB+04].
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min
M,t,λ,~ν,~δ

t

subject to


 Y

∑
i,j Mi,jKi,jY ~1 + ~ν − ~δ + λ~y

(~1 + ~ν − ~δ + λ~y)T t− 2C~δT~1


 º 0

M º 0,
J∑

j=1

Mj,j ≤ 1,M0,i ≥ 0,
J∑

j=1

M0,j ≤ 1,M0,0 = 1, ~ν ≥ ~0, ~δ ≥ ~0, ∀i.

This SDP defines the matrix mixture of transformations problem. If rank(M) = 1 then the

relaxation is exact and reduces to the standard mixture of transformations. Additionally,

if M is a diagonal matrix it reduces to a mixture of kernels [LCB+04].

Given that this is a relaxation and that there are no explicit constraints enforcing the

positive semidefiniteness of the kernel, it needs to be shown that kernels learned in this

manner are indeed positive semidefinite. To this end, we prove the following theorem.

Theorem 4 Let M be a positive semidefinite matrix and {φ1(x), ..., φN (x)} be a set of map-

pings from x ∈ Rn to a common space Γ. A combination k(x, x′) =
∑

i,j Mi,jφi(x)T φj(x′)

yields a Mercer kernel.

Proof 5 k(x, x′) is a Mercer kernel if and only if
∫

k(x, x′)g(x)g(x′)dxdx′ ≥ 0. By defini-

tion we have that:

Sk =
∫ ∑

i,j

Mi,jφi(x)T φj(x′)g(x)g(x′)dxdx′ (3.13)

Rewrite the positive semidefinite matrix as M = V DV T in terms of an eigenvector matrix

V and a diagonal matrix of eigenvalues D = diag([d1, . . . , dn]).

Sk =
∫ ∑

i,j

∑

k

dkVi,kVj,kφi(x)T φj(x′)g(x)g(x′)dxdx′ (3.14)

which factorizes as:

Sk =
∑

k

dk

(∫ ∑

i

Vi,kg(x)φi(x)T dx

)


∫ ∑

j

Vj,kg(x)φj(x′)dx′


 . (3.15)
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The two factors are actually the same and can be expressed as one quadratic term:

∑

k

dk

∥∥∥∥∥
∫ ∑

i

Vi,kg(x)φi(x)dx

∥∥∥∥∥
2

≥ 0. (3.16)

This conic combination is always positive due to the positivity of both the eigenvalues dk

and the norm.

Learning matrix mixtures of transformations can be analyzed using the generalization

bounds derived for learning mixtures of kernels [].

Theorem 6 Given a finite set of J mappings {φ1(x), φ2(x), ..., φJ(x)} and a learned ker-

nel defined by k(x, x′) =
∑

i,j Mi,jki,j(x, x′) where M is the learned mixing matrix and

ki,j(x, x′) = φi(x)T φ(x′) the estimation error is bounded by
√

Õ(J2

2 + J + 1
γ2 )/N where N

is the sample size and Õ() notation hides logarithmic factors as well as some terms involving

the sample size and the failure probability.

Proof 7
√

Õ(dp + 1
γ2 )/N is the bound on the estimation error for a learned kernel with

pseudodimension dp []. What remains to prove is that a learned kernel function of the form

k(x, x′) =
∑

i,j Mi,jki,j(x, x′) has dp = J2

2 + J . k(x, x′) can be seen to be an element of a

vector space defined by the J2

2 +J basis functions {ki,j(x, x′)+kj,i(x, x′)|1 ≤ i ≤ J, 1 ≤ j < i}.
The matrix M takes linear combinations of these basis functions. The pseudodimension of

k(x, x′) is then bounded by J2

2 + J because the pseudodimension of a space of real valued

functions is bounded by its dimension [].

This proof holds for any matrix M so it is valid for both the mixture of transformations

whose mixing matrix is M = ~m~mT and for semidefinite matrices learned in the matrix

mixture of transformation framework. This bound does not take into account that M is

positive definite or that most learned matrices are low rank in the matrix mixture of trans-

formations framework and rank one for mixtures of transformations. Low rank matrices

yield simpler models but it is not clear how to relate the rank of mixture matrices to the

pseudodimension. This would be an interesting topic for future exploration.
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Chapter 4

Extragradient Based

Transformation Learning

4.1 The Extragradient Algorithm

It is well known that semidefinite programs scale poorly with interior point solvers scaling

as O
(
q2(

∑
i p

2
i )
√

p
)

[VB96] where q is the number of variables, pi is the size of the ith

semidefinite block and p =
∑

i pi. Due to this poor scaling, an alternative algorithm is

necessary to work with larger data sets and to extend the model efficiently to more com-

plicated scenarios. The semidefinite program for finding large margin matrix mixture of

transformations,

min
M,t,λ,~ν,~δ

t

subject to


 Y

∑
i,j Mi,jφi(X)T φj(X)Y ~1 + ~ν − ~δ + λ~y

(~1 + ~ν − ~δ + λ~y)T t− 2C~δT~1


 º 0

M º 0,
J∑

j=1

Mj,j ≤ 1,M0,i ≥ 0,
J∑

j=1

M0,j ≤ 1,M0,0 = 1, ~ν ≥ ~0, ~δ ≥ ~0, ∀i,

has two linear matrix inequalities which are the main computational bottleneck. The first

constraint, 
 Y

∑
i,j Mi,jφi(X)T φj(X)Y ~1 + ~ν − ~δ + λ~y

(~1 + ~ν − ~δ + λ~y)T t− 2C~δT~1


 º 0, (4.1)
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scales with the number of data points and is problematic in a data rich machine learning

setting. The second semidefinite constraint on the mixing matrix, M º 0, scales with the

number of transformations which is typically a small number and therefore is not as prob-

lematic. The scaling for large margin matrix mixture of transformations is O
(
q2(

∑
i p

2
i )
√

p
)

where q = 2N + (J+1)2

2 +2, p1 = N +1, p2 = J +1 and p = N +J +2 where N is the number

of data points and J is the number of transformations. The constraint associated with p1,

which depends on the number of data points, arises when the saddle point problem,

min
M

max
~α

S(M,α) = 2~αT~1− ~αT


Y


∑

i,j

Mi,jφi(X)T φj(X)


Y


 ~α (4.2)

subject to M º 0,
J∑

j=1

Mj,j ≤ 1,M0,i ≥ 0,
J∑

j=1

M0,j ≤ 1,M0,0 = 1 ∀i

~0 ≤ ~α ≤ C~1, ~αT ~y = 0.

is transformed into an the SDP via the Schur complement. Instead the saddle point problem,

S(M,α), can be optimized directly thereby eliminating the large semidefinite constraint.

The extragradient algorithm [Kor76, Kho89] is a first order method for solving sad-

dle point problems (and a larger class of problems called variational inequalities). It has

previously been used in machine learning to efficiently solve structured learning problems

[TLJJ05]. The algorithm uses only gradient information and consists of a prediction and

correction step. The step size of each is tuned automatically. After each step, the new

solution is projected back to the convex constraint set. If there are efficient algorithms for

computing these projections, each step can be computed quickly which is imperative for

good performance. In Section 4.2, we show how to compute these projections efficiently.

The algorithm proceeds as follows and iterates until a stopping criterion is reached:

(Prediction)





M̄k+1 = PM

(
Mk − βk∇MS(Mk, αk)

)

ᾱk+1 = Pα

(
αk + βk∇αS(Mk, αk)

) (4.3)

(Correction)





Mk+1 = PM

(
Mk − βk∇MS(M̄k+1, ᾱk+1)

)

αk+1 = Pα

(
αk + βk∇αS(M̄k+1, ᾱk+1)

) (4.4)

where PM and Pα are projection operators, ∇M and ∇α are gradient operators and βk is

the step size at iteration k. The required gradients for this problem are:
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∇Mi,jS(M,α) = ~αT
(
Y

(
φi(X)T φj(X)

)
Y

)
~α, (4.5)

∇αS(M,α) = 2~1 + 2


Y


∑

i,j

Mi,jφi(X)T φj(X)


Y


 ~α. (4.6)

The projections that must be efficiently solved are:

PM (M) = min
M̂

‖M̂ −M‖2
F (4.7)

subject to: M̂ º 0,

J∑

j=1

M̂j,j ≤ 1, M̂0,i ≥ 0,

J∑

j=1

M̂0,j~1 ≤ 1, M̂0,0 = 1, ∀i

Pα(~α) = min
α̂

‖α̂− ~α‖2
2 (4.8)

subject to: 0 ≤ α̂i ≤ C.

In the extragradient algorithm, the step size is automatically tuned by first computing

rk = βk
∇S(Mk, αk)−∇S(M̄k+1, ᾱk+1)‖
(‖Mk − M̄k+1‖+ ‖αk − ᾱk+1‖) . (4.9)

Then, if rk > ν, where ν ∈ (0, 1) is a parameter of the algorithm, βk is decreased via

an Armijo type rule: βk = (2/3)βk min(1, 1/rk) and a new prediction step is computed.

Pseudocode for the extragradient algorithm applied to large margin matrix mixture trans-

formation learning can be found as Algorithm 2. Further speedups to the basic extragradient

algorithm can be found in [HL02].

There are a number of advantages to using the extragradient algorithm. By working

with the saddle point problem (4.2) directly, the semidefinite constraint (4.1), which grows

with the number of data points, is avoided. Another way to improve training time with

the extragradient algorithm is to initialize it with previous solutions that are often available

when cross validating over parameters in a machine learning setting. Semidefinite programs

cannot make use of these warm start initializations. Additionally, the extragradient algo-

rithm also permits early stopping which can also improve training time. Machine learning

algorithms do not need to learn numerically exact models, only predictively accurate ones.

So early stopping is often an appropriate strategy. In practice, the algorithm is stopped

when the cost function changes by less than ε.
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Algorithm 2 Extragradient Algorithm
k = 0

while not converged do

repeat

Prediction:

M̄k+1 = PM

(
Mk − β∇MS(Mk, αk)

)

ᾱk+1 = Pα

(
αk + β∇αS(Mk, αk)

)

r = β ‖∇S(Mk,αk)−∇S(M̄k+1,ᾱk+1)‖
(‖Mk−M̄k+1‖+‖αk−ᾱk+1‖)

if r ≥ ν then

β = (2/3)β min(1, 1/r)

end if

until r < ν

Correction:

Mk+1 = PM

(
Mk − β∇MS(M̄k+1, ᾱk+1)

)

αk+1 = Pα

(
αk + β∇αS(M̄k+1, ᾱk+1)

)

k = k + 1

end while
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One additionally technicality involving the bias term, b, needs to be addressed. When

solving the SDP, the bias term is recovered from the KKT conditions. However, the ex-

tragradient algorithm is typically stopped before exact convergence, so computing the bias

term from the KKT conditions becomes unstable. Therefore, the bias term is dropped from

the model and if a bias term is desired, an additional dimension of all ones can be added to

the training data. Empirically adding an additional dimension to represent the bias affects

the accuracy very little. A beneficial side effect from dropping the bias term is that the

constraint ~αT ~y = 0 is eliminated which allows the projection for ~α to be computed in closed

form.

4.2 Dykstra’s Iterative Projection Algorithm

The key to a fast implementation of the extragradient algorithm is to compute the projection

steps with efficient algorithms. While the projection for ~α (4.8) can be simply computed

by clamping values between 0 and C, the projections for M (4.7) cannot be solved in

closed form or with simple algorithms. A naive implementation would be to use a general

purpose SDP solver to compute the projection, but this proves to be too computationally

burdensome. However, if a convex set can be represented as an intersection of simpler

convex sets, Dykstra’s iterative projection algorithm [Dyk83] can be used to solve the full

projection by iteratively projecting onto the simpler sets. This can be a very efficient

algorithm if projections on the simple sets can be computed quickly. The convex set for M

is amenable to such efficiently computable projections.

For a convex set C = ∩R−1
r=0 Cr, that can be split into the intersection of a set of R simple

convex sets {C0, C2, . . . , CR−1}, Dykstra’s algorithm computes PC(x), the projection of x

onto C by iteratively computing PC[n]
(xn−1 + e[n]), the projection onto C[n] of the previous

solution, xn−1, plus a residual term e[n] where [n] is defined as n mod R. If the convex sets

are affine, the residual terms are not needed. Dykstra’s algorithm is presented as Algorithm

3 and can be visualized in Figure 4.1.

Dykstra’s method is the most popular algorithm for solving the best approximation

problem in an intersection of convex sets. Other projection based methods for solving
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Algorithm 3 Dykstra’s Iterative Projection Algorithm
x0 = x, er = ... = e1 = e0 = 0

n = 0

while not converged do

n = n + 1

xn = PC[n]
(xn−1 + e[n])

e[n] = xn−1 + e[n] − xn

end while

CM0

CM1

CM2

M

M̂

CM

Figure 4.1: Dykstra’s iterative projection algorithm used to solve the projection PM (M) =

minM̂∈CM
‖M̂ − M‖2

F where CM is the intersection of three simple convex sets: CM =

CM0 ∩ CM1 ∩ CM2 .
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this problem include Haugazeau’s method [BC01] and an algorithm by Bauschke [Bau96].

Dykstra’s method was shown to converge linearly for the case of an intersection of half

spaces [DH94, Shu00], namely that:

‖xn − PC(x)‖ ≤ ρcn (4.10)

where ρ and c are constants with ρ > 0 and 0 ≤ c ≤ 1. Unfortunately this convergence rate

cannot be applied in our setting because large margin transformation learning uses more

complicated convex sets than simple half spaces.

For the large margin matrix mixture of transformations saddle point formulation, the

convex sets for M are defined as:

CM = CM0 ∩ CM1 ∩ CM2 ,

the intersection of three simple convex sets:

CM0 = {M : M ∈ <N+1×N+1,M º 0}

CM1 = {M : M ∈ <N+1×N+1,M = MT ,

J∑

j=1

Mj,j ≤ 1,M0,i ≥ 0,M0,0 = 1}∀i

CM2 = {M : M ∈ <N+1×N+1,
J∑

j=1

M0,j ≤ 1}.

The projection PM0(M) = minM̂ ‖M̂ −M‖2
F s.t. M̂ º 0 can be computed by finding the

eigenvalue decomposition, zeroing out any negative eigenvalues and recomposing the matrix,

M = V DV T , M̂ = V max(D, 0)V T . (4.11)

The projection PM1(M) = minM̂ ‖M̂ −M‖2
F , M = MT ,

∑J
j=1 Mj,j ≤ 1,M0,i ≥ 0,M0,0 = 1

can be computed by averaging M and MT and zeroing any negative entries

M̂ = max((M + MT )/2, 0), (4.12)

then setting M̂0,0 = 1 and updating entries in the diagonal if
∑J

j=1 Mj,j > 1 with a projec-

tion onto a halfspace:

M̂i,i = Mi,i +
1−∑J

j=1 Mj,j

J
. (4.13)
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Figure 4.2: Running time for projection algorithms. The running time for Dykstra’s itera-

tive projection algorithm (dashed red) is compared to the equivalent SDP (solid blue) for

various matrix dimensions averaged over 10 random matrices. The left image shows that

Dykstra’s algorithm solves the projection two orders of magnitude faster. The log plot on

the right shows that the two algorithms scale similarly.

The projection PM2 = minM̂ ‖M̂−M‖2
F s.t.

∑J
j=1 M0,j ≤ 1 can be computed as a projection

onto a halfplane if
∑J

j=1 M0,j > 1:

M̂0,i = M0,i +
1−∑J

j=1 M0,j

J
. (4.14)

Generic SDP solvers could be used in place of Dykstra’s algorithm to solve these projec-

tions at the cost of more compute time. Figure 4.2(a) shows the run times for computing

projections of a D×D matrix using a semidefinite program (blue) and Dykstra’s algorithm

(red). Dykstra’s algorithm solves the projection two orders of magnitude faster than the

SDP. Figure 4.2(b) shows the log of runtime demonstrating that the two algorithms scale

similarly.

Not only does Dykstra’s algorithm accelerate the saddle point optimization of Equation

(4.2), fast projections allow the extragradient algorithm to be applied to a wider variety

of applications. In the following section we make use of the extragradient algorithm and

Dykstra’s algorithm in a multitask setting. Additional extensions can be further explored

with this efficient algorithm.
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Chapter 5

Multiple Task Transformation

Learning

A common theme in machine learning is to try to use all possible sources of information

to learn the most accurate model possible. This information could be in the form of prior

knowledge which can be encoded in the kernel or the function class being learned. It could

be in the form of unlabeled data which yields a semi-supervised [CSZ06] or transductive

algorithm [Vap98, Joa99]. Another approach is to leverage information from related tasks

[AZ05, EP04, Jeb04]. This final setting is the so called multiple task (multitask) learning

framework and is the subject of this chapter in the context of transformation learning.

We start by defining a formal definition of the multitask learning framework. Assume

there are T related learning tasks defined on the same input domain each with labeled

training sets St = {(~x1,t, y1,t), . . . , (~xNt,t, yNt,t)}. The goal in multitask learning is to learn a

joint structure for all tasks that will allow a sharing of information based on task similarity.

A joint optimization can be formulated where each task searches for a target function

fl ∈ Ht,θ in its own task specific hypothesis space Ht,θ which has a shared parameter, θ,

common to all tasks:

min
θ,ft∈Ht,θ

T∑

t=1

1
Nt

Nt∑

i=1

L(ft(xi,t, yi,t)) (5.1)

where L is an arbitrary loss function. This basic framework was proposed under the name
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of structure learning [AZ05]. For the support vector machine, L is the hinge loss and a

number of different shared structures have been explored. Perhaps the simplest common

structure would be to the same C and kernel parameters for all of the tasks. Another way

to tie tasks together is to estimate a mean function f0(x) and make predictions for task t

with f0(x) + ft(x) [EP04]. More complicated structures such as learning a common feature

selection or a common kernel have also been explored [Jeb04].

We are interested in the case where the shared structure is a mixture of transformations

Φ(x) =
∑

i miφi(x) or a matrix mixture of transformations defining a kernel as K(x, x′) =
∑

i,j Mi,jφi(x)φj(x′). This couples the problems and allows for the transfer of information

between related tasks in the form of these joint transformations. The joint optimization

can be phrased as the following nonconvex optimization:

min
~w1,..,T ,~ξ1,..,T ,b1,..,T , ~m

T∑

t=1

(
‖ ~wt‖2

2 + C

Nt∑

i=1

ξi,t

)

subject to yi,t




〈
~wt,

M∑

j=1

mjφj(~xi,t)

〉
+ bt


 ≥ 1− ξi,t

ξi,t ≥ 0,mj ≥ 0,
∑

j

mj ≤ 1.

Similar to the single task case, a simple greedy algorithm can be derived to solve this initial

nonconvex formulation. The task specific hyperplanes, parameterized with (wt, bt) can be

optimized independently with an SVM solver when the transformation Φ(x) =
∑

i miφi(x)

held fixed. Φ(x) can be found with a linear program with the hyperplanes held fixed. This

alternating procedure can be run to convergence to find a locally optimal solution and is

described in Algorithm 3.

Following the derivations of the single task setting, a relaxation can be derived for the

multitask mixture of transformations problem. This will again yield the matrix mixture of

transformations with a single kernel for all tasks defined as K(x, x′) =
∑

i,j Mi,jφi(x)T φj(x′).

Similar to Equation (3.10), the dual can be derived and ~m relaxed yielding another saddle

point optimization:
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Algorithm 4 Multitask Greedy Mixture of Transformation Learning
while not converged do

for t = 1 to T do

Solve SVM for ~wt, bt, ~ξt with Φ(x) locked

end for

Solve LP for Φ(x) =
∑

i miφi(x), {~ξ1, . . . , ~ξT } with {(~w1, b1), . . . , (~wT , bT )} locked

end while

min
M

max
~α1,..,T

T∑

t=1


2 ~αt

T~1− ~αt
T


Yt


∑

i,j

Mi,jφi(Xt)T φj(Xt)


Yt


 ~αt


 (5.2)

subject to M º 0,
J∑

j=1

Mj,j ≤ 1, M0,i ≥ 0,
J∑

j=1

M0,j ≤ 1,M0,0 = 1, ∀i

~0 ≤ ~αt ≤ C~1, ~αt
T ~y = 0, ∀t.

This saddle point optimization can be converted into a semidefinite program similar to the

single task case by first finding the dual with respect to {~α1, . . . , ~αT } and then using the

Schur complement lemma to arrive at:

min
M,s1,...,T ,λ1,...,T ,~ν1,...,T ,~δ1,...,T

∑
t

st (5.3)

subject to


 Yt

∑
i,j Mi,jφi(Xt)T φj(Xt)Yt ~1 + ~νt − ~δt + λt~yt

(~1 + ~νt − ~δt + λt~yt)T t− 2C~δT
t
~1


 º 0,∀t

M º 0,
J∑

j=1

Mj,j ≤ 1,M0,i ≥ 0,
J∑

j=1

M0,j ≤ 1,M0,0 = 1, ∀i

~νt ≥ ~0, ~δt ≥ ~0, ∀t. (5.4)

Unfortunately, this SDP has T +1 semidefinite blocks which will yield a very slow algorithm.

The extragradient algorithm will again provide an alternative algorithm to solve this

relaxed problem. It can find the solution to the saddle point problem in (5.2), thus avoiding

the extra T semidefinite constraints that arise from transforming it into an SDP.

Both the projections and gradients needed for the multitask extragradient algorithm are
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very similar to the single task case. The needed projections are:

PM (M) = min
M̂

‖M̂ −M‖2
F (5.5)

subject to: M̂ º 0,
J∑

j=1

M̂j,j ≤ 1, M̂0,i ≥ 0,
J∑

j=1

M̂0,j~1 ≤ 1, M̂0,0 = 1, ∀i

Pαt(~αt) = min
α̂t

‖α̂t − ~αt‖2
2 (5.6)

subject to: ~0 ≤ α̂t ≤ C~1.

They are exactly the same as the single task setting and can be solved efficiently with

Dykstra’s algorithm as described in Chapter 4. The gradients for ~αt can be computed

separately for each task, but the gradients for the joint mixing matrix M are tied across

the tasks. These gradients are computed as:

∇Mi,jS(M, α) =
T∑

t=1

~αt
T

(
Yt

(
φi(Xt)T φj(Xt)

)
Yt

)
~αt (5.7)

∇αtS(M, α) = 2~1 + 2


Yt


∑

i,j

Mi,jφi(Xt)T φj(Xt)


Yt


 ~αt. (5.8)

The extragradient algorithm, listed as Algorithm 4, can efficiently solve the joint opti-

mization over multiple related tasks without having to rely on a large semidefinite program

which is not computationally feasible.
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Algorithm 5 Multitask Convex Matrix Mixture of Transformation Learning
k = 0

while not converged do

repeat

Prediction:

M̄k+1 = PM

(
Mk − β∇MS(Mk, αk

(1,...,T ))
)

for t = 1 to T do

ᾱk+1
t = Pαt

(
αk

t + β∇αtS(Mk, αk
(1,...,T ))

)

end for

r = β
‖∇S(Mk,αk

(1,...,T )
)−∇S(M̄k+1,ᾱk+1

(1,...,T )
)‖

(‖Mk−M̄k+1‖+‖αk
(1,...,T )

−ᾱk+1
(1,...,T )

‖)
if r ≥ ν then

β = (2/3)β min(1, 1/r)

end if

until r < ν

Correction:

Mk+1 = PM

(
Mk − β∇MS(M̄k+1, ᾱk+1

(1,...,T ))
)

for t = 1 to T do

αk+1
t = Pαt

(
αk

t + β∇αtS(M̄k+1, ᾱk+1
(1,...,T ))

)

end for

k=k+1

end while
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Chapter 6

Learning Monotonic

Transformations

6.1 Monotonic Regression

Monotonic functions are a useful tool in statistical modeling and machine learning. They

can be used directly in regressions where the dependent variable has a monotonic relation to

the independent variable [SS04]. For example, growth curves have this characteristic. Age

is typically assumed to be monotonically related to height. Monotonic classifiers have also

been studied where the feature vectors have a monotonic relationship with binary class la-

bels [Sil98]. Monotonic functions can also serve a more utilitarian role in statistics such as in

the Box Cox transform [BC64] which estimates a parameterized monotonic transformation

of the dependant variable so that the overall regression is more normally distributed. Mono-

tonic transformations of the data are a useful preprocessing step for support vector machines

that improves classification accuracy in many domains [JKH04, HB05, CHV99, BGL+00].

In this chapter, we will be learning these monotonic transformations automatically using

the maximum margin transformation learning algorithm.

We will start by looking at the simple case of monotonic regression (also known as

isotonic regression) in order to define the building blocks necessary to integrate learned

monotonic transformations in the support vector machine framework. Isotonic regression is

a nonparametric shape restricted regression in which the shape restriction takes the form of
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order constraints. Other shape restrictions include functional properties such as convexity

and unimodality [SS04]. Formally, a function is said to be monotonic if f(x) ≥ f(x′)

whenever x ≥ x′ for any x and x′. The monotonic regression problem can be stated as:

given as a set of monotonically related observations {(x1, y1), . . . , (xN , yN )} find a monotonic

function f(x) that minimizes the sum of squared errors
∑

i(f(xi)− yi)2. A simple class of

nonparametric monotonic functions are the piecewise linear functions. In order to enforce

monotonicity, the right end of each line segment is constrained to be higher (or lower) than

the left side.

Isotonic regression is also appealing from a theoretical point of view. It is the maximum

likelihood estimator under the assumption that the residuals have a normal distribution

[Bru55]. It was shown to have strong uniform consistency on closed and bounded intervals

[HPW73]. Additionally, the asymptotic distribution has been well studied. The asymptotic

distribution of the L1 error was shown to be of the magnitude of n
1
3 and that a centered

version of this distance converges at the rate of n
1
2 to a Gaussian random variable with

fixed variance [Dur02].

The isotonic regression with piecewise linear functions can be solved with the following

quadratic program:

min
~f

N∑

i=1

(fi − yi)2 (6.1)

subject to fi ≥ fi−1 ∀i

where fi = f(xi) is the function value as the observed points xi. The xi’s are assumed to be

in ascending order so that the inequality constraints enforce monotonicity. Note that the

actual value of the x’s are unimportant, only their ordering. Additionally, the algorithm

only estimates the values of f(xi) = fi at the observed points. Any values between these

observed points can be found through linear interpolation f(x) = fi−fi−1

xi−xi−1
(x− xi−1) + fi−1.

This problem is solvable with standard quadratic program solvers, but a simpler method

known as the pool adjacent violators (PAV) algorithm can be used instead. The PAV algo-

rithm scans forward through the data looking for any examples that violate the monotonicity

constraint. If a violator has been found, it then scans backward pooling all violators and
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averaging them until no more violators are found. Pseudo code for the algorithm can be

found as Algorithm 6.

Algorithm 6 Pool Adjacent Violators
f1 = y1

for i = 2 to N do

fi = yi

n = 0

while fi−n < fi−1−n and n < i do

fi = . . . = fi−1−n = (yi + . . . + yi−1−n)/(n + 2)

n = n + 1

end while

end for

Another way to solve the isotonic regression problem for the class of piecewise linear

functions is to define f(x) explicitly as a basis function expansion f(x) =
∑

i miφ(x). These

basis functions are defined as truncated ramp functions with one per data point:

φj(x) =





0 x ≤ zj

x−zj

zj+1−zj
zj < x < zj+1

1 zj+1 ≤ x.

(6.2)

Positivity constraints on the mixing weights, m, enforce monotonicity on f(x) for all x. The

function can be visualized in Figure 6.1(a) and an example of a function built with these

basis functions can be seen in Figure 6.1(b).

This alternative framework also yields a quadratic program:

min
~m

N∑

i=1


yi −

∑

j

mjφj(xi)




2

(6.3)

subject to ~m ≥ ~0

This QP is slightly simpler than the previous one. It has the same number of variables

and constraints, but the constraints are simple positivity constraints rather than order

constraints. The structure of this problem does not yield a simple algorithm such as PAV
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(a) Truncated ramp function φ1(x) (b) f(x) =
∑5

j=1 mjφj(x)

Figure 6.1: Building blocks for piecewise linear functions. Truncated ramp functions (a)

can be combined with positive weights in the mixture of transformations framework to learn

piecewise linear monotonic functions as in (b).

so, in practice, it is not the preferred method. In the next section however, this will be the

preferred representation when jointly estimating a monotonic transformation and a linear

hyperplane in the maximum margin transformation learning framework.

6.2 Learning Large Margin Monotonic Transformations

We now turn our attention to learning monotonic transformations of the data to improve

support vector machine classification accuracy. In many domains such as document classifi-

cation [JKH04, HB05], image histogram classification [CHV99] and gene microarray exper-

iments [BGL+00], fixed monotonic transformations can be useful as a preprocessing step.

However, most classifiers only explore these transformations through manual trial and error

or via prior domain knowledge. The text classification problem typically uses a square root

of the word frequencies, image histogram classification cross validates over transformations

of the form xa with a ∈ [0, 1] and microarray experiments use the logarithm of expres-

sion ratios. We propose an algorithm that automatically learns monotonic transformations

while training a large-margin classifier without any prior knowledge of the domain. This

can be seen as a specific instance of maximum margin transformation learning with trun-
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Figure 6.2: The network model shows the learned monotonic transformation first applied

to each dimension of the data which is then followed by a hyperplane classifier to predict

the class label. The decision rule is yn = sign (〈~w,
∑

i miφi(~xn)〉).

cated ramp functions as base transformations. The combination of hyperplane classifier and

learned transformation can be visualized in Figure 6.2.

In the previous section, it was concluded that the traditional isotonic regression method

of pooled adjacent violators was preferred for its algorithmic simplicity. This defined piece-

wise linear monotonic function by learning values for the endpoints of each line segment as

opposed to finding a conic combination of truncated ramp functions. For the more compli-

cated task of learning a monotonic transformation and hyperplane classifier simultaneously,

no analogous simple algorithm presents itself. Therefore it is important to verify that the

truncated ramp function method, which corresponds to the large margin transformation

learning framework, is the preferred technique.

Although, the two representations are equivalent, mixtures of truncated ramp functions

are better suited to the combined hyperplane and transformation estimation. The mixture

of transformations formulation yields a simpler and more elegant formulation. To verify

this, we first look at the optimization with order constraints:
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min
~w,~ξ,b, ~f

‖~w‖2
2 + C

N∑

i=1

ξi (6.4)

subject to yi

(∑

d

wd

(
fu(i,d) − fl(i,d)

zu(i,d) − zl(i,d)
(xi,d − zl(i,d)) + fl(i,d)

)
+ b

)
≥ 1− ξi ∀i

ξi ≥ 0, fi ≥ fi−1∀i

where the variable fj = f(zj) is the function value at a small number preselected knots

{z1, . . . , zJ}. Because there are less knots then data points, the linear interpolation for

a training point ~xi must computed as fu(i,d)−fl(i,d)

zu(i,d)−zl(i,d)
(xi,d − zl(i,d)) + fl(i,d) where xi,d is the

d’th dimension of ~xi and the indexing functions l(i, d) and u(i, d) choose the index for the

knot below and above xi,d. Clearly this is an unwieldy optimization and subsequent convex

relaxations yield equally complicated semidefinite programs.

Using truncated ramp functions is preferable for a number of reasons. The initial opti-

mization problem is much simpler and is exactly an instance of large margin transformation

learning:

min
~w,~ξ,b,~m

‖~w‖2
2 + C

N∑

i=1

ξi (6.5)

subject to yi




〈
~w,

J∑

j=1

mjφj(~xi)

〉
+ b


 ≥ 1− ξi ∀i

ξi ≥ 0,mj ≥ 0,
∑

j

mj ≤ 1 ∀i, j.

As opposed to the previous method, there is no complicated indexing scheme and no need

to explicitly compute linear interpolations. The positivity constraints on the weights, ~m,

yield a simpler and more elegant formulation than order constraints and interpolation which

is important when deriving and implementing a relaxed algorithm. Additionally, the base

transformations, φ(x), can be easily precomputed and yield a sparse representation. Once

precomputed, most calculations can be done via sparse matrix multiplications. This is quite

important when computing kernels on the fly in the extragradient algorithm when memory

is a concern.

An important question that needs to be answered when defining truncated ramp func-

tions is how to choose the knot locations. There are two related methods for choosing



CHAPTER 6. LEARNING MONOTONIC TRANSFORMATIONS 45

the position of the knots. The first is to normalize the data so that ~x ∈ [0, 1]n via

~x = x−mini,d(~xd
i )

maxi,d(~xd
i )−mini,d(~xd

i )
. Once normalized, zk is placed at the empirical quantiles ensur-

ing that the function has expressive power where the data lies. This is explained more

explicitly in Algorithm 6. The second method is to preprocess the data by mapping it

through its empirical cumulative distribution function and space zk uniformly. Algorithm 7

describes this method in more detail. Learning monotonic transformations with these knot

selection schemes will yield identical learned functions in the limit of infinite data and yields

similar results in practice. The methods both have the important property of placing knots

with an equal number of data points between them.

Algorithm 7 Knot Choice at Quantiles
Map to [0,1] box by scaling:

for i = 1 to N do

x̂i = xi−minj(xj)
maxj(xj)−minj(xj)

end for

Compute CDF: FN (x) = 1
N

∑N
i=1 I(x̂i < x)

Choose knots at the quantiles:

for j = 1 to J do

zj = x such that FN (x) = j
J

end for

Algorithm 8 Uniform Knot Choice with CDF

Compute CDF: FN (x) = 1
N

∑N
i=1 I(xi < x)

Map to [0,1] box with CDF:

for i = 1 to N do

x̂i = FN (xi)

end for

Choose knots uniformly:

for j = 1 to J do

zj = j
J

end for
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Chapter 7

Learning Transformations Via

Alignment

7.1 Kernel Alignment

This chapter looks at learning transformations via kernel alignment. Previously chapters

have explored a large margin approach to transformation learning, and we now look at

an alternative criterion for finding optimal transformations. The (empirical) alignment

between two kernel matrices is defined as:

A(K1, K2) =
〈K1,K2〉F

‖K1‖F ‖K2‖F
. (7.1)

This can be seen as similarity score based on the cosine of the angle between K1 and K2 in

an appropriate space. For arbitrary matrices, this score ranges between -1 and 1. However,

since the kernel alignment is only measured on positive semidefinite Gram matrices, the

score is lower bounded by 0.

The alignment gives a measure of the quality of a kernel by comparing it to an idealized

kernel made up of the outer product of observed labels ~y~yT .

A(K,~y~yT ) =

〈
K,~y~yT

〉
F

‖K‖F ‖~y~yT ‖F
=

〈
K,~y~yT

〉
F

N‖K‖F
(7.2)

This score defines a useful quantity to optimize when searching for an optimal kernel:



CHAPTER 7. LEARNING TRANSFORMATIONS VIA ALIGNMENT 47

max
K

A(K,~y~yT ) (7.3)

subject to K ∈ K.

Instead of maximizing the normalized score in (7.3), an alternative equivalent optimization

can be derived that can be solved with standard solvers. First, the normalization is moved

from the cost function into the constraints:

max
K

〈
K,~y~yT

〉
F

(7.4)

subject to ‖K‖F = 1

K ∈ K.

Then, noting that ‖K‖F = 1 ⇐⇒ 〈K,K〉F = 1, the norm constraint can be replaced with

a quadratic inner product constraint. Additionally, the equality constraint can be changed

to an inequality constraint, because (7.4) is a maximization problem:

max
K

〈
K,~y~yT

〉
F

(7.5)

subject to 〈K, K〉F ≤ 1

K ∈ K.

The inequality constraint 〈K, K〉F ≤ 1 can be transformed into a semidefinite constraint

by first introducing a matrix A with bounded trace:

〈K,K〉F ≤ 1 (7.6)

⇒ trace(KT K) ≤ trace(A), trace(A) ≤ 1 (7.7)

⇒ A−KT K º 0, trace(A) ≤ 1 (7.8)

⇒

 A KT

K IN


 º 0, trace(A) ≤ 1 (7.9)

where the last line is due to the Schur complement lemma. Substituting this result into

(7.5) yields a general optimization for maximizing the alignment:
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max
K

〈
K,~y~yT

〉
F

(7.10)

subject to trace(A) ≤ 1
 A KT

K IN


 º 0

K ∈ K.

If K is the set of all positive definite matrices, this optimization yields a trivial solution

of K = c
n~y~yT . This indicates that it is important to constrain K to be less general. The

multiple kernel learning framework defines K =
∑

i miKi as a linear combination of base

kernels which defines a semidefinite program:

max
m

〈∑

j

mjKj , ~y~yT

〉

F

(7.11)

subject to trace(A) ≤ 1
 A KT

K IN


 º 0

∑

j

mjKj º 0.

If the weights mi are constrained to be positive, this defines a QCQP:

max
~m

~mT q (7.12)

subject to ~mT S ~m ≤ 1

~m ≥ ~0

where qi = 〈Ki, ~y~yT 〉F and Si,j = 〈Ki,Kj〉F .

7.2 Learning Transformations Via Alignment

We next look at learning a mixture of transformations by maximizing the alignment score

to the labels where the kernel is defined as K =
∑

i,j mimjφi(x)T φj(x) with mi ≥ 0. This

can be phrased as a similar optimization to (7.3) but with transformations:
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max
m

A


∑

i,j

mimjφi(x)T φj(x), ~y~yT


 (7.13)

subject to ~m ≥ ~0

We can now apply the general alignment optimization derived in (7.10) to this task of

learning a mixture of transformations. Defining Ki,j = KT
j,i = φi(X)T φj(X) and Qi,j =

Qj,i =
〈
Ki,j , yyT

〉
F

we arrive at:

max
m

~mT Q~m (7.14)

subject to trace(A) ≤ 1
 A

∑
i,j mimjKj,i

∑
i,j mimjKi,j IN


 º 0

~m ≥ ~0

Unfortunately, this optimization is nonconvex but can be relaxed using the recipe from

Chapter 3:

max
M

trace(MQ) (7.15)

subject to trace(A) ≤ 1
 A

∑
i,j Mj,iKj,i

∑
i,j Mi,jKi,j IN


 º 0

M º ~0

This relaxation is a semidefinite program which can be solved with standard solvers. The

learned kernel is K =
∑

i,j Mi,jφi(x)φj(x) which is the matrix mixture of transformations.

We call this the norm constrained transformation alignment algorithm.

7.3 Mixing Weight Constrained Transformation Alignment

Optimizing the kernel alignment A(K,~y~yT ) in (7.3) can be seen as maximizing a simi-

larity score 〈K,~y~yT 〉F subject to a complexity constraint based on the norm ‖K‖F = 1.
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Other types of complexity control could be used in this setting. We now investigate simple

constraints on the mixing weights of the kernel ~m ≥ ~0 and ~mT~1 ≤ 1:

max
~m

〈∑

i,j

mimjφi(X)T φj(X), ~y~yT

〉

F

(7.16)

subject to ~m ≥ ~0, ~mT~1 ≤ 1,
∑

i

m2
i ≤ 1, ∀i.

This includes an additional redundant constrain
∑

i m
2
i ≤ 1 that will be useful in the

relaxation. Introducing the positive semidefinite matrix M similar to the previous subsec-

tion yields a convex relaxation which we call the mixing weight constrained transformation

alignment algorithm:

max
m

〈∑

i,j

Mi,jφi(X)T φj(X), ~y~yT

〉

F

(7.17)

subject to


 1 ~mT

~m M


 º 0

~m ≥ ~0, ~mT~1 ≤ 1,
∑

i

Mi,i ≤ 1

This method has better space and time complexity than either the norm constrained trans-

formation alignment or large margin transformation learning. While the previous two meth-

ods have semidefinite blocks that scale with the number of data points and need to store all

N2/2−N kernel matrices in memory. This formulation requires neither and can precompute

the most burdensome quantity with only matrix-vector and vector-vector multiplication:〈∑

i,j

Mi,jφi(X)T φj(X), ~y~yT

〉

F

=
∑

i,j

Mi,jtrace
(
(~yT φi(X)T )(φj(X)~y)

)
. (7.18)

7.4 Sparse Kernel and Transformation Alignment

We now investigate two alternative possibilities for controlling complexity by choosing sparse

sets of kernels or transformations based on the alignment score.

We will first investigate two scenarios for learning sparse kernels and then apply these

techniques to sparse transformation learning. The first method is to replace the norm

constraint ‖K‖F = 1 with a cardinality constraint:
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max
m

〈∑

i

miKi, ~y~yT

〉

F

(7.19)

subject to
∑

i

mi = k

m ∈ {0, 1}.

This method chooses the k best kernels and gives them even weight. The optimization has

a trivial solution of simply computing each kernel’s score and choosing the k highest.

Another approach is to penalize the cardinality and trade off between maximizing the

score and penalizing cardinality:

max
m

〈∑

i

miKi, ~y~yT

〉

F

− C
∑

i

mi (7.20)

subject to m ∈ {0, 1}.

This optimization also can be solved in a trivial way. Because the kernel score and the cardi-

nality are traded off linearly, C acts as a threshold. Choosing kernels where 〈Ki, ~y~yT 〉F > C

solves the problem.

Although both of these problems are not very interesting when learning a sparse mixture

of kernels, learning a sparse mixture of transformations is a difficult NP-Hard combinatorial

optimization problem. Approximation algorithms based on semidefinite programs will be

necessary to solve them. These approximations will again yield the matrix mixture of

transformations model.

The cardinality constrained mixture of transformations alignment problem will be stud-

ied first. It can be phrased as the following optimization:

max
m

〈∑

i,j

mimjφi(x)T φj(x), ~y~yT

〉

F

(7.21)

subject to
∑

i

mi = k

m ∈ {0, 1}

This turns out to be an example of the Dense-k-Subgraph problem defined on a complete

graph with a vertex for each transformation and weights wij =
〈
φi(x)T φj(x), ~y~yT

〉
F
. Dense-

k-Subgraph finds the subset of k vertices in a graph G that has a maximum weight set of
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edges between vertices within the subset. The problem is defined formally as: given an

undirected graph G = (V, E) with N vertices V connected by edges E with nonnegative

weights wij , determine a subset S ⊂ V with |S| = k such that
∑

i∈S,j∈S wi,j is maximized.

This is an NP-Hard problem and the best approximations for it are based on semidefinite

programs.

Constant factor semidefinite programming approximation algorithms were pioneered

by Goemans and Williamson with the much celebrated 0.8785 approximation to Max-Cut

[GW95]. Many other discrete NP-hard optimizations have been solved with similar types

of algorithms. The main ingredients in these algorithms is to relax a {−1, 1} discrete

quadratic optimization into an optimization on a sphere. Once a solution is found by an

SDP, a random rounding scheme is used to find a feasible solution to the original problem.

Dense-k-Subgraph is similar to Max-Cut-k which is a constrained version of the Max-Cut

problem requiring a partition to have exactly k elements in it. The best approximations

for Dense-k-Subgraph are slightly better than k/N . For example when k = N
2 Ye and

Zhang report a 0.5866 algorithm [YZ03] with the best reported approximation as 0.6221 by

Halperin and Zwick [HZ02]. These two results were only studied for the bisection problem of

k = 2/N in the referenced papers. However, Han, Ye and Zhang, describe a way to generalize

the 0.5866 approximation algorithm to arbitrary k yielding approximations superior to k/N

[HYZ02] by introducing an additional node swapping step to insure the correct number of

vertices in the subset. Halperin and Zwick mention that their 0.6221 algorithm can be

generalized to arbitrary k by using the rounding technique of Feige and Langberg [FL01]

but do not provide an analysis.

The Dense-k-Subgraph problem can be phrased as a discrete quadratic optimization

problem:

max
m

∑

i,j

1
2
(mi + 1)

1
2
(mj + 1)wi,j (7.22)

subject to
∑

i

1
2
(mi + 1) = k

m ∈ {−1, 1}

An approximation to this problem proposed by Han, Ye and Zhang [HYZ02] can be found
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with a three step algorithm listed as Algorithm 9. First, a semidefinite relaxation is solved:

max
M

1
4

∑

i,j

wi,j(1 + M0,i + M0,j + Mi,j) (7.23)

subject to
∑

i,j

Mi,j = (2k − n)2

∑

i

M0,i = 2k − n

Mi,i = 1∀i

M º 0.

Then a randomized rounding technique listed as Algorithm 10 is used to recover discrete

variables in the feasible set. This is followed by a procedure to insure that the proper number

of vertices are in the partition in Algorithm 11. The various parameters in the procedure

vary depending on the problem and no closed form solution exists for the approximation

ratio. A table of the approximation values for various settings of k/N are in Table 7.1.

Algorithm 9 Dense-k-Subgraph Approximation
Solve SDP (7.23) for M

w∗ = 0

for n = 1 to N do

Use Randomized Rounding (Han, Ye, Zhang) on M to recover ~m ∈ {0, 1}J+1

Set S = {i : mi = m0}
Use Node Swapping to ensure |S| = k

w =
∑

i∈S,j∈S
1
2(mi + 1)1

2(mj + 1)Wi,j

if w > w∗ then

w∗ = w

S∗ = S

end if

end for

We now turn our attention to learning a mixture of transformations via kernel alignment

with penalized cardinality. This problem does not fit into the class of well studied NP Hard
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Algorithm 10 Randomized Rounding (Han, Ye, Zhang)
Sample ~u ∼ N(0, θM + (1− θ)M)

~m = sign(~u)

Algorithm 11 Node Swapping
if |S| > k then

N = |S| − k

for n = 1 to N do

for i = 1 to |S| do

ζi =
∑

j∈S Wi,j

end for

S = {s ∈ S : s 6= arg mini∈S ζ(i)}
end for

else if |S| < k then

Add k − |S| nodes to S arbitrarily

end if

k
n R k

n R k
n R k

n R

0.20 0.2008 0.32 0.3827 0.44 0.5310 0.56 0.6287

0.22 0.2320 0.34 0.4105 0.46 0.5511 0.58 0.6402

0.24 0.2631 0.36 0.4372 0.48 0.5697 0.60 0.6488

0.26 0.2942 0.38 0.4626 0.50 0.5866 0.62 0.6539

0.28 0.3245 0.40 0.4867 0.52 0.6022 0.64 0.6563

0.30 0.3541 0.42 0.5095 0.54 0.6161 0.65 0.6571

Table 7.1: Table of approximation ratios R for various fractions k/N for Dense-k-Subgraph

on N vertices.
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graph theoretic algorithms such as Max-Cut. However, we can use a result of Nesterov to

solve this problem with a π
2 − 1 = 0.5707 relative accuracy [Nes98]. Nesterov showed that

the following general discrete optimization program can be solved with a strategy similar

to that used by Goemans and Williams:

max
~m

~mT H ~m (7.24)

subject to ~m ∈ {−1, 1}N .

Note that this optimization does not have any linear terms. This can be rectified by adding

an additional variable m0:

max
~m

~mT H ~m + m0c
T ~m (7.25)

subject to ~m ∈ {−1, 1}N+1.

Whenever m0 = 1 then the solution ~m is optimal and when m0 = −1 then −~m is optimal.

This augmentation allows for analysis involving only quadratic terms.

The penalized cardinality transformation alignment problem can be solved with the

following optimization:

max
m

〈∑

i,j

.5(mi + 1).5(mj + 1)Ki,j , ~y~yT

〉

F

− C
∑

i

mi (7.26)

subject to m ∈ {−1, 1}.

In order to transform it into problem (7.24) set:

Hi,j =
〈
Ki,j , yyT

〉
(7.27)

Hi,0 = H0,i =
∑

j

〈
Ki,j , yyT

〉− C/4. (7.28)

This optimization can be relaxed with the normal recipe as:

max
M

trace(HM) (7.29)

subject to diag(M) = ~1,M º 0.

A feasible point ~m ∈ {−1, 1} can be recovered using the standard randomized rounding

technique originally proposed by Goemans and Williamson [GW95]. Choose a centered
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hyperplane ~w uniformly at random and cut the unit sphere in half assigning each side of

the cut to -1 and 1 respectively. This can be seen in more detail as Algorithm 13. The

entire approximation algorithm can be found as Algorithm 12. The relaxation yields a
π
2 − 1 = 0.5707 expected relative accuracy where the relative accuracy is defined as:

q − qapprox
q − q

, (7.30)

with q being the maximum value of the cost function defined in (7.24), q being the min-

imum value of the cost function and qapprox being the value of an approximation. For

comparison, the relative accuracy ranges between 0 and 1 with smaller values giving better

approximations. The MAX-CUT approximation has a 1− 0.8785 relative accuracy.

Algorithm 12 Discrete Quadratic Optimization Approximation Algorithm
Solve SDP (7.24) for M

Use Randomized Rounding (Goemans and Williamson) on M to recover ~m ∈ {0, 1}J+1

Algorithm 13 Randomized Rounding (Goemans and Williamson)
Compute V T V = M via Cholesky decomposition

Sample ~w from a uniform distribution

~m = sign(V T ~w)
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Chapter 8

Experiments

8.1 Overview

In this chapter, experiments are presented to demonstrate the effectiveness of the proposed

methods for learning monotonic transformations. Additionally, empirical running times of

the SDP solver and the extragradient algorithm are compared as well as the running times of

the alignment based methods. Finally, the multitask algorithm is shown to yield improve-

ments by learning a common transformation among multiple related tasks. Preliminary

results were presented in [HJ08b] with more extensive results in [HJ08a].

The models and algorithms of the paper are investigated in these experiments and

demonstrate the need for learning transformations rather than kernels in various domains.

The mixture of transformations, which is trained greedily with Algorithm 1, is reported as

“Mix. Trans.”. The matrix mixture of transformations is trained with either the SDP of

Equation 3.13 or the extragradient algorithm from Section 4 depending on the size of the

dataset and is reported as “Matrix Mix. Trans.”. Both representations use the truncated

ramp functions of Equation 6.2 to build monotonic transformations of the data. An obvious

competitor is the mixture of kernels which is compared to the proposed methods by defining

base kernels as inner products between truncated ramp functions and reported as “Mix.

Kernels”. The alignment based algorithms from Chapter 7 are also tested. The standard

kernel alignment algorithm with truncated ramp functions reported as “Kernel Alignment”

is compared to the norm constrained transformation alignment reported as “Trans. Align.
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Norm” and the mixing weight constrained transformation alignment reported as “Trans.

Align. Mixing”. Other baseline algorithms include the linear SVM reported as “Linear”,

the SVM with a polynomial kernel reported as “Poly”, and the SVM with a radial basis

functions kernel reported as “RBF”.

8.2 Synthetic Experiment

We present a simple synthetic experiment that demonstrates the methods’ ability to recover

a monotonic transformation from data. Points were sampled near a linear decision boundary

and were labeled based on which side of the separating hyperplane they fell as in Figure

8.1(a). The data was then transformed with a strictly monotonic function such as the

normalized logarithm in Figure 8.1(b) or a quadratic as in 8.1(c). The training set is made

up of the transformed points and the original labels. A linear algorithm will have difficulty

because the mapped data is no longer linearly separable. However, if the inverse monotonic

function were recovered and applied to the data points, then a linear decision boundary

would perform well.

For this experiment, 600 data points were sampled, and then transformed with the

various monotonic functions. They were then split evenly into training, cross validation

and testing sets. The models proposed in this thesis, the mixture of transformations (Mix.

Trans.), the matrix mixture of transformations (Matrix Mix. Trans.), the norm constrained

transformation alignment (Trans. Align. Norm), and the mixing weight constrained trans-

formation alignment (Trans. Align. Mix) were compared to a linear SVM (Linear), a

mixture of kernels (Mix. Kernels) trained with the large margin criteria, and a mixture

of kernels found by maximizing alignment (Kernel Alignment) where the base kernels were

constructed as inner products between the same truncated ramp functions used by the

transformation learning algorithms.

The linear SVM struggled on the transformed data and the two norm constrained align-

ment algorithms performed poorly. The kernel alignment and norm constrained transforma-

tion alignment end up penalizing transformations or kernels with large norm which unfairly

differentiates between different ramp functions. The other methods performed quite well
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as reported in Table 8.1. The p-values for a paired t-test are reported in in Table 8.2.

The learned functions from the mixture of transformations are plotted in Figure 8.1(d-f).

The solid blue line is the mean over 10 experiments, and the dashed blue is the standard

deviation. The dashed black line is the true target function. The learned functions for

the matrix mixture of transformations are in Figure 8.1(g-i) and similarly plotted in red.

Both methods performed quite well on the task of classification and recovered nearly the

exact monotonic transformation. The matrix mixture, learned with the convex algorithm,

outperformed the greedily learned mixture of transformations by avoiding local minima.

The alignment algorithm ends up outperforming the large margin matrix mixture method

slightly. All three transformation learning methods outperformed the mixture of kernels

algorithm because they are searching over the correct class of transformations. The mix-

ture of kernels essentially concatenates each base transformation instead of adding them to

build monotonic functions.

8.3 Image Histogram Classification

This experiment used the Corel image dataset which is made up of images split into vari-

ous categories each containing 100 examples. Four categories of animals were chosen: (1)

eagles, (2) elephants, (3) horses, and (4) tigers. Images were then transformed into RGB

histograms following the binning strategy of [CHV99, HB05]. In [CHV99], it was shown

that monotonic transforms of the form xa for 0 ≤ a ≤ 1 substantially outperform linear,

RBF and polynomial SVMs.

All six pair wise classification experiments where repeated 10 times with the data ran-

domly split into 80 percent training, 10 percent cross validation, and 10 percent testing.

The mixture and matrix mixture of transformations were compared to a linear support vec-

tor machine, SVMs with RBF and polynomial kernels, and a mixture of kernels based on

truncated ramp functions as well as the three alignment based algorithms. Transformations

of the form xa for 0 ≤ a ≤ 1 were also compared where a was chosen by cross validating

over a = {0, .125, .25, .5, .625, .75, .875, 1}. This parameter set includes linear a = 1 at one

end, a binary threshold a = 0 at the other (choosing 00 = 0), and the square root transform
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Figure 8.1: Data is sampled near a linear decision surface with margin in (a). A logarithmic

transform is applied to the data and hyperplane in (b) and the square root transform is

applied in (c). Then, the inverse transform and hyperplane are learned simultaneously from

the transformed data. The learned inverse transforms are shown in the remaining plots.

The target transform is plotted in dashed black. The average learned function from the

mixture of transformations are in solid blue with the standard deviation in dashed blue

(d)-(f). The average learned transformation from the matrix mixture of transformations is

in solid red with the standard deviation in dashed red (g)-(i).
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Linear Exponential Square Root Avg.

Linear 0.00 3.00 4.75 2.58

Mix. Kernels 1.15 1.25 1.00 1.13

Mix. Trans. 0.40 0.35 0.55 0.43

Matrix Mix. Trans. 0.20 0.20 0.35 0.25

Kernel Alignment 12.55 11.95 12.20 12.23

Trans. Align. Norm 6.75 6.30 8.65 7.23

Trans. Align. Mix 0.15 0.05 0.35 0.18

Table 8.1: Percent testing error rates for the synthetic experiments. Data was sampled near

a linear decision surface then transformed with a monotonic function. The inverse of the

transformation must be learned in order to predict well. The mixture of transformations

(Mix. Trans.) and matrix mixture of transformations (Matrix Mix. Trans.) were compared

to a linear SVM (Linear), and a mixture of kernels (Mix. Kernels). The alignment based

algorithms were also compared, (Kernel Alignment), (Trans. Align. Norm) and (Trans.

Align. Mix). Results for each dataset for the three target monotonic function, linear,

exponential and square root, are reported in their respective columns as well as the average

in the Avg. column. The results are averaged over 10 runs and the best error rate for each

experiment is in bold.

Linear Exponential Square Root Avg.

Linear - 0.0001 0.0003 0.0000

Mix. Kernels 0.0432 0.0735 0.1636 0.1023

Mix. Trans. 0.0368 0.0811 0.5086 0.1472

Matrix Mix. Trans. 0.0386 0.1934 - 0.5338

Kernel Alignment 0.0000 0.0000 0.0000 0.0000

Trans. Align. Norm 0.0000 0.0000 0.0000 0.0000

Trans. Align. Mix 0.0811 - - -

Table 8.2: P-values for the synthetic experiment. A paired t-test was conducted which

compared the best result for each column to the other algorithms in the column. A ”-”

signifies the top result or tie for top result.
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in the middle.

The matrix mixture learned with the large margin algorithm and the one learned via

alignment performed best or tied for best on 4 out of 6 of the experiments and were the top

two performers overall as reported in Table 8.3. The p-values for the associated paired t-tests

are found in Table 8.4. The mixture of transformations also performed well tying the kernel

mixture on the average error rate. All three methods based on large margin transformation

or kernel learning and the mixing weight constrained alignment algorithm outperformed the

cross validated family of xa transforms. A key insight learned about this dataset is that

most of the data is very close to zero due to few pixels being in a given bin so that the

first few pixels are very important. Cross validation over xa most often chose low nonzero

a values which corresponds to transformations that quickly spike and then saturate. The

greedy mixture of transformations method and convex matrix mixture of transformations

learned similar types of monotonic functions. Plots of the learned functions can be found in

Figure 8.2(a-f). The mean functions learned with the mixture of transformations are plotted

in solid blue and the mean function learned with the matrix mixture of transformations is

plotted in dashed red. The matrix mixture tended to find smoother functions, because it

did not get stuck in local minima.

Figure 8.3 shows the effects of the learned transformations on the contribution of each

color to the decision rule. Figure 8.3(a) shows the original images for an example from

the tiger class and the horse class. Figure 8.3(b) shows, SSV M (c), the color score images

for SVM classifier and 8.3(c) shows, SMT (c), the color score image for the learned mixture

of transformations classifier. The color score is a measure of how much an individual

color contributes to the decision rule. The color score for a color c is defined as S (c) =
(
wb(c)Φ

(
xb(c)

))
where b(c) is the histogram bin associated with color c. The color score

can be used to compute a labeling of an image as y = sign (
∑

c S(c)/Z + b) where Z is the

number of colors assigned to a single bin. This score is a measure of how important a given

color is to the classification rule. When the color score is multiplied by the label, yS(c),

white corresponds to the highest score and black the lowest. The mixture of transformations

assigned the highest score to the pixels that make up the tiger and the horses which indicates

that the learned decision rule is focusing areas of interest in the image. In contrast, the
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1 vs 2 1 vs 3 1 vs 4 2 vs 3 2 vs 4 3 vs 4 Avg.

Linear 10.0 6.0 2.0 13.0 7.5 10.0 8.08

Poly 9.5 6.0 2.0 12.5 7.0 9.0 7.67

RBF 7.0 6.0 2.0 9.0 7.0 8.5 6.58

xa 3.0 0.5 2.5 1.5 3.0 5.0 2.58

Mix. Kernels 4.5 1.0 1.5 0.5 3.5 3.5 2.42

Mix. Trans. 3.5 1.0 2.0 1.0 4.5 2.5 2.42

Matrix Mix. Trans. 2.5 1.0 0.5 1.0 2.0 1.0 1.33

Kernel Align. 3.5 1.0 3.5 3.5 8.5 6.5 4.42

Trans. Align. Norm 3.0 2.0 2.0 4.0 5.0 7.5 3.92

Trans. Align. Mix 2.5 1.0 0.5 1.0 1.5 1.0 1.25

Table 8.3: Percent testing error rates on Corel image histogram dataset. Four classes of

animals, (1) eagles, (2) elephants, (3) horses, and (4) tigers were used in all 6 pairwise

classification tasks. The average error rate is reported in the Avg. column. The mixture

of transformations (Mix. Trans.) and matrix mixture of transformations (Matrix Mix.

Trans.) were compared to a linear SVM (Linear), SVMs with polynomial (Poly) and RBF

(RBF) kernels, an SVM with cross validated transforms (xa) and a mixture of kernels (Mix.

Kernels). The alignment based algorithms were also compared, (Kernel Alignment), (Trans.

Align. Norm) and (Trans. Align. Mix). Results are averaged over 10 runs and the best

error rate for each experiment is in bold.

linear SVM mistakenly gave pixels in the background the highest score which makes it

difficult to distinguish between classes.

8.4 Document Classification

This experiment used the WebKB four universities dataset which consists of webpages

split into multiple categories. The dataset consists of 1641 student webpages, 1124 faculty

webpages, 930 course webpages, and 540 project webpages. These pages were processed to

remove the HTML tags and then converted into the bag of words representation so that
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Figure 8.2: The learned transformation functions for all six Corel image histogram classi-

fication problems. The functions learned with a mixture of transformations are plotted in

solid blue. The functions learned with the matrix mixture are transformations is plotted in

dashed red.
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(a) Original images. (b) ySSV M (c). (c) ySMT (c).

Figure 8.3: Color score images for some examples from the Corel image histogram data set.

The original images of a tiger and horses are shown in (a). Models were learned for the tigers

vs horses binary classification problem. The color score for a color c is computed from the

learned hyperplane and monotonically transformed histogram data: S (c) =
(
wb(c)Φ

(
xb(c)

))

where b(c) is the histogram bin associated with color c. The color score can be used to

compute a labeling of an image as y = sign (
∑

c S(c)/Z + b) where Z is the number of

colors assigned to a single bin. This score is a measure of how important a given color

is to the classification rule. When the color score is multiplied by the label, yS(c), white

corresponds to the highest score and black the lowest. The color score images based on the

linear SVM, with Φ(x) = x fixed, are shown in (b). The images based on the mixture of

transformations color score, with Φ(x) =
∑

i miφi(x) learned from data, are shown in (c).

The mixture of transformations assigned the highest score to pixels in both the tiger and

horses which indicates that the learned decision rules locked onto important discriminative

features in the image. However, the SVM mistakenly gave pixels in the background the

highest score which made it difficult to distinguish between the classes.
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1 vs 2 1 vs 3 1 vs 4 2 vs 3 2 vs 4 3 vs 4 Avg.

Linear 0.1197 0.0067 0.0811 0.0004 0.0010 0.0002 0.0001

Poly 0.1376 0.0067 0.0811 0.0003 0.0032 0.0031 0.0001

RBF 0.2531 0.0067 0.0811 0.0058 0.0032 0.0030 0.0003

xa 0.7263 - 0.1039 0.1679 0.1934 0.1825 0.0020

Mix. Kernels 0.1676 0.3434 0.4433 - 0.1679 0.0957 0.0830

Mix. Trans. 0.3434 0.5911 0.3434 0.3434 0.0239 0.1934 0.0295

Matrix Mix. Trans. - 0.5911 - 0.3434 0.3434 - 0.3434

Kernel Align. 0.6193 0.3434 0.1114 0.0811 0.0013 0.0243 0.0143

Trans. Align. Norm 0.7577 0.1939 0.0811 0.0248 0.0662 0.0063 0.0000

Trans. Align. Mix - 0.5911 - 0.3434 - - -

Table 8.4: P-values for the Corel image histogram experiment. A paired t-test was con-

ducted which compared the best result for each column to the other algorithms in the

column. A ”-” signifies the top result or tie for top result.

each page was represented by a vector of word frequencies. All six pairwise classification

experiments where repeated 10 times with the data randomly split into 80 percent training,

10 percent cross validation, and 10 percent testing.

In [JKH04, HB05], preprocessing the bag of words representation by applying the square

root was shown to yield good results. The matrix mixture and mixture of transformations

models learned with the large margin criteria as well as the alignment based algorithms

were compared to a linear SVM with and without this square root transformation, kernelized

SVMs with either the polynomial kernel or the RBF kernel and a mixture of kernels based on

truncated ramp functions. The linear support vector machine and both the polynomial and

RBF kernels are known to perform worse than a simple square root transformation leading

to the intuition that it is important to properly limit the effects of large word counts. The

kernel alignment algorithm and the norm constrained transformation alignment algorithm

were not compared due to the memory requirements of storing all of the kernels.

The large margin matrix mixture and the alignment algorithm with constrained mixing

weights each performed best in 2 out of 6 of the experiments with the large margin version
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tied for the best overall error rate with the square root transform as shown in Table 8.5

and the p-value for the associated t-tests are found in Table 8.6. The greedy mixture of

transformations outperformed the kernel mixture with the alignment algorithm performing

slightly worse overall. All of these transformation learning algorithms outperformed the

linear and kernel based models. This demonstrates that not only is it important to use

monotonic transformations but that it is possible to learn them from data given the proper

algorithm and representation.

The learned functions can be visualized in Figure 8.4 with the matrix mixture of trans-

formation plotted in dashed red and the mixture of transformations plotted in solid blue.

The matrix mixture of transformations tends to learn smoother functions similar to pre-

vious experiment in Section 8.3. However, the learned functions are quite similar between

the two methods, with the main difference being that the learned functions from the matrix

mixture increase more quickly.

8.5 Gender classification

This experiment consists of images of males and females with the task of differentiating

gender. There are 1755 labeled images from the FERET dataset which have been processed

as in [MY00]. Each processed image is a 21 by 12 pixel 256 color gray scale image that is

rastorized to form data vectors. The dataset consists of 1044 male images and 711 female

images which were randomly split into 80 percent training, 10 percent cross validation, and

10 percent testing. The three transformation learning algorithms were compared to a linear

SVM and a mixture of kernels on ten random splits of the data.

The convex matrix mixture of transformations algorithm outperforms the linear SVM

and is comparable to the mixture of kernels as shown in Table 8.7. Unfortunately, in

this experiment, the greedy mixture of transformations and the alignment algorithm does

not seem to help performance. This is perhaps an example where the matrix mixture

is useful because it is more flexible than the mixture of transformations and can explore a

superset of the class of functions that the kernel mixture defines. It also seems that the large

margin criteria is preferred to the alignment criteria in this problem. The learned monotonic
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1 vs 2 1 vs 3 2 vs 3 1 vs 4 2 vs 4 3 vs 4 Avg.

Linear 2.73 2.59 6.30 2.06 6.67 3.46 3.97

Sqrt 2.15 1.89 3.77 1.48 4.60 2.29 2.69

TFIDF 2.63 2.03 6.48 1.40 6.92 2.43 3.65

Poly 2.78 2.45 6.42 2.18 6.63 3.08 3.92

RBF 2.88 2.52 5.99 2.26 6.52 2.99 3.86

Mix. Kernels 1.56 2.17 3.27 1.95 5.76 2.52 2.87

Mix. Trans. 1.76 2.31 4.01 1.36 4.67 2.66 2.80

Matrix Mix. Trans. 1.32 2.03 4.51 1.13 4.35 2.80 2.69

Trans. Align. Mix 1.80 1.82 4.44 1.09 5.51 2.71 2.90

Table 8.5: Percent testing error rates for the WebKB bag of words webpage classification.

Four classes of webpages, (1) student, (2) faculty, (3) course, and (4) projects were used in

all 6 pairwise classification tasks. The average error rate is reported in the Avg. column.

The mixture of transformations (Mix. Trans.), matrix mixture of transformations (Matrix

Mix. Trans.) and the alignment algorithm (Trans. Align. Mix) were compared to a

linear SVM (Linear), an SVM with a square root preprocessing (Sqrt), an SVM with text

frequency inverse document frequency features (TFIDF), SVMs with polynomial (Poly) and

RBF (RBF) kernels and a mixture of kernels (Mix. Kernels). Results are averaged over 10

runs and the best error rate for each experiment is in bold.



CHAPTER 8. EXPERIMENTS 69

0 0.005 0.01 0.015 0.02
0

0.2

0.4

0.6

0.8

1

0 0.005 0.01 0.015 0.02
0

0.2

0.4

0.6

0.8

1

0 0.005 0.01 0.015 0.02
0

0.2

0.4

0.6

0.8

1

0 0.005 0.01 0.015 0.02
0

0.2

0.4

0.6

0.8

1

0 0.005 0.01 0.015 0.02
0

0.2

0.4

0.6

0.8

1

0 0.005 0.01 0.015 0.02
0

0.2

0.4

0.6

0.8

1

Figure 8.4: The learned transformation functions for all six WebKB text classification

problems. The functions learned with a mixture of transformations are plotted in solid

blue. The functions learned with the matrix mixture are transformations is plotted in

dashed red.
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1 vs 2 1 vs 3 2 vs 3 1 vs 4 2 vs 4 3 vs 4 Avg.

Linear 0.0010 0.0932 0.0002 0.0127 0.0001 0.0358 0.0000

Sqrt 0.0020 0.8402 0.3270 0.0319 0.2091 - -

TFIDF 0.0006 0.3434 0.0017 0.2100 0.0002 0.6849 0.0003

Poly 0.0006 0.1341 0.0002 0.0005 0.0000 0.0192 0.0000

RBF 0.0003 0.1173 0.0008 0.0006 0.0006 0.0150 0.0000

Mix. Kernels 0.4951 0.5960 - 0.0571 0.0477 0.6783 0.2082

Mix. Trans. 0.0100 0.0662 0.1188 0.0886 0.3729 0.3270 0.2837

Matrix Mix. Trans. - 0.3938 0.0875 0.7976 - 0.0842 -

Trans. Align. Mix 0.0418 - 0.0521 - 0.0003 0.1708 0.0220

Table 8.6: P-values for the WebKB histogram experiment. A paired t-test was conducted

which compared the best result for each column to the other algorithms in the column. A

”-” signifies the top result or tie for top result.

function from the large margin matrix mixture algorithm were similar to a sigmoid function

which indicates that useful saturation and threshold effects where uncovered by the method.

Figure 8.5 shows examples of training images before and after they have been transformed

by the learned function.

8.6 Empiricial Running Time Comparison for the Extragra-

dient Algorithm

In this experiment, the empirical scaling properties of the extragradient algorithm is com-

pared to solving the semidefinite program with SeDuMi using Yalmip. The transformation

learning problem from the synthetic experiment was used with training set sizes of 100,

200, 300, 400, 500 and 600 training examples. At 700 training examples SeDuMi ran out of

memory when running a 32 bit version of Matlab which has the limitation of only being able

to allocate about 2 GB of memory. For all training regimes, 100 data points were used for

cross validation and 100 for testing. The results can be seen in Figures 8.6(a). The empir-

ical scaling of the semidefinite program is O(n3.06) and only O(n0.7) for the extragradient
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Algorithm Error P Value

Linear 9.49 0.1170

Mix. Kernels 8.00 -

Mix. Trans. 9.66 0.0494

Matrix Mix. Trans. 8.51 0.3586

Trans. Align. Mix 9.71 0.0373

Table 8.7: Percentage error rates for gender classification and P-values for paired t-test. The

mixture of transformations (Mix. Trans.), the matrix mixture of transformations (Matrix

Mix. Trans.) and the alignment method (Trans. Align. Mix) were compared to a linear

SVM (Linear), and a mixture of kernels (Mix. Kernels) to classify gender images.

Figure 8.5: Original and transformed gender images. The top row depicts original images;

the second row shows images transformed by learned monotonic functions.
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Figure 8.6: SDP compared to Extragradient to learn matrix mixture of transformation

classifiers. Figure (a) shows a comparison of running times for the two algorithms. Figure

(b) shows a comparison of error rate, note that this is percentage error.

algorithm. There was a small loss in accuracy for smaller datasets as seen in Figure 8.6(b)

which is more than compensated for by the favorable scaling properties on large datasets.

8.7 Empirical Running Time Comparison for Alignment Al-

gorithms

We now compare the empirical running time of the Matrix Mixture of Transformations,

Norm Constrained Transformation Learning via Alignment, and Mixing Weight Constrained

Transformation Learning via Alignment. The synthetic experiment was varied over train-

ing sizes for learning the square root transformation. At 800 training points the Matrix

Mixture of Transformations runs out of memory using a 32 bit version of Matlab. Results

for the experiments are found in Figure 8.7. The running time for the alignment based

algorithms include in addition to the alignment SDP, the running time for a simple dual

SVM implemented with quadratic programming and Mosek.

Previous experiments show that mixing weight constrained alignments is a viable alter-

native to the large margin matrix mixture of transformations in terms of accuracy. The

empirical scaling results show that it could be considered as a first algorithm to try be-



CHAPTER 8. EXPERIMENTS 73

100 200 300 400 500 600 700
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Training Set Size

T
ra

in
in

g
 T

im
e

 in
 S

e
co

n
d

s

Empirical Scaling of Running Time for Transformation Learning

 

 

LMTL
NC−TLA
MWC−TLA

Figure 8.7: Empirical scaling results for Large Margin Matrix Mixture of Transformation

Learning (LMTL), Norm Constrained Transformation Learning via Alignment (NC-TLA)

and Mixing Weight Constrained Transformation Learning via Alignment (MW-TLA).
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fore running the more computationally intensive large margin transformation learning. The

alignment SDP only scales with the number of transformations and not the data points

as opposed to other methods which scale with both the data points and the number of

transformations.

8.8 Multitask Learning

In these experiments, the multitask setting is explored where multiple related tasks are

linked through a single shared transformation. By learning the same transformation for all

tasks, the algorithm can leverage information that would not be available if it were to learn

each independently. The first experiment will revisit the synthetic problem and the second

experiment will focus on the Corel image histogram classification.

The first experiment uses a similar setup as Section 8.2. In the multitask experiment,

four different data sets were generated, each with a different hyperplane. The data generated

for each task is then mapped by one common transform (a quadratic). This creates a

set of four related tasks which each have a separate hyperplane but all use a common

transformation.

Both the greedy mixture of transformations and convex matrix mixture of transforma-

tions multitask algorithms were applied to this problem and compared to their independent

counterparts. Table 8.8 shows the results of the experiments with the bold entries indicat-

ing the lower error when comparing the independent and multitask algorithms. Table 8.9

reports the p-values associated with the paired t-test comparing the single task version to

the multitask algorithm. In both cases the error rate was reduced by using the multitask to

leverage information across tasks. In fact, both the greedy mixture of transformations and

convex matrix mixture of transformations multitask methods had the same accuracy on all

four subtasks. This indicates that the multitask setting may help to avoid local minima in

the greedy optimization.

The second multitask experiment revisits the Corel image histogram classification task

from section 8.3. These tasks naturally fit into the multitask framework because each one of

the six pairwise classification problems is related. Again, the two multitask algorithms are
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compared to their independent counterparts and the results in Table 8.10 show the benefit

of learning a common transformation in this setting. The associated p-values for the paired

t-tests are reported in 8.11. The greedy multitask algorithm substantially improved on the

independent greedy algorithm and the convex multitask algorithm improves the results to

the best reported in this article on this dataset.

The multitask algorithms learn transformations that differ from a simple averaging of

individually learned transformations as can be seen in Figure 8.8. The averaged transfor-

mations are shown in Figure 8.8(a) and the multitask transformations are shown in Figure

8.8(b). The functions learned with a mixture of transformations are plotted in solid blue

and the functions learned with a matrix mixture of transformations are plotted in dashed

red. Clearly the averaged functions and the multitask functions differ in that the averaged

functions peak more quickly.

w1 w2 w3 w4 Avg.

Mix. Trans. 1.0 1.8 0.7 0.8 1.07

Mix. Trans. Multitask 0.4 0.3 0.3 0.0 0.25

Matrix Mix. Trans. 0.6 0.5 0.7 0.4 0.55

Matrix Mix. Trans. Multitask 0.4 0.3 0.3 0.0 0.25

Table 8.8: Percent testing error rates on synthetic dataset in the multitask framework. Each

column contains the error rate for a different dataset based on hyperplanes {w1, . . . , w4}.
Each dataset is linked by a common transformation which is learned individually and jointly.

The multitask learning algorithms are compared to their individual counterparts. Bold

entries indicate superior results when comparing independent and multitask algorithms.

w1 w2 w3 w4 Avg.

Mix. Trans. Multitask 0.2598 0.0811 0.3994 0.0368 0.0309

Matrix Mix. Trans. Multitask 0.5554 0.5911 0.3732 0.1679 0.0510

Table 8.9: P-values for the synthetic multitask experiments. A paired t-test was conducted

which compared the single task version and the multitask.
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1 vs 2 1 vs 3 1 vs 4 2 vs 3 2 vs 4 3 vs 4 Avg.

Mix. Trans. 3.5 1.0 2.0 1.0 4.5 2.5 2.44

Mix. Trans. MT 2.5 1.0 1.0 0.5 1.5 1.5 1.34

Mat. Mix. Trans. 2.5 1.0 0.5 1.0 2.0 1.0 1.34

Mat. Mix. Trans. MT 1.5 1.5 0.0 1.0 2.0 0.5 1.09

Table 8.10: Percent testing error rates on Corel dataset in the multitask framework. Each

column reports one of the six pairwise classification problems from the Corel dataset. The

multitask learning algorithms are compared to their individual counterparts. Bold entries

indicate superior results when comparing independent and multitask algorithms.

1 vs 2 1 vs 3 1 vs 4 2 vs 3 2 vs 4 3 vs 4 Avg.

Mix. Trans. 0.1679 - 0.6783 - 0.1679 0.1039 0.1341

Mix. Trans. MT - - - - - - -

Mat. Mix. Trans. 0.1679 - 0.3434 - - 0.3434 0.3938

Mat. Mix. Trans. MT - 0.3434 - - - - -

Table 8.11: P-values for the multitask Corel image histogram experiments. A paired t-test

was conducted which compared the single task to the multitask algorithms. A ”-” signifies

the top result or tie for top result.
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Figure 8.8: Learned multitask transformations for the Corel image histogram dataset. The

average functions for all six tasks learned individually is shown in (a). The functions learned

with the multitask algorithms is shown in (b). The greedy mixture of transformations is

plotted in solid blue and the convex matrix mixture of transformations is plotted in dashed

red.
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Chapter 9

Conclusions

9.1 Summary of Contributions

In this dissertation, we have developed a general framework for learning large margin trans-

formations. Chapter one began with a review of kernel learning algorithms and some basics

of optimization methods. In chapter two, the large margin transformation framework was

introduced to simultaneously learn a maximum margin hyperplane and a mixture of trans-

formations Φ(x) =
∑

i miφi(x) by optimizing an SVM-like cost function. A fast greedy

algorithm was proposed to solve this nonconvex optimization problem by iteratively solving

a linear program and an SVM optimization. Chapter three looked at convex relaxations

of the large margin transformation learning algorithm to find better solutions than the lo-

cally optimal ones found with the greedy algorithm. A semidefinite relaxation was derived

which led to the matrix mixture of transformations formulation with learned kernels of

the form k(x, x′) =
∑

i,j Mi,jφi(x)T φi(x′). Chapter four investigated a faster algorithm to

solve the large margin matrix mixture of transformations problem. The structure of this

problem was exploited in the extragradient algorithm which made use of fast projections

computed via Dykstra’s algorithm. Chapter five investigated a multitask setting where

information was shared between related tasks in the form of a single globally learned trans-

formation. Chapter six looked at a specific example of transformation learning which built

monotonic transformations out of a base set of truncated ramp functions. Chapter seven

looked at maximizing the kernel alignment. A semidefinite program was derived to align
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the matrix mixture of transformations with the idealized label matrix. Additionally, sparse

transformation alignment algorithms were shown to have theoretically guaranteed approx-

imations. Chapter eight demonstrated the efficacy of the proposed algorithms on a diverse

set of problems. Finally, this dissertation concludes with the current discussion and some

possible future directions.

9.2 Future Directions

There are three clear directions that could easily be explored in the future. The first is to

look at other families of learned transformations such as image filters. Second, the fast and

flexible extragradient algorithm opens up a range of new transformation learning models

such as class specific or even instance specific transformations. A final direction would be

to explore tighter convex relaxations.

Image filters are a rich class of transformations to explore. A collection of linear and

nonlinear image filters such as edge detectors, blurring filters, sharpening filters, etc. could

be used to create a composite image more amenable to classification. Another possibility

would be to learn one single linear filter with a linear combination of simple basis filters.

For example, this linear filter could find an optimal blur filter for classifying digits data that

would incorporate some invariance to translation and rotation. A simple 3X3 linear image

filter could be built as linear combination of the following basis filter matrices:

F =
{[

1 0 0
0 0 0
0 0 0

]
,
[

0 1 0
0 0 0
0 0 0

]
,
[

0 0 1
0 0 0
0 0 0

]
,
[

0 0 0
1 0 0
0 0 0

]
,
[

0 0 0
0 1 0
0 0 0

]
,
[

0 0 0
0 0 1
0 0 0

]
,
[

0 0 0
0 0 0
1 0 0

]
,
[

0 0 0
0 0 0
0 1 0

]
,
[

0 0 0
0 0 0
0 0 1

]}
(9.1)

There are also some algorithmic extensions that are enabled by the flexible extragradi-

ent algorithm. A possible direction could be class specific transformations in a multiclass

setting. For example, when classifying hand written digits, each class of digits might have

its own learned filter. This leads to the following optimization:
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min
~w1,...,R,~ξ,b,~m1,...,R

R∑

r=1

‖~wr‖2
2 + C

N∑

i=1

ξi (9.2)

subject to

〈
~wyi ,

J∑

j=1

mj,yiφj(~xi)

〉
−

〈
~wr,

J∑

j=1

mj,rφj(~xi)

〉
≥ 1− ξi, ∀i, r 6= yi

ξi ≥ 0,mj,r ≥ 0,
∑

j

mj,r ≤ 1, ∀i, j, r

where ~wr is the hyperplane for the r’th class and ~mr is the vector of mixing weights for

the r’th class with mj,r the j’th component of the mixing weight. In this formulation, the

correct classification score
〈

~wyi ,
∑J

j=1 mj,yiφj(~xi)
〉

for a training pair (xi, yi) must score

higher than the score of an incorrect labeling
〈

~wr,
∑J

j=1 mj,rφj(~xi)
〉

otherwise a penalty

is incurred based on the slack variable. This is a similar setting to other multiclass SVM

algorithms [CSC+01] with the addition of class specific transformations. Predictions are

made by finding the highest scoring class:

y = argmaxr

〈
~wr,

J∑

j=1

mj,rφj(~x)

〉
. (9.3)

Convex relaxations leading to a matrix mixture of transformations can be also derived, and

this relaxed optimization can be solved efficiently with the extragradient algorithm.

Another model extension that might yield interesting results is instance specific trans-

formations. In this setting, there is a separate transformation associated with each training

point. This could be an overly rich class of transformations leading to over fitting, so it

would be important to use only very simple transformations. Task specific transformation

learning can be phrased as the following optimization and again, convex relaxations can be

derived and implemented with the extragradient algorithm.

min
~w,~ξ,b,~m1,...,N

‖~w‖2
2 + C

N∑

i=1

ξi (9.4)

subject to yi




〈
~w,

J∑

j=1

mj,iφj(~xi)

〉
+ b


 ≥ 1− ξi, ∀i

~ξ ≥ ~0, ~mi ≥ ~0, ~mT
i
~1 ≤ 1, ∀i
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In order to make predictions, a new transformation for each test point must be chosen to

maximize the classification score:

m̂ = argmaxm

∣∣∣∣∣∣

〈
~w,

J∑

j=1

mjφj(~x)

〉
+ b

∣∣∣∣∣∣
(9.5)

y = sign




〈
~w,

J∑

j=1

m̂jφj(~x)

〉
+ b


 .

A simple case for instance specific transformation learning would be to learn the best

“jittered” image for image classification. The jittered kernel was introduced to try to capture

translation invariance in image classification [DS02]. It is defined by finding the minimum

pairwise distance in the kernel space between small translations (or jitters) of image data:

k(A,A′) = min
i,j

k(Fi ∗A,Fi ∗A′) + k(Fj ∗A, Fj ∗A′)− 2k(Fi ∗A,Fj ∗A′) (9.6)

where A and A′ are images, Fi is the i’th simple basis filter from 9.1 and ∗ is the convolution

operator. This method is used in a preprocessing step and suffers from two drawbacks. The

first is that it does not define a valid kernel; a single image may be translated differently

depending on which image is it paired with thus violating the triangle inequality. Another

problem is that minimizing pairwise distances does not necessarily imply that classification

accuracy is improved. By choosing the best jitter per image with the maximum margin

transformation learning algorithm, both of these problems are overcome. Minimizing loss

while maximizing margin is a more theoretically sound way to improve prediction accuracy

than locally minimizing distance between points, and by defining a single global jitter per

point, this method defines valid kernels.

A final possible avenue of exploration would be to look at tighter convex relaxations. In

[Las00], a sequence of tighter relaxations involving larger SDPs of increasing complexity was

derived and may be useful for large margin transformation learning. The first and simplest

relaxation in this sequence has been the method used throughout this dissertation. Each

subsequent relaxation introduces higher order monomials leading to a tighter relaxation and
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more computation. The relaxed variables take the form of:

M =




~m(0)
...

~m(D)




[
~m(0)T · · · ~m(D)T

]
,M º 0, (9.7)

where ~m(d) is the vector of all d order monomials e.g. m2
1m3, a third order monomial, is

a component of ~m(3) which involves the first and third dimensions of the vector ~m. The

M matrix must be positive semidefinite and each inequality constraint is replaced with a

semidefinite constraint which leads to a large SDP with multiple blocks. Solving this with

a standard interior point solver would be impractical for any reasonably sized problem, but

the extragradient algorithm may be able to find solutions in a reasonable amount of time

by using fast projections via Dykstra’s algorithm.
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