
Large Relative Margin and Applications

Pannagadatta K. Shivaswamy

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2010

c©2010

Pannagadatta K. Shivaswamy

All Rights Reserved

ABSTRACT

Large Relative Margin and Applications

Pannagadatta K. Shivaswamy

Over the last decade or so, machine learning algorithms such as support vector machines,

boosting etc. have become extremely popular. The core idea in these and other related

algorithms is the notion of large margin. Simply put, the idea is to geometrically separate

two classes with a large separation between them; such a separator is then used to predict the

class of unseen test examples. These methods have been extremely successful in practice

and have formed a significant portion of machine learning literature. There are several

theoretical results which motivate such algorithms. A closer look at such theoretical results

reveals that the generalization ability of these methods are strongly linked to the margin as

well as some measure of the spread of the data. Yet the algorithms themselves only seem

to be maximizing the margin—completely ignoring the spread information. This thesis

focuses on addressing this problem; novel formulations, that not only take into consideration

the margin but also the spread aspect of the data, are proposed. In particular, relative

margin machine, which is a strict generalization of the well known support vector machine

is proposed. Further, generalization bounds are derived for the relative margin machines

using a novel method of landmark examples. The idea of relative margin is fairly general;

its potential is demonstrated by proposing formulations for structured prediction problems

as well as for a transductive setup using graph Laplacian. Finally, a boosting algorithm

incorporating both the margin information and the spread information is derived as well.

The boosting algorithm is motivated from the recent empirical Bernstein bounds. All

the proposed variants of the relative margin algorithms are easy to implement, efficiently

solvable and typically show significant improvements over their large margin counterparts–

on real-world datasets.

Table of Contents

1 Introduction 1

1.1 A motivating example . 2

1.2 Motivation from an affine invariance perspective 5

1.3 Background . 7

1.4 Organization . 9

2 From absolute margin to relative margin 10

2.1 Ellipsoidal kernel machines . 12

2.2 The whitened SVM . 13

2.3 Relative margin machines . 15

2.3.1 Fast implementation . 17

2.3.2 Variant of the RMM . 20

2.4 Experiments . 21

2.4.1 Synthetic dataset . 21

2.4.2 Experiments on digits . 25

2.4.3 Classifying MNIST digits 3 vs 5 . 28

2.4.4 All 45 binary MNIST problems . 29

2.4.5 Text classification . 33

2.4.6 Benchmark datasets . 33

2.4.7 Scalability and run-time . 35

2.5 Summary . 36

i

3 Risk Bounds 37

3.1 Function class definitions . 38

3.2 Rademacher complexity . 39

3.2.1 Empirical Rademacher complexity 40

3.2.2 From empirical to true Rademacher complexity 42

3.3 Generalization bounds . 43

3.4 Stating the bounds independently of landmarks 44

3.4.1 Concentration of empirical Rademacher complexity 45

3.4.2 Function class inclusion . 46

3.5 Discussion of the bounds . 49

4 Structured Prediction 53

4.1 Structured prediction with support vector machines 54

4.2 Structured RMM . 56

4.3 Cutting Plane Algorithm . 57

4.3.1 Runtime . 59

4.4 Experiments . 62

4.4.1 Label Sequence Learning . 62

4.4.2 Multi-class classification . 64

4.5 Summary . 66

5 Laplacian spectrum learning 67

5.1 Setup and notation . 68

5.2 Learning from the graph Laplacian . 69

5.3 Why learn the Laplacian spectrum? . 71

5.3.1 RMM on Laplacian eigenmaps . 73

5.4 STORM and STOAM . 74

5.4.1 An unsuccessful attempt . 75

5.4.2 A refined approach . 76

5.5 Experiments . 79

5.6 Summary . 83

ii

6 Boosting 85

6.1 Hoeffding and empirical Bernstein bounds 86

6.2 Loss functions . 89

6.2.1 Minimizing a convex upper bound on the 0− 1 loss 90

6.3 A boosting algorithm . 91

6.3.1 AdaBoost . 92

6.3.2 An update rule for empirical Bernstein boosting 92

6.4 Experiments . 95

6.4.1 Discussion . 98

6.5 Summary . 100

7 Conclusions 101

A Appendix 103

A.1 McDiarmid’s inequality . 103

A.2 Lipschitz constants for Section 3.4 . 103

A.3 Solving for nv . 105

Bibliography 105

iii

List of Figures

1.1 A motivating toy example. 3

2.1 Two typical synthetic datasets (rescaled inside a 0-1 box) with corresponding

SVM and RMM solutions are shown along with the Bayes optimal solution.

The SVM (the RMM) solution uses the C (C and B) setting that minimized

validation error. The RMM produces an estimate that is significantly closer

to the Bayes optimal solution. 21

2.2 Percent test error rates for the SVM, RMM and Bayes optimal classifier as

training data size is increased. The RMM has a statistically significant (at 5%

level) advantage over the SVM until 6400 training examples. Subsequently,

the advantage remains though with less statistical significance. 22

2.3 Percent test error rates for the SVM, RMM and Bayes optimal classifier as

data is scaled according to (2.14). The RMM solution remains resilient to

scaling while the SVM solution deteriorates significantly. The advantage of

the RMM over the SVM is statistically significant (at the 1% level). 23

2.4 Behavior on the toy dataset with C = 100. As the B value is decreased, the

error rate decreases to a reasonably wide minimum before starting to increase. 25

2.5 Performance on MNIST test set with digits 3 and 5. The number of errors

decreases from 15 to 6 as B decreases from the right. 28

2.6 Total test errors on all 45 MNIST classification problems. Various classi-

fiers were trained on the entire MNIST training dataset and evaluated on a

standardized separate test set. 29

iv

2.7 Percentage improvement of the RMM over the SVM on all 190 binary prob-

lems. Significance tests were performed using a paired t-test at the indicated

levels of significance. On most problems, the RMM shows significant im-

provement over SVM. 32

2.8 Log run time versus log number of examples. The figure shows that the SVM

and the RMM have similar computational requirements overall. 35

3.1 Two labellings of the same examples. Circles and squares denote the two

classes (positive and negative). The top case is referred to as “toy example

1” and the bottom case is referred to as “toy example 2” in the sequel. The

bound for the function class FE does not distinguish between these two cases. 50

5.1 Magnitude of the top 15 eigenvalues as learned by different algorithms. Top:

problems 1-2 and 3-8. Bottom: m-m and p-m. The plots show average

eigenspectra over all runs for each problem. 84

6.1 Cumulative margin distributions on three different datasets (wisconsin, mnist27,

mushrooms). ABR obtains a long tail indicating its “slackness”. EBBoost’s

margins are characterized by a smaller variance. 98

v

List of Tables

2.1 The number of misclassification in three different digit datasets. Various

kernels are explored using the SVM, Σ-SVM, KLDA and RMM methods. . 26

2.2 Percentage error rates for the RMM and the U-SVM. The rate for the SVM

was 1.274 with a standard deviation of 0.179; this is significantly larger than

all other results in the table (with a p-value of 0.000). The final row reports

the p-value of a paired t-test between the RMM error rate and the U-SVM

error rate (corresponding to the Universum size being considered in that

column). 30

2.3 UCI results for a number of classification methods. Results are shown for

the SVM, regularized kernel Fisher Discriminant Analysis, the Σ-SVM, the

RMM, an RBF network, Adaboost, LP-regularized Adaboost, QP-regularized

Adaboost and Regularized Adaboost. The results have been split into two

parts due to lack of space. For each dataset, the algorithm which gave the

minimum error rate is starred. All other algorithms that were not signifi-

cantly different from (at the 5% significance level based on a paired t-test)

the minimum error rate are in boldface. 34

3.1 The bound values for the two toy examples. The SVM bound does not

distinguish between the two cases. By exploring D values, it is possible to

obtain smaller bound values in both cases for Σ-SVM and RMM (D = 0 in

toy example 1 and D close to one in toy example 2). 51

vi

4.1 Average percentage error rates (mean ± std. deviation) and the p-values

on the two label sequence learning tasks. Improvements of StructRMM

over StructSVM is of the same (or higher) order as that of StructSVM over

CRF. A small p-value indicates statistical significance (for StructRMM over

StructSVM). 63

4.2 Average percentage error rates (mean ± std. deviation) and the p-values on

the OPTDIGIT multi-class problem. Negligible p-values indicate statistical

significance. Average improvement of StructRMM over StructSVM is about

20% and the improvement is about 28% excluding the linear kernel. 65

5.1 Mean and std. deviation of percentage error rates on text datasets. In each

row, the method with minimum error rate is shown in dark gray. All the

other algorithms whose performance is not significantly different from the

best (at 5% significance level by a paired t-test) are shown in light gray. . . 80

5.2 Mean and std. deviation of percentage error rates on digits datasets. In each

row, the method with minimum error rate is shown in dark gray. All the

other algorithms whose performance is not significantly different from the

best (at 5% significance level by a paired t-test) are shown in light gray. . . 81

5.3 Summary of results in Tables 5.1 & 5.2. For each method, the number of times

it performs the best (dark gray), the number of times it is not significantly

worse from the best performing method (light gray) and the total number

of times it is either the best or not significantly worse from the best are

enumerated. 82

6.1 For each dataset, the algorithm with the best percentage test error is repre-

sented by a dark gray cell. All the light gray in a row denote results that are

not significantly different from the minimum error (by a paired t-test at 5%

significance level). EBBoost outperforms AdaBoost on all datasets. 96

6.2 Mean and standard deviation of margins. 99

vii

Acknowledgments

The acknowledgments go here.

viii

Dedicated to my late grand parents.

ix

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

A frequent problem that arises in machine learning is the classification problem. Training

examples (xi,yi) ∈ R
m × {±1} are drawn independently and identically distributed (iid)

from an unknown but a fixed distribution. The aim is to learn a rule f : R
m → {±1}

that can predict well on future examples drawn from the same distribution. A classification

algorithm chooses a function from a set of functions typically by optimizing some criterion

over the training set. In large margin methods, a function is chosen to maximize the distance

between the two classes while minimizing the misclassification rate on the training examples

at the same time.

One example of large margin classifiers is the support vector machine (SVM) [Vapnik,

1995; Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004]. A linear function1

f(x) := sign(w⊤x+b) where w ∈ R
m, b ∈ R serves as the decision rule through much of this

thesis. The parameters of the hyperplane (w, b) are estimated by maximizing the margin

(e.g., the distance between the hyperplanes defined by w⊤x + b = 1 and w⊤x + b = −1)

while minimizing a weighted upper bound on the misclassification rate on training data (via

so-called slack variables); in practice, the margin is maximized by minimizing 1
2w

⊤w.

There are various theoretical results that motivate large margin learning in support

vector machines. For example, the classic VC-bound [Vapnik, 1995] or the Rademacher

bound [Bartlett and Mendelson, 2002; Shawe-Taylor and Cristianini, 2004] etc. relate the

1In this thesis the dot product w
⊤
x is used with the understanding that it can be replaced with a

generalized inner product or by using a kernel for generic objects.

CHAPTER 1. INTRODUCTION 2

future behavior for all functions in a class to the empirical performance on the data and to

so-called measures of complexity. Typical complexity measures that occur in these general-

ization bounds are the ratio of the radius of the data to the margin, the ratio of the average

radius of the training data to the margin and so-forth. Thus, these results show a clear

dependence of the generalization error not just on the margin and the performance on the

training examples, but also on the spread of the data (such as the radius). Yet, large margin

algorithms merely maximize the margin while ignoring the radius information. Further, in

the case of support vector machines, the solution can easily be perturbed by an (invert-

ible) affine or scaling transformation of the input space. For instance, by transforming all

training and testing inputs by an invertible linear transformation, the SVM solution and its

resulting classification performance can be significantly varied. Moreover, this phenomenon

is not limited to an explicit adversarial setting, it can naturally occur in many real world

classification problems—especially in high dimensions.

This thesis will address such shortcomings in maximum margin solutions which exclu-

sively measure margin disregarding spread information and offer solutions to alleviate such

problems. The approaches proposed in this thesis are typically based on controlling the

spread while maximizing the margin.

1.1 A motivating example

A two dimensional motivating example will now be shown in detail to highlight the problem

with the support vector machines. Consider the simple two dimensional dataset in Figure

1.1 where the goal is to separate the two classes of points: triangles and squares. The figure

depicts three scaled versions of the two dimensional problem to illustrate potential problems

with the large margin solution.

The three plots on the left show that, as the data is scaled, the maximum margin SVM

solution (red or dark shade) deviates from the maximum relative margin solution (green or

light shade). Three different scaling scenarios are shown. The three plots on the right show

the projections of the examples (that is w⊤x+ b) on the real line for the SVM solution (red

or dark shade) and the proposed classifier (green or light shade) under each scaling scenario.

CHAPTER 1. INTRODUCTION 3

Figure 1.1: A motivating toy example.

These projections have been drawn on separated axes for clarity. The absolute margins for

the maximum margin solution (red) are 1.24, 1.51 and 2.08 from top to bottom. For the

maximum relative margin solution (green) the absolute margin is merely 0.71. However, the

relative margin (the ratio of absolute margin to the spread of the projections) is 41%, 28%,

and 21% for the maximum margin solution (red) and 100% for the relative margin solution

(green). The scale of all axes is kept locked to permit direct visual comparison. Clearly,

the SVM solution achieves the largest margin possible while separating both classes, yet is

CHAPTER 1. INTRODUCTION 4

this necessarily the best solution?

Consider the plots in the second and the third rows which are obtained merely by scaling

the data in the first plot; thus all these three problems correspond to the same discrimination

problem up to a scaling factor. With progressive scaling, the SVM increasingly deviates from

the maximum relative margin solution (green), clearly indicating that the SVM decision

boundary is sensitive to affine transformations of the data. Essentially, the SVM produces

a family of different solutions as a result of the scaling. If the SVM solution and its

generalization accuracy vary with scaling, an adversary may exploit such scaling to ensure

that the SVM performs poorly. Meanwhile, an algorithm producing the maximum relative

margin (green) decision boundary could remain resilient to adversarial scaling.

In the toy example, a direction with a small spread in the data produced a good and

affine-invariant discriminator which maximized relative margin. Unlike the maximum mar-

gin solution, this solution accounts for the spread of the data in various directions. This

permits it to recover a solution which has a large margin relative to the spread in that

direction. Such a solution would otherwise be overlooked by a maximum margin criterion.

A small margin in a correspondingly smaller spread of the data might be better than a large

absolute margin with correspondingly larger data spread. This particular weakness in large

margin estimation has only received limited attention in previous work.

It is helpful to consider the generative model for the above motivating example. Therein,

each class was generated from a one dimensional line distribution with the two classes on two

parallel lines. In this case, the maximum relative margin (green) decision boundary should

obtain zero test error even if it is estimated from a finite number of examples. However, for

finite training data, the SVM solution will make errors and will do so increasingly as the

data is scaled further. While it is possible to anticipate these problems and choose kernels

or nonlinear mappings to correct them in advance, this is not necessarily practical. The

right mapping or kernel is never provided in advance in realistic settings. Instead, one has

to estimate kernels and nonlinear mappings, a difficult endeavor which can often exacerbate

the learning problem. Similarly, simple data preprocessing (affine whitening to make the

dataset zero-mean and unit-covariance or scaling to place the data into a zero-one box) can

also fail, possibly because of estimation problems in recovering the correct transformation

CHAPTER 1. INTRODUCTION 5

(this will be shown in real-world experiments).

The above arguments show that large margin on its own is not enough; it is also necessary

to control the spread of the data after projection. Therefore, maximum margin should be

traded-off or balanced with the goal of simultaneously minimizing the spread of the projected

data, for instance, by bounding the spread |w⊤x + b|. This will allow the linear classifier

to recover large margin solutions not in the absolute sense but rather relative to the spread

of the data in that projection direction.

1.2 Motivation from an affine invariance perspective

Another motivation for maximum relative margin can be made by reformulating the classi-

fication problem altogether. Instead of learning a classifier from data, consider learning an

affine transformation on data such that an a priori fixed classifier performs well. The data

will be mapped by an affine transformation such that it is separated with large margin while

it also produces a small radius. Recall that maximum margin classification and SVMs are

motivated by generalization bounds based on Vapnik-Chervonenkis complexity arguments.

These generalization bounds depend on the ratio of the margin to the radius of the data

[Vapnik, 1995]. Similarly, Rademacher generalization bounds [Shawe-Taylor and Cristian-

ini, 2004] also consider the ratio of the trace of the kernel matrix to the margin. Here the

radius of the data refers to an R such that ||x|| ≤ R for all x drawn from a distribution.

Instead of learning a classification rule, the optimization problem considered in this

section will recover an affine transformation which achieves a large margin from a fixed

decision rule while also achieving small radius. Assume the classification hyperplane is

given a priori via the decision boundary w⊤
0 x + b0 = 0 with the two supporting margin

hyperplanes w⊤
0 x + b0 = ±ρ. Here, w0 ∈ R

m can be an arbitrary unit vector and b0 is

an arbitrary scalar. Consider the problem of mapping all the training points (by an affine

transformation x→ Ax+b,A ∈ R
m×m,b ∈ R

m) so that the mapped points (i.e., Axi +b)

satisfy the classification constraints w⊤
0 x+ b0 = ±ρ while producing small radius,

√
R. The

choice of w0 and b0 is arbitrary since the affine transformation can completely compensate

for the choice. For brevity, denote by Ã = [A b] and x̃ = [x⊤ 1]⊤. With this notation, the

CHAPTER 1. INTRODUCTION 6

affine transformation learning problem is formalized by the following optimization:

min
Ã,R,ρ

− ρ+ ER (1.1)

yi(w
⊤
0 Ãx̃i + b0) ≥ ρ, ∀1 ≤ i ≤ n

1

2
(Ãx̃i)

⊤(Ãx̃i) ≤ R ∀1 ≤ i ≤ n.

The parameter E trades off between the radius of the affine transformed data and the

margin2 that will be obtained. The following Lemma shows that this affine transformation

learning problem is basically equivalent to learning a large margin solution with a small

spread.

Lemma 1 The solution Ã∗ to (1.1) is a rank one matrix.

Proof Consider the Lagrangian of the above problem with Lagrange multipliers α,λ,≥ 0:

L(Ã, ρ,R,α,λ) = −ρ+ ER −
n
∑

i=1

αi(yi(w
⊤
0 Ãx̃i + b0)− ρ) +

n
∑

i=1

λi(
1

2
(Ãx̃i)

⊤(Ãx̃i)−R).

Differentiating the above Lagrangian with respect to A gives the following expression:

∂L(Ã, ρ,R, α, λ)

∂Ã
= −

n
∑

i=1

αiyiw0x̃
⊤
i + Ã

n
∑

i=1

λix̃ix̃
⊤
i . (1.2)

From (1.2), at optimum,

Ã∗
n
∑

i=1

λix̃ix̃
⊤
i = −

n
∑

i=1

αiyiw0x̃
⊤
i .

It is therefore clear that Ã∗ can always be chosen to have rank one since the right hand

side of the expression is just an outer product of two vectors.

Lemma 1 gives further intuition on why one should limit the spread of the recovered clas-

sifier. Learning a transformation matrix Ã so as to maximize the margin while minimizing

the radius given an a priori hyperplane (w0, b0) is no different from learning a classification

2For brevity, the so-called slack variables have been intentionally omitted since the proof holds in any

case.

CHAPTER 1. INTRODUCTION 7

hyperplane (w, b) with a large margin as well as a small spread. This is because the rank

of the affine transformation Ã∗ is one; thus, Ã∗ merely maps all the points x̃i onto a line

achieving a certain margin ρ but also limiting the output or spread. This means that find-

ing an affine transformation which achieves a large margin and small radius is equivalent

to finding a w and b with a large margin and with projections constrained to remain close

to the origin. Thus, the affine transformation learning problem complements the intuitive

arguments in Section 1.1 and also suggests that the learning algorithm should bound the

spread of the data.

1.3 Background

Traditionally, controlling spread has been an important theme in classification problems.

For instance, classical linear discriminant analysis (LDA) [Duda et al., 2000] finds projec-

tions of the data so that the inter-class separation is large while within-class scatter is small.

However, the spread (or scatter in this context) is estimated by LDA using only simple first

and the second order statistics of the data. While this is appropriate if class-conditional den-

sities are Gaussian, second-order statistics are inappropriate for many real-world datasets

and thus, the classification performance of LDA is typically weaker than that of SVMs. The

estimation of spread should not make second-order assumptions about the data and should

be tied to the margin criterion [Vapnik, 1995]. A similar line of reasoning has been proposed

to perform feature selection. [Weston et al., 2000] showed that second order tests and filter-

ing methods on features perform poorly compared to wrapper methods on SVMs which more

reliably remove features that have low discriminative value. In this prior work, a feature’s

contribution to margin is compared to its effect on the radius of the data by computing

bounding hyper-spheres rather than simple Gaussian statistics. Unfortunately, there, only

axis-aligned feature selection was considered. Similarly, ellipsoidal kernel machines [Shiv-

aswamy and Jebara, 2007] were proposed to normalize data in feature space by estimating

bounding hyper-ellipsoids while avoiding inappropriate second-order assumptions. Simi-

larly, the radius-margin bound has been used as a criterion to tune the hyper-parameters of

the SVM [Keerthi, 2002]. Another criterion based jointly on ideas from the SVM method as

CHAPTER 1. INTRODUCTION 8

well as linear discriminant analysis has been studied in [Zhang et al., 2005]. This technique

involves first solving the SVM and then solving an LDA problem based on the support vec-

tors that were obtained. While these previous methods showed performance improvements,

they relied on multiple-step locally optimal algorithms for interleaving spread information

with margin estimation.

A similar method to the relative margin machines was described by [Haffner, 2001],

yet that approach started from a different overall motivation. In contrast, this thesis starts

with a novel intuition, produces a novel algorithm and provides novel empirical and theoret-

ical support. Another interesting contact point is the second order perceptron framework

[Cesa-Bianchi et al., 2002; Cesa-Bianchi et al., 2005] which parallels some of the intu-

itions underlying the RMM. In an on-line setting, the second order perceptron maintains

both a decision rule and a covariance matrix to whiten the data. The mistake bounds it

inherits were shown to be better than those of the classical perceptron algorithm. Alterna-

tively, one may consider distributions over classifier solutions which provide a different esti-

mate than the maximum margin setting and have also shown empirical improvements over

SVMs [Jaakkola et al., 1999; Herbrich et al., 2001]. In recent papers, [Dredze et al., 2008;

Crammer et al., 2009a; Ma et al., 2010] consider a distribution on the perceptron hyper-

plane. These distribution assumptions permit update rules that resemble a whitening of

the data, thus alleviating adversarial affine transformations and producing changes to the

basic maximum margin formulation that are similar in spirit to those the RMM provides.

In addition, recently, a new batch algorithm called the Gaussian margin machine (GMM)

[Crammer et al., 2009b] has been proposed. The GMM maintains a Gaussian distribution

over weight vectors for binary classification and seeks the least informative distribution that

correctly classifies training data. While the GMM is well motivated from a PAC-Bayesian

perspective, the optimization problem itself is expensive involving a log-determinant opti-

mization.

Another alternative route for improving SVM performance includes the use of additional

examples. For instance, test samples may be available in semi-supervised or transductive

formulations of the SVM [Joachims, 1999; Belkin et al., 2005]. Alternatively, additional data

that does not belong to any of the classification classes of interest may be available as in

CHAPTER 1. INTRODUCTION 9

the so-called Universum approach [Weston et al., 2006; Sinz et al., 2008]. In principle, these

methods also change the way margin is measured and the way regularization is applied to the

learning problem. There has also been recent work on learning with privileged information

[Vapnik and Vashist, 2009] where, in addition to the training examples, extra knowledge

known as privileged information is available with each training examlple. However, no

privileged information is available at test time. Algorithms that have a faster rate of

converegence to Bayes risk are proposed in the above setting. Compared to these, relative

margin machine will be proposed for the simple binary classification problem without any

additional data. However, it will be extended to transductive learning problems as well.

1.4 Organization

The organization of this thesis is as follows. Based on the motivation and intuition provided

in this chapter, several formulations are discussed in Chapter 2. Generalization bounds for

the proposed formulations are provided in Chapter 3. The relative margin idea is then

extended to structured prediction problem in Chapter 4. In a transductive setup, a large

relative margin solution is proposed to optimize the spectrum of a graph Laplacian in

Chapter 5. Based on a novel motivation from the recently proposed empirical Bernstein

bounds, a new boosting algorithm is proposed in Chapter 6. Finally, conclusions and

outlines for possible future work are provided in Chapter 7.

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 10

Chapter 2

From absolute margin to relative

margin

Based on the motivation provided in the introduction (Chapter 1), several new formulations

are discussed in this chapter. This chapter provides an upgrade path from the maximum

margin classifier (or SVM) to a maximum relative margin machine (or RMM) formulation.

Given independent identically distributed training examples (xi, yi)
n
i=1 where xi ∈ R

m

and yi ∈ {±1} are drawn from P(x, y), the support vector machine primal formulation is

as follows:

min
w,b,ξ

1

2
‖w‖2 + C

n
∑

i=1

ξi (2.1)

s.t. yi(w
⊤xi + b) ≥ 1− ξi, ξi ≥ 0 ∀1 ≤ i ≤ n.

The above is an easily solvable quadratic program (QP) and maximizes the margin by

minimizing ‖w‖2. Since real data is seldom separable, slack variables (ξi) are used to relax

the hard classification constraints. Thus, the above formulation maximizes the margin while

minimizing an upper bound on the number of classification errors. The trade-off between

the two quantities is controlled by the parameter C. Equivalently, the following dual of the

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 11

formulation (2.1) can be solved:

max
α

n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjx
⊤
i xj (2.2)

s.t.
n
∑

i=1

αiyi = 0

0 ≤ αi ≤ C ∀1 ≤ i ≤ n.

Lemma 2 The formulation in (2.2) is invariant to a rotation of the inputs.

Proof Replace each xi with Axi where A is a rotation matrix such that A ∈ R
m×m and

A⊤A = I. It is clear that the dual remains the same.

However, the dual is not the same if A is more general than a rotation matrix, for instance,

if it is an arbitrary affine transformation.

The above classification framework can also handle non-linear classification readily by

making use of Mercer kernels. A kernel function k : R
m × R

m → R replaces the dot

products x⊤
i xj in (2.2). The kernel function k is such that k(xi,xj) = 〈φ(xi), φ(xj)〉, where

φ : R
m → H is a mapping to a Hilbert space. Thus, solving the SVM dual formulation

(2.2) with a kernel function can give a non-linear solution in the input space. In the rest

of this chapter, K ∈ R
n×n denotes the Gram matrix whose individual entries are given

by Kij = k(xi,xj). When applying Lemma 2 on a kernel defined feature space, the affine

transformation is on φ(xi) and not on xi.

Based on the motivation in the introduction, several formulations are discussed in the

rest of this chapter. In particular, the ellipsoidal kernel machines (EKM) is discussed

in Section 2.1. A formulation based on affine pre-processing of the data is proposed in

Section 2.2. The main contributions are in Section 2.3 where the relative margin machine

formulation is proposed. Further, efficient ways of solving it and a variant of it are discussed

as well. Detailed experimentation on real-world as well as toy datasets are provided in

Section 2.4. This chapter ends with a summary in Section 2.5. Generalization considerations

of the algorithm are postponed until the next chapter.

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 12

2.1 Ellipsoidal kernel machines

The main idea of ellipsoidal kernel machine (abbreviated as EKM) is to consider a family

of classifiers with better VC-dimension estimates compared to the support vector machines.

The true risk of a classifier can be upper bounded by the empirical risk and terms that

involve the VC-dimension of the family. Uniform convergence bounds show the convergence

of the empirical risk to the true risk. In other words, with probability at least 1 − δ, the

following bound holds simultaneously for all w from a class of VC-dimension h [Vapnik,

1995]:

R(w) ≤ R̂(w) +

√

h(log(2n/h) + 1)− log(δ/4)

n

where, R(w) denotes the true risk of the classifier1 w whereas R̂(w) denotes the empirical

risk. The above bound suggests low error on the training examples as well as a small

VC-dimension for the family of classifiers considered.

One typical assumption on the data in deriving risk bounds for the support vector

machines is that they are drawn from a distribution such that the examples are bounded.

On bounded data, a large margin classifier gives rise to the so called gap-tolerant classifier

[Vapnik, 1995; Burges, 1998]. Typically, the data is assumed to be bounded by a sphere of

certain radius (R such that ‖x‖ ≤ R). Thus, finding a large margin solution on bounded

data corresponds to the so-called spherical gap tolerant classifiers. Instead of bounding

the data by a sphere, [Shivaswamy and Jebara, 2007] considered the tightest bounding

ellipsoid (minimum volume) around the data. The VC-dimension of an ellipsoidal gap-

tolerant classifier was shown to be smaller compared to the VC-dimension of a spherical

gap-tolerant classifier. Based on this motivation, an algorithm to first estimate the tightest

bounding ellipsoid and then to estimate the large margin solution considering the shape

of the bounding ellipsoid was proposed. The steps of the ellipsoidal kernel machines are

outlined in Algorithm 2.1. The algorithm essentially finds the tightest bounding ellipsoid

(characterized by minimum volume), whitens the data with the shape matrix of the ellipsoid

and then finds the support vector machine solution on the whitened data.

1The bias term b is ignored here for brevity.

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 13

In fact, estimating the bounding ellipsoid around the data can be solved via the following

optimization problem:

min
A,b,τ

− ln |A|+ E
n
∑

i=1

τi (2.3)

s.t. ‖Axi − b‖2 ≤ 1 + τi, τi ≥ 0 ∀1 ≤ i ≤ n.

where, τi’s are the slack variables to handle the outliers. While the above optimization prob-

lem is parametrized by A and b, the actual parameters of the ellipsoid ((x−µ)⊤Σ−1(x−
µ) = 1) are given by

Σ = A− 1
2 , b = Σ− 1

2µ.

Algorithm 2.1 The EKM training algorithm.

Require: Input : (xi, yi)
n
i=1, Parameters: C,E

1: Solve formulation (2.3) using (xi)
n
i=1 with parameter E.

2: Compute µ and Σ using Σ = A− 1
2 and µ = Σ

1
2b.

3: Transform the data using ui = Σ− 1
2 (xi − µ) for all i

4: Train SVM formulation (2.1) with (ui, yi)
n
i=1, parameter C, output (w, b)

Further, it was shown that all the steps of the Algorithm 2.1 (including ellipsoid

estimation) could be performed in a kernel defined feature space. Although marginal im-

provements on a number of datasets are observed in [Shivaswamy and Jebara, 2007], the

ellipsoid estimation step is computationally very intensive. With n training examples of

dimension m, the computational complexity of estimating the tightest bounding ellipsoid

is O(n2.5m2). Moreover, the algorithm comprises of multiple steps rather than a joint op-

timization formulation. Thus, EKM is not practical on datasets with more than a few

hundred training examples. Thus, ellipsoidal kernel machines are not discussed further in

this thesis.

2.2 The whitened SVM

Another way of limiting sensitivity to affine transformations while recovering a large margin

solution is to whiten the data with the covariance matrix prior to estimating the SVM

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 14

solution. This may also reduce the bias towards regions of large data spread as discussed

in the previous chapter. Denote by

Σ =
1

n

n
∑

i=1

xix
⊤
i −

1

n2

n
∑

i=1

xi

n
∑

j=1

x⊤
j , and µ =

1

n

n
∑

i=1

xi,

the sample covariance and sample mean, respectively. Now, consider the following formu-

lation called Σ-SVM:

min
w,b,ξ

1−D
2
‖w‖2 +

D

2
‖Σ 1

2w‖2 + C
n
∑

i=1

ξi (2.4)

s.t. yi(w
⊤(xi − µ) + b) ≥ 1− ξi, ξi ≥ 0 ∀1 ≤ i ≤ n

where 0 ≤ D ≤ 1 is an additional parameter that trades off between the two regularization

terms. When D = 0, (2.4) gives back the usual SVM primal (although on translated data).

The dual of (2.4) can be shown to be:

max
α

n
∑

i=1

αi −
1

2

n
∑

i=1

αiyi(xi − µ)⊤((1−D)I +DΣ)−1
n
∑

j=1

αjyj(xj − µ) (2.5)

s.t.

n
∑

i=1

αiyi = 0

0 ≤ αi ≤ C ∀1 ≤ i ≤ n.

It is easy to see that the above formulation (2.5) is translation invariant and tends to an

affine invariant solution when D tends to one. However, there are some problems with

this formulation. First, the whitening process only considers second order statistics of the

input data which may be inappropriate for non-Gaussian datasets. Furthermore, there are

computational difficulties associated with whitening. Consider the following term:

(xi − µ)⊤((1−D)I +DΣ)−1(xj − µ).

When 0 < D < 1, it can be shown, by using the Woodbury matrix inversion formula, that

the above term can be kernelized as

k̂(xi,xj) =
1

1−D

(

k(xi,xj)−
K⊤

i 1

n
−

K⊤
j 1

n
+

1⊤K1

n2

)

− 1

1−D

(

(

Ki −
K1

n

)⊤(I

n
− 11⊤

n2

)[

1−D
D

I + K

(

I

n
− 11⊤

n2

)]−1(

Kj −
K1

n

)

)

,

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 15

where Ki is the ith column of K. This implies that the Σ-SVM can be solved merely by

solving (2.2) after replacing the kernel with k̂(xi,xj) as defined above. Note that the above

formula involves a matrix inversion of size n, making the kernel computation alone O(n3).

Even performing whitening as a preprocessing step in the feature space would involve this

matrix inversion which is often computationally much more expensive than obtaining a

support vector machine solution.

2.3 Relative margin machines

While both EKM and Σ-SVM do address some of the issues of data spread, they are

computationally prohibitive. A more direct and efficient approach to control the spread is

possible and will be proposed next.

The SVM will be modified such that the projections on the training examples remain

bounded. A parameter will also be introduced that helps trade off between large margin

and small spread of the projection of the data. This formulation will initially be solved by

a quadratically constrained quadratic program (QCQP) in this section. The dual of this

formulation will also be of interest and yield further geometric intuitions.

Consider the following formulation called the relative margin machine (RMM):

min
w,b

1

2
‖w‖2 + C

n
∑

i=1

ξi (2.6)

s.t. yi(w
⊤xi + b) ≥ 1− ξi, ξi ≥ 0 ∀1 ≤ i ≤ n

1

2
(w⊤xi + b)2 ≤ B2

2
∀1 ≤ i ≤ n.

This formulation is similar to the SVM primal (2.1) except for the additional constraints

1
2(w⊤xi + b)2 ≤ B2

2 . The formulation has one extra parameter B in addition to the SVM

parameter C. When B is large enough, the above QCQP gives the same solution as the

SVM. Also note that only settings of B > 1 are meaningful since a value of B less than one

would prevent any training examples from clearing the margin, i.e., none of the examples

could satisfy yi(w
⊤xi+b) ≥ 1 otherwise. Let wC and bC be the solutions obtained by solving

the SVM (2.1) for a particular value of C. It is clear, then, that B > maxi |w⊤
Cxi + bC |,

makes the constraint on the second line in the formulation (2.6) inactive for each i and the

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 16

solution obtained is the same as the SVM estimate. This gives an upper threshold for the

parameter B so that the RMM solution is not trivially identical to the SVM solution.

As B is decreased, the RMM solution increasingly differs from the SVM solution. Specif-

ically, with a smaller B, the RMM still finds a large margin solution but with a smaller

projection of the training examples. By trying different B values (within the aforemen-

tioned thresholds), different large relative margin solutions are explored. It is helpful to

next consider the dual of the RMM problem.

The Lagrangian of (2.6) is given by:

L(w, b, α, λ, β) =
1

2
‖w‖2 + C

n
∑

i=1

ξi −
n
∑

i=1

αi

(

yi(w
⊤xi + b)− 1 + ξi

)

−
n
∑

i=1

βiξi

+
n
∑

i=1

λi

(

1

2
(w⊤xi + b)2 − 1

2
B2

)

,

where α,β,λ ≥ 0 are the Lagrange multipliers corresponding to the constraints. Differen-

tiating with respect to the primal variables and equating to zero produces:

(I +
n
∑

i=1

λixix
⊤
i)w + b

n
∑

i=1

λixi =
n
∑

i=1

αiyixi,

1

λ⊤1
(

n
∑

i=1

αiyi −
n
∑

i=1

λiw
⊤xi) = b,

αi + βi = C ∀1 ≤ i ≤ n.

Denoting by

Σλ =

n
∑

i=1

λixix
⊤
i −

1

λ⊤1

n
∑

i=1

λixi

n
∑

j=1

λjx
⊤
j , and µλ =

1

λ⊤1

n
∑

i=1

λixi,

the dual of (2.6) can be shown to be:

max
α,λ

n
∑

i=1

αi −
1

2

n
∑

i=1

αiyi(xi − µλ)⊤(I + Σλ)−1
n
∑

j=1

αjyj(xj − µλ) +
1

2
B2

n
∑

i=1

λi (2.7)

s.t. 0 ≤ αi ≤ C λi ≥ 0 ∀1 ≤ i ≤ n.

Moreover, the optimal w can be shown to be:

w = (I + Σλ)−1
n
∑

i=1

αiyi(xi − µλ).

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 17

Note that the above formulation is translation invariant since µλ is subtracted from each

xi. Σλ corresponds to a shape matrix (which is potentially low rank) determined by xi’s

that have non-zero λi. From the Karush-Kuhn-Tucker (KKT) conditions of (2.6) it is clear

that λi(
1
2 (w⊤xi + b)2 − B2

2) = 0. Consequently λi > 0 implies (1
2(w⊤xi + b)2 − B2

2) = 0.

Notice the similarity in the two dual formulations in (2.5) and (2.7); both formulations

look similar except for the choice of µ and Σ which transform the inputs. The RMM

in (2.7) whitens data with the matrix (I + Σλ) while simultaneously solving an SVM-like

classification problem. While this is similar in spirit to the Σ-SVM, the matrix (I + Σλ) is

being estimated directly to optimize the margin with a small data spread. The Σ-SVM only

whitens data as a preprocessing independently of the margin and the labels. The Σ-SVM

is equivalent to the RMM only in the rare situation when all λi = t for some t which makes

the µλ and Σλ in the RMM and Σ-SVM identical up to a scaling factor.

In practice, the above formulation will not be solved since it is computationally imprac-

tical. Solving (2.7) requires semi-definite programming (SDP) which prevents the method

from scaling beyond a few hundred data points. Instead, an equivalent optimization will

be used which gives the same solution but only requires quadratic programming. This is

achieved by simply replacing the constraint 1
2(w⊤xi + b)2 ≤ 1

2B
2 with the two equivalent

linear constraints: (w⊤xi + b) ≤ B and −(w⊤xi + b) ≤ B. With these linear constraints

replacing the quadratic constraint, the problem is now merely a QP. In the primal, the

QP has 4n constraints (including ξ ≥ 0) instead of the 2n constraints in the SVM. Thus,

the RMM’s quadratic program has the same order of complexity as the SVM. In the next

section, an efficient implementation of the RMM problem is presented.

2.3.1 Fast implementation

Once the quadratic constraints have been replaced with linear constraints, the RMM is

merely a quadratic program which admits many fast implementation schemes. It is now

possible to adapt previous fast SVM algorithms in the literature to the RMM. In this section,

the SVMlight [Joachims, 1998] approach will be adapted to the following RMM optimization

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 18

problem

min
w,b

1

2
‖w‖2 + C

n
∑

i=1

ξi (2.8)

s.t. yi(w
⊤xi + b) ≥ 1− ξi, ξi ≥ 0 ∀1 ≤ i ≤ n

w⊤xi + b ≤ B ∀1 ≤ i ≤ n

−w⊤xi − b ≤ B ∀1 ≤ i ≤ n.

The dual of (2.8) can be shown to be the following:

max
α,λ,λ∗

− 1

2
(α • y− λ+ λ∗)⊤ K (α • y − λ+ λ∗) +α⊤1−Bλ⊤1−Bλ∗⊤1 (2.9)

s.t. α⊤y − λ⊤1 + λ∗⊤1 = 0

0 ≤ α ≤ C1

λ,λ∗ ≥ 0,

where the operator • denotes the element-wise product of two vectors.

The QP in (2.9) is solved in an iterative way. In each step, only a subset of the dual

variables are optimized. For instance, in a particular iteration, take q, r and s (q̃, r̃ and

s̃) to be indices of the free (fixed) variables in α, λ and λ∗ respectively (ensuring that

q ∪ q̃ = {1, 2, . . . n} and q ∩ q̃ = ∅ and proceeding similarly for the other two indices). The

optimization over the free variables in that step can then be expressed as:

max
αq ,λr ,λ∗

s

− 1

2











αq • yq

λr

λ∗
s











⊤ 









Kqq −Kqr Kqs

−Krq Krr −Krs

Ksq −Ksr Kss





















αq • yq

λr

λ∗
s











(2.10)

− 1

2











αq • yq

λr

λ∗
s











⊤ 









Kqq̃ −Kqr̃ Kqs̃

−Krq̃ Krr̃ −Krs̃

Ksq̃ −Ksr̃ Kss̃





















αq̃ • yq̃

λr̃

λ∗
s̃











+α⊤
q 1−Bλ⊤

r 1−Bλ∗⊤
s 1

s.t. α⊤
q yq − λ⊤

r 1 + λ∗⊤
s 1 = −α⊤

q̃ yq̃ + λ⊤
r̃ 1− λ∗⊤

s̃ 1,

0 ≤ αq ≤ C1,

λr, λ
∗
s ≥ 0.

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 19

While the first term in the above objective is quadratic in the free variables (over which it is

optimized), the second term is merely linear. Essentially, the above is a working-set scheme

which iteratively solves the QP over subsets of variables until some termination criteria are

achieved. The following criteria will be used to terminate the algorithm. If α,λ,λ∗ and b

are the current solution (b is determined by the KKT conditions just as with SVMs), then:

∀i s.t. 0 < αi < C : b− ǫ ≤ yi − (
n
∑

j=1

(αjyj − λj + λ∗j)k(xi,xj)) ≤ b+ ǫ

∀i s.t. αi = 0 : yi(

n
∑

j=1

(αjyj − λj + λ∗j)k(xi,xj) + b) ≥ 1− ǫ

∀i s.t. αi = C : yi(

n
∑

j=1

(αjyj − λj + λ∗j)k(xi,xj) + b) ≤ 1 + ǫ

∀i s.t. λi > 0 : B − ǫ ≤ (

n
∑

j=1

(αjyj − λj + λ∗j)k(xi,xj) + b) ≤ B + ǫ

∀i s.t. λi = 0 : (

n
∑

j=1

(αjyj − λj + λ∗j)k(xi,xj) + b) ≤ B − ǫ

∀i s.t. λ∗i > 0 : B − ǫ ≤ −(
n
∑

j=1

(αjyj − λj + λ∗j)k(xi,xj) + b) ≤ B + ǫ

∀i s.t. λ∗i = 0 : − (

n
∑

j=1

(αjyj − λj + λ∗j)k(xi,xj) + b) ≤ B − ǫ.

In each step of the algorithm, a small sub-problem of the structure of (2.10) is solved. To

select the free variables, these conditions are checked to find the worst violating variables

both from the top of the violation list and from the bottom. The selected variables are

optimized by solving (2.10) while keeping the other variables fixed. Since only a small

QP is solved in each step, the cubic time scaling behavior is circumvented for improved

efficiency. A few other book-keeping tricks have also been adapted from SVMlight to yield

other minor improvements.

Denote by p the number of elements chosen in each step of the optimization (i.e., p =

|q| + |r| + |s|). The QP in each step takes O(p3) and updating the prediction values to

compute the KKT violations takes O(nq) time. Sorting the output values to choose the most

violated constraints takes O(n log(n)) time. Thus, the total time taken in each iteration of

the algorithm is O(p3 +n log(n)+nq). Empirical running times are provided in Section 2.4

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 20

for a digit classification problem.

Many other fast SVM solvers could also be adapted to the RMM. Recent advances such

as the cutting plane SVM algorithm [Joachims, 2006], Pegasos [Shalev-Shwartz et al., 2007]

and so forth could also be adapted to solve the RMM formulation.

2.3.2 Variant of the RMM

It is not always desirable to have a parameter in a formulation that would depend explicitly

on the output from a previous computation, such as B in (2.8). It is possible to overcome

this issue via the following optimization problem:

min
w,b,ξ,t≥1

1

2
‖w‖2 + C

n
∑

i=1

ξi +Dt (2.11)

s.t. yi(w
⊤xi + b) ≥ 1− ξi, ξi ≥ 0 ∀1 ≤ i ≤ n,

+ (w⊤xi + b) ≤ t ∀1 ≤ i ≤ n,

− (w⊤xi + b) ≤ t ∀1 ≤ i ≤ n.

Note that (2.11) has a parameter D instead of the parameter B in (2.8). The two

optimization problems are equivalent in the sense that for every value of B in (2.8), it is

possible to have a corresponding D such that both optimization problems give the same

solution.

Further, in some situations, a hard constraint bounding the outputs as in (2.11) can be

detrimental due to outliers. Thus, it might be required to have a relaxation on the bounding

constraints as well. This motivates the following relaxed version of (2.11):

min
w,b,ξ,t≥1

1

2
‖w‖2 + C

n
∑

i=1

ξi +D(t+
ν

n

n
∑

i=1

(τi + τ∗i)) (2.12)

s.t. yi(w
⊤xi + b) ≥ 1− ξi, ξi ≥ 0 ∀1 ≤ i ≤ n,

+ (w⊤xi + b) ≤ t+ τi ∀1 ≤ i ≤ n,

− (w⊤xi + b) ≤ t+ τ∗i ∀1 ≤ i ≤ n.

In the above formulation, ν controls the fraction of outliers. It is not hard to derive the

dual of the above to express it in kernelized form.

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 21

2.4 Experiments

In this section, a detailed investigation of the performance of the RMM2 on several synthetic

and real world datasets is provided.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Bayes
Optimal
RMM
SVM

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Bayes
Optimal
RMM
SVM

Figure 2.1: Two typical synthetic datasets (rescaled inside a 0-1 box) with corresponding

SVM and RMM solutions are shown along with the Bayes optimal solution. The SVM (the

RMM) solution uses the C (C and B) setting that minimized validation error. The RMM

produces an estimate that is significantly closer to the Bayes optimal solution.

2.4.1 Synthetic dataset

First, consider a simple two dimensional dataset that illustrates the performance differ-

ences between the SVM and the RMM. It is possible to construct the best classifier (Bayes

optimal) in this case. Consider sampling data from two different Gaussian distributions3

corresponding to two different classes. Samples are drawn from the two following Gaussian

distributions with equal prior probability:

µ+ =





1

1



 , µ− =





19

13



 , Σ =





17 15

15 17



 .

2Code available at http://www1.cs.columbia.edu/∼pks2103/RMM.

3Due to such Gaussian assumptions, LDA or generative modeling would be appropriate contenders but

are omitted to focus the discussion on margin-based approaches.

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 22

The Gaussian distributions have different means, yet identical covariance. A total of 100,000

examples were drawn from each of Gaussian to create validation and test sets. Large

validation and test sets were used to get accurate estimates of validation and test error.

10
2

10
3

10
4

0.8

0.9

1

1.1

train

T
es

t e
rr

or

SVM
RMM
Bayes
Optimal

Figure 2.2: Percent test error rates for the SVM, RMM and Bayes optimal classifier

as training data size is increased. The RMM has a statistically significant (at 5% level)

advantage over the SVM until 6400 training examples. Subsequently, the advantage remains

though with less statistical significance.

Due to the synthetic nature of the problem, the Bayes optimal classifier is easily recov-

ered [Duda et al., 2000] and is given by the following decision boundary

(µ+ − µ−)⊤Σ−1x− 0.5(µ+ − µ−)⊤Σ−1(µ+ + µ−) = 0. (2.13)

The above formula uses the true means and covariances of the Gaussian distributions (not

empirical estimates). It is clear that the Bayes optimal solution is a linear decision boundary

which is in the hypothesis class explored by both the RMM and the SVM. Note that the

synthetic data was subsequently normalized to lie withing the zero-one box. This rescaling

was taken into account while constructing the Bayes optimal classifier (2.13).

Various C values (and B values) were explored during SVM (RMM) training. The

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 23

0 5 10 15 20

0.8

1

1.2

1.4

scaling s

T
es

t e
rr

or

SVM

RMM
Bayes
Optimal

Figure 2.3: Percent test error rates for the SVM, RMM and Bayes optimal classifier as

data is scaled according to (2.14). The RMM solution remains resilient to scaling while

the SVM solution deteriorates significantly. The advantage of the RMM over the SVM is

statistically significant (at the 1% level).

settings with minimum error rate on the validation set were used to compute test error

rates. Furthermore, the test error rate for the Bayes optimal classifier was computed. Each

experiment was repeated fifty times over random draws of train, test and validation sets.

Figure 2.1 shows an example dataset from this synthetic experiment along with the (cross-

validated) SVM, RMM and Bayes optimal classification boundaries. The SVM decision

boundary is biased to separate the data in a direction where it has large spread. The RMM

is less biased by the spread and is visibly closer to the Bayes optimal solution.

Figure 2.2 shows the test error rates achieved for the SVM, the RMM and the Bayes

optimal classifier. The SVM performs significantly worse than the RMM, particularly when

training data is scarce. The RMM maintains a statistically significant advantage over the

SVM until the number of training examples grows beyond 6400. With larger training

sample size n, regularization plays a smaller role in the future probability of error. This

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 24

is clear, for instance, from the bound (3.13). The last term goes to zero at O(1/
√
n), the

second term (which is the outcome of regularization) is O(
√

tr(K)/n
√

1/n). Both have an

O(1/
√
n) rate. However, the first term in the bound is the average slack variables divided

by the margin which does not go to zero asymptotically with increasing n and eventually

dominates the bound. Thus, the SVM and RMM have asymptotically similar performance

but have significant differences in the small sample case.

The effect of scaling, which is a particular affine transformation, was explored next. To

explore the effect of scaling in a controlled manner, first, the projection w recovered by the

Bayes optimal classifier was obtained. An orthogonal vector v (such that w⊤v = 0) was

then obtained. The examples (training, test and validation) were then projected onto the

axes defined by w and v. Each projection along w was preserved while the projection along

v was scaled by a factor s > 1. This merely elongates the data further along directions

orthogonal to w (i.e., along the Bayes optimal classification boundary). More concisely,

given an example x, the following scaling transformation was applied:

[

w v
]





1 0

0 s





[

w v
]−1

x. (2.14)

Figure 2.3 shows the SVM and RMM test error rate across a range of scaling values s.

Here, 100 examples were used to construct the training data. As s grows, the SVM further

deviates from the Bayes optimal classifier and attempts to separate the data along directions

of large spread. Meanwhile, the RMM remains resilient to scaling and maintains a low error

rate throughout.

To explore the effect of the B parameter, the average validation and test error rate

were computed across many settings of C and B. The setting C = 100 was chosen since it

obtained the minimum error rate on the validation set. The average test error rate of the

RMM is shown in Figure 2.4 at C = 100 for multiple settings of the B parameter. Starting

from the SVM solution on the right (i.e. large B) the error rate begins to fall until it attains

a minimum and then starts to go increase. A similar behavior is seen in many real world

datasets. Surprisingly, some datasets even exhibit monotonic reduction in test error as the

value of B is decreased. The following section investigates such real world experiments in

more detail.

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 25

1

1.2

1.4
A

ve
ra

ge
 E

rr
or

 R
at

e

SVM

Decreasing B

Figure 2.4: Behavior on the toy dataset with C = 100. As the B value is decreased, the

error rate decreases to a reasonably wide minimum before starting to increase.

2.4.2 Experiments on digits

Experiments were carried out on three datasets of digits - optical digits from the UCI

machine learning repository [Asuncion and Newman, 2007], USPS digits [LeCun et al.,

1989] and MNIST digits [LeCun et al., 1998]. These datasets vary considerably in terms of

their number of features (64 in optical digits, 256 in USPS and 784 in MNIST) and their

number of training examples (3823 in optical digits, 7291 in USPS and 60000 in MNIST).

In all the multi-class experiments, the one versus one classification strategy was used. The

one versus one strategy trains a classifier for every combination of two classes. The final

prediction for an example is simply the class that is predicted most often. These results are

directly comparable with various methods that have been applied on this dataset. For a

fair comparison, results from contender methods that use special preprocessing or domain

knowledge are not explored in this thesis.4

In all experiments, the digits were first normalized to have unit norm. This elimi-

nates numerical problems that may arise in kernel functions such as the polynomial kernel

k(u,v) = (1 + u⊤v)d. Classification results were then examined for various degrees of the

4Additional results are reported in http://yann.lecun.com/exdb/mnist/.

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 26

1 2 3 4 5 6 7 RBF

OPT

SVM 71 57 54 47 40 46 46 51

Σ-SVM 61 48 41 36 35 31 29 47

KLDA 71 57 54 47 40 46 46 45

RMM 71 36 32 31 33 30 29 51

USPS

SVM 145 109 109 103 100 95 93 104

Σ-SVM 132 108 99 94 89 87 90 97

KLDA 132 119 121 117 114 118 117 101

RMM 153 109 94 91 91 90 90 98

1000-MNIST

SVM 696 511 422 380 362 338 332 670

Σ-SVM 671 470 373 341 322 309 303 673

KLDA 1663 848 591 481 430 419 405 1597

RMM 689 342 319 301 298 290 296 613

2/3-MNIST

SVM 552 237 200 183 178 177 164 166

RMM 534 164 148 140 123 129 129 144

Full MNIST

SVM 536 198 170 156 157 141 136 146

RMM 521 146 140 130 119 116 115 129

Table 2.1: The number of misclassification in three different digit datasets. Various kernels

are explored using the SVM, Σ-SVM, KLDA and RMM methods.

polynomial kernel. In addition, kernel values were further normalized so that the trace of

the training Gram matrix was equal to the number of training examples.

All parameters were tuned by splitting the training data according to an 80:20 ratio with

the larger split being used for training and the smaller split for validation. The process was

repeated five times over random splits to select hyper-parameters (C for the SVM, C and

D for the Σ-SVM and C and B for the RMM). A final classifier was trained for each of the

45 classification problems with the best parameters found by cross validation using all the

training examples in its corresponding pair of classes.

For the MNIST digits experiment, the Σ-SVM and kernel LDA (KLDA) methods were

too computationally demanding due to their use of matrix inversion. To cater to these meth-

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 27

ods, a smaller experiment was conducted with 1000 examples per training. For the larger

experiments, the Σ-SVM and KLDA were excluded. The larger experiment on MNIST

involved training on two thirds of the digits (i.e. training with an average of 8000 examples

for each pair of digits) for each binary classification task. In both these experiments, the

remaining training data was used as a validation set. The classifier that performed best on

the validation set was used for testing.

After forming all 45 classifiers (corresponding to each pair of digits), testing was done

on the standard separate test sets available for each of these three benchmark problems

(1797 examples in the case of optical digits, 2007 examples in USPS and 10000 examples in

MNIST). The final prediction for each test example was recovered based on the majority

of predictions made by the 45 classifiers on the test example with ties broken uniformly at

random.

It is important to note that, on the MNIST test set, an error rate improvement of 0.1%

has been established as statistically significant [Bengio et al., 2007; Decoste and Schölkopf,

2002]. This corresponds to 10 or more test examples being correctly classified by one method

over an other.

Table 2.1 shows results on all three digits datasets for polynomial kernels under varying

degrees as well as for RBF kernels. For each dataset, the number of misclassified examples

using the majority voting scheme above is reported. The Σ-SVM typically outperforms

the SVM yet the RMM outperforms both. Interestingly, with higher degree kernels, the

Σ-SVM seems to match the performance of the RMM while in most lower-degree kernels,

the RMM outperforms both the SVM and the Σ-SVM convincingly. Since the Σ-SVM is

prohibitive to run on large scale datasets due to the computationally cumbersome matrix

inversion, the RMM was clearly the most competitive method in these experiments in terms

of both accuracy and computational efficiency.

The best parameters found by validation in the previous experiments were used in a

full-scale MNIST experiment which does not have a validation set of its own. All 45 pair-

wise classifiers (both SVMs and RMMs) were trained with the previously cross-validated

parameters using all the training examples for each class in MNIST for various kernels. The

test results are reported in Table 2.1; the RMM advantages persist in this full-scale MNIST

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 28

experiment.

0

2

4

6

8

10

12

14

16

Decreasing B

T
es

t E
rr

or
s

3 VS 5

SVM

Figure 2.5: Performance on MNIST test set with digits 3 and 5. The number of errors

decreases from 15 to 6 as B decreases from the right.

2.4.3 Classifying MNIST digits 3 vs 5

This section presents more detailed results on one particular binary classification problem

in the MNIST digits dataset: the classification of digit 3 versus 5. Therein, the RMM has a

dramatically stronger performance than the SVM. The results reported in this section are

with polynomial kernels of degree 5. The parameter C was selected as mentioned above.

With the selected C value, an SVM was first trained over the entire MNIST training set

containing the digits 3 and 5. After noting the maximum absolute value of the output given

on all the training examples, B value was reduced in steps. The number of test errors on

the MNIST test set (3 versus 5) was noted. As the B value is reduced, the number of errors

starts to diminish as shown in Figure 2.5. The number of errors produced by the SVM

was 15. With the RMM, the number of errors dropped to 6 as the B value approached

one. Clearly, as B decreases, the absolute margin is decreased however the test error rate

drops drastically. This empirically suggests that maximizing the relative margin can have

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 29

a beneficial effect on the performance of a classifier. Admittedly, this is only one example

and is provided only for illustrative purposes. However, similar behavior was observed in

most of the binary digit classification problems though in some cases the error rate did

not go down significantly with decreasing B values. The generalization behavior on all 45

individual problems is explored in more detail in Section 2.4.4.

2.4.4 All 45 binary MNIST problems

This section explores RMM performance on the 45 pairwise digit classification problems

in isolation. In these experiments, both C and B values were fixed using validation as in

previous sections. A total of 45 binary classifiers were constructed using all MNIST training

digits. The resulting error rates are shown in Figure 2.6. On most problems, the RMM

obtains a significantly lower error rate than the SVM and, at times obtains half the error

rate.

0 5 10 15 20 25 30 35 40 45
0

2

4

6

8

10

12

14

16

18

45 Individual Problems

E
rr

or

SVM

RMM

Figure 2.6: Total test errors on all 45 MNIST classification problems. Various classifiers

were trained on the entire MNIST training dataset and evaluated on a standardized separate

test set.

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 30

Method RMM U-SVM

Universum - 1000 3000 all

Error rate 1.081 1.059 1.037 1.020

Error Std Dev 0.138 0.142 0.149 0.159

p-value 0.402 0.148 0.031

Table 2.2: Percentage error rates for the RMM and the U-SVM. The rate for the SVM was

1.274 with a standard deviation of 0.179; this is significantly larger than all other results

in the table (with a p-value of 0.000). The final row reports the p-value of a paired t-test

between the RMM error rate and the U-SVM error rate (corresponding to the Universum

size being considered in that column).

2.4.4.1 A comparison with the Universum method

A new framework known as the Universum [Weston et al., 2006; Sinz et al., 2008] was

recently introduced which maximizes the margin while keeping classifier outputs low on an

additional collection of non-examples that do not belong to either class of interest. These

additional examples are known as Universum examples; these examples are obtained from

any other distribution other than the one generating the training data. In the RMM,

classification outputs on training examples are bounded; in the Universum, classification

outputs on Universum examples are bounded (albeit with a different loss). The following

experiments compare the Universum based framework with the RMM.

An MNIST experiment was explored for classifying digits 5 vs 8 using 1000 labeled train-

ing examples under the RBF kernel. This setup is identical to the experimental conditions

described in [Weston et al., 2006]. Examples of the digit 3 served as Universum examples

since these were reported to be the best performing Universum examples in previous work

[Weston et al., 2006]. The experiments used the standard implementation of the Universum

provided by the authors [Weston et al., 2006] under the default parameter settings (for vari-

ables such as ǫ). The Universum was compared with the RMM which had access to the same

1000 training examples. Furthermore, 3500 examples were used as a test set and another

3500 examples as a validation set to perform model selection. All parameter settings for the

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 31

RMM and the Universum SVM (or U-SVM) as well as the variance parameter of the RBF

kernel were explored over a wide range of values. The parameter settings that achieved the

smallest error on a validation set were then used to evaluate performance on the test set

(and vice-versa). This entire experiment was repeated ten-fold over different random draws

of the various sets. The average test error rates were compiled for both algorithms.

While the RMM only had access to the 1000 training examples, the U-SVM was also

given a Universum of images of the digit 3. The Universum spanned three different sizes

- 1000, 3000 and 6131 examples (i.e. all available images of the digit 3 in the MNIST

training set). The results are reported in Table 2.2. First, observe that both the RMM

and the U-SVM improved the baseline SVM performance significantly (as measured by a

paired t-test). With 1000 and 3000 Universum examples, even though the error rate of

the U-SVM was slightly lower, a paired t-test revealed that it did not achieve statistically

significant improvement over the RMM. Statistically significant advantages for the U-SVM

only emerged when all the available images of the digit 3 were used in the Universum.

Note that there is a slight discrepancy between the errors reported here and those in

[Weston et al., 2006] even though both methods used the digit 3 to generate Universum

examples. This may be because the previous authors [Weston et al., 2006] reported the

best test error on 1865 examples. In this thesis, a more conservative approach is taken

where a good model is first selected using the validation set and then errors are reported

on an unseen test set without further tuning. Clearly, picking the minimum error rate on

a test set will give more optimistic results but tuning to the test set can be potentially

misleading. This makes it difficult to directly compare test error rates with those reported

in the previous paper. While the error rate (using all digits 3 as the Universum examples) in

our experiments varied from 0.74% to 1.35%, the authors in [Weston et al., 2006] reported

an error rate of 0.62%.

With 1000 training examples, the RMM (as in Equation (2.6)) has 1000 classification

constraints and 1000 bounding constraints. With 1000 Universum examples, the U-SVM

also has 1000 bounding constraints in addition to the classification constraints. It is inter-

esting to note that the RMM, with no extra data, is not significantly worse than a U-SVM

endowed with an additional 1000 or 3000 best-possible Universum examples.

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 32

The authors of [Weston et al., 2006] observed that Universum examples help most when

they are correlated with the training examples. This, coupled with the results in Table 2.2

and the fact that training examples are correlated most with themselves (or with examples

from the same distribution as the training examples), raises the following question: How

much of the performance gain with the U-SVM is due to the extra examples and how much

of it is due to its implicit control of the spread (as with an RMM)? This is left as an open

question in this thesis and as motivation for further theoretical work.

20 40 60 80 100 120 140 160 180
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

190 binary problems

R
el

at
iv

e
im

pr
ov

em
en

t

Significant 1%

Significant 5%

Others

Baseline

10% improvement

20% improvement

Figure 2.7: Percentage improvement of the RMM over the SVM on all 190 binary problems.

Significance tests were performed using a paired t-test at the indicated levels of significance.

On most problems, the RMM shows significant improvement over SVM.

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 33

2.4.5 Text classification

In this section, results are reported on the 20 Newsgroups 5 dataset. This dataset has posts

from 20 different Usenet newsgroups. Each post was represented by a vector which counts

the number of words that occurred in the document. In the text classification literature,

this is commonly known as the bag of words representation. Each feature vector was divided

by the total number of words in the document to normalize it.

All 190 binary pairwise classification problems were considered in this experiment. For

each problem, 500 examples were used for training. The remaining examples were divided

into a validation and test set of the same size. Both SVMs and RMMs were trained for

various values of their parameters. After finding the parameter settings that achieved

the lowest error on a validation set, the test error was evaluated (and vice-versa). This

experiment was repeated ten times for random draws of the train, validation and test sets.

Figure 2.7 summarizes the results. For each binary classification problem, a paired t-

test was performed and p-values were obtained. As can be seen from the plot, the RMM

outperforms the SVM significantly in almost 30% of the problems. This experiment once

again demonstrates that an absolute margin does not always result in a small test error.

2.4.6 Benchmark datasets

To compare the performance of the RMM with a number of other methods, experiments

were performed on several benchmark datasets. In particular, 100 training and test splits

of 13 of these datasets have been previously used in [Raetsch et al., 2001; Mika et al.,

1999; Cawley and Talbot, 2003].6 The RBF kernel was used in these experiments for all

kernel-based methods. To handle the noisy nature of these datasets, the kernelized and

relaxed version of the RMM (2.12) was used. All the parameters were tuned using cross-

validation using a similar setup as in [Raetsch et al., 2001]7. With the chosen values of these

parameters, the error rates were first obtained for all 100 test splits using the corresponding

5This dataset is available online at http://people.csail.mit.edu/jrennie/20Newsgroups/.

6 These datasets are available at http://theoval.cmp.uea.ac.uk/∼gcc/matlab/default.html#benchmarks.

7The values of the selected parameters and the code for the RMM are available for download at

http://www.cs.columbia.edu/∼pks2103/ucirmm/.

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 34

Dataset SVM KFDA Σ-SVM RMM (C=D) RMM

banana 10.5 ± 0.4 10.8 ± 0.5 10.5 ± 0.4 10.4 ± 0.4 10.4 ± 0.4*

b.cancer 25.3 ± 4.6* 26.6 ± 4.8 28.8 ± 4.6 25.9 ± 4.5 25.4 ± 4.6

diabetes 23.1 ± 1.7 23.2 ± 1.8 24.2 ± 1.9 23.1 ± 1.7 23.0 ± 1.7*

f.solar 32.3 ± 1.8 33.1 ± 1.6 34.6 ± 2.0 32.3 ± 1.8* 32.3 ± 1.8*

German 23.4 ± 2.2 24.1 ± 2.4 25.9 ± 2.4 23.4 ± 2.1 23.2 ± 2.2*

heart 15.5 ± 3.3 15.7 ± 3.2 19.9 ± 3.6 15.4 ± 3.3 15.2 ± 3.1*

image 3.0 ± 0.6 3.1 ± 0.6 3.3 ± 0.7 3.0 ± 0.6 2.9 ± 0.7

ringnorm 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1*

splice 10.9 ± 0.7 10.6 ± 0.7 10.8 ± 0.6 10.8 ± 0.6 10.8 ± 0.6

thyroid 4.7 ± 2.1 4.2 ± 2.1 4.5 ± 2.1 4.2 ± 1.8* 4.2 ± 2.2

titanic 22.3 ± 1.1 22.0 ± 1.3* 23.1 ± 2.2 22.3 ± 1.1 22.3 ± 1.0

twonorm 2.4 ± 0.1* 2.4 ± 0.2 2.5 ± 0.2 2.4 ± 0.1 2.4 ± 0.1

waveform 9.9 ± 0.4 9.9 ± 0.4 10.5 ± 0.5 10.0 ± 0.4 9.7 ± 0.4*

Dataset RBF AB LPAB QPAB ABR

banana 10.8 ± 0.4 12.3 ± 0.7 10.7 ± 0.4 10.9 ± 0.5 10.9 ± 0.4

b.cancer 27.6 ± 4.7 30.4 ± 4.7 26.8 ± 6.1 25.9 ± 4.6 26.5 ± 4.5

diabetes 24.3 ± 1.9 26.5 ± 2.3 24.1 ± 1.9 25.4 ± 2.2 23.8 ± 1.8

f.solar 34.4 ± 1.9 35.7 ± 1.8 34.7 ± 2.0 36.2 ± 1.8 34.2 ± 2.2

German 24.7 ± 2.4 27.5 ± 2.5 24.8 ± 2.2 25.3 ± 2.1 24.3 ± 2.1

heart 17.1 ± 3.3 20.3 ± 3.4 17.5 ± 3.5 17.2 ± 3.4 16.5 ± 3.5

image 3.3 ± 0.7 2.7 ± 0.7 2.8 ± 0.6 2.7 ± 0.6* 2.7 ± 0.6*

ringnorm 1.7 ± 0.2 1.9 ± 0.2 2.2 ± 0.5 1.9 ± 0.2 1.6 ± 0.1

splice 9.9 ± 0.8 10.1 ± 0.5 10.2 ± 1.6 10.1 ± 0.5 9.5 ± 0.6*

thyroid 4.5 ± 2.1 4.4 ± 2.2 4.6 ± 2.2 4.3 ± 2.2 4.5 ± 2.2

titanic 23.3 ± 1.3 22.6 ± 1.2 24.0 ± 4.4 22.7 ± 1.0 22.6 ± 1.2

twonorm 2.8 ± 0.3 3.0 ± 0.3 3.2 ± 0.4 3.0 ± 0.3 2.7 ± 0.2

waveform 10.7 ± 1.1 10.8 ± 0.6 10.5 ± 1.0 10.1 ± 0.5 9.8 ± 0.8

Table 2.3: UCI results for a number of classification methods. Results are shown for the

SVM, regularized kernel Fisher Discriminant Analysis, the Σ-SVM, the RMM, an RBF

network, Adaboost, LP-regularized Adaboost, QP-regularized Adaboost and Regularized

Adaboost. The results have been split into two parts due to lack of space. For each dataset,

the algorithm which gave the minimum error rate is starred. All other algorithms that were

not significantly different from (at the 5% significance level based on a paired t-test) the

minimum error rate are in boldface.

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 35

3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2
1.5

2

2.5

3

3.5

4

4.5

Log # examples

Lo
g

ru
nt

im
e

SVM
RMM, B_1
RMM, B_2
RMM, B_3

Figure 2.8: Log run time versus log number of examples. The figure shows that the SVM

and the RMM have similar computational requirements overall.

training splits. The results are reported in Table 2.3. Once again, the RMM exhibits clear

performance advantages over other methods.

2.4.7 Scalability and run-time

While the asymptotic run time behavior was analyzed in Section 2.3.1, the run time of the

RMM is also studied empirically in this section. In particular, the classification of MNIST

CHAPTER 2. FROM ABSOLUTE MARGIN TO RELATIVE MARGIN 36

digits 0-4 versus 5-9 with a polynomial kernel of degree five was used to benchmark the

algorithms. For both the RMM and the SVM, the tolerance parameter (ǫ mentioned in

Section 2.3.1) was set to 0.001. The size of the sub-problem (2.10) solved was 800 in all the

cases. To evaluate how the algorithms scale, the number of training examples was increased

in steps and the training time was noted. Throughout all the experiments, the C value

was set to 1. The SVM was first run on the training examples. The value of maximum

absolute prediction θ was noted. Three different values of B were then tried for the RMM:

B1 = 1 + (θ − 1)/2, B2 = 1 + (θ − 1)/4 and B3 = 1 + (θ − 1)/10. In all experiments, the

run time was noted. The experiment was repeated ten times to get an average run time for

each B value. A log-log plot comparing the number of examples to the average run time

is shown in Figure 2.8. Both the SVM and the RMM run time exhibit similar asymptotic

behavior.

2.5 Summary

Several formulations were discussed in this chapter to overcome the sensitives of the sup-

port vector machines discussed in Chapter 1. While there are several ways to overcome

the sensitivities, the RMM is particularly suited due to computational and generalization

reasons (topic of the next chapter). Extensive experimentation on synthetic as well as real

world datasets showed that RMM can significantly outperform the SVM.

CHAPTER 3. RISK BOUNDS 37

Chapter 3

Risk Bounds

This chapter provides generalization guarantees for the classifiers of interest (the SVM, Σ-

SVM and RMM) which all produce decision1 boundaries of the form w⊤x = 0 from a limited

number of examples. In the case of SVM, the decision boundary is found by minimizing a

combination of w⊤w and an upper bound on the number of errors. This minimization is

equivalent to choosing a function g(x) = w⊤x from a set of linear functions with bounded

ℓ2 norm. Therefore, with a suitable choice of E, the SVM solution chooses the function g(·)
from the set {x→ w⊤x|12w⊤w ≤ E}.

By measuring the complexity of the function class being explored, it is possible to

derive generalization guarantees. A natural measure of how complex a function class is the

Rademacher complexity which has been fruitful in the derivation of generalization bounds.

For SVMs, such results can be found in [Bartlett and Mendelson, 2002; Shawe-Taylor and

Cristianini, 2004]. This chapter continues in the same spirit and defines the function classes

and their corresponding Rademacher complexities for slightly modified versions of the RMM

as well as the Σ-SVM. Furthermore, these will be used to provide generalization guarantees

for both classifiers. The style and content of this section closely follows that of [Shawe-

Taylor and Cristianini, 2004]. These risk bounds were first published in [Shivaswamy and

Jebara, 2010b].

The function classes for the RMM and Σ-SVM will depend on the data. Thus, these

1The bias term is suppressed in this section for brevity.

CHAPTER 3. RISK BOUNDS 38

both entail so-called data-dependent regularization which is not quite as straightforward

as the function classes explored by SVMs. In particular, the data involved in defining

data-dependent function classes will be treated differently and referred to as landmarks to

distinguish them from the training data. Landmark data is used to define the function class

while training data is used to select a specific function from the class. This distinction is

important for the following theoretical derivations. However, in practical implementations,

both the Σ-SVM and the RMM may use the training data to both define the function class

and to choose the best function within it. Thus, the distinction between landmark data

and training data is merely a formality for deriving generalization bounds which require

independent sets of examples for both stages. Ultimately, however, it will be possible

to still provide generalization guarantees that are independent of the particular landmark

examples. Details of this argument are provided in Section 3.3. At the outset, however, it is

assumed that, in addition to the training data, a separate dataset of landmarks is provided

to define the function class for the RMM and the Σ-SVM.

3.1 Function class definitions

Consider the training data set (xi, yi)
n
i=1 with xi ∈ R

m and yi ∈ {±1} which are drawn

independently and identically distributed (iid) from an unknown underlying distribution

P[(x, y)] denoted as D. The features of the training examples above are denoted by the set

S = {x1, . . . ,xn}.
Given a choice of the parameter E in the SVM (where E plays the role of the regular-

ization parameter), the set of linear functions the SVM considers is:

Definition 3 FE := {x→ w⊤x|12w⊤w ≤ E}.

The RMM maximizes the margin while also limiting the spread of projections on the training

data. It effectively considers the following function class:

Definition 4 HS
E,D := {x→ w⊤x| D̄2 w⊤w + D

2 (w⊤xi)
2 ≤ E ∀1 ≤ i ≤ n}.

In the above equation, D̄ := 1 − D and 0 < D < 1 trade off between large margin and

CHAPTER 3. RISK BOUNDS 39

small spread on the projections.2 Since the above function class depends on the training

examples, standard Rademacher analysis, which is straightforward for the SVM, is no longer

applicable. Instead, define another function class for the RMM using a distinct set of

landmark examples.

A set V = {v1, . . . ,vnv} drawn iid from the same distribution P[x], denoted as Dx,

is used as the landmark examples. With these landmark examples, the modified RMM

function class can be written as:

Definition 5 HV
E,D := {x→ w⊤x| D̄2 w⊤w + D

2 (w⊤vi)
2 ≤ E ∀1 ≤ i ≤ nv}.

Finally, function classes that are relevant for the Σ-SVM are considered. These limit the

average projection rather than the maximum projection. The data-dependent function class

is defined as below:

Definition 6 GS
E,D := {x→ w⊤x| D̄2 w⊤w + D

2n

∑n
i=1(w

⊤xi)
2 ≤ E}.

A different landmark set U = {u1, . . . ,un}, again drawn iid from Dx, is used in defining

the corresponding landmark function class:

Definition 7 GU
B,D := {x→ w⊤x| D̄2 w⊤w + D

2n

∑n
i=1(w

⊤ui)
2 ≤ B}.

Note that the parameter E is fixed in HV
E,D but nv may be different from n. In the

case of GU
B,D, the number of landmarks is the same (n) as the number of training examples

but the parameter B is used instead of E. These distinctions are intentional and will be

clarified in subsequent sections.

3.2 Rademacher complexity

In this section, the Rademacher complexity of the aforementioned function classes are quan-

tified by bounding the empirical Rademacher complexity. Rademacher complexity measures

the richness of a class of real-valued functions with respect to a probability distribution

[Bartlett and Mendelson, 2002; Shawe-Taylor and Cristianini, 2004; Bousquet et al., 2004].

2Zero and one are excluded from the range of D to avoid degenerate cases.

CHAPTER 3. RISK BOUNDS 40

Definition 8 For a sample S = {x1,x2, . . . ,xn} generated by a distribution on x and a

real-valued function class F with domain x, the empirical Rademacher complexity3 of F is

R̂(F) := Eσ

[

sup
f∈F

∣

∣

∣

∣

∣

2

n

n
∑

i=1

σif(xi)

∣

∣

∣

∣

∣

]

where σ = {σ1, . . . σn} are independent random variables that take values +1 or −1 with

equal probability. Moreover, the Rademacher complexity of F is: R(F) := ES

[

R̂(F)
]

.

A stepping stone for quantifying the true Rademacher complexity is obtained by considering

its empirical counterpart.

3.2.1 Empirical Rademacher complexity

In this section, upper bounds on the empirical Rademacher complexities are derived for the

previously defined function classes. These bounds provide insights on the regularization

properties of the function classes for the sample S = {x1,x2, . . . xn}.

Theorem 9 R̂(FE) ≤ T0 := 2
√

2E
n

√

tr(K), where tr(K) is the trace of the Gram matrix of

the elements in S.

Proof

R̂(FE) = Eσ

[

sup
f∈FE

∣

∣

∣

∣

∣

2

n

n
∑

i=1

σif(xi)

∣

∣

∣

∣

∣

]

=
2

n
Eσ

[

max
||w||≤

√
2E

∣

∣

∣

∣

∣

w⊤
n
∑

i=1

σixi

∣

∣

∣

∣

∣

]

≤ 2
√

2E

n
Eσ

[∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

σixi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

]

=
2
√

2E

n
Eσ











n
∑

i=1

σix
⊤
i

n
∑

j=1

σjxj





1
2







≤ 2
√

2E

n



Eσ





n
∑

i,j=1

σiσjx
⊤
i xj









1
2

=
2
√

2E

n

√

tr(K).

The proof uses Jensen’s inequality on the function
√· and the fact that σi and σj are

random variables taking values +1 or −1 with equal probability. Thus, when i 6= j,

Eσ[σiσjx
⊤
i xi] = 0 and, otherwise, Eσ[σiσix

⊤
i xi] = Eσ[x⊤

i xi] = x⊤
i xi. The result follows

3 The dependence of the empirical Rademacher complexity on n and S is suppressed by writing R̂(F)

for brevity.

CHAPTER 3. RISK BOUNDS 41

from the linearity of the expectation operator.

Roughly speaking, by keeping E small, the classifier’s ability to fit arbitrary labels is

reduced. This is one way to motivate a maximum margin strategy. Note that
√

tr(K) is a

coarse measure of the spread of the data. However, most SVM formulations do not directly

optimize this term. This motivates to next consider two new function classes.

Theorem 10 R̂(HV
E,D) ≤ T2(V,S), where for any training set B and landmark4 set A,

T2(A,B) := minλ≥0
1
|B|
∑

x∈B x⊤ (D̄I
∑

u∈A λu +D
∑

u∈A λuuu⊤)−1
x + 2E

|B|
∑

u∈A λu.

Proof Start with the definition of the empirical Rademacher complexity:

R̂(HV
E,D) = Eσ

[

sup
w: 1

2
(D̄w⊤w+D(w⊤vi)2)≤E

∣

∣

∣

∣

∣

2

n

n
∑

i=1

σi(w
⊤xi)

∣

∣

∣

∣

∣

]

.

Consider the supremum inside the expectation. Depending on the sign of the term inside

| · |, the above corresponds to either a maximization or a minimization. Without loss of

generality, consider the case of maximization. When a minimization is involved, the value

of the objective still remains the same. The supremum is recovered by solving the following

optimization problem:

max
w

w⊤
n
∑

i=1

σixi s.t.
1

2
(D̄w⊤w +D(w⊤vi)

2) ≤ E ∀1 ≤ i ≤ nv. (3.1)

Using Lagrange multipliers λ1 ≥ 0, . . . λnv ≥ 0, the Lagrangian of (3.1) is: L(w, λ) =

−w⊤∑n
i=1 σixi +

∑nv
i=1 λi

(

1
2

(

D̄w⊤w +D(w⊤vi)
2
)

− E
)

. Differentiating this with respect

to the primal variable w and equating it to zero gives: w = Σ−1
λ,D

∑n
i=1 σixi, where Σλ,D :=

D̄
∑nv

i=1 λiI +D
∑nv

i=1 λiviv
⊤
i . Substituting this w in L(w, λ) gives the dual of (3.1):

min
λ≥0

1

2

n
∑

i=1

σix
⊤
i Σ−1

λ,D

n
∑

j=1

σjxj + E

nv
∑

i=1

λi.

4T2(A,B) has been defined on generic sets. When an already defined set, such as V (with a known

number nv of elements) is an argument to T2, λ will be subscripted with i or j.

CHAPTER 3. RISK BOUNDS 42

This permits the following upper bound on the empirical Rademacher complexity since the

primal and the dual objectives are equal at the optimum:

R̂(HV
E,D) =

2

n
Eσ



min
λ≥0

1

2

n
∑

i=1

σix
⊤
i Σ−1

λ,D

n
∑

j=1

σjxj +E

nv
∑

i=1

λi





≤ min
λ≥0

2

n
Eσ





1

2

n
∑

i=1

σix
⊤
i Σ−1

λ,D

n
∑

j=1

σjxj +E

nv
∑

i=1

λi





≤ min
λ≥0

1

n

n
∑

i=1

x⊤
i Σ−1

λ,Dxi +
2

n
E

nv
∑

i=1

λi = T2(V,S).

On line one, the expectation is over the minimizers over λ; this is less than first taking the

expectation and then minimizing over λ in line two. Then, simply recycle the arguments

used in Theorem 9 to handle the expectation over σ.

Theorem 11 R̂(GU
B,D) ≤ T1(U,S), where for any training set B and landmark set A,

T1(A,B) := 2
√

2B
|B|

(

∑

x∈B x⊤
(

D̄I + D
|A|
∑

u∈A uu⊤
)−1

x

) 1
2

.

Proof The proof is similar to the one for Theorem 10.

Thus, the empirical Rademacher complexities of the function classes of interest are

bounded using the functions T0, T1(U,S) and T2(V,S). For both FE and GU
E,D, the empir-

ical Rademacher complexity is bounded by a closed-form expression. For HV
E,D, optimizing

over the Lagrange multipliers (i.e. the λ’s) can further reduce the upper bound on empirical

Rademacher complexity. This can yield advantages over both FE and GU
E,D in many situa-

tions and the overall shape of Σλ,D plays a key role in determining the overall bound; this

will be discussed in Section 3.5. Note that the upper bound T2(V,S) is not a closed-form

expression in general but can be evaluated in polynomial time using semi-definite program-

ming by invoking Schur’s complement lemma as shown by [Boyd and Vandenberghe, 2003].

3.2.2 From empirical to true Rademacher complexity

By definition 8, the empirical Rademacher complexity of a function class is dependent

on the data sample, S. In many cases, it is not possible to give exact expressions for

CHAPTER 3. RISK BOUNDS 43

the Rademacher complexity since the underlying distribution over the data is unknown.

However, it is possible to give probabilistic upper bounds on the Rademacher complexity.

Since the Rademacher complexity is the expectation of its empirical estimate over the data,

by a straightforward application of McDiarmid’s inequality (Appendix A.1), it is possible

to show the following:

Lemma 12 Fix δ ∈ (0, 1). With probability at least 1− δ over draws of the samples S the

following holds for any function class F :

R(F) ≤ R̂(F) + 2

√

ln(2/δ)

2n
(3.2)

and,

R̂(F) ≤ R(F) + 2

√

ln(2/δ)

2n
. (3.3)

At this point, the motivation for introducing the landmark sets U and V becomes clear.

The inequalities (3.2) and (3.3) do not hold when the function class F is dependent on the

set S. Specifically, using the sample S instead of the landmarks breaks the required iid

assumptions in the derivation of (3.2) and (3.3). Thus neither Lemma 12, nor any of the

results in Section 3.3 are sound for the function classes GS
B,D and HS

E,D.

3.3 Generalization bounds

This section presents generalization bounds for the three different function classes. The

derivation largely follows the approach of [Shawe-Taylor and Cristianini, 2004] and, there-

fore, several details will be omitted in this chapter. Recall the theorem from [Shawe-Taylor

and Cristianini, 2004] that leverages the empirical Rademacher complexity to provide a

generalization bound.

Theorem 13 Let F be a class of functions mapping Z to [0, 1]; let {z1, . . . , zn} be drawn

from the domain Z independently and identically distributed (iid) according to a probability

distribution D. Then, for any fixed δ ∈ (0, 1), the following bound holds for any f ∈ F with

probability at least 1− δ over random draws of a set of examples of size n:

ED[f(z)] ≤ Ê[f(z)] + R̂(F) + 3

√

ln(2/δ)

2n
. (3.4)

CHAPTER 3. RISK BOUNDS 44

Similarly, under the same conditions as above, with probability at least 1− δ,

Ê[f(z)] ≤ ED[f(z)] + R̂(F) + 3

√

ln(2/δ)

2n
. (3.5)

Inequality (3.4) can be found in [Shawe-Taylor and Cristianini, 2004] and inequality (3.5)

is obtained by a simple modification of the proof in [Shawe-Taylor and Cristianini, 2004].

The following theorem, found in [Shawe-Taylor and Cristianini, 2004], gives a probabilistic

upper bound on the future error rate based on the empirical error and the function class

complexity.

Theorem 14 Fix γ > 0. Let F be the class of functions from R
m × {±1} → R given by

f(x, y) = −yg(x). Let {(x1, y1), . . . , (xn, yn)} be drawn iid from a probability distribution

D. Then, with probability at least 1 − δ over the samples of size n, the following bound

holds:

PD[y 6= sign(g(x))] ≤ 1

nγ

n
∑

i=1

ξi +
2

γ
R̂(F) + 3

√

ln(2/δ)

2n
, (3.6)

where ξi = max(0, 1 − yig(xi)) are the so-called slack variables.

The upper bounds that were derived in Section 3.2, namely: T0, T1(U,S) and T2(V,S)

can now be inserted into (3.6) to give generalization bounds for each class of interest.

However, a caveat remains since a separate set of landmark data was necessary to provide

such generalization bounds. The next section provides steps to eliminate the landmark data

set from the bound.

3.4 Stating the bounds independently of landmarks

Note that the original function classes were defined using landmark examples. However, it is

possible to eliminate these and state the generalization bounds independent of the landmark

examples on function classes defined on the training data. Landmarks are eliminated from

the generalization bounds in two steps. First, the empirical Rademacher complexities are

shown to be concentrated and, second, the function classes defined using landmarks are

shown to be supersets of the original function classes. One mild and standard assumption

will be necessary, namely, that all examples from the distribution P([x]) have a norm

bounded above by R with probability one.

CHAPTER 3. RISK BOUNDS 45

3.4.1 Concentration of empirical Rademacher complexity

Recall the upper bound T1(U,S) that was derived in Theorem 11. The following bounds

show that these quantities are concentrated.

Theorem 15

With probability at least 1− δ,

T1(U,S) ≤ EU[T1(U,S)] +O
(

1
√
n
√

tr(K)

)

,

T2(V,S) ≤ EV[T1(V,S)] +O
(

1
√
nv

√

tr(K)

)

.

Proof McDiarmid’s inequality from Appendix A.1 can be applied to T1(U,S) since it is

possible to compute Lipschitz constants c1, c2, . . . , cn that correspond to each input of the

function. These Lipschitz constants all share the same value c which is derived in Appendix

A.2. With this Lipschitz constant, McDiarmid’s inequality (A.1) is directly applicable and

yields: P[T1(U,S) − EU[T1(U,S)] ≥ ǫ] ≤ exp
(

−2ǫ2/(nc2)
)

Setting the upper bound on

probability to δ, the following inequality holds with probability at least 1− δ:

T1(U,S) ≤ EU[T1(U,S)] +
2
√

ln(1/δ)E

D̄
√
n





√

√

√

√

n
∑

i=1

x⊤
i xi −

√

√

√

√

n
∑

i=1

x⊤
i xi −

DR2µmax

nD̄ +DR2



 .

(3.7)

The second term above is:

2
√

ln(1/δ)E

D̄
√
n





√

√

√

√

n
∑

i=1

x⊤
i xi −

√

√

√

√

n
∑

i=1

x⊤
i xi −

DR2µmax

nD̄ +DR2





=
2
√

ln(1/δ)E

D̄
√
n

DR2µmax/(nD̄ +DR2)
√

∑n
i=1 x⊤

i xi +
√

∑n
i=1 x⊤

i xi − DR2µmax

nD̄+DR2

≤ 2
√

ln(1/δ)E

D̄
√
n

DR2µmax/(nD̄ +DR2)
√

∑n
i=1 x⊤

i xi

≤ 2
√

ln(1/δ)E

D̄
√
n

DR4n

(nD̄ +DR2)
√

∑n
i=1 x⊤

i xi

≤ 2
√

ln(1/δ)E

D̄
√
n

DR4n

(nD̄)
√

∑n
i=1 x⊤

i xi

= O
(

1
√
n
√

tr(K)

)

.

CHAPTER 3. RISK BOUNDS 46

Here, µmax ≤ nR2 is the largest eigenvalue of the Gram matrix K. The big oh notation refers

to the asymptotic behavior in n. Note that tr(K) also grows with n. Thus, asymptotically,

the above term is better than O(1/
√
n) which is the behavior of (3.6). So, from (3.7), with

probability at least 1− δ: T1(U,S) ≤ EU[T1(U,S)] +O
(

1/
√

n tr(K)
)

.

The proof for the second claim is similar since T2(V,S) has the same Lipschitz constants

(Appendix A.2). The only difference is in the number of elements in V which is reflected

in the bound.

3.4.2 Function class inclusion

At this point, using Equation 3.6 and Theorem 15, it is possible to state bounds that hold

for functions in GU
B,D and HU

B,D but that are independent of U and V otherwise. However,

the aim is to state uniform convergence bounds for functions in GS
B,D and HS

B,D. This is

achieved by showing the latter two sets are subsets of the former two with high probability.

It is not enough to show that each element of one set is inside the other. Since uniform

bounds are required for the initial function classes, one has to prove set-inclusion results5.

Theorem 16 For B = E + ǫ where ǫ = O
(

1√
n

)

, with probability at least 1 − 2δ GS
E,D ⊆

GU
B,D.

Proof First, note that GS
E,D ⊆ FE/D̄. Thus, FE/D̄ is a bigger class of functions than

GS
E,D. Moreover, FE/D̄ is not dependent on data. Now, consider D̄

2 w⊤w + D
2 (w⊤x)2 where

w ∈ FE/D̄. For ||x|| ≤ R2, the Cauchy-Schwarz inequality yields supw∈FE/D̄

D̄
2 w⊤w +

D
2 (w⊤x)2 ≤ κ where κ = E/2 +DER2/(2D̄). Now, define the function hw : Rm → [0, 1],

as : hw(x) = (D̄
2 w⊤w + D

2 (w⊤x)2)/κ. Since the sets S and U are drawn iid from the

distribution Dx, it is now possible to apply (3.4) and (3.5) for any w ∈ FE/D̄. Applying

(3.5) to hw(·) on S, ∀w ∈ FE/D̄, with probability at least 1 − δ, the following inequality

holds:

EDx [hw(x)] ≤ 1

n

n
∑

i=1

hw(xi) + 2

√

2E

nD̄

√

1

n
tr(K) + 3

√

ln(2/δ)

2n
, (3.8)

5 The function classes will also be treated as sets of parameters w without introducing additional notation.

CHAPTER 3. RISK BOUNDS 47

where the value of R̂(FE/D̄) has been obtained from Theorem 9. The expectation is over

the draw of S. Similarly, applying (3.4) to hw(·) on U, with probability at least 1 − δ,

∀w ∈ FE/D̄, the following inequality holds:

1

n

n
∑

i=1

hw(ui) ≤ EDx[hw(u)] + 2

√

2E

nD̄

√

1

n
tr(Ku) + 3

√

ln(2/δ)

2n
(3.9)

where Ku is the Gram matrix of the landmark examples in U. Using the fact that expec-

tations in (3.8) and (3.9) are the same, tr(Ku) ≤ nR2, and the union bound, the following

inequality holds ∀w ∈ FE/D̄ with probability at least 1− 2δ:

1

n

n
∑

i=1

hw(ui) ≤
1

n

n
∑

i=1

hw(xi) + 4R

√

2E

nD̄
+ 6

√

ln(2/δ)

2n
.

Using the definition of hw(·), with probability at least 1− 2δ, ∀w ∈ FE/D̄,

D̄

2
w⊤w +

D

2n

n
∑

i=1

(w⊤ui)
2 ≤ D̄

2
w⊤w +

D

2n

n
∑

i=1

(w⊤xi)
2 +O

(

1√
n

)

.

Now, suppose, D̄
2 w⊤w + D

2n

∑n
i=1(w

⊤xi)
2 ≤ E, which describes the function class GS

E,D.

If B is chosen to be E + ǫ where ǫ = O(1√
n
), then, ∀w ∈ FE/D̄, with probability at least

1 − 2δ, w⊤w + D
2n

∑n
i=1(w

⊤ui)
2 ≤ B. Since FE/D̄ is a superset of GS

E,D, with probability

at least 1− 2δ, GS
E,D ⊆ GU

E,D.

Theorem 17 For nv = O(
√
n), with probability at least 1− 2δ, HS

E,D ⊆ HV
E,D.

Proof First define the function, gw : R
m → R, as gw(v) = D̄

2 w⊤w + D
2 (w⊤v)2. Define

the indicator random variable I[gw(v)>E] which has a value 1 if gw(v) > E and a value 0

otherwise. By definition, ∀w ∈ HS
E,D, ∀xi ∈ S, I[gw(xi)>E] = 0. Similarly, ∀w ∈ HV

E,D,

∀vi ∈ V, I[gw(vi)>E] = 0. As before, consider a larger class of functions that is independent

of S, namely, FE/D̄. For an iid sample S from the distribution Dx, applying (3.4) to the

indicator random variables I[gw(x)>E] on the set S, with probability at least 1− δ,

EDx[I[gw(x)>E]] ≤
1

n

n
∑

i=1

I[gw(xi)>E] + 2

√

2E

nD̄

√

1

n
tr(K) + 3

√

ln(2/δ)

2n
. (3.10)

Similarly, applying (3.5) on the set V, with probability at least 1− δ,

CHAPTER 3. RISK BOUNDS 48

1

nv

nv
∑

i=1

I[gw(vi)>E] ≤ EDx [I[gw(x)>E]] + 2

√

2E

nD̄

√

1

nv
tr(Kv) + 3

√

ln(2/δ)

2nv
. (3.11)

Performing a union bound on (3.10) and (3.11), using the fact that tr(K) ≤ nR2 and

tr(Kv) ≤ nvR
2 with probability at least 1− 2δ, ∀w ∈ FE/D̄,

1

nv

nv
∑

i=1

I[gw(vi)>E] −
1

n

n
∑

i=1

I[gw(xi)>E] ≤ 4R

√

2E

nD̄
+ 3

√

ln(2/δ)

2

(

1√
n

+
1√
nv

)

. (3.12)

Equating the right hand side of the above inequality to 1
nv

, the above inequality can be

written more succinctly as:

P

[

∃w ∈ FE/D̄

1

nv

nv
∑

i=1

I[gw(vi)>E] −
1

n

n
∑

i=1

I[gw(xi)>E]) ≥
1

nv

]

≤2 exp



−2

9

(

1

nv
− 4R

√

2E

nD̄

)2

/

(

1√
n

+
1√
nv

)2




The left hand side of the equation above is the probability that there exists a w such that the

difference in the fraction of the number of examples that fall outside D̄
2 w⊤w+ D

2 (w⊤x)2 ≤ E
over the random draw of the sets S and V is at least 1

nv
. Thus, it gives an upper bound

on the probability that HS
E,D is contained in HV

E,D. This is because, if there is a w ∈ HS
E,D

that is not in HV
E,D, for such a w, 1

nv

∑nv
i=1 I[gw(vi)>E] >

1
nv

and 1
n

∑n
i=1 I[gw(xi)>E] = 0.

Thus, equating the right hand side of (3.12) to 1
nv

and solving for nv, the result follows.

Both an exact value and the asymptotic behavior of nv are derived in Appendix A.3.

It is straightforward to write the generalization bounds of Section 3.3 only in terms of

S, completely eliminating the landmark set U from the results in this section. However,

the resulting bounds now have additional factors which further loosen them. In spite of

this, in principle, using a landmark set and compensating with McDiarmid’s inequality can

overcome the difficulties associated with a data-dependent hypothesis class and provide

important generalization guarantees. In summary, the following overall bounds can now be

provided for the function classes FE , HS
E,D and GS

E,D. This result is obtained from a union

bound of Theorem 14, Theorem 15, Theorem 16 and Theorem 17.

CHAPTER 3. RISK BOUNDS 49

Theorem 18 Fix γ > 0 and let {(x1, y1), . . . , (xn, yn)} be drawn iid from a probability

distribution D where ‖x‖ ≤ R .

i) For any g from the function class FE, the following holds with probability at least

1− δ,

PD[y 6= sign(g(x))] ≤ 1

γn

n
∑

i=1

ξi + 3

√

ln(2/δ)

2n
+

4
√

2E

nγ

√

tr(K). (3.13)

ii) For any g from the function class HS
E,D, the following inequality (a solution of a

semi-definite program) holds for nv = O(
√
n) with probability at least 1− δ,

PD[y 6= sign(g(x))] ≤ 1

nγ

n
∑

i=1

ξi + 3

√

ln(8/δ)

2n
+O

(

1
√
nv

√

tr(K)

)

+
2

γ
EV



min
λ≥0

1

n

n
∑

i=1

x⊤
i



D̄

nv
∑

j=1

λjI +D

nv
∑

j=1

λjvjv
⊤
j





−1

xi +
2E

n

nv
∑

i=1

λi



 . (3.14)

iii) Similarly, for any g from the function class GS
E,D, the following bound holds for

B = E +O(1√
n
) with probability at least 1− δ,

PD[y 6= sign(g(x))] ≤ 1

nγ

n
∑

i=1

ξi + 3

√

ln(8/δ)

2n
+O

(

1
√
n
√

tr(K)

)

+
4
√

2B

nγ
EU





n
∑

i=1

x⊤
i



D̄I +
D

n

n
∑

j=1

uju
⊤
j





−1

xi





1
2

, (3.15)

where ξi = max(0, γ − yig(xi)) are the so-called slack variables.

3.5 Discussion of the bounds

Clearly, all the three bounds, namely (3.13), (3.14) and (3.15) in Theorem (18) have similar

asymptotic behavior in n, so how do they differ? Simple, separable scenarios are con-

sidered in this section to examine these bounds (which will be referred to as the SVM

bound, RMM bound and Σ-SVM bound respectively). For the SVM bound, the quan-

tity of interest is 4
√

2E
nγ

√

tr(K) and, for the Σ-SVM bound, the quantity of interest is

4
√

2E
nγ̂

√

(

∑n
i=1 x⊤

i

(

D̄I + D
n

∑n
j=1 uju⊤

j

)−1
xi

)

. Similarly, for the RMM bound, the quan-

CHAPTER 3. RISK BOUNDS 50

tity of interest is:

2

γ̂



min
λ≥0

1

n

n
∑

i=1

x⊤
i



D̄

nv
∑

j=1

λjI +D

nv
∑

j=1

λjvjv
⊤
j





−1

xi +
2E

n

nv
∑

i=1

λi



 .

Here the expectations over U and V have been dropped for brevity; in fact, this is how these

terms would have appeared without the concentration result (Theorem 15). Moreover, in

the latter two cases, γ has been replaced by γ̂ intentionally.

−5 0 5
−1

0

1

γ

−5 0 5
−1

0

1

γ

Figure 3.1: Two labellings of the same examples. Circles and squares denote the two classes

(positive and negative). The top case is referred to as “toy example 1” and the bottom case

is referred to as “toy example 2” in the sequel. The bound for the function class FE does

not distinguish between these two cases.

The differences between the three bounds will be illustrated with a toy example. In Fig-

ure 3.1, two different labellings of the same dataset are shown. The two different labellings

of the data produce completely different classification boundaries. However, in both the

cases, the absolute margin of separation γ remains the same. A similar synthetic setting

was explored in the context of second order perceptron bounds [Cesa-Bianchi et al., 2005].

The margin γ corresponding to the function class F is found by solving the following

optimization problem:

max
γ,w

γ, s.t. yi(w
⊤xi) ≥ γ,

1

2
w⊤w ≤ E.

CHAPTER 3. RISK BOUNDS 51

toy example 1 toy example 2

SVM bound 0.643 0.643

Σ-SVM bound, D=0 0.643 0.643

Σ-SVM bound, D=0.999 0.859 0.281

RMM bound, D=0 0.643 0.643

RMM bound, D=0.999 1.355 0.315

Table 3.1: The bound values for the two toy examples. The SVM bound does not distinguish

between the two cases. By exploring D values, it is possible to obtain smaller bound values

in both cases for Σ-SVM and RMM (D = 0 in toy example 1 and D close to one in toy

example 2).

This merely recovers the absolute margin γ which is shown in the figure. Similarly, for the

function class G, a margin γ̂ is obtained by solving:

max
γ,w

γ, s.t. yi(w
⊤xi) ≥ γ,

1

2
w⊤



D̄I +
D

n

n
∑

j=1

xjx
⊤
j



w ≤ E.

Through a change of variable, u = Σ
1
2w where Σ =

(

D̄I + D
n

∑n
j=1 xjx

⊤
j

)

it is easy to see

that the above optimization problem is equivalent to

max
γ,u

γ, s.t. yiu
⊤Σ− 1

2 xi ≥ γ,
1

2
u⊤u ≤ E.

Thus, when a linear function is selected from the function class GS
D,E, the margin γ̂ is

estimated from a whitened version of the data. Similarly, for function class HS
E,D, the

margin is estimated from a whitened version of the data where the whitening matrix is

modified by Lagrange multipliers.

Thus, in the finite sample case, the bounds differ as demonstrated in the above synthetic

problem. The bound for the function class GS
E,D explores a whitening of the data. Suppose

D = 0.999, the result is a whitening which evens out the spread of the data in all directions.

On this whitened data set, the margin γ̂ appears much larger in toy example 2 since it is

large compared to the spread. This leads to an improvement in the Σ-SVM bound over

the usual SVM bound. While such differences could be compensated for by appropriate a

priori normalization of features, this is not always an easy preprocessing.

CHAPTER 3. RISK BOUNDS 52

Similarly, the RMM bound also considers a whitening of the data however, it shapes

the whitening matrix adaptively by estimating λ. This gives further flexibility and rescales

data not only along principal eigen-directions but in any direction where the margin is large

relative to the spread of the data. By exploring D values, margin can be measured relative

to the spread of the data rather than in the absolute sense. Since Σ-SVM and RMM are

strict generalizations of the SVM, through the use of a proper validation set, it is almost

always possible to obtain improvements. The values of the bounds for the two toy examples

are shown in Table 3.1.

CHAPTER 4. STRUCTURED PREDICTION 53

Chapter 4

Structured Prediction

Traditionally, machine learning algorithms were designed to handle simple outputs such as

a real valued target or a class label from k possible classes. With the application of machine

learning tools in ambitious areas such as natural language processing, biology and computer

vision, many machine learning techniques have been extended to provide complex objects as

outputs. For example, in natural language processing, input examples are sentences while

outputs are tags such as the role of the word or the part-of-speech the word represents in

the sentence. It is difficult to apply traditional approaches to such problems, in particular,

when the number of possible outputs can be exponentially large (as a function of the length

of the output). For example, brute force enumeration of all the classification constraints

implicated by a complex structured output space may be prohibitive in a traditional SVM

setting. Recently, there has been extensive interest in the machine learning community for

solving such problems involving complex outputs [Bakir et al., 2006].

An example structured prediction problem is learning from sequences. Traditionally,

hidden Markov models (HMM) were used in learning problems where output predictions

are sequences. Discriminative methods have recently been brought to bear on sequence

problems. Conditional random fields (CRFs) [Lafferty et al., 2001] take a probabilistic

approach to avoid constraint enumeration. Boosting and online frameworks [Altun et al.,

2003a] have also been proposed. Subsequently, hidden Markov support vector machines

[Altun et al., 2003b] and maximum margin Markov networks [Taskar et al., 2004] produced

improved accuracy by maximizing margin while mimicking HMM and Markov network-style

CHAPTER 4. STRUCTURED PREDICTION 54

dependencies between inputs and outputs. Recently, a more general solution was proposed

in the SVM framework for structured prediction problems [Tsochantaridis et al., 2004;

Tsochantaridis et al., 2005]. The approach of [Tsochantaridis et al., 2004; Tsochantaridis et

al., 2005] measures the margin in an absolute sense. Relative margin versions of these algo-

rithms are developed in this chapter (these formulations were first proposed in [Shivaswamy

and Jebara, 2009]). The organization of this chapter is as follows.

Structured support vector machines are first discussed in Section 4.1. Relative margin

formulation for structured prediction is proposed in Section 4.2. A cutting plane algorithm

and its analysis are provided in Section 4.3. Experimental evidence on label sequence

learning and multi-class problems are presented in Section 4.4. A summary of this chapter

is presented in Section 4.5.

4.1 Structured prediction with support vector machines

In structured prediction problems, a mapping f : X → Y from an input space to a dis-

crete output space is estimated from training data. This mapping function is recovered by

performing a maximization involving another augmented function F : X × Y → R such

that:

f(x) = arg max
y∈Y

F (x,y;w). (4.1)

where w denotes the parameters of the function F .

As in most kernel based methods, the functional form is assumed to be linear,1 i.e.,

F (x,y;w) = w⊤ψ(x,y), where ψ(x,y) is a joint feature mapping for the pair (x,y). The

specific form of this feature mapping depends on the application.

Let (xi,yi)
n
i=1 be the training dataset. Consider a pair (xi,yi) ∈ X × Y and consider

the following constraint:

w⊤ψ(xi,yi)−w⊤ψ(xi,y) ≥ 1.

This constraint ensures that the real valued prediction F for (xi,yi) is larger than the pre-

diction for (xi,y). In the SVM framework, parameters of the hyperplane (w) are found by

1As before, merely the dot products between w and the joint feature maps are shown with the under-

standing that they can be replaced by a generalized inner product in a reproducing kernel Hilbert space.

CHAPTER 4. STRUCTURED PREDICTION 55

maximizing the margin, while ensuring the above constraint holds and scores each training

example i higher than all possible alternative labellings y 6= yi. In particular, the struc-

tured SVM formulation2 as proposed in [Tsochantaridis et al., 2005] solves the following

optimization problem to recover w:

min
w

1

2
w⊤w (4.2)

s.t. w⊤ψ(xi,yi)−w⊤ψ(xi,y) ≥ 1 ∀i ∈ N,y 6= yi.

For brevity, the set {1, 2, . . . , n} is denoted by N . It is customary to denote the quantity

ψ(xi,yi)−ψ(xi,y) by δψi(y) and permit partial violations of the constraints in (4.2), by

introducing so-called slack variables which yields the nonseparable structured prediction

version of the SVM (referred to as StructSVM) as follows:

min
w,ξ

1

2
w⊤w +

C

n

n
∑

i=1

ξi (4.3)

s.t. w⊤δψi(y) ≥ 1− ξi ∀i ∈ N,y 6= yi

ξi ≥ 0 ∀i ∈ N,

where C > 0 is a parameter that trades off between the margin and the slack variables.

Recovering w with the above maximum-margin optimization problem and using f(x) for

prediction leads to state-of-the-art performance on many structured prediction benchmark

tasks [Tsochantaridis et al., 2005].

In chapter 2 relative margin machine was developed based on arguments from affine

invariance and generalization. In this chapter, similar ideas are extended to structured

prediction problems with formulation (4.3) as the starting point. In binary classification

problems, the idea was to separate the two classes with a large (relative) margin. In struc-

tured prediction problems, the joint feature map of a training example with its correct label

is separated with a large (relative) margin from the joint feature map of the same training

example with any other labeling. In terms of the notations introduced earlier, StructSVM

was shown to separate the joint feature map of xi and its correct label yi (i.e., ψ(xi,yi))

2For brevity, the margin rescaling and slack rescaling extensions are omitted; they are straightforward

extensions.

CHAPTER 4. STRUCTURED PREDICTION 56

from the joint feature map of xi with any other label y ∈ Y \ {yi} (i.e., ψ(xi,y)) with a

large margin. The key idea of the RMM in the binary classification case is to maximize

the margin while bounding the spread of the projections. In the structured prediction case,

the idea is to separate the “winner” w⊤ψ(xi,yi) from the “runner up” maxy 6=yi
w⊤ψ(xi,y)

with a large margin. Thus, the relative margin version of it would correspond to separating

the winner from the runner up with a large margin with respect to the separation between

the winner and the “worst contender” miny 6=yi
w⊤ψ(xi,y).

The cutting plane algorithm for StructSVM exploits the fact that the minw⊤ψ(xi,y)

over y is efficiently computable even if the output space Y is exponentially large. Bounding

the separation between the winner and the worst contender would require max of w⊤ψ(xi,y)

over y as well. In fact, in most structured spaces, only the minimum and maximum over

Y of the function w⊤ψ(xi,y) are estimable efficiently while estimating the mean, median

or variance of w⊤ψ(xi,y) over Y might be NP-hard or computationally prohibitive. This

particular property is exploited to obtain an efficient algorithm for the structured prediction

RMM.

4.2 Structured RMM

The basic idea of the RMM was to maximize the margin while limiting the spread of the

projections. Such an idea can be naturally extended to structured prediction problems by

maintaining the constraints from the formulation (4.3) while also incorporating an upper

bound B on the difference in projections:

min
w,ξ

1

2
w⊤w +

C

n

n
∑

i=1

ξi (4.4)

s.t. w⊤δψi(y) ≥ 1− ξi ∀i ∈ N,y 6= yi

ξi ≥ 0 ∀i ∈ N

−B ≤ w⊤δψi(y) ≤ B ∀i ∈ N,∀y ∈ Y.

The original structured prediction constraints in Equation (4.4) are referred to as the classi-

fication constraints while the added constraints are referred to as the bounding constraints.

Here, B > 1 is an additional parameter in the new framework which trades off between mar-

CHAPTER 4. STRUCTURED PREDICTION 57

gin maximization and spread minimization by bounding the projections. When B = ∞,

the StructSVM method is exactly recovered. For other settings of B, the new formulation

may produce solutions that improve generalization accuracy. Although the parameter B

seems somewhat ad-hoc, experiments in Section 4.4 show that it can be set systematically

as with other parameters in machine learning algorithms (e.g. the C value in StructSVM)

and is easily adjusted using validation.

While the primal problem above is useful for deriving the algorithm, in practice, the

dual of (4.4) is solved. The cutting plane algorithm is a standard tool for optimizing the

dual and only kernel evaluations between the pairs δψi(y) are required. The dual of (4.4)

can be shown to be:

max
α,β,β∗

∑

i,y 6=yi

α(iy) −B
∑

i,y

β(iy) −B
∑

i,y

β∗(iy) (4.5)

− 1

2





∑

i,y 6=yi

α(iy)δψi(y) −
∑

i,y

β(iy)δψi(y) +
∑

i,y

β∗(iy)δψi(y)





⊤





∑

j,y 6=yj

α(jy)δψj(y) −
∑

j,y

β(jy)δψj(y) +
∑

j,y

β∗(jy)δψj(y)





s.t. 0 ≤
∑

y 6=yi

α(iy) ≤
C

n
∀i ∈ N,

α(iy) ≥ 0, β(iy) ≥ 0, β∗(iy) ≥ 0 ∀i ∈ N,

where α(iy), β(iy) and β∗(iy) are the Lagrange multipliers of the primal constraints. From the

dual variables, w can be readily obtained as:

w =
∑

i,y 6=yi

α(iy)δψi(y) −
∑

i,y

β(iy)δψi(y) +
∑

i,y

β∗(iy)δψi(y).

4.3 Cutting Plane Algorithm

Similar to the algorithm for StructSVM, the cutting plane algorithm for StructRMM starts

with an empty working set of primal constraints. The constraints in the primal formu-

lation correspond to the variables in the dual formulation. Hence, the algorithms can be

equivalently seen as starting with an empty working set of dual variables. At each step,

CHAPTER 4. STRUCTURED PREDICTION 58

Algorithm 4.1 Cutting plane algorithm for StructRMM.

Require: (xi, yi)
n
i=1, Parameters: C,B, ǫ, ǫB .

1: S1
i ← ∅, S2

i ← ∅, and S3
i ← ∅ forall 1 ≤ i ≤ n

2: repeat

3: for i← 1 to n do

4: flag ← 0

5: ỹ1 ← arg maxy∈Y H(y) := 1− δψi(y)⊤w

6: ỹ2 ← arg maxy∈Y G(y) := δψi(y)⊤w

7: ỹ3 ← arg miny∈Y −G(y)

8: { where w =
∑

j

∑

y′∈Sj
α(jy′)δψj(y

′) − ∑

j

∑

y′∈Uj
β(jy′)δψj(y

′) +
∑

j

∑

y′∈Uj
β∗(jy′)δψj(y

′) }
9: ξi ← max(0,maxy∈Si H(y))

10: V iolation1 ← H(ỹ1)− ξi − ǫ
11: V iolation2 ← G(ỹ2)−B − ǫB
12: V iolation3 ← −G(ỹ3)−B − ǫB
13: j ← arg maxi∈{1,2,3} V iolationi

14: if V iolationj > 0 then

15: Sj
i ← Sj

i ∪ {ỹj}, f lag ← 1

16: end if

17: if flag equal to 1 then

18: Optimize the dual over S1, S2 and S3, update α, β, β∗

19: end if

20: end for

21: until no variables are added to S1
i , S2

i or S3
i for any i

most violated constraint for the ith example is found. If there is any such violation, the

corresponding dual variable is added to the working set. The algorithm then optimizes the

dual objective over the variables in the working set. The steps involved in the cutting plane

algorithm for StructRMM are shown in Algorithm 4.1.

Unlike the cutting plane algorithm for StructSVM, the algorithm for StructRMM re-

CHAPTER 4. STRUCTURED PREDICTION 59

quires both the maximum and the minimum of w⊤δψi(y) over y 6= yi. It is possible to

efficiently find the maximum and the minimum structured prediction in many problems.

For example, in label sequence learning problems, finding the above maximum (minimum)

corresponds to finding the longest (shortest) paths in a graph induced by the emission and

the transition probabilities. If there is an algorithm to find the longest path, the shortest

path can be found merely by negating all weights. This is true for a variety of algorithms

used in structured prediction such as Viterbi decoding, max-product belief propagation,

maximum weight spanning tree estimation, and maximum weight matching.

As with the cutting plane algorithm for StructSVM, it is necessary to find the second

maximum or the minimum possible label sequence to exclude the possibility of adding label

yi for the ith example. This can be achieved efficiently [Chow and Schwartz, 1991] as well.

In label sequence learning problems, the most violated constraints are found using dy-

namic programming which corresponds to the Viterbi decoding algorithm. Therefore, the

steps of Algorithm 4.1 that involve an arg max or an argmin over y (which resides in a large

space Y of possible outputs) can be solved efficiently via fast decoding algorithms.

4.3.1 Runtime

First, recall the following lemma and the corollary from [Tsochantaridis et al., 2005]:

Lemma 19 Consider the following bounded (from above) concave objective in γ

θ(γ) = −1

2
γ⊤Jγ + h⊤γ,

where J is a symmetric, positive semi-definite matrix. Assume that an optimization di-

rection η and a starting point γ0 are given. Then, optimizing the objective θ in the given

direction starting from γ0 increases the objective by:

1

2

(

∇θ(γ0)⊤η
)2

η⊤Jη
> 0.

Corollary 20 For the special case of axis-aligned optimization direction η = er, under the

same conditions as above, the objective improves by

1

2Jrr

(

∂θ

∂γr

)2

> 0.

CHAPTER 4. STRUCTURED PREDICTION 60

First, note that, if in the cutting plane algorithms, a classification constraint is the

worst violator, the expression for improvements from [Tsochantaridis et al., 2005] still hold

in each step. It is given by,

min

{

Cǫ

2n
,
ǫ2

8R2
i

}

(4.6)

where Ri = maxy{‖δψi(y)‖}.
Note that the Lagrange multipliers corresponding to the bounding constraints in the

primal StructRMM formulations can only be positive; there are no additional constraints

on them. Thus, when the worst violations in the cutting plane algorithm are bounding

constraints, we can simply apply Corollary 20. Thus, an expression can be derived for the

improvement obtained by a step of the cutting plane method in Algorithm 4.1.

First, γ is identified with the variables α, β and β∗ in (4.5). However, note that only

a subset of all these variables is added when the dual is solved using the cutting plane

algorithm. J is identified with the positive semi-definite kernel matrix whose ijth term is

formed from the kernel between δψi(y) and δψj(y) for two of the added constraints in the

cutting plane algorithm.

Adding a dual variable in the cutting plane algorithm simply corresponds to optimizing

over an axis parallel direction er. As stated before, it is only necessary to consider adding

a dual variable β or β∗ in (4.5) since the improvement in the objective is already known

when a classification constraint is added.

Suppose, a dual variable β(iy) is added in the cutting plane algorithm to the set S2,

then:
∂θ

∂β(iy)
(γ0) = −B + w∗⊤δψi(y),

where w∗ is the current solution of the cutting plane algorithm.

The fact that this dual variable was added to the working set in Step 15 to S2 implies

that

w∗⊤δψi(y) > B + ǫB,

since only violating constraints result in such additions to the working sets. As a conse-

quence,
∂θ

∂β(iy)
(γ0) > ǫB.

CHAPTER 4. STRUCTURED PREDICTION 61

Finally, J(iy)(iy) = δψi(y)⊤δψi(y) ≤ R2
i .

It is now possible to insert both terms in Corollary 20 to get an expression for the

minimum improvement achieved when an element is added to S2. Thus:

δθ(γ0) ≥ 1

2

ǫ2B
R2

i

.

Exactly the same improvement is achieved when an element is added to S3 in a similar way.

Once the improvement in the objective is known for both types of constraints, the overall

guaranteed improvement is the minimum of the two possible improvements in each step.

Thus, considering (4.6), the improvement in each step is:

min

{

1

2

ǫ2B
R2

i

,
Cǫ

2n
,
ǫ2

8R2
i

}

.

Finally, observe that the initial value of the dual objective is 0 when no variables are

in the working sets. Since the dual objective is upper bounded by the primal objective, C

is an upper bound. Therefore, it is possible to calculate the number of steps required for

Algorithm 4.1 to terminate. The above arguments are summarized in the following theorem.

Theorem 21 With R̄ = maxiRi, for any ǫ > 0, ǫB > 0, Algorithm 4.1 terminates after

adding

max

{

2R̄2C

ǫ2B
,
2n

ǫ
,
8CR̄2

ǫ2

}

constraints to the working sets S1, S2 or S3.

In practice, the implementation of Algorithm 4.1 can actually add all the top violating

constraints of each type for each training example; this may further speedup the algorithm

since jointly optimizing over several variables can give bigger improvements than optimizing

over a single variable. Furthermore, the upper bound on the number of steps of the cutting

plane method is very conservative and does not show any direct dependence of B. However,

in practice, smaller B values require more time to converge. Nevertheless, while the the-

oretical bounds on convergence are helpful, practical experiments show that the proposed

method brings improvement in accuracy.

CHAPTER 4. STRUCTURED PREDICTION 62

4.4 Experiments

This section provides empirical justification for the proposed algorithm on label sequence

learning and multi-class problems. [Altun et al., 2003b] showed that the discriminative

methods typically performed better than generative approaches on the label sequence learn-

ing problems. From the results from [Altun et al., 2003b], it is clear that StructSVM im-

proved over a regularized version of the CRF. Thus, results are obtained for StructSVM,

StructRMM and a regularized CRF in label sequence learning problems. Primary com-

parisons are between StructSVM and StructRMM in the case of multi-class classification

problems. In all the experiments, features are normalized to a zero-one box or they are

binary to begin with.

4.4.1 Label Sequence Learning

Problem description In label sequence learning problems, the label set Y is a fixed

alphabet containing the labels l1, l2, · · · , lk. The training set consists of (xi,yi)
n
i=1 where yi

is a sequence from the alphabet Y. That is, yi = (y1
i , y

2
i , · · · , ysi

i), where, the length si of

the sequence i need not be constant across all examples.

Joint feature map and kernel Considering the length of y to be T , the joint feature

map for this problem is

ψ(x,y) =





∑T
t=1 φ(xt)⊗ λ(yt)

∑T−1
t=1 λ(yt)⊗ λ(yt+1)



 ,

where λ(yt) =
[

δ(l1, y
t), δ(l2, y

t) · · · δ(lk, yt)
]⊤

. This feature map mimics the hidden Markov

model (HMM) by considering the adjacent labels. These labels are equivalent to the hidden

states in the HMM and the features are equivalent to HMM outputs. The kernel between

two joint feature maps thus becomes

ψ(x,y)⊤ψ(x̄, ȳ) =

S
∑

s=1

T
∑

t=1

δ(yt, ȳs)K(xt, x̄s) +

S−1
∑

s=1

T−1
∑

t=1

δ(yt, ȳs)δ(yt+1, ȳs+1),

where S is the length of the sequence ȳ. These definitions of the joint feature map and the

kernel between the joint feature maps are used in the experiments below.

CHAPTER 4. STRUCTURED PREDICTION 63

NER POS

CRF 5.13 ± 0.28 11.34 ± 0.64

StructSVM 5.09 ± 0.32 11.14 ± 0.60

StructRMM 5.05 ± 0.28 10.42 ± 0.47

p-value 0.07 0.00

Table 4.1: Average percentage error rates (mean ± std. deviation) and the p-values on the

two label sequence learning tasks. Improvements of StructRMM over StructSVM is of the

same (or higher) order as that of StructSVM over CRF. A small p-value indicates statistical

significance (for StructRMM over StructSVM).

Datasets and Evaluation To evaluate the sequence learning method, the first experi-

ment involves the named entity recognition (NER) problem. A popular dataset for this task

is from the Spanish news wire articles provided to the special NER session of the CoNLL

2002 conference. The words in these sentences are tagged with one of nine possible labels

and the task is to predict the labels for each test sentence. In a second experiment, the

parts-of-speech tagging task was considered using the sentences from the PennTree bank

dataset. In this case, each word is labeled with one of the forty five possible parts-of-speech

and the task is to accurately predict these tags for unseen test examples.

In both these experiments, the features used and the experimental setup are similar.

The features describing words are all binary and follow the same protocols as previous work

[Altun et al., 2003b]. These binary features describe the context in which a word appears.

For example, the features indicate whether the first letter of a word is capitalized, whether

the word ends with a punctuation, whether the previous word has numbers in it and so

on. The features were first generated for all the words independently and subsequently, a

window of size three for each word was considered to incorporate information from adjacent

words. The combined features in this window were aggregated for each word to form a

window of features.

Random draws of size 240 from the corpus served as training sets and validation and test

subsets of size 1000 were also drawn from the corpus. As in previous work, the polynomial

CHAPTER 4. STRUCTURED PREDICTION 64

kernel of degree two was used in. The StructSVM was first trained using the cutting plane

algorithm. After training, the maximum value of |w⊤δψi(y)| over all y ∈ Y, for any i, was

noted. Subsequently, to evaluate the StructRMM, the B values were changed so that the

maximum (minimum) allowed value of w⊤δψi(y) (−w⊤δψi(y)) was within a fraction of

the maximum found by the StructSVM. After training, the error rates were obtained on

both validation and test sets for each setting of the parameters B and C. The setting which

gave the lowest error on the validation set was used to determine the error rate on the test

set (and vice versa). The experiment was repeated ten times over different random draws

of the sets and the results were then averaged to obtain a final error rate for the StructSVM

and the StructRMM.

Results Table 4.1 shows the results on both the tasks for CRF, StructSVM and Struc-

tRMM. The improvement of StructRMM over StructSVM on the named entity recognition

task is nearly the same as that of StructSVM over CRF. However, in the case of parts-

of-speech tagging experiment, the improvement of StructRMM over StructSVM is much

higher than that of StructSVM over CRF. Statistical significance tests were conducted with

the results from different folds for StructSVM and StructRMM. Small p-values obtained

from a paired t-test indicate that these improvements are statistically significant.

4.4.2 Multi-class classification

Problem description For the multiclass-classification, the domain Y is a set with k

possible values, for example {1, 2, 3, · · · k}.

Joint feature map and kernel Given (x,y) where yi is one of the k possible classes,

the joint feature map for this problem is defined as the following:

ψ(x,y) := [δ(1,y)x⊤δ(2,y)x⊤ · · · δ(k,y)x⊤]⊤.

The joint feature map merely makes k “copies” of the features x but retains only one which

is at the position of the position of the label y. With this definition of the joint feature-map,

CHAPTER 4. STRUCTURED PREDICTION 65

Poly 1 Poly 2 Poly 3 Poly 4

StructSVM 3.78 ± 0.54 2.11 ± 0.43 1.73 ± 0.37 1.55 ± 0.45

StructRMM 3.85 ± 0.62 1.46 ± 0.34 1.24 ± 0.43 1.18 ± 0.43

p-value 0.55 0.00 0.00 0.00

Table 4.2: Average percentage error rates (mean ± std. deviation) and the p-values on

the OPTDIGIT multi-class problem. Negligible p-values indicate statistical significance.

Average improvement of StructRMM over StructSVM is about 20% and the improvement

is about 28% excluding the linear kernel.

the kernel between (x,y) and (x̄, ȳ) becomes:

ψ(x,y)⊤ψ(x̄, ȳ) =

k
∑

i=1

δ(i,y)δ(i, ȳ)K(x, x̄).

In the multi-class problems, the arg max (arg min) in the cutting plane algorithm 4.1 can

be found by simple enumeration due to the small size of the output space.

Dataset and Evaluation In the multi-class experiment, the Optical Digits [Asuncion

and Newman, 2007] was considered which contains 3823 digits represented via 64 scalar

features that measure pixel intensities. The dataset was first normalized so that each

feature was in the range [0, 1].

Half of the examples in the database were randomly drawn to form a training set and the

remaining examples were divided, randomly, into two sets of equal size to form validation

and test sets. The StructSVM was first trained by exploring various C values. For the

StructSVM various values were explored for both C and B. The setting of the parameters

B and C which achieved minimum error on the validation set was used to pick an error rate

for StructSVM and StructRMM from the test set (and vice versa). The entire experiment

was repeated for ten different draws of the training, test and validation sets. Furthermore,

the experiments were performed for polynomial kernel with degrees one, two, three and

four.

CHAPTER 4. STRUCTURED PREDICTION 66

Results The results are presented in Table 4.2. With the linear kernel, StructRMM per-

formed at the same level as StructSVM. But with the polynomial kernel degrees two, three

and four the performance of StructRMM was significantly better than that of StructSVM.

As before, statistical significance tests were conducted using the paired t-test. The tests

suggest that there is no significant difference between StructSVM and StructRMM in the

case of linear kernel. However, for the higher degree kernels, the p-values were negligible

indicating statistical significance. In fact, the average improvement of StructRMM over

StructSVM with these three kernels is about 28%.

4.5 Summary

A shortcoming of the large absolute margin method and its sensitivity to scaling was pointed

out for structured prediction problems. Subsequently, a formulation was proposed to max-

imize the margin relative to the spread of the data. An efficient cutting plane algorithm,

which can be solved in nearly same time as the StructSVM, was then proposed. Experi-

mental results on label sequence learning problems show that the improvement of Struc-

tRMM over StructSVM is of the same order as that of StructSVM over CRF. Dramatic

improvements were obtained on multi-class classification problems as well. Additionally,

the improvement in accuracy brought forth by the relative margin method does not carry

significant increases in computational complexity.

CHAPTER 5. LAPLACIAN SPECTRUM LEARNING 67

Chapter 5

Laplacian spectrum learning

So far, the discussion was limited to fully supervised problems where all the training exam-

ples were labeled. In this chapter, a setting where a set of labeled examples is accompanied

by a set of unlabeled examples is considered. This is known as the transductive setup; here

the aim is to label the unlabeled examples. However, both labeled and unlabeled examples

could be exploited during learning. In this chapter, the unlabeled examples will be utilized

in estimating a kernel matrix on both the labeled and the unlabeled examples.

One particularly successful approach for estimating such a kernel matrix is by trans-

forming the spectrum of the graph Laplacian [Smola and Kondor, 2003]. Graph Laplacians

have many interesting properties. For example, eigenvectors of a graph Laplacian corre-

sponding to smaller eingenvalues are “smoother” over the graph compared to eigenvectors

corresponding to higher eigenvalues. Thus, a natural way to build a kernel preserving the

smoothness of the graph is by monotonically inverting the spectrum of the graph Laplacian.

In fact, the diffusion kernel [Kondor and Lafferty, 2002] and the Gaussian field kernel [Zhu

et al., 2003] are based on such an approach and explore smooth variations of the Laplacian

via specific parametric forms.

Kernel target alignment (KTA for short) [Cristianini et al., 2001] is a criterion for

evaluating a kernel based on the labels. It was initially proposed as a method to choose a

kernel from a family of candidates such that the Frobenius norm of the difference between

a label matrix and the kernel matrix is minimized. This technique estimates a kernel

independently of the final learning algorithm for classification. Recently, such a method

CHAPTER 5. LAPLACIAN SPECTRUM LEARNING 68

was proposed to transform the spectrum of a graph Laplacian [Zhu et al., 2004] to select

from a general family of candidate kernels. Instead of relying on parametric methods for

exploring a family of kernels (such as the scalar parameter in a diffusion or Gaussian field

kernel), [Zhu et al., 2004] suggest a more general approach which yields a kernel matrix non-

parametrically that aligns well with an ideal kernel (obtained from the labeled examples).

In this chapter, spectrum of the graph Laplacian are transformed to optimize the large

(relative) margin criterion.

The motivation for large (relative) margin spectrum transformation is straightforward.

In kernel target alignment, a simpler surrogate criterion is first optimized to obtain a kernel

by transforming the graph Laplacian. Then, the kernel obtained is fed to a classifier such

as an SVM. This is a two-step process with a different objective function in each step. It is

more natural to transform the Laplacian spectrum jointly with the classification criterion

in the first place rather than using a surrogate criterion to learn the kernel.

5.1 Setup and notation

In this chapter it is assumed that a set of labeled examples (xi, yi)
l
i=1 and an unlabeled set

(xi)
n
i=l+1 are given such that xi ∈ R

m and yi ∈ {±1}. The vector y ∈ R
l is such that its ith

entry is yi. Moreover, Y ∈ R
l×l is a diagonal matrix such that Yii = yi. The primary aim

is to obtain predictions on the unlabeled examples. However, the unlabeled examples can

also be utilized in the learning process.

Assume that a graph is denoted by its adjacency matrix W ∈ R
n×n where the weight

Wij denotes the edge weight between nodes i and j (corresponding to the examples xi

and xj). Define the graph Laplacian as L = D −W where D denotes a diagonal matrix

whose ith entry is given by the sum of the ith row of W. The eigen decomposition of L is

given by L =
∑n

i=1 θiφiφ
⊤
i ; it is assumed that the eigenvalues are already arranged such

that θi ≤ θi+1 for all i. Further, V ∈ R
n×q is a matrix whose ith column is the (i + 1)th

eigenvector (corresponding to the (i + 1)th smallest eigenvalue) of L. Note that the first

eigenvector (corresponding to the smallest eigenvalue) has been deliberately left out from

this definition. Further, U ∈ R
n×q is defined to be the matrix whose ith column is the

CHAPTER 5. LAPLACIAN SPECTRUM LEARNING 69

ith eigenvector. vi (ui) denotes the ith column of V⊤ (U⊤). For any eigenvector (such

as φ,u or v), corresponding notation with a bar on top (φ̄, ū or v̄) denotes the (first l)

elements of the vector corresponding to the labeled examples. This notation is overloaded

for matrices as well; thus V̄ ∈ R
l×q denotes1 the first l rows of V. ∆ is assumed to be a q×q

diagonal matrix, whose diagonal elements are given by ∆ii = δi. Finally 0 and 1 denote

vectors of all zeros and all ones; their dimensionality can be inferred from the context.

The rest of this chapter is organized as follows. Various approaches that make use of

the graph Laplacian in learning are introduced in Section 5.2. Motivation for Laplacian

spectrum learning is provided in Section 5.3. The main contribution is in Section 5.4 where

the proposed optimization problems are derived. Experiments on real world datasets are

presented in Section 5.5. This chapter ends with a summary in Section 5.6. This chapter

is based on the work that will be published in [Shivaswamy and Jebara, 2010a].

5.2 Learning from the graph Laplacian

Graph Laplacian has been particularly popular in transductive learning. Several approaches

have been proposed in the literature that exploit the properties of a Laplacian. Some popular

approaches that exploit the graph Laplacian and that are relevant in the context of this

chapter are discussed below.

Spectral Graph Transducer The spectral graph transducer [Joachims, 2003] is a tras-

ductive method based on the relaxation of a graph-cut point of view. In a nutshell, it

obtains all the predictions (on labeled as well as unlabeled examples) by solving for h ∈ R
n

via the following problem:

min
h∈Rn

1

2
h⊤VQV⊤h + C(h− τ)⊤P(h− τ) (5.1)

s.t. h⊤1 = 0, h⊤h = n.

where P is a diagonal matrix2 with Pii = 1
l+

(1
l−

) if the ith example is positive (negative);

Pii = 0 for unlabeled examples (i.e., for l+1 ≤ i ≤ n). Further, Q is also a diagonal matrix

1It is clarified that V̄
⊤ denotes the transpose of V̄.

2l+(l−) is the number of positive (negative) labeled examples.

CHAPTER 5. LAPLACIAN SPECTRUM LEARNING 70

whose diagonal values are set by Qii = i2 in the case of spectral graph transducer. τ is

a vector in which the values corresponding to the positive (negative) examples are set to
√

l−
l+

(
√

l+
l−

). It is thus interesting to note that the spectral graph transducer is actually

monotonically transforming the spectrum of a Laplacian (via the transformation Qii = i2).

Non-parametric transformations via kernel target alignment (KTA) A particu-

larly successful approach to learning a kernel by transforming the spectrum of a Laplacian in

a non-parametric way was proposed in [Zhu et al., 2004]. The empirical alignment between

two kernel matrices K1 and K2 is defined as [Cristianini et al., 2001]:

Â(K1,K2) :=
〈K1,K2〉F

√

〈K1,K1〉F 〈K2,K2〉F
.

When the target y (the vector formed by concatenating yi’s) is known, the ideal kernel ma-

trix is yy⊤ and a kernel matrix K can be learned by maximizing the alignment Â(K̄,yy⊤).

The kernel target alignment approach to learning a kernel [Zhu et al., 2004] is via the

following formulation:

max
∆

Â(Ū∆Ū⊤,yy⊤) (5.2)

s.t. trace(U∆U⊤) = 1,

δi ≥ δi+1 ∀2 ≤ i ≤ q − 1,

δq ≥ 0, δ1 ≥ 0.

The above optimization problem transforms the spectrum of the given graph Laplacian

L while maximizing the alignment score with the label part of the kernel matrix (Ū∆Ū⊤)

with the true labels. The trace constraint on the overall kernel matrix (U∆U⊤) is to pre-

vent arbitrary scaling. The above formulation can be posed as a quadratically constrained

quadratic program (QCQP) that can be solved efficiently [Zhu et al., 2004]. The ordering

on the δ’s is in reverse order as that of the eigenvalues of L which amounts to monoton-

ically inverting the spectrum of the graph Laplacian L. Only the first q eigenvectors are

considered in the formulation above due to computational considerations.

Note that the ordering constraint (on δ’s) in (5.2) excludes δ1. This is because the

eigenvector φ1 is made up of a constant element. Thus, it merely amounts to adding a

CHAPTER 5. LAPLACIAN SPECTRUM LEARNING 71

constant element to all the elements of the kernel matrix. Thus, the weight on this (δ1) is

allowed to vary freely. Finally, since φ’s are the eigenvectors of L, the trace constraint on

U∆U⊤ merely corresponds to the constraint
∑q

i=1 δi = 1 since U⊤U = I.

Parametric transformations A number of methods have been proposed to obtain a

kernel from the graph Laplacian. These methods essentially take the Laplacian from labeled

and unlabeled data and transform the spectrum with a particular form. A natural way

to build a kernel is by K =
∑n

i=1 r(θi)φiφ
⊤
i where r(·) is a monotonically decreasing

function. Thus, an eigenvector with a small eigenvalue will have a large weight in the

kernel matrix. For example, the diffusion kernel [Kondor and Lafferty, 2002] is obtained

by the transformation r(θ) = exp(−θ/σ2), Gaussian field kernel [Zhu et al., 2003] uses the

transformation r(θ) = 1
σ2+θ . In fact, kernel PCA [Schölkopf et al., 1998] also performs a

similar operation. In kPCA, the top k eigenvectors of a kernel matrix are retained. From

an equivalence that exists between the kernel matrix and the graph Laplacian (shown in the

next section), it can be concluded that kernel PCA features also fall under the same family

of monotonic transformations. While these are very interesting transformations, since [Zhu

et al., 2004] showed that KTA based approaches are empirically superior to parametric

transformations, these parametric approaches are not discussed further in this chapter.

5.3 Why learn the Laplacian spectrum?

An optimization problem closely related to the spectral graph transducer (5.1) is considered

in this section. The main difference is in the choice of the loss function. Further, there are

no additional constraints on h either in the following optimization problem:3

min
h∈Rn

1

2
h⊤V∆−1V⊤h + C

l
∑

i=1

max(0, 1 − yihi). (5.3)

The above optimization problem is essentially learning predictions on all the examples

by minimizing the hinge loss with a regularization based on the eigenspace of the graph

Laplacian. The choice of the above formulation is due to its relation to the large margin

learning framework given by the following theorem.

3Here ∆ is assumed to be invertible. For instance, if ∆
−1
ii = θi+1, ∆ is invertible for a connected graph.

CHAPTER 5. LAPLACIAN SPECTRUM LEARNING 72

Theorem 22 The optimization problem (5.3) is equivalent to

min
w,b

1

2
w⊤w + C

l
∑

i=1

max(0, 1 − yi(w
⊤∆

1
2vi + b)). (5.4)

Proof The predictions on all the examples (without the bias term) for the optimization

problem (5.4) are given by f = V∆
1
2 w. Therefore ∆− 1

2 V⊤f = ∆− 1
2V⊤V∆

1
2 w = w since

V⊤V = I. Substituting this expression for w in (5.4), the optimization problem becomes,

min
f ,b

1

2
f⊤V∆−1V⊤f + C

l
∑

i=1

max(0, 1 − yi(fi + b)).

Let h = f + b1 and consider the first term in the objective above,

(h− b1)⊤V∆−1V⊤(h− b1)

=h⊤V∆−1V⊤h + 2h⊤V∆−1V⊤1 + 1⊤V∆−1V⊤1

=h⊤V∆−1V⊤h,

where the fact that V⊤1 = 0 has been exploited. This is because 1 is always an eigenvector

of L and other eigenvectors are orthogonal to it. Thus, the optimization problem (5.3)

follows.

By the above theorem, thus, learning predictions with a Laplacian regularization in

(5.3) is equivalent to learning in a large margin setting (5.4). It is easy to see that the

implicit kernel for the learning algorithm (5.4) (over both labeled and unlabeled examples)

is given by V∆V⊤. Thus, obtaining predictions on all the examples with V∆−1V⊤ as

the regularizer on predictions in (5.3) is equivalent to large margin learning with the kernel

obtained by inverting the spectrum ∆. However, it is not at all clear as to why an inverted

spectrum is the right choice for obtaining a kernel from the Laplacian spectrum. Paramet-

ric methods discussed in the previous section construct this kernel by particular parametric

forms. Kernel target alignment based approach constructs this kernel by maximizing the

alignment with the labels while maintaining an order on the spectrum. Instead, formula-

tions are proposed in this chapter to explore a family of transformations but the algorithm

is allowed to choose the right transformation which is suited to a large (relative) margin cri-

terion. Although φ1 is excluded in the definition of V in the above derivation, typically it is

CHAPTER 5. LAPLACIAN SPECTRUM LEARNING 73

included in the optimization (thus U will be used). However, the weight on this eigenvector

is allowed to vary freely as in the kernel target alignment approach. Moreover, experiments

show that the algorithms typically choose a negligible weight on this eigenvector.

5.3.1 RMM on Laplacian eigenmaps

Based on the motivation from earlier sections, consider the problem of jointly learning a

classifier and weights on various eigenvectors in the RMM setup. The family of weights is

restricted to be the same as that in (5.2):

min
w,b,ξ,∆

1

2
w⊤w + C

l
∑

i=1

ξi (5.5)

s.t. yi(w
⊤∆

1
2 ui + b) ≥ 1− ξi, ξi ≥ 0 ∀1 ≤ i ≤ l

− (w⊤∆
1
2ui + b) ≤ B ∀1 ≤ i ≤ l

+ (w⊤∆
1
2ui + b) ≤ B ∀1 ≤ i ≤ l

δi ≥ δi+1 ∀2 ≤ i ≤ q − 1

δ1 ≥ 0, δq ≥ 0

trace(U∆U⊤) = 1.

The aim now is to express the above optimization in a standard form. Towards this end,

the dual of the above optimization problem is derived with respect to the variables w, b

and ξ while still retaining ∆ in the primal form. This results in the following optimization

problem:

min
∆

max
α,β,η

− 1

2
γ⊤Ū∆Ū⊤γ +α⊤1−B

(

β⊤1 + η⊤1
)

(5.6)

s.t. α⊤y − β⊤1 + η⊤1 = 0

0 ≤ α ≤ C1, β ≥ 0, η ≥ 0

δi ≥ δi+1 ∀2 ≤ i ≤ q − 1

δ1 ≥ 0, δq ≥ 0

q
∑

i=1

δi = 1.

CHAPTER 5. LAPLACIAN SPECTRUM LEARNING 74

In the above optimization problem, the fact that trace(U∆U⊤) =
∑q

i=1 δi has been ex-

ploited. Further, for brevity, γ denotes Yα − β + η. The above optimization problem

without the ordering constraints (i.e., δi ≥ δi+1) is the well known multiple kernel learn-

ing problem [Bach et al., 2004]4 (using RMM criterion instead of the standard SVM).

In this special case, a straightforward derivation–following the approach of [Bach et al.,

2004]–results in the corresponding multiple kernel learning optimization. Even though the

optimization problem (5.6) without the ordering on δ’s is a more general problem, it may

not be very helpful to obtain predictions that are smooth over the entire graph. This is

because, with a small number of labeled examples (i.e., small l), it is unlikely that multiple

kernel learning will recover an ordering unless enforced. In fact, this phenomenon can be

observed in the experiments where multiple kernel learning fails to recover a meaningful

order on the spectrum.

5.4 STORM and STOAM

The aim here is to start with the optimization problem (5.6) and to pose it as a standard

optimization problem. The min and the max in (5.6) can be interchanged since the objec-

tive is concave in ∆ and convex in α, β and η and both are strictly feasible5 [Boyd and

Vandenberghe, 2003]6. Thus, the optimization problem (5.6) can be equivalently written

4In this chapter comparisons are made only to convex combination multiple kernel learning algorithms.

5It is trivial to construct such α, β, η and ∆ when not all the labels are the same.

6See the section on the Lagrange dual problem.

CHAPTER 5. LAPLACIAN SPECTRUM LEARNING 75

as:

max
α,β,η

min
∆
− 1

2
γ⊤

q
∑

i=1

δiūiū
⊤
i γ +α⊤1−B

(

β⊤1 + η⊤1
)

(5.7)

s.t. α⊤y − β⊤1 + η⊤1 = 0

0 ≤ α ≤ C1, β ≥ 0, η ≥ 0

δi ≥ δi+1 ∀2 ≤ i ≤ q − 1

δ1 ≥ 0, δq ≥ 0

q
∑

i=1

δi = 1.

5.4.1 An unsuccessful attempt

An attempt is first made to directly obtain the optimization problem (5.7) in a standard

form. However, it turns out that this approach does not work. Consider the inner opti-

mization over ∆ in the above optimization problem (5.7):

min
∆
− 1

2

q
∑

i=1

δiγ
⊤ūiū

⊤
i γ (5.8)

s.t. δi ≥ δi+1 ∀2 ≤ i ≤ q − 1

δ1 ≥ 0, δq ≥ 0

q
∑

i=1

δi = 1.

Lemma 23 The dual of the above formulation is:

max
τ,λ

− τ

s.t.
1

2
γ⊤ūiū

⊤
i γ = λi−1 − λi + τ, λi ≥ 0 ∀1 ≤ i ≤ q.

where λ0 = 0 is a dummy variable.

Proof Start by writing the Lagrangian of the optimization problem:

L = −1

2

q
∑

i=1

δiγ
⊤ūiū

⊤
i γ −

q−1
∑

i=2

λi(δi − δi+1)− λqδq − λ1δ1 + τ(

q
∑

i=1

δi − 1),

CHAPTER 5. LAPLACIAN SPECTRUM LEARNING 76

where λi ≥ 0 and τ are the Lagrange multipliers. The dual follows from differentiating L
with respect to δi and equating the resulting expression to zero.

While the above dual is independent of δ’s, the constraints 1
2γ

⊤ūiū
⊤
i γ = λi−1 − λi + τ

involve a quadratic term in an equality. It is not possible to simply leave out λi to make this

constraint an inequality, since the same λi occurs in two equations. This is non-convex in

γ and is problematic since, after all, a jointly convex optimization in γ and other variables

is desirable. Thus, a reformulation is necessary to pose relative margin kernel learning as a

jointly convex optimization problem.

5.4.2 A refined approach

To circumvent the problem mentioned above, an alternative approach is considered now.

The ordering on the eigenvalues is still maintained, however, they are required to be at

least ǫ apart. Here ǫ > 0 is a (fixed) constant. It can be tiny (for example, 10−6 in the

experiments) but has to be positive. Further, the smallest eigenvalue is required to be at

least ǫ in the following problem:

min
∆
− 1

2

q
∑

i=1

δiγ
⊤ūiū

⊤
i γ (5.9)

s.t. δi − δi+1 ≥ ǫ ∀2 ≤ i ≤ q − 1

δ1 ≥ ǫ, δq ≥ ǫ
q
∑

i=1

δi = 1.

Since ǫ is a fixed constant, no new parameters are introduced in posing the above problem

in a standard form. The following theorem shows that certain change of variables can be

done in the above optimization problem so that its dual is in a particularly convenient form.

CHAPTER 5. LAPLACIAN SPECTRUM LEARNING 77

Theorem 24 The dual of the optimization problem (5.9) is:

max
λ≥0,τ

− τ + ǫ

q
∑

i=1

λi (5.10)

s.t.
1

2
γ⊤

i
∑

j=2

ūjū
⊤
j γ = τ(i− 1)− λi ∀2 ≤ i ≤ q

1

2
γ⊤ū1ū

⊤
1 γ = τ − λ1.

Proof Start with the following change of variables:

κi :=



















δ1 for i = 1,

δi − δi+1 for 2 ≤ i ≤ q − 1,

δq for i = q.

This gives:

δi =







κ1 for i = 1,
∑q

j=i κj for 2 ≤ i ≤ q.
(5.11)

Thus, (5.9) can be stated as,

min
κ
− 1

2

q
∑

i=2

q
∑

j=i

κjγ
⊤ūiū

⊤
i γ + κ1γ

⊤ū1ū
⊤
1 γ (5.12)

s.t. κi ≥ ǫ ∀1 ≤ i ≤ q,
q
∑

i=2

q
∑

j=i

κj + κ1 = 1.

Consider simplifying the following term within the above formulation:

q
∑

i=2

q
∑

j=i

κjγ
⊤ūiū

⊤
i γ =

q
∑

i=2

κi

i
∑

j=2

γ⊤ūjū
⊤
j γ,

and
q
∑

i=2

q
∑

j=i

κj =

q
∑

i=2

(i− 1)κi.

It is now straightforward to write the Lagrangian to obtain the dual.

Even though the above optimization appears to have non-convexity problems mentioned

after Lemma 23, these can be avoided. This is facilitated by the following nice property.

CHAPTER 5. LAPLACIAN SPECTRUM LEARNING 78

Lemma 25 For ǫ > 0, all the inequality constraints are active at optimum in the following

optimization problem:

max
λ≥0,τ

− τ + ǫ

q
∑

i=1

λi (5.13)

s.t.
1

2
γ⊤

i
∑

j=2

ūjū
⊤
j γ ≤ τ(i− 1)− λi ∀2 ≤ i ≤ q

1

2
γ⊤ū1ū

⊤
1 γ ≤ τ − λ1.

Proof Assume that λ∗ is the optimum for the above problem and constraint i (correspond-

ing to λi) is not active, then clearly, the objective can be further maximized by increasing

λ∗i . This contradicts the fact that λ∗ is the optimum.

In fact, it is not hard to show that the Lagrange multipliers of the constraints in problem

(5.13) are equal to the κi’s. Thus, replacing the inner optimization over δ’s in (5.7), by

(5.13), the following optimization problem is obtained:

max
α,β,η,λ,τ

α⊤1− τ + ǫ

q
∑

i=1

λi −B
(

β⊤1 + η⊤1
)

(5.14)

s.t.
1

2
(Yα− β + η)⊤

i
∑

j=2

ūjū
⊤
j (Yα− β + η) ≤ (i− 1)τ − λi ∀2 ≤ i ≤ q

1

2
(Yα− β + η)⊤ū1ū

⊤
1 (Yα− β + η) ≤ τ − λ1

α⊤y − β⊤1 + η⊤1 = 0

0 ≤ α ≤ C1, β ≥ 0, η ≥ 0, λ ≥ 0.

The above optimization problem will be referred to as STORM (Spectrum Transformations

that Optimize the Relative Margin). It has a linear objective with quadratic constraints;

this optimization problem falls under the family quadratically constrained quadratic op-

timization (QCQP). When B = ∞, the above optimization problem reduces to STOAM

(Spectrum Transformations that Optimize the Absolute Margin) since there is no constraint

on the spread of the projections (the same way an RMM mimics an SVM when B =∞).

CHAPTER 5. LAPLACIAN SPECTRUM LEARNING 79

Obtaining δ values Interior point methods obtain both primal and dual solutions of an

optimization problem simultaneously. Thus, it is possible to recover the weights on each

eigenvector via the equation (5.11).

Computational complexity STORM is a standard QCQP with q quadratic constraints

of dimensionality l. This can be solved in time O(ql3) with an interior point solver [Boyd

and Vandenberghe, 2003]. It is important to note that the number of labeled examples l

is much smaller than the total number of examples (which is n). Moreover, q is typically

a fixed constant. Thus the runtime of the proposed QCQP compares favorably with the

O(n3) time for the initial eigen decomposition of L which is required for all the methods

described in this chapter.

5.5 Experiments

To study the empirical performance of STORM and STOAM with respect to previous work,

experiments were performed on text and digit classification problems. Five binary classi-

fication problems were chosen from the 20-newsgroups text dataset (separating categories

like baseball-hockey (b-h), pc-mac (p-m), religion-atheism (r-a), windows-xwindows (w-x),

and politics.mideast-politics.misc (m-m)). Similarly, five different problems were considered

from the MNIST dataset (0-9, 1-2, 3-8, 4-7, and 5-6). One thousand randomly sampled

examples were used in these experiments.

A mutual nearest neighbor graph was first constructed using five nearest neighbors

and then the graph Laplacian was formed. The elements of the weight matrix W were all

binary. In the case of MNIST digits, raw pixel values (each feature normalized to mean zero

and variance one) were used as features. For digits, nearest neighbors were determined by

Euclidean distance whereas for text, nearest neighbors were determined by cosine similarity

measure on tf-idf features. In the experiments, the number of eigenvalues q was set to 200.

This was a uniform choice for all methods and for all the datasets which would not yield

any unfair advantages for one method over any other. In the case of STORM and STOAM,

ǫ was set to a negligible value of 10−6.

The entire dataset was randomly divided into labeled and unlabeled examples. The

CHAPTER 5. LAPLACIAN SPECTRUM LEARNING 80

l MKL-S MKL-R SGT KTA-S KTA-R STOAM STORM

r-a

30 37.1 ±5.6 37.1 ±5.6 19.5 ±1.4 23.0 ±4.8 23.0 ±4.8 25.8 ±6.1 25.8 ±6.1

50 29.9 ±5.1 30.0 ±5.2 18.9 ±1.1 19.9 ±3.1 19.9 ±3.1 21.5 ±4.0 21.5 ±4.0

70 25.2 ±4.4 25.4 ±4.3 18.4 ±1.0 18.3 ±2.4 18.3 ±2.4 18.5 ±3.1 18.5 ±3.1

90 22.3 ±3.3 22.7 ±3.3 18.2 ±0.9 17.3 ±1.5 17.3 ±1.5 17.2 ±1.8 17.2 ±1.9

110 20.4 ±2.4 20.4 ±2.4 18.1 ±1.0 16.5 ±1.3 16.5 ±1.3 16.4 ±1.2 16.4 ±1.2

w-m

30 22.7 ±8.7 22.7 ±8.7 41.9 ±8.5 16.0 ±8.8 16.1 ±8.8 14.3 ±5.9 14.3 ±5.9

50 15.1 ±3.8 15.1 ±3.8 35.6 ±9.3 13.5 ±3.4 13.6 ±3.4 11.5 ±3.4 11.5 ±3.4

70 13.0 ±1.6 13.0 ±1.6 29.0 ±7.8 12.7 ±4.8 12.9 ±5.0 10.7 ±0.9 10.8 ±1.0

90 12.2 ±1.6 12.2 ±1.6 22.5 ±6.3 11.3 ±1.5 11.4 ±1.7 10.4 ±0.6 10.4 ±0.6

110 11.8 ±1.0 11.9 ±1.0 18.2 ±5.0 10.9 ±1.4 11.0 ±1.7 10.3 ±0.6 10.3 ±0.6

p-m

30 41.2 ±4.9 41.0 ±5.0 39.6 ±3.8 28.0 ±5.8 28.0 ±5.8 30.6 ±6.6 30.6 ±6.6

50 36.0 ±5.3 35.9 ±4.9 37.5 ±3.8 24.3 ±4.8 24.3 ±4.8 25.7 ±4.6 25.7 ±4.6

70 31.5 ±4.6 31.2 ±4.3 35.5 ±3.4 22.1 ±3.6 22.1 ±3.6 22.3 ±4.9 22.3 ±4.9

90 28.1 ±3.8 28.3 ±3.8 33.6 ±3.4 20.6 ±2.8 20.6 ±2.7 20.4 ±3.0 20.8 ±3.2

110 25.9 ±3.1 26.2 ±2.9 32.2 ±3.2 19.5 ±2.2 19.6 ±2.2 19.7 ±2.4 19.7 ±2.4

b-h

30 4.3 ±0.8 4.3 ±0.8 3.9 ±0.2 3.9 ±0.4 3.8 ±0.3 3.9 ±0.3 3.9 ±0.3

50 3.9 ±0.1 3.9 ±0.1 3.9 ±0.2 3.8 ±0.3 3.8 ±0.4 3.9 ±0.3 3.7 ±0.3

70 3.9 ±0.2 3.9 ±0.2 3.9 ±0.2 3.8 ±0.3 3.8 ±0.3 3.8 ±0.3 3.7 ±0.3

90 3.9 ±0.2 3.9 ±0.2 3.9 ±0.3 3.7 ±0.3 3.7 ±0.3 3.8 ±0.3 3.6 ±0.3

110 3.9 ±0.2 3.9 ±0.2 3.8 ±0.3 3.7 ±0.4 3.7 ±0.3 3.7 ±0.3 3.6 ±0.3

m-m

30 12.4 ±5.2 12.4 ±5.2 41.3 ±3.5 7.4 ±3.6 7.4 ±3.8 7.6 ±3.9 6.9 ±2.9

50 7.5 ±3.1 7.3 ±2.9 31.2 ±7.5 6.3 ±2.8 6.2 ±2.9 5.5 ±1.0 5.4 ±1.2

70 6.0 ±1.3 6.0 ±1.4 22.3 ±7.5 5.4 ±1.0 5.4 ±1.1 5.2 ±0.7 4.9 ±0.6

90 5.7 ±1.0 5.7 ±1.0 15.4 ±5.9 5.1 ±0.9 5.1 ±1.1 5.1 ±0.6 4.8 ±0.6

110 5.4 ±0.7 5.2 ±0.6 11.0 ±3.9 5.0 ±0.8 4.9 ±0.9 5.0 ±0.5 4.7 ±0.5

Table 5.1: Mean and std. deviation of percentage error rates on text datasets. In each

row, the method with minimum error rate is shown in dark gray. All the other algorithms

whose performance is not significantly different from the best (at 5% significance level by a

paired t-test) are shown in light gray.

CHAPTER 5. LAPLACIAN SPECTRUM LEARNING 81

l MKL-S MKL-R SGT KTA-S KTA-R STOAM STORM

0-9

30 0.9 ±0.1 0.9 ±0.1 0.8 ±0.1 0.9 ±0.1 0.9 ±0.1 0.9 ±0.1 0.9 ±0.1

50 0.9 ±0.1 0.9 ±0.1 0.8 ±0.1 0.9 ±0.1 0.9 ±0.1 0.9 ±0.1 0.9 ±0.1

70 0.9 ±0.1 0.9 ±0.1 0.9 ±0.1 0.9 ±0.1 0.9 ±0.2 0.9 ±0.1 0.9 ±0.1

90 0.9 ±0.1 0.9 ±0.2 0.9 ±0.1 0.9 ±0.2 0.9 ±0.2 0.9 ±0.1 0.9 ±0.1

110 0.8 ±0.2 0.9 ±0.2 0.9 ±0.1 0.9 ±0.1 0.9 ±0.1 0.9 ±0.3 0.9 ±0.1

1-2

30 3.4 ±3.3 4.1 ±5.9 11.8 ±6.8 2.9 ±0.6 2.9 ±0.6 2.9 ±0.5 2.8 ±0.4

50 2.9 ±0.5 2.6 ±0.4 3.6 ±2.7 2.8 ±0.4 2.8 ±0.5 2.8 ±0.7 2.8 ±0.7

70 2.6 ±0.3 2.3 ±0.3 2.7 ±0.5 2.7 ±0.3 2.8 ±0.4 2.6 ±0.3 2.7 ±0.3

90 2.7 ±0.3 2.3 ±0.3 2.6 ±0.2 2.8 ±0.3 2.7 ±0.4 2.7 ±0.4 2.7 ±0.3

110 2.8 ±0.3 2.4 ±0.3 2.6 ±0.2 2.6 ±0.6 2.6 ±0.6 2.5 ±0.3 2.5 ±0.3

3-8

30 13.0 ±3.7 12.6 ±3.6 9.9 ±0.9 8.5 ±2.7 7.6 ±2.2 7.9 ±2.2 7.7 ±1.8

50 9.5 ±2.3 9.0 ±2.2 8.8 ±0.9 6.9 ±1.8 6.6 ±1.6 6.4 ±1.5 6.4 ±1.4

70 8.0 ±2.1 7.4 ±1.7 8.0 ±0.8 6.3 ±1.6 6.1 ±1.4 5.8 ±1.3 5.9 ±1.1

90 7.0 ±1.6 6.6 ±1.3 7.3 ±0.8 5.7 ±1.1 5.7 ±1.1 5.5 ±1.0 5.4 ±0.9

110 6.6 ±1.2 6.1 ±1.0 6.9 ±0.9 5.4 ±0.9 5.4 ±0.9 5.3 ±0.8 5.2 ±0.9

4-7

30 5.7 ±3.4 5.5 ±3.3 5.6 ±1.2 4.3 ±1.9 4.1 ±1.9 3.6 ±1.4 3.6 ±1.1

50 4.3 ±1.2 4.0 ±0.9 4.5 ±0.5 3.5 ±0.9 3.4 ±0.8 3.2 ±0.7 3.2 ±0.6

70 3.7 ±0.8 3.3 ±0.6 4.0 ±0.4 3.4 ±0.8 3.2 ±0.7 3.1 ±0.6 3.0 ±0.5

90 3.5 ±0.8 3.1 ±0.6 3.8 ±0.4 3.1 ±0.6 3.0 ±0.6 2.9 ±0.5 2.9 ±0.5

110 3.3 ±0.7 3.0 ±0.5 3.6 ±0.4 3.0 ±0.6 3.0 ±0.6 2.9 ±0.5 2.9 ±0.5

5-6

30 5.2 ±2.7 4.9 ±3.2 2.5 ±0.2 3.5 ±1.3 3.3 ±1.1 3.2 ±1.4 3.0 ±0.9

50 3.3 ±1.3 2.9 ±0.8 2.5 ±0.2 2.9 ±0.7 2.9 ±0.5 2.7 ±0.4 2.7 ±0.4

70 2.8 ±0.5 2.6 ±0.3 2.5 ±0.2 2.7 ±0.4 2.7 ±0.4 2.6 ±0.3 2.8 ±0.6

90 2.7 ±0.3 2.6 ±0.3 2.5 ±0.2 2.6 ±0.4 2.6 ±0.4 2.6 ±0.3 2.5 ±0.4

110 2.6 ±0.3 2.5 ±0.3 2.5 ±0.2 2.6 ±0.4 2.5 ±0.4 2.5 ±0.4 2.5 ±0.4

Table 5.2: Mean and std. deviation of percentage error rates on digits datasets. In each

row, the method with minimum error rate is shown in dark gray. All the other algorithms

whose performance is not significantly different from the best (at 5% significance level by a

paired t-test) are shown in light gray.

CHAPTER 5. LAPLACIAN SPECTRUM LEARNING 82

MKL-S MKL-R SGT KTA-S KTA-R STOAM STORM

#dark gray 1 5 9 5 2 8 22

#light gray 1 2 4 8 12 16 13

#total 2 7 13 13 14 24 35

Table 5.3: Summary of results in Tables 5.1 & 5.2. For each method, the number of times

it performs the best (dark gray), the number of times it is not significantly worse from the

best performing method (light gray) and the total number of times it is either the best or

not significantly worse from the best are enumerated.

number of labeled examples was varied in steps of 20; the rest of the examples served as

the test examples (as well as the unlabeled examples in graph construction). Kernel target

alignment was then run to construct a kernel; the estimated kernel was then fed into an

SVM (referred to KTA-S in the Tables) as well as to an RMM (referred to as KTA-R). To

get an idea of the extent to which the ordering constraints matter, multiple kernel learning

optimization was also performed; these are similar to the proposed formulations but without

any ordering constraints on the weights. Multiple kernel learning with the RMM objective is

referred to as MKL-R. Likewise, multiple kernel learning with the SVM objective is referred

to as MKL-S. Similarly, experiments were also performed with the spectral graph transducer

(referred to as SGT). Predictions on all the unlabeled examples were obtained from all the

methods. Error rates were obtained on the unlabeled examples. Twenty such runs were

done for various values of parameters (such as C,B) for all the methods. The values of

the parameters that resulted in minimum average error rate over unlabeled examples were

selected for all the approaches. Once the parameter values were fixed, the entire dataset

was again divided into labeled and unlabeled examples. Training was then done but with

fixed values of various parameters. Error rates on unlabeled examples were then obtained

for all the methods over hundred runs of random splits of the dataset.

The results are presented in Tables 5.1 and 5.2. It can be seen that STORM and

STOAM perform much better than all the methods. Results in the two tables are further

summarized in Table 5.3. It can be seen that both STORM and STOAM have significant

CHAPTER 5. LAPLACIAN SPECTRUM LEARNING 83

advantage over all the other methods.

Learned spectra were visualized in each problem for various methods to see if there were

any differences. Four such typical plots are presented in Figure 5.1. Spectra obtained by

KTA, STORM and MKL-R are presented here. The spectra obtained by STOAM (MKL-

S) was very close to the spectra obtained by STORM (MKL-R) compared to the other

methods. Typically KTA puts significantly more weight on the top few eigenvectors. By

not maintaining the order among the eigenvectors, MKL seems to put haphazard weights

on the eigenvectors. However, STORM is less aggressive and its eigenspectrum decays at a

slower rate. This shows that STORM obtains a markedly different spectrum compared to

KTA and MKL thus resulting in a qualitatively different kernel. It is important to point

out that MKL-R (MKL-S) solves a more general problem than STORM (STOAM). Thus, it

can always achieve a better objective value compared to STORM (STOAM). However, the

experiments show that the error rate on the unlabeled examples can be quite high without

preserving the order on the spectrum. In fact, MKL obtained competitive results in only

one case (digits:1-2).

5.6 Summary

A large relative margin formulation was proposed in this chapter for transforming the spec-

trum of a graph Laplacian. A family of kernels, which maintains smoothness properties on

the graph, was explored by enforcing an ordering on the eigenvalues of the graph Laplacian.

Unlike the previous methods which used two distinct criteria at each phase, this chapter

demonstrated that it is possible to jointly optimize the spectrum as well as the classifier.

The resulting kernels, learned as part of the optimization, showed improvements on a variety

of experiments. The relative margin criterion was shown to perform much better compared

to large absolute margin criterion.

This work opens up an interesting research direction for further investigation: by learn-

ing weights on an appropriate number of matrices, we can potentially explore all positive-

semidefinite matrices. It is thus possible to explore all graphs while learning a large relative

margin classifier.

CHAPTER 5. LAPLACIAN SPECTRUM LEARNING 84

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

eigenvalue

m
ag

ni
tu

de

KTA
STORM
MKL−R

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

eigenvalue

m
ag

ni
tu

de

KTA
STORM
MKL−R

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

eigenvalue

m
ag

ni
tu

de

KTA
STORM
MKL−R

0 2 4 6 8 10
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

eigenvalue

m
ag

ni
tu

de

KTA
STORM
MKL−R

Figure 5.1: Magnitude of the top 15 eigenvalues as learned by different algorithms. Top:

problems 1-2 and 3-8. Bottom: m-m and p-m. The plots show average eigenspectra over

all runs for each problem.

CHAPTER 6. BOOSTING 85

Chapter 6

Boosting

The aim of this chapter is to develop a boosting algorithm based on the ideas of relative

margin. While the development of algorithms in the previous chapters mainly relied on

affine transformation arguments, a completely different motivation will be provided for the

boosting algorithm developed in this chapter. The main idea is to trade-off between the

exponential loss on the training examples and its variance. The motivation for this will

be provided from the recent empirical Bernstein bounds. This work was first published in

[Shivaswamy and Jebara, 2010b].

In classification problems, many machine learning algorithms minimize a convex upper

bound on the misclassification rate. For example, AdaBoost [Freund and Schapire, 1997]

minimizes the exponential loss and support vector machines [Vapnik, 1995] minimize the

hinge loss. The convexity of such losses is helpful for computational as well as generalization

reasons [Bartlett et al., 2006]. In most problems, the aim is not to obtain a function that

performs well on training data but rather to estimate a function (using training data) that

performs well on future unseen test data. This is accomplished by minimizing empirical risk

on the training set while choosing a function of small complexity. The rationale behind this

approach is that the empirical risk converges (uniformly) to the true unknown risk. Various

concentration inequalities show how fast the empirical risk converges to the true risk.

A key tool in obtaining such bounds is Hoeffding’s inequality which relates the empirical

mean of a bounded random variable to its true mean. Bernstein’s and Bennett’s inequalities

relate the true mean of a random variable to the empirical mean but also incorporate the

CHAPTER 6. BOOSTING 86

true variance of the random variable. If the true variance of a random variable is small,

these bounds can be significantly tighter than Hoeffding’s bound. Recently, there have been

empirical counterparts of Bernstein’s inequality [Audibert et al., 2007; Maurer and Pontil,

2009]; these bounds incorporate the empirical variance of a random variable rather than

its true variance. The advantage of these bounds is that the quantities they involve are

actually observable. Previously, these bounds have been applied in sampling procedures

[Mnih et al., 2008]. In this chapter, a new boosting algorithm that not only minimizes the

empirical misclassification rate but also the empirical variance on the exponential loss is

proposed. This is achieved via the so called “sample variance penalization” principle which

is motivated from the empirical Bernstein inequality. The proposed algorithm is easy to

implement and involves a closed form update rule like the AdaBoost algorithm.

The rest of this chapter is organized as follows: various bounds and their uniform

convergence counterparts are reviewed in Section 6.1. Sample variance penalization with

the 0–1 loss is then shown to be equivalent to empirical risk minimization. Subsequently,

sample variance penalization principle is applied on the exponential loss whereby a novel

boosting algorithm is obtained in Section 6.3. Experiments are then presented on a number

of datasets in Section 6.4 followed by a discussion in Section 6.4.1. A summary of this

chapter is provided in Section 6.5.

6.1 Hoeffding and empirical Bernstein bounds

In this section, some classical as well as new concentration inequalities are reviewed. The

purpose of this section is to present sample variance penalization [Maurer and Pontil, 2009]

as a motivation for the rest of the paper. However, for the sake of clarity and completeness,

a few other classic results are reviewed as well. First, recall Hoeffding’s inequality.

Theorem 26 Let z1, z2, . . . , zn be iid random variables with values in [0, 1]. Then, for any

δ > 0, with probability at least 1−δ (over the draw of z1, z2, . . . , zn), the following inequality

holds:

E[z] ≤ 1

n

n
∑

i=1

zi +

√

ln(1/δ)

2n
.

CHAPTER 6. BOOSTING 87

In machine learning settings, training examples (xi, yi)
n
i=1 are drawn iid from a distri-

bution D where (xi, yi) ∈ X × Y. From this data, a learning algorithm outputs a function

f : X → R (typically from a fixed set of functions) that should predict well on future sam-

ples. In other words, the function should minimize a fixed loss l : R×Y → [0, 1] on unseen

test examples drawn from the same distribution.

Empirical risk minimization (ERM) is a popular approach to minimizing loss on unseen

test examples. Suppose a learning algorithm is to choose a function from a finite set of

candidate functions F . Consider the extension of Hoeffding’s inequality such that it holds

uniformly over all functions in F .

Corollary 27 Let (xi, yi)
n
i=1 be drawn iid from a distribution D. Let F be a finite class of

functions f : X → R. Then, given a loss function l : R × Y → [0, 1], for any δ > 0, with

probability at least 1− δ, ∀f ∈ F ,

E[l(f(x), y)] ≤ 1

n

n
∑

i=1

l(f(xi), yi) +

√

ln(|F|)/δ
2n

(6.1)

where |F| is the cardinality of F .

In fact, the above corollary can be extended to infinite function classes F by replacing

the term |F| with a suitable complexity measure. The empirical risk minimization principle

selects a function from a class to minimize empirical loss on the training data, i.e.,

arg min
f∈F

1

n

n
∑

i=1

l(f(xi), yi).

Since (6.1) holds uniformly over all the functions in the class F , minimizing the empirical

risk minimizes an upper bound on the future loss.

As an alternative to Hoeffding’s bound, consider Bernstein’s inequality.

Theorem 28 Under the same conditions as Theorem 26, for any δ > 0, with probability

at least 1− δ,

E[z] ≤ 1

n

n
∑

i=1

zi +

√

2V[z] ln(1/δ)

n
+

ln(1/δ)

3n
,

where V[z] = E (z−E[z])2.

CHAPTER 6. BOOSTING 88

When the variance V[z] of the random variable z is small, the above bound can be signif-

icantly tighter than Hoeffding’s bound. To get an idea of why the bound in Theorem 28

can be better than the one in Theorem 26, consider a situation in which V[z] = 0. In this

scenario, 1
n

∑n
i=1 zi converges to E[z] at the rate O(1/n) according to Bernstein’s inequality.

However, in the case of Hoeffding’s inequality, the convergence is at a much slower O(1/
√
n)

rate. However, one limitation of the above bound is that the true value V[z] is often an

unknown quantity and only an empirical estimate is available. To address this limitation,

recall the following result from [Maurer and Pontil, 2009] which is similar to Theorem 28

but holds for an empirical estimate of the variance as opposed to the true value V[z].

Theorem 29 Under the same conditions as Theorem 26, for any δ > 0, with probability

at least 1− δ,

E[z] ≤ 1

n

n
∑

i=1

zi +

√

2V̂[z] ln(2/δ)

n
+

7 ln(2/δ)

3(n − 1)
,

where V̂[z] is the empirical variance given by:1

V̂[z] =
1

n(n− 1)

∑

n≥i>j≥1

(zi − zj)
2.

The above theorem has the advantage that all the quantities involved are empirical quanti-

ties that can be obtained from data. Finally, the following uniform convergence extension

of the above bound serves as the motivation for sample variance penalization.

Theorem 30 Let (xi, yi)
n
i=1 be drawn iid from a distribution D. Let F be a class of func-

tions f : x → R. Then, given a loss function l : R × Y → [0, 1], for any δ > 0, with

probability at least 1− δ, ∀f ∈ F ,

E[l(f(x), y)] ≤ 1

n

n
∑

i=1

l(f(xi), yi) +
15 ln(M(n)/δ)

(n− 1)
+

√

18V̂[l(f(x), y)] ln(M(n)/δ)

n
, (6.2)

whereM(n) is a complexity measure [Maurer and Pontil, 2009]. Unlike the empirical risk in

(6.2), the empirical variance V̂[l(f(x), y)] has a multiplicative factor involvingM(n) (which

is typically difficult to estimate), δ (the required confidence at which the bound holds) and

1 For brevity, unless extra constraints on i and j are specified, i > j in future summations in this chapter

must be read as n ≥ i > j ≥ 1.

CHAPTER 6. BOOSTING 89

n. Thus, for a given problem, it is difficult to specify the trade-off between empirical risk and

empirical variance a priori. Hence, the algorithm proposed in this chapter will necessarily

involve a scalar parameter which trades off between these two criteria. As is often the case

in practice, this trade-off parameter has to be tuned using a validation set. Minimizing this

uniform convergence bound leads to the so-called sample variance penalization principle:

arg min
f∈F

1

n

n
∑

i=1

l(f(xi), yi) + λ

√

V̂[l(f(x), y)]

n
,

where λ ≥ 0 trades off between the empirical risk and the empirical variance. The aim

of the rest of this chapter is to derive an efficient, AdaBoost style, algorithm for sample

variance penalization.

6.2 Loss functions

In this section, first, the possibility of sample variance penalization with the 0 − 1 loss

is considered. It turns out that this merely corresponds to empirical risk minimization.

Subsequently, the sample variance penalization principle is applied to the exponential loss

where it produces a qualitatively different criterion.

In the previous section, generic loss functions—without any assumptions on the problem

type—were studied. However, from now on, attention will be restricted to binary classifica-

tion problems. In classification problems Y = {±1}. Define the classification loss function

l1(f(x), y) as:

l1(f(x), y) := Iyf(x)≤0 =







0 if yf(x) > 0,

1 if yf(x) ≤ 0.
(6.3)

Given an iid set of examples (xi, yi)
n
i=1, the aim is to minimize the future probability of

error, i.e., to minimize PD[yf(x) ≤ 0].

Lemma 31 Let (xi, yi)
n
i=1 be drawn iid from a distribution D. Let F be a class of functions

f : x→ Y. Then, for any δ > 0, with probability at least 1− δ, ∀f ∈ F ,

PD[yf(x) ≤ 0] ≤ p̂+

√

18p̂(1− p̂) ln(M(n)/δ)

n− 1
+

15 ln(M(n)/δ)

(n− 1)
, (6.4)

where p̂ = P̂[l1(f(x), y)] = 1
n

∑n
i=1 Iyif(xi)≤0 is the empirical error.

CHAPTER 6. BOOSTING 90

Proof The proof is a direct application of Theorem (30) on the 0-1 loss (6.3). First observe

that,

ED[Iyf(x)≤0] = PD[yf(x) ≤ 0].

Moreover, denoting Iyif(xi)≤0 by si for brevity,

V̂[l1(f(x), y)] =
1

n(n− 1)

∑

i>j

(si − sj)
2

=
1

n(n− 1)



(n− 1)
n
∑

i=1

s2i − 2
∑

i>j

sisj





=
n

n− 1





1

n

n
∑

i=1

s2i −
(

1

n

n
∑

i=1

si

)2




=
n

n− 1
p̂(1− p̂).

For an indicator random variable, s2i = si. This fact was used in going from line three to

four.

Thus, to minimize future classification error, sample variance penalization suggests min-

imizing p̂+λ
√

p̂(1− p̂). Consider p̂ ∈ [0, 1/2) which is clearly the regime of interest in clas-

sification problems. It is easy to see that, for p̂ ∈ [0, 1/2), the quantity p̂+ λ
√

p̂(1− p̂) is a

monotonically increasing function of the empirical error p̂. Therefore, sample variance pe-

nalization is equivalent to minimizing the empirical error p̂. Thus, for any finite non-negative

value of λ, sample variance penalization merely reduces to empirical risk minimization with

the 0− 1 loss.

6.2.1 Minimizing a convex upper bound on the 0− 1 loss

It is important to note that empirical risk minimization with the 0−1 loss is a hard problem;

this problem is often circumvented by minimizing convex upper bounds on this empirical

risk. In this chapter, the following exponential loss is considered:

l2(f(x), y) := e−yf(x). (6.5)

CHAPTER 6. BOOSTING 91

Consider functions f : x → [−1, 1]. The aim here is to still minimize the future 0 − 1 loss

yet only through the surrogate exponential loss function. A computational advantage of

this convex loss function is that it is easy to minimize. First, the future probability of error

is related to the exponential loss as below:

PD[yf(x) ≤ 0] = ED[Iyf(x)≤0] ≤ ED[e−yf(x)].

It is now possible to relate the future probability of error to the empirical mean and the

empirical variance of the exponential loss. By applying the result from Theorem 30:

ED[e−yf(x)] ≤ 1

n

n
∑

i=1

e−yif(xi) +
15e ln(M(n)/δ)

(n− 1)

+

√

∑

i>j(e
−yif(xi) − e−yjf(xj))2

n(n− 1)

√

18 ln(M(n)/δ)

n
,

where an extra e appears in the second term to normalize the exponential loss so that it

has the range [0, 1] (such that Theorem 30 applies directly).

Thus, the sample variance penalization principle, applied to the exponential loss suggests

minimizing the following quantity for some scalar τ > 0:

n
∑

i=1

e−yif(xi) + τ

√

∑

i>j

(

e−yif(xi) − e−yjf(xj)
)2
. (6.6)

6.3 A boosting algorithm

In this section, a boosting style algorithm to minimize (6.6) is derived. Assume the function

class H of interest is composed of so-called weak learners Gs : X → {±1} for s = 1, . . . , S.

The function to be output consists of the following additive model over weak learners:

f(x) =
S
∑

s=1

αsG
s(x). (6.7)

where αs ∈ R
+ for s = 1, . . . , S.

One minor technicality is that the analysis in the previous section assumed that the

function f had a range [−1, 1]. However, while building an additive model (6.7) this does

not hold. Thus the range of the function obtained both by AdaBoost and the proposed

algorithm will be [e−
PS

s=1 αs , e
PS

s=1 αs].

CHAPTER 6. BOOSTING 92

Algorithm 6.1 AdaBoost

Require: (Xi, yi)
n
i=1, weak learners H

Initialize the weights: wi ← 1
n ; initialize f to predict zero on all inputs.

for s← 1 to S do

Get a weak learner Gs(·) that minimizes
∑

i:yi 6=Gs(Xi)
wi

αs = 1
2 log

(

P

yi=Gs(Xi)
wi

P

yi 6=Gs(Xi)
wi

)

if αs < 0 then

break

end if

f(·)← f(·) + αsG
s(·)

wi ← wi exp(−yiG
s(Xi)αs)/Zs where Zs is such that

∑n
i=1 wi = 1.

end for

6.3.1 AdaBoost

AdaBoost is described in Algorithm 6.1. Since it is a well studied algorithm, further

details are not provided. AdaBoost merely minimizes an exponential loss, i.e., it minimizes
∑n

i=1 e
−yif(xi) in a stage-wise manner to build an additive model (6.7).

6.3.2 An update rule for empirical Bernstein boosting

The update rule in this chapter is based on the stage-wise greedy optimization interpretation

of AdaBoost [Hastie et al., 2001]. Sample variance penalization will be performed on the

exponential loss; an additive model (6.7) will be built in the process. The update for the

proposed boosting algorithm is based on the stage-wise greedy interpretation of AdaBoost

[Hastie et al., 2001]. The aim is to minimize the sample variance cost (6.6) while building

an additive model (6.7). As in most boosting methods, a convex cost is minimized in each

stage of the algorithm. Effectively, the same class of weak learners as AdaBoost (i.e., a conic

combination of weak learners) is considered while performing sample variance penalization

instead of empirical risk minimization.

Since there is an unknown trade-off between the two terms in (6.6), one way to minimize

CHAPTER 6. BOOSTING 93

that cost is by the following minimization:

min
f∈F

n
∑

i=1

e−yif(xi)

s.t.

√

∑

i>j

(

e−yif(xi) − e−yjf(xj)
)2 ≤ B,

where the trade-off parameter is now parametrized by B. For every value of τ there is a B

that obtains the same optimal function; in particular, B = ∞ is equivalent to τ = 0. The

above problem can be equivalently posed as:

min
f∈F

(

n
∑

i=1

e−yif(xi)

)2

s.t.
∑

i>j

(

e−yif(xi) − e−yjf(xj)
)2
≤ B2.

By introducing a non-negative Lagrange multiplier, the above optimization problem can be

written as:
(

n
∑

i=1

e−yif(xi)

)2

+ λ
∑

i>j

(

e−yif(xi) − e−yjf(xj)
)2
− λB2.

One way to implement the above optimization is to minimize it under different settings of

λ. Since the last term does not involve the function f , the following objective is optimized:

min
f∈F

(

n
∑

i=1

e−yif(xi)

)2

+ λ
∑

i>j

(

e−yif(xi) − e−yjf(xj)
)2
. (6.8)

It is assumed that there is already a function h(·); a greedy algorithm will then be

derived to to obtain a weak learner G(·) and a positive scalar α such that f(·) = h(·)+αG(·)
minimizes the above objective the most.

Denoting e−yih(xi) by wi, (6.8) can be written as:2

(

n
∑

i=1

wie
−yiαG(xi)

)2

+ λ
∑

i>j

(

wie
−yiαG(xi) − wje

−yjαG(xj)
)2

=(1 + (n− 1)λ)

n
∑

i=1

w2
i e

−2yiαG(xi) + (2− 2λ)
∑

i>j

wiwje
−yiαG(xi)−yjαG(xj). (6.9)

2In the final algorithm there will be a normalization factor dividing wi.

CHAPTER 6. BOOSTING 94

Algorithm 6.2 EBBoost

Require: (xi, yi)
n
i=1, scalar parameter λ ≥ 0, weak learners H

Initialize the weights: wi ← 1
n ; initialize f to predict 0 on all inputs.

for s← 1 to S do

Get a weak learner Gs(·) that minimizes (6.9) with the following choice of αs:

αs = 1
4 log

(

(1−λ)(
P

i∈I wi)
2+λn

P

i∈I w2
i

(1−λ)(
P

i∈J wi)2+λn
P

i∈J w2
i

)

if αs < 0 then break end if

f(·)← f(·) + αsG
s(·)

wi ← wi exp(−yiG
s(xi)αs)/zs where zs is such that

∑n
i=1 wi = 1.

end for

For brevity, define the following sets of indices:

I = {i : yiG(xi) = +1} , J = {i : yiG(xi) = −1} .

Here, I denotes the set of examples that are correctly classified by G(·) and J is the set of

misclassified examples. Equation (6.9) can now be rewritten as:

λ1

(

∑

i∈I

w2
i e

−2α +
∑

i∈J

w2
i e

2α

)

+ λ2

∑

i>j:i,j∈I

wiwje
−2α

+ λ2

∑

i>j:i,j∈J

wiwje
+2α + λ2

∑

i>j:i∈I,j∈J or i∈J,j∈I

wiwj,

where λ1 and λ2 are defined as λ1 = (1 + (n− 1)λ) and λ2 = 2− 2λ. The above expression

is convex in α; it is easy to see this by taking the second derivative with respect to α. The

above expression is minimized by differentiating with respect to α and equating to zero:

α =
1

4
log

(

λ1
∑

i∈I w
2
i + λ2

∑

i>j:i,j∈I wiwj

λ1
∑

i∈J w
2
i + λ2

∑

i>j:i,j∈J wiwj

)

.

At this point, it appears that all pairwise interactions between weights are needed to find

α which would make the computation of α (given a weak learner G) cumbersome because of

the O(n2) pairwise terms. Consider the numerator in the update rule for α and substitute

CHAPTER 6. BOOSTING 95

the values of λ1 and λ2, to get

(1 + (n− 1)λ)
∑

i∈I

w2
i + (2− 2λ)

∑

i>j:i,j∈I

wiwj

=
∑

i∈I

w2
i + 2

∑

i>j:i,j∈I

wiwj + λn
∑

i∈I

w2
i − λ





∑

i∈I

w2
i + 2

∑

i>j:i,j∈I

wiwj





= (1− λ)(
∑

i∈I

wi)
2 + λn

∑

i∈I

w2
i .

Applying a similar simplification to the denominator yields the following O(n) rule

α =
1

4
log

(

(1− λ)(
∑

i∈I wi)
2 + λn

∑

i∈I w
2
i

(1− λ)(
∑

i∈J wi)2 + λn
∑

i∈J w
2
i

)

.

The algorithm based on sample variance penalization (6.6) is stated in Algorithm 6.2.

It merely requires the sum of weights on examples and the sum of squared weights on

appropriate partitions defined by the weak learner. Further, given a weak learner, note

that (6.9) only requires O(n) time to evaluate.

It is easy to see that AdaBoost is a specific instance of EBBoost algorithm. For the choice

λ = 0, (6.6) becomes
(
∑n

i=1 e
−yif(xi)

)2
. Even though this cost function is the AdaBoost cost

squared, the optimal choice of α remains the same since the AdaBoost cost is non-negative.

Substituting, λ = 0 in the expression for α above,

α =
1

4
log

(

(
∑

i∈I wi)
2

(
∑

i∈J wi)2

)

=
1

2
log

(
∑

i∈I wi
∑

i∈J wi

)

,

which coincides with the choice of α in AdaBoost.

6.4 Experiments

In this section, the empirical performance of the proposed algorithm is studied. The primary

comparison is between AdaBoost and EBBoost. There are numerous variants of boosting

algorithms; many of these variants are exploring other intricacies of the classification prob-

lems (sparsity, robustness to outliers and so forth). While performance is reported for three

variants, the goal is not to find a method that outperforms every variant of boosting un-

der every possible choice of weak learners. In fact, many of these boosting variants could

also be modified to incorporate sample variance penalization. The emphasis, rather, is on

CHAPTER 6. BOOSTING 96

comparing AdaBoost with EBBoost with a simple family of weak learners such as deci-

sion stumps. Experiments with three other boosting variants are included simply to give

a broader perspective. The following variants of the boosting algorithms are considered in

the experiments in this chapter:

Dataset AdaBoost EBBoost RLP-Boost RQP-Boost ABR

a5a 18.07 ± 0.6 17.82 ± 0.6 17.90 ± 0.8 18.06 ± 0.9 17.80 ± 0.5

abalone 22.53 ± 0.8 22.38 ± 0.9 23.68 ± 1.3 23.01 ± 1.3 22.40 ± 0.7

image 4.28 ± 0.8 4.04 ± 0.8 4.19 ± 0.8 3.79 ± 0.7 4.27 ± 0.8

nist09 1.28 ± 0.2 1.17 ± 0.1 1.43 ± 0.2 1.25 ± 0.2 1.18 ± 0.2

nist14 0.80 ± 0.2 0.70 ± 0.1 0.89 ± 0.2 0.78 ± 0.2 0.74 ± 0.1

nist27 2.56 ± 0.3 2.41 ± 0.3 2.72 ± 0.3 2.49 ± 0.3 2.32 ± 0.3

nist38 5.68 ± 0.6 5.34 ± 0.4 6.04 ± 0.4 5.48 ± 0.5 5.24 ± 0.5

nist56 3.64 ± 0.5 3.38 ± 0.4 3.97 ± 0.5 3.61 ± 0.4 3.42 ± 0.3

mushrooms 0.35 ± 0.3 0.28 ± 0.3 0.30 ± 0.3 0.30 ± 0.3 0.29 ± 0.4

musklarge 7.80 ± 1.0 6.89 ± 0.6 7.83 ± 1.0 7.29 ± 1.0 7.22 ± 0.7

ringnorm 15.05 ± 3.1 13.45 ± 2.4 15.25 ± 4.2 14.55 ± 3.0 14.35 ± 3.1

spambase 7.74 ± 0.7 7.18 ± 0.8 7.45 ± 0.6 7.25 ± 0.7 6.99 ± 0.6

splice 10.57 ± 1.1 10.27 ± 0.9 10.28 ± 0.8 10.18 ± 1.0 10.02 ± 0.9

twonorm 4.30 ± 0.4 4.00 ± 0.2 4.87 ± 0.5 4.19 ± 0.4 4.16 ± 0.4

w4a 2.80 ± 0.2 2.75 ± 0.2 2.76 ± 0.1 2.77 ± 0.2 2.75 ± 0.2

waveform 12.96 ± 0.8 12.90 ± 0.8 12.75 ± 0.9 12.22 ± 0.9 12.47 ± 0.7

wine 26.03 ± 1.2 25.66 ± 1.0 25.00 ± 1.2 25.20 ± 1.0 25.09 ± 1.2

wisc 5.00 ± 1.5 4.00 ± 1.3 4.14 ± 1.5 4.71 ± 1.5 4.46 ± 1.6

Table 6.1: For each dataset, the algorithm with the best percentage test error is represented

by a dark gray cell. All the light gray in a row denote results that are not significantly

different from the minimum error (by a paired t-test at 5% significance level). EBBoost

outperforms AdaBoost on all datasets.

CHAPTER 6. BOOSTING 97

Regularized LP and QP Boost Given a dataset, first AdaBoost is run to obtain train-

ing predictions from weak learners. LP and QP Boost algorithms [Raetsch et al., 2001]

then optimize the weights on weak learners obtained by AdaBoost to maximize the margin

(along with regularization on the weights). Once the optimizations are solved, predictions

are obtained based on the outputs of the same weak learners on the test set.

Boosting with Soft Margin AdaBoostREG (ABR) [Raetsch et al., 2001] optimizes a

“soft margin” by allowing slacks on examples; this is better suited to handle noisy situations.

Experiments were performed on a number of publicly available datasets. Only datasets,

that had at least 400 examples so that both validation and test sets had at least 100

examples, were chosen. For each dataset, the minimum of half of the examples (or 500

examples) were chosen as training examples. This was done since solving an LP or QP

with a large number of examples can be quite expensive compared to boosting. Moreover,

ABR requires a line search which can also be much slower than AdaBoost. The remaining

examples in each dataset were divided equally into validation and test sets by a random

split. For AdaBoost, EBBoost, and ABR, 500 randomly generated decision stumps were

considered as the weak learners. Each algorithm was run until there was no drop in the

validation error rate in 50 iterations; the corresponding test error rate was then noted. The

set of weak learners recovered by AdaBoost was given to regularized LP and QP boosting

procedures. For all methods (other than AdaBoost) there is an extra parameter to tune.

The value of the parameter that resulted in the minimum error on the validation set was

used to obtain the test error. The experiment was repeated 20 times over random splits of

training, test, and validation sets. Results are reported in Table 6.1.

EBBoost shows significant improvement over AdaBoost on most of the datasets; in fact,

it shows an improvement over every single dataset. ABR’s performance comes closest to

EBBoost even though the methods are qualitatively quite different. In fact, it is straight-

forward to obtain a soft margin version of EBBoost by replacing the choice of loss function.

Moreover, in the following section, it will be shown that the performance gains of EBBoost

and ABR emerge for completely different reasons and the intuitions underlying the two may

be complementary.

CHAPTER 6. BOOSTING 98

−0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

margin

C
um

ul
at

iv
e

fr
eq

ue
nc

y

EBBoost
AdaBoost
Soft Margin

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

margin

EBBoost
AdaBoost
Soft Margin

0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

margin

EBBoost

AdaBoost

Soft Margin

Figure 6.1: Cumulative margin distributions on three different datasets (wisconsin, mnist27,

mushrooms). ABR obtains a long tail indicating its “slackness”. EBBoost’s margins are

characterized by a smaller variance.

6.4.1 Discussion

Since EBBoost and ABR showed similar performance overall, it is interesting to see how the

solutions differ. For this purpose, the margin distribution on the training examples were

compared. The effectiveness of boosting can be (to some extent), explained by the margin

distribution [Schapire et al., 1998; Koltchinskii and Panchenko, 2002]. Recall the definition

of margin on an example xi: γ(xi, yi) = yi
∑S

s=1 αsG
s(xi)/

∑S
s=1 αs, based on the additive

model (6.7).

The margin distributions obtained by various algorithms on all the datasets were vi-

sualized. These plots show the average margin distribution over the experiments at the

setting of the parameters selected by validation. Three typical cumulative margin distri-

bution plots are shown in Figure 6.1. Even though ABR and EBBoost showed similar test

error rates, they have fairly different margin distributions. Typically, ABR has a long tail

over incorrect predictions (due to its use of slack on hard to classify examples) whereas

EBBoost is characterized by a small variance (not surprisingly, since the variance with an

exponential loss is being minimized). In addition, the mean and standard deviation of all

the margin values on all datasets were obtained. Table 6.2 summarizes those results. ABR

obtains larger mean margin as well as large standard deviations. EBBoost typically obtains

CHAPTER 6. BOOSTING 99

AdaBoost EBBoost ABR

a5a 0.21 ± 0.20 0.19 ± 0.17 0.20 ± 0.19

abalone 0.12 ± 0.12 0.12 ± 0.12 0.13 ± 0.13

image 0.14 ± 0.08 0.13 ± 0.06 0.14 ± 0.08

mnist09 0.45 ± 0.13 0.44 ± 0.12 0.48 ± 0.13

mnist14 0.47 ± 0.12 0.38 ± 0.07 0.51 ± 0.12

mnist27 0.32 ± 0.12 0.29 ± 0.10 0.35 ± 0.13

mnist38 0.22 ± 0.10 0.20 ± 0.08 0.24 ± 0.10

mnist56 0.30 ± 0.12 0.29 ± 0.11 0.32 ± 0.13

mushrooms 0.26 ± 0.06 0.26 ± 0.05 0.28 ± 0.07

musklarge 0.18 ± 0.09 0.15 ± 0.06 0.18 ± 0.09

ringnorm 0.15 ± 0.07 0.14 ± 0.06 0.15 ± 0.07

spambase 0.21 ± 0.13 0.19 ± 0.10 0.23 ± 0.13

splice 0.19 ± 0.12 0.18 ± 0.10 0.22 ± 0.14

twonorm 0.29 ± 0.14 0.26 ± 0.11 0.30 ± 0.14

w4a 0.27 ± 0.11 0.23 ± 0.07 0.38 ± 0.12

waveform 0.25 ± 0.17 0.22 ± 0.14 0.28 ± 0.19

wine 0.13 ± 0.15 0.13 ± 0.14 0.12 ± 0.14

wisconsin 0.39 ± 0.15 0.35 ± 0.12 0.59 ± 0.21

Table 6.2: Mean and standard deviation of margins.

slightly smaller margins compared to AdaBoost but with much smaller variances. However,

both EBBoost and ABR show accuracy improvements over AdaBoost. It is believed that

the improvements of ABR are due to its ability to handle noisy situations and outliers more

gracefully. The performance advantage of EBBoost is justified by the empirical Bernstein

bound (the initial motivation). Typically, the margin distribution bounds do not explicitly

account for variance information; an interesting direction for future research is to explore

the relationship between the empirical Bernstein bounds as well as previous analyses of the

margin distribution.

CHAPTER 6. BOOSTING 100

6.5 Summary

A novel boosting algorithm based on the empirical Bernstein inequality was proposed. The

algorithm is as easy to implement as AdaBoost and is as efficient computationally (it does

not require an expensive line search). EBBoost showed significant empirical advantages over

AdaBoost. This chapter demonstrates that it is possible to design efficient algorithms based

on sample variance penalization and to obtain improvements in test error. This chapter

essentially showed the advantage of trading-off between the loss and the variance (for an

exponential loss).

CHAPTER 7. CONCLUSIONS 101

Chapter 7

Conclusions

This thesis proposed a generic idea called the “relative margin” to overcome certain limi-

tations associated with large margin solutions. The key contributions of this thesis are the

following:

• A sensitivity of large margin methods to affine transformations was identified.

• Several possible solutions were discussed and a particularly easy to implement and

efficient formulation called the relative margin machines was proposed.

• Relative margin machine was shown to outperform the support vector machine on

several datasets (both synthetic and real world).

• Generalization bounds for the proposed algorithms were derived using the notion

of Rademacher complexity. This derivation involved a novel method of landmark

examples to overcome certain difficulties associated with a data-dependent function

class.

• The idea of relative margin is not restricted just to binary classification problems. Two

useful extensions–to structured prediction and graph Laplacian spectrum learning–

were shown.

• Based on the recent bounds involving empirical variance, an efficient boosting algo-

rithm was proposed as well.

CHAPTER 7. CONCLUSIONS 102

There are several possible future directions to pursue this line of research. One obvious

direction of research is that nearly any large margin learning algorithm can be extended to

a large relative margin learning. Maximum margin matrix factorization [Srebro et al., 2005;

Rennie and Srebro, 2005], maximum entropy discrimination [Jaakkola et al., 1999] , multi-

task learning [Evgeniou and Pontil, 2004] multiple kernel learning [Lanckriet et al., 2004],

semi-supervised learning [Belkin et al., 2006] etc. are just some of the possible candidates

for a relative margin extension.

The bounding constraints in the relative margin machine are unsupervised, meaning

that they don’t really require the labels. One natural extension is to exploit unlabeled

examples in bounding constraints in a semi-supervised (or a transductive setup).

The approaches proposed in this thesis considered the first and second order moments.

A natural question is: how do the higher order moments contribute to learning? Are there

efficient algorithms to exploit higher order moments?

APPENDIX A. APPENDIX 103

Appendix A

Appendix

A.1 McDiarmid’s inequality

Assume X1,X2, . . . ,Xn are independent random variables from a set X and g : X n → R. If

the function g satisfies supX1,...,Xn,X̂k
|g(X1, . . . ,Xn) − g(X1, . . . , X̂k, . . . ,Xn)| ≤ ck, for all

1 ≤ k ≤ n then, for any ǫ > 0:

P [g(X1, . . . ,Xn)−E[g(X1, . . . ,Xn)] ≥ ǫ] ≤ exp

(

− 2ǫ2
∑n

i=1 c
2
i

)

, (A.1)

P [E[g(X1, . . . ,Xn)]− g(X1, . . . ,Xn) ≥ ǫ] ≤ exp

(

− 2ǫ2
∑n

i=1 c
2
i

)

,

where the expectations are over the random draws of X1, . . . ,Xn. Here the constants

c1, c2, · · · , cn are called Lipschitz constants.

A.2 Lipschitz constants for Section 3.4

Lemma 32 The upper bound on R̂(GU
B,D), namely T1(U,S), admits the Lipschitz constant:

2
√

2B

D̄n





√

√

√

√

n
∑

i=1

x⊤
i xi −

√

√

√

√

n
∑

i=1

x⊤
i xi −

DR2µmax

nD̄ +DR2



 .

Proof The quantity of interest is the worst change in

2
√

2B

n

√

√

√

√

n
∑

i=1

xi(D̄I +
D

n

n
∑

j=1

uju
⊤
j)−1x⊤

i

APPENDIX A. APPENDIX 104

when uk is varied for any setting of u1, . . . ,uk−1,uk+1, . . . ,un. Since
∑n

j=1,j 6=k uju
⊤
j is

positive semi-definite and inside the inverse operator, uk will have the most extreme effect

on the expression when
∑n

j=1,j 6=k uju
⊤
j = 0. Thus, consider:

2
√

2B

n

√

√

√

√

n
∑

i=1

x⊤
i

(

D̄I +
D

n
uku

⊤
k

)−1

xi.

Apply the Woodbury matrix inversion identity to the term inside the square root:

n
∑

i=1

x⊤
i

(

D̄I +
D

n
uku

⊤
k

)−1

xi =
1

D̄

n
∑

i=1

x⊤
i

(

I− uku
⊤
k

nD̄
D + u⊤

k uk

)

xi

=
1

D̄

(

n
∑

i=1

x⊤
i xi −

∑n
i=1(x

⊤
i uk)

2

nD̄
D + u⊤

k uk

)

.

The maximum value of this expression occurs when uk = 0. To find the minimum, write

the second term inside the brackets in the above expression as below:

(

u⊤
k

‖uk‖

n
∑

i=1

xix
⊤
i

uk

‖uk‖

)

/

(

nD̄

Du⊤
k uk

+ 1

)

.

Clearly, in the numerator, the magnitude of uk does not matter. To maximize this ex-

pression, uk should be set to a vector of maximal length and in the same direction as the

maximum eigenvector of
∑n

i=1 xix
⊤
i . Since all examples are assumed to have bounded norm

no larger than R, the largest uk vector has norm R. Denoting the maximum eigenvalue

of
∑n

i=1 xix
⊤
i by µmax, it is easy to show the claimed value of Lipschitz constant for any k.

Lemma 33 The upper bound on R̂(HV
E,D), namely T2(V,S), admits the Lipschitz constant:

2
√

2E

D̄n





√

√

√

√

n
∑

i=1

x⊤
i xi −

√

√

√

√

n
∑

i=1

x⊤
i xi −

DR2µmax

nD̄ +DR2



 .

Proof The quantity of interest is the maximum change in the following optimization

problem over uk for any setting of u1,u2, . . . ,uk−1,uk+1, . . . ,unv :

min
λ≥0

1

n

n
∑

i=1

x⊤
i



D̄

nv
∑

j=1

λjI +D

nv
∑

j=1

λjuju
⊤
j





−1

xi +
2

n
E

nv
∑

i=1

λi.

APPENDIX A. APPENDIX 105

As before, this happens when all u’s except uk are 0. In such a scenario, the expression is

minimized for the setting λj = 0 for all j 6= k. The minimization only needs to consider vari-

able settings of λk. Since this minimization is over a single scalar, it is possible to obtain a

closed-form expression for λk. The optimal λk is merely: 1√
2E

∑n
i=1 x⊤

i

(

D̄I +Duku
⊤
k

)−1
xi.

Substituting this into the objective gives an expression which is independent of λ’s:

2
√

2E

n

√

√

√

√

n
∑

i=1

x⊤
i

(

D̄I +
D

n
uku

⊤
k

)−1

xi.

This expression is identical to the one obtained in Theorem 32 and the proof follows.

A.3 Solving for nv

Let x = 1√
nv
, c = 4R

√

2E
D̄

and b = 3
2

√

ln (2/δ)
2 . Consider solving for x in the expression

x2− 2bx = (c+ 2b)/
√
n. Equivalently, solve (x− b)2 = b2 + (c+ 2b)/

√
n. Taking the square

root of both sides gives x = b ±
√

b2 + (c+ 2b)/
√
n. Since x > 0, only the positive root

is considered. Thus,
√
nv = 1/(b +

√

b2 + (c+ 2b)/
√
n) which gives an exact expression

for nv. Dropping terms from the denominator produces the simpler expression:
√
nv ≤

1/
√

(c+ 2b)/
√
n. Hence, nv ≤

√
n

4R
q

2E
D̄

+3
q

ln (2/δ)
2

.

BIBLIOGRAPHY 106

Bibliography

[Altun et al., 2003a] Y. Altun, T. Hofmann, and M. Johnson. Discriminative learning for

label sequence via boosting. In In Advances in Neural Information Processing Systems

15, 2003.

[Altun et al., 2003b] Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden markov support

vector machines. In In Proceedings of the Twentieth International Conference on Machine

Learning, 2003.

[Asuncion and Newman, 2007] A. Asuncion and D.J. Newman. UCI machine learning

repository, 2007.

[Audibert et al., 2007] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. Tuning

bandit algorithms in stochastic environments. In 18th Algorithmic Learning Theory, pages

150–165, 2007.

[Bach et al., 2004] F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel

learning, conic duality, and the smo algorithm. In International Conference on Machine

Learning, 2004.

[Bakir et al., 2006] G. Bakir, T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, and S.V.N.

Vishwanathan, editors. Predicting Structured Data. MIT Press, Cambridge, MA, 2006.

[Bartlett and Mendelson, 2002] P. L. Bartlett and S. Mendelson. Rademacher and Gaussian

complexities: Risk bounds and structural results. Journal of Machine Learning Research,

3:463–482, 2002.

BIBLIOGRAPHY 107

[Bartlett et al., 2006] P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classifi-

cation, and risk bounds. Journal of the American Statistical Association, 101(473):138–

156, 2006.

[Belkin et al., 2005] M. Belkin, P. Niyogi, and V. Sindhwani. On manifold regularization.

In Artificial Intelligence and Statistics, 2005.

[Belkin et al., 2006] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A ge-

ometric framework for learning from labeled and unlabeled examples. Journal of Machine

Learning Research, 7:2399–2434, 2006.

[Bengio et al., 2007] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-

wise training of deep networks. In B. Schölkopf, J. Platt, and T. Hoffman, editors,

Advances in Neural Information Processing Systems 19, pages 153–160. MIT Press, Cam-

bridge, MA, 2007.

[Bousquet et al., 2004] O. Bousquet, S. Boucheron, and G. Lugosi. Introduction to Statisti-

cal Learning Theory, volume Lecture Notes in Artificial Intelligence 3176, pages 169–207.

Springer, Heidelberg, Germany, 2004.

[Boyd and Vandenberghe, 2003] S. Boyd and L. Vandenberghe. Convex Optimization.

Cambridge University Press, 2003.

[Burges, 1998] C. Burges. A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

[Cawley and Talbot, 2003] G. C. Cawley and N. L. C Talbot. Efficient leave-one-out cross-

validation of kernel fisher discriminant classifiers. Pattern Recognition, 36:2585–2592,

2003.

[Cesa-Bianchi et al., 2002] N. Cesa-Bianchi, A. Conconi, and C. Gentile. A second-order

perceptron algorithm. In in Proc. 5th Annu. Conf. Computational Learning Theory (Lec-

ture Notes in Artificial Intelligence). Berlin, Germany, volume 2375, pages 121–137, 2002.

[Cesa-Bianchi et al., 2005] N. Cesa-Bianchi, A. Conconi, and C. Gentile. A second-order

perceptron algorithm. SIAM Journal of Computing, 34(3):640–668, 2005.

BIBLIOGRAPHY 108

[Chow and Schwartz, 1991] Y-L Chow and R Schwartz. The n-best algorithm: an efficient

procedure for finding top n sentence hypotheses. In In Proceedings of the IEEE Interna-

tional Conference on Acoustics, Speech and Signal processing, pages 81–84, 1991.

[Crammer et al., 2009a] K. Crammer, M. Dredze, and F. Pereira. Exact convex confidence-

weighted learning. In Advances in Neural Information Processing Systems 21, Cambridge,

MA, 2009. MIT Press.

[Crammer et al., 2009b] K. Crammer, M. Mohri, and F. Pereira. Gaussian margin ma-

chines. In Proceedings of the Artificial Intelligence and Statistics, 2009.

[Cristianini et al., 2001] N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. S. Kandola.

On kernel-target alignment. In NIPS, pages 367–373, 2001.

[Decoste and Schölkopf, 2002] D. Decoste and B. Schölkopf. Training invariant support

vector machines. Machine Learning, pages 161–190, 2002.

[Dredze et al., 2008] M. Dredze, K. Crammer, and F. Pereira. Confidence-weighted linear

classification. In Internationcal Conference on Machine Leaarning, 2008.

[Duda et al., 2000] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-

Interscience Publication, 2000.

[Evgeniou and Pontil, 2004] T. Evgeniou and M. Pontil. Regularized multi–task learning.

In KDD, pages 109–117, 2004.

[Freund and Schapire, 1997] Y. Freund and R. E. Schapire. A decision-theoretic generaliza-

tion of on-line learning and an application to boosting. Journal of Computer and System

Sciences, 55(1):119–139, 1997.

[Haffner, 2001] P. Haffner. Escaping the convex hull with extrapolated vector machines. In

T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information

Processing Systems 14, pages 753–760. MIT Press, Cambridge, MA, 2001.

[Hastie et al., 2001] Trevor Hastie, Robert Tibshirani, and J. H. Friedman. The elements of

statistical learning: data mining, inference, and prediction. New York: Springer-Verlag,

2001.

BIBLIOGRAPHY 109

[Herbrich et al., 2001] R. Herbrich, T. Graepel, and C. Campbell. Bayes point machines.

Journal of Machine Learning Research, 1:245–279, 2001.

[Jaakkola et al., 1999] T. Jaakkola, M. Meila, and T. Jebara. Maximum entropy discrimi-

nation. In Advances in Neural Information Processing Systems 11, 1999.

[Joachims, 1998] T. Joachims. Making large-scale support vector machine learning practi-

cal. In A. Smola B. Schölkopf, C. Burges, editor, Advances in Kernel Methods: Support

Vector Machines. MIT Press, Cambridge, MA, 1998.

[Joachims, 1999] T. Joachims. Transductive inference for text classification using support

vector machines. In Proceedings of the 16th International Conference on Machine Learn-

ing, 1999.

[Joachims, 2003] T. Joachims. Transductive learning via spectral graph partitioning. In

ICML, pages 290–297, 2003.

[Joachims, 2006] T. Joachims. Training linear SVMs in linear time. In ACM SIGKDD

International Conference On Knowledge Discovery and Data Mining (KDD), pages 217–

226, 2006.

[Keerthi, 2002] S.S. Keerthi. Efficient tuning of svm hyperparameters using radius/margin

bound and iterative algorithms. IEEE Transactions on Neural Networks, 13:1225–1229,

2002.

[Koltchinskii and Panchenko, 2002] V. Koltchinskii and D. Panchenko. Empirical margin

distributions and bounding the generalization error of combined classifiers. Annals of

Statistics, 30, 2002.

[Kondor and Lafferty, 2002] R. I. Kondor and J. D. Lafferty. Diffusion kernels on graphs

and other discrete input spaces. In ICML, pages 315–322, 2002.

[Lafferty et al., 2001] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields:

Probabilistic models for segmenting and labeling sequence data. In In Proceedings of the

Eighteenth International Conference on Machine Learning, pages 282–289, 2001.

BIBLIOGRAPHY 110

[Lanckriet et al., 2004] G. R. G. Lanckriet, N. Cristianini, P. L. Bartlett, L. E. Ghaoui,

and M. I. Jordan. Learning the kernel matrix with semidefinite programming. Journal

of Machine Learning Research, 5:27–72, 2004.

[LeCun et al., 1989] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard,

W. Hubbard, and L. Jackel. Back-propagation applied to handwritten zip code recogni-

tion. Neural Computation, 1:541–551, 1989.

[LeCun et al., 1998] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learn-

ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[Ma et al., 2010] J. Ma, A. Kulesza, M. Dredze, K. Crammer, L. Saul, and F. Pereira.

Exploiting feature covariance in high-dimensional online learning. In Proceedings of the

Artificial Intelligence and Statistics, 2010.

[Maurer and Pontil, 2009] Andreas Maurer and Massimiliano Pontil. Empirical Bernstein

bounds and sample variance penalization. In 22nd Annual Conference on Learning The-

ory, 2009.

[Mika et al., 1999] S. Mika, G. Raetsch, J. Weston, B. Scholkopf, and K.-R. Muller. Fisher

discriminant analysis with kernels. In in Neural Networks for Signal Processing IX, pages

41–48, 1999.

[Mnih et al., 2008] Volodymyr Mnih, Csaba Szepesvári, and Jean-Yves Audibert. Empiri-

cal Bernstein stopping. In Proceedings of the Twenty-Fifth International Conference on

Machine Learning, pages 672–679, 2008.

[Raetsch et al., 2001] G. Raetsch, T. Onoda, and K.-R. Muller. Soft margins for adaboost.

Machine Learning, 43:287–320, 2001.

[Rennie and Srebro, 2005] J. D. M. Rennie and N. Srebro. Fast maximum margin matrix

factorization for collaborative prediction. In In Proceedings of the 22nd International

Conference on Machine Learning (ICML, pages 713–719. ACM, 2005.

BIBLIOGRAPHY 111

[Schapire et al., 1998] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting

the margin: a new explanation for the effectiveness of voting methods. The Annals of

Statistics, 26:322–330, 1998.

[Schölkopf and Smola, 2002] B. Schölkopf and A.J. Smola. Learning with Kernels. MIT

Press, Cambridge, MA, USA, 2002.

[Schölkopf et al., 1998] B. Schölkopf, A. J. Smola, and K.-R. Müller. Nonlinear component

analysis as a kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

[Shalev-Shwartz et al., 2007] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal

estimated sub-gradient solver for svm. In International Conference on Machine Learning,

2007.

[Shawe-Taylor and Cristianini, 2004] J. Shawe-Taylor and N. Cristianini. Kernel Methods

for Pattern Analysis. Cambridge University Press, 2004.

[Shivaswamy and Jebara, 2007] P. K. Shivaswamy and T. Jebara. Ellipsoidal kernel ma-

chines. In Proceedings of the Artificial Intelligence and Statistics, 2007.

[Shivaswamy and Jebara, 2009] P. K. Shivaswamy and T. Jebara. Structured prediction

with relative margin. In International Conference on Machine Learning and Applications,

2009.

[Shivaswamy and Jebara, 2010a] P. Shivaswamy and T. Jebara. Laplacian spectrum learn-

ing. In European Conference on Machine Learning, 2010.

[Shivaswamy and Jebara, 2010b] P. Shivaswamy and T. Jebara. Maximum relative margin

and data-dependent regularization. Journal of Machine Learning Research, 11:747–788,

2010.

[Sinz et al., 2008] F. Sinz, O. Chapelle, A. Agarwal, and B. Schölkopf. An analysis of

inference with the universum. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors,

Advances in Neural Information Processing Systems 20, pages 1369–1376. MIT Press,

Cambridge, MA, 2008.

BIBLIOGRAPHY 112

[Smola and Kondor, 2003] A. J. Smola and R. I. Kondor. Kernels and regularization on

graphs. In COLT, pages 144–158, 2003.

[Srebro et al., 2005] N. Srebro, J. D. M. Rennie, and T. S. Jaakola. Maximum-margin

matrix factorization. In Advances in Neural Information Processing Systems 17, pages

1329–1336. MIT Press, 2005.

[Taskar et al., 2004] B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks.

In Advances in Neural Information Processing Systems 16, 2004.

[Tsochantaridis et al., 2004] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun.

Support vector machine learning for interdependent and structured output spaces. In

International Conference on Machine Learning (ICML), 2004.

[Tsochantaridis et al., 2005] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.

Large margin methods for structured and interdependent output variables. Journal of

Machine Learning Research (JMLR), 6:1453–1484, September 2005.

[Vapnik and Vashist, 2009] V. Vapnik and A. Vashist. A new learning paradigm: Learning

using privileged information. Neural Networks, 22(5-6):544–557, 2009.

[Vapnik, 1995] V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New

York, 1995.

[Weston et al., 2000] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and

V. Vapnik. Feature selection for SVMs. In T. K. Leen, T. G. Dietterich, and V. Tresp,

editors, Advances in Neural Information Processing Systems 13, pages 668–674. MIT

Press, Cambridge, MA, 2000.

[Weston et al., 2006] J. Weston, R. Collobert, F. H. Sinz, L. Bottou, and V. Vapnik. In-

ference with the universum. In Proceedings of the International Conference on Machine

Learning, pages 1009–1016, 2006.

[Zhang et al., 2005] B. Zhang, X. Chen, S. Shan, and W. Gao. Nonlinear face recognition

based on maximum average margin criterion. In Computer Vision and Pattern Recogni-

tion, pages 554–559, 2005.

BIBLIOGRAPHY 113

[Zhu et al., 2003] X. Zhu, J. Lafferty, and Z. Ghahramani. Semi-supervised learning: From

gaussian fields to gaussian processes. Technical report, Carnegie Mellon University, 2003.

[Zhu et al., 2004] X. Zhu, J. S. Kandola, Z. Ghahramani, and J. D. Lafferty. Nonparametric

transforms of graph kernels for semi-supervised learning. In NIPS, 2004.

