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1 Problem Formulation

Let U4 = {1,...,m} be the set of users, let V =
{1,...,n} be the set of items, and let 7 = {1,...,T}
indicate the local time. Then, the sample space is de-
fined as

X={(u,Ci,t) [ueU,CCV,icCteT}. (1)

Let P[] denote probability, let C? be the set C' exclud-

ing element i, and let ¢ X C mean that c is sampled
uniformly from C. Then, the local ranking loss asso-
ciated with hypothesis g is

Ly (u,C,i,t)= P [g(u,i,t) —g(u,c,t) <0]. (2)

cR i

2 A Bound on the Generalization
Error

We assume that the hypothesis class is based on the
set of low-rank matrices. Given a low-rank matrix
M, let gy € F be the associated hypothesis, where
gum (u, i) = M, ;. Throughout the paper, we abuse
notation and use gp; and M interchangeably. We
assume that data is generated with respect to D,
which is an unknown probability distribution over
the sample space X, and we let E denote expecta-
tion. Then, the generalization error of hypothesis M
is CE) DL w (u, C, 1), which is the quantity we bound
32)~

(u,
below.

We will derive the generalization bound in two
steps. In the first step, we will bound the empirical
Rademacher complexity of our loss class, defined be-
low, with respect to samples that contain exactly 2
candidates, and in the second step, we will prove the
generalization bound with a reduction to the previous
step.

Lemma 1. Let m be the number of users and
let n be the number of items. Define L, =
{Lpr | M € R™*"™ has rank at most r} as the class of
loss functions associated with low-rank matrices. As-
sume that Sy C X is a set of d samples, where each
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sample contains exactly 2 candidate items; i.e. if
(u,C,i) € Sy, then |C| = 2. Let Rg, (L,) denote
the Rademacher complezity of L, with respect to Ss.
Then,

2r (m + n) In (4t )

RS2 (Er) < d
Proof. Because each sample in S contains exactly
2 candidates, any hypothesis Ly, € L, applied to
a sample in Sy outputs either 0 or 1. Thus, the
set of dichotomies that are realized by L, on Sy,
called Tz, (S2), is well-defined. Using Equation (6)
from Boucheron et al. [1], we know that Rg, (£,) <

w. Let X5 C X be the set of all sam-

ples that contain exactly 2 candidates, |1z, (S2)| <
[Tz, (X2)], so it suffices to bound |TI., (A3)].

We bound |1z, (X2)| by counting the sign configura-
tions of polynomials using proof techniques that are
influenced by Srebro et al. [4]. Let (u,{i,j},i) € Xa
be a sample and let M be a hypothesis matrix. Be-
cause M has rank at most r, it can be written as
M = UVT, where U € R™*" and V € R™*". Let [-]
denote an indicator function that is 1 if and only if its
argument is true. Then, the loss on the sample can also
be rewritten as Las (u, {,j},4) = [My,i— M, ; <0] =
T

[[(UVT>u i_(UVT)uj < 0]] = HZ Uua (Vi,a - Vj,a) <
’ ’ a=1

0]. Since cardinality of X5 is at most 2m(g) < mn?,
putting it all together, it follows that [IIz (AX3)| is
bounded by the number of sign configurations of mn?
polynomials, each of degree at most 2, over r (m + n)
variables. Applying Corollary 3 from Srebro et al. [4],

: 16emn? r(m-+n) :
we obtain [Tz, (Xs)] < (T(ern)) . Taking log-
arithms and making basic substitutions yield the de-
sired result. O

We proceed to proving the more general result via a
reduction to Lemma 1.

Theorem 1. Let m be the number of users and let n
be the number of items. Assume that S consists of d
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independently and identically distributed samples cho-
sen from X with respect to a probability distribution D.
Let Ly; be the loss function associated with a matriz
M, as defined in Equation 2. Then, with probability
at least 1 — 8, for any matriz M € R™*™ with rank at
most r,

E Ly (u,Cé) <

Ol E Ly (u,C,i)

(u,C,))RS

“W (e (22 | \/2lnd(§). 5

Proof. We will manipulate the definition of
Rademacher complexity [1] in order to use the
bound given in Lemma 1:

d
(;ZUaLM (ua; Ccm Za))]
" a=1

r d
1

=E| sup (d Oa E LM(ua,{ia,ja},ia)>]
7 Imel \ %z ja%<c \{ia})
=E| su E ool (Uas {iasja} s ia
2| o (2, 3 et i) )

_ J .
<E E sup = > 0oL (e, {iasJatsta
2,2, (am i G )
= E E{ su ooLing (Uay {iasJa} s ia
hwmg<wgd23 (i {i y}>)
= E [Rs, (Ly)]

J1y--+5]0d

16emn?
2r (m +n)ln (T(m—i—n))
d

<

Plugging the bound to Theorem 3.2 in Boucheron et
al. [1] proves the theorem. O

3 Collaborative Local Ranking

Let h () = max (0,1 — z) be the hinge function, let M
be the hypothesis matrix with rank at most r, and let
M = UVT, where U € R™*" and V € R"*". Then,

we can bound the empirical local ranking loss as

1

E Ly (uCi)=—= Y. Lu(uC,i
(u,C,i)R8 1] (u,C,i)eS

1

ER AL

(u,Cii)es ¢~

1

= W Z E [[Mu,i - Mu,c < 0]]

Ui
(uC'L)ESCNC

:ﬁ 2 ]

Ieg] ZH ov?),,—(vh), <0

(u,C,7) ES ceCt
< > @ Zh( (Ov7),, - Ov7),.).
‘ | (u,C,1) GS |CEC" N 7

(4)

We note that the CLR and the ranking SVM [2] ob-
jectives are closely related. If V is fixed and we
only need to minimize U, then each row of V acts
as a feature vector for the corresponding item, each
row of U acts as a separate linear predictor, and
the CLR objective decomposes into solving simul-
taneous ranking SVM problems. In particular, let
Sy ={(a,C,i) € S| a =u} be the examples that cor-
respond to user u, let U, denote row u of U, and let
VM denote the objective function of ranking SVM,
then

FR(S:U,V) *||U||F
| |(uCz)€S |c»€C1 ’

—Z U1
% z
C,i)es

rSVM Suy Uua V)

Zh( (v, (UVT)M)

ceCt

Z_: ¢
-2

4 Algorithms

4.1 Derivation

Let (u,C,4) € S be an example, then the correspond-
ing approximate objective function is

fmwwcnwmozﬁwm

S h ( VT, — (UVT)W).

ceC?

ICll

We introduce various matrix notation to help us define
the approximate subgradients. Given a matrix M, let
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Algorithm 1 Alternating minimization for optimizing
the CLR objective.

Algorithm 2 Projected stochastic subgradient de-
scent for optimizing U.

Input: Training data S C X, regularization parame-
ter A > 0, rank constraint r, number of iterations
T.

1: Uy < Sample matrix uniformly at random from
:| mxXr

1 1
|:_ Vamr’ vV Amr
2: V1 < Sample matrix uniformly at random from
nxr
1 1
{_ Vanr’ \/)\nr} :
3: for all t from 1toT —1 do
4: Upyq + argmin fORR (S, U, V)
U

5. Vig1 < argmin fONR (S04, V)
%

6: return Urp, Vp.

Mj,.. denote row k of M. Define the matrix Mp*q*z, for
p# 4, as

M, for s = p,
—M,. fors=gq, (5)
0 otherwise,

and define the matrix MP?* as

MPDZ — My, — My,
5 0 otherwise.

for s = z,

(6)

Let [-] denote an indicator function that is 1 if and
only if its argument is true. Then, the subgradient of
the approximate objective function with respect to V'
is

fCLR((u C,i);U V)=V

|CZ| > Lovh),, - (Ov"),  <1Juse (1)
ceCt

Setting n; = % as the learning rate at iteration ¢,
the approximate subgradient update becomes V41 =
Vi —n:Vy fO"R ((u, C,4) ; U, V). After the update the
weights are projected onto a ball with radius f The
pseudocode for optimizing both convex subproblems is
depicted in Algorithms 2 and 3. We prove the correct-
ness of the algorithms and bound their running time
in the next subsection.

4.2 Analysis

The convex subproblems we analyze have the general
form

;{nemf (X;0) = ;{mn

1
||XHF+E Yo olx

(u,Ci)eS

(8)

s (u,C1)) .

Input: Factors V' € R™*" training data .S, regular-
ization parameter A\, rank constraint r, number of
iterations 7.

1: Uy < 0m*"
2: for all t from 1 to T'— 1 do
3:  Choose (u,C,i) € S uniformly at random.
4: Nt < %
5 cte{cect| (), - (UVT),, <1}
6 Ut+1<_(1_77t/\)Ut+‘C7 E chu
ceC+

' . S
7 Ui11 < min {17 VA Uizl F } Uts1
8: return Ur.

Algorithm 3 Projected stochastic subgradient de-
scent for optimizing V.

Input: Factors U € R™*" training data S, regular-
ization parameter A\, rank constraint r, number of
iterations T'.

1 Vi« ™"
2: for all t from 1 to T'— 1 do
3:  Choose (u,C,7) € S uniformly at random.
4: N < %
5. cte{cect| V), - (OVT),, <1}
6 Vt+1<—(1—77t/\)Vt+|Cl ZU”"

ceCt

7 ‘/75+1 < min {1, 7\/X\|Vlt+1“F } V;ngl
8: return Vr.

One can obtain the individual subproblems by specify-
ing the domain D and the loss function £. For example,
in case of Algorithm 2, the corresponding minimization
problem is specified by

min f(X;¢y) where

XeRmxr
v (X3 (u, C,i)) = |Cl|2h(XVT)
ceC

- (xv7),.)

9)

and in case of Algorithm 3, it is specified by

min f(X;¢y) where

(10)

XeRnxr

ly (X3 (u, C,d)) = |CZ|Zh(UXT)Z (Ux7),.):
ceci

Let U* = argming f(U;¢y) and V* =

argminy f (V;¢y) denote the solution matrices
of Equations 9 and 10, respectively. Also, given a
general convex loss ¢ and domain D, let X € D be an
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e-accurate solution for the corresponding minimization
problem if f (X;/) < minxep f (X;0) +e.

In the remainder of this subsection, we show that Al-
gorithms 2 and 3 are adaptations of the Pegasos [3]
algorithm to the CLR setting. Then, we prove certain
properties that are prerequisites for obtaining Pega-
sos’s performance guarantees. In particular, we show
that the approximate subgradients computed by Al-
gorithms 2 and 3 are bounded and the loss functions
associated with Equations 9 and 10 are convex. In the
end, we plug these properties into a theorem proved by
Shalev-Shwartz et al. [3] to show that our algorithms
reach an e-accurate solution with respect to their corre-
sponding minimization problems in 0 (ﬁ) iterations.
Lemma 2. |[U*| < % and ||[V*|| < %

Proof. One can obtain the bounds on the norms of the
optimal solutions by examining the dual form of the
optimization problems and applying the strong duality
theorem. Equations 9 and 10 can both be represented
as

K
min 3 ol + ek (fee)). (1)
k=1

where e}, = m is a constant, h is the hinge func-
tion, D is a Euclidean space, and fj is a linear func-
tion. We rewrite Equation 11 as a constrained opti-
mization problem

K
1, 2
i — 12
ler)I,lEHGlRK 2 HU” + kZ:lekgk ( )
subject to & >1— fi (v), k=1,... K,
& 20, k=1,...K

The Lagrangian of this problem is

1, o &
=3 loll” + Zekﬁk
- Zak (11— fx(v Zﬂksk

= % lo]|* + ;&c (ex — ax — B)

L(v,§ o

K
+) an (1— fi (v),
k=1
and its dual function is
9(0,8) = inf L(v,€,0,5).

Since L (v,&, «, 8) is convex and differentiable with re-
spect to v and &, the necessary and sufficient conditions

for minimizing v and & are

VoL =0 &

K
v = Zakvvfk (v)
=1

e=a+p. (13)

We plug these conditions back into the dual function
and obtain

9(a.8) = inf L(v.€,05)

% Zakv fi (v

A <>>

VgL:O <~

2

2 K
5 Zakv Fe @+ e (14)
k=1
K
Z kSr <Zakvvfk (U)> :
k= k=1
Since f, is a linear function, we let fi (v) = k- -v, where
k is a constant vector, and V, fi (v) = k. Then,
2 % 2
=[S
k=1

Simplifying Equation 14 using Equation 15 yields

+ Zak
Zak/} + Zak. (16)
k=1 k=1

Finally, we combine Equations 13 and 16, and obtain
the dual form of Equation 12,

K 2
E akk
k=1

subject to 0 < ax < ey,

g(a, ) =

max
a

+ ZO[}C (17)
k=1

k=1,...K.
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The primal problem is convex, its constraints are lin-
ear, and the domain of its objective is open; thus,
Slater’s condition holds and strong duality is obtained.
Furthermore, the primal problem has differentiable ob-
jective and constraint functions, which implies that
(v*,£*) is primal optimal and (a*, 5*) is dual optimal
if and only if these points satisfy the Karush-Kuhn-
Tucker (KKT) conditions. It follows that

vt = ajk. (18)

Note that we defined ¢, =

>«\>—‘

>\|S|\C » where kzle
and the constraints of the dual problem imply 0 <
ar < ex; thus, Zak < % Because of strong dual-

ity, there is no duahty gap, and the primal and dual
objectives are equal at the optimum,

K 2 K
| 12+ Zekﬁk = ZQZ’C +) ap
k=1 k=1

K
1 2
=—5 7l +) aj (by (18))
k=1
1 9 1
< —Zlo* -
< -5 I+ 5
* 12 1
= < —.
ol < 5
This proves the lemma. O

Given the bounds in Lemma 2, it can be verified that
Algorithms 2 and 3 are adaptations of the Pegasos [3]
algorithm for optimizing Equations 9 and 10, respec-
tively. It still remains to show that Pegasos’s perfor-
mance guarantees hold in our case.

Lemma 3. In Algorithms 2 and 3, the approximate
subgradients have norm at most /X + 2\/§.

Proof. The approximate subgradient for Algorithm 3
is depicted in Equation 7. Due to the projection step,
Vg < f’ and it follows that [|AV||, < vA. The

term U is constructed using Equation 5, and it can
be verified that H[Af”“ <V2|U|R < 4/3.
triangle inequality, one Igan bound Equation 7 with
VA + @ :
approximate subgradient of Algorithm 2, yielding the

slightly higher upper bound given in the lemma state-
ment. O

Using

A similar argument can be made for the

We combine the lemmas to obtain the correctness and
running time guarantees for our algorithms.

Lemma 4. Let \ < %, let T be the total number of
iterations of Algorithm 2, and let U; denote the pa-
mmeter computed by the algorithm at iteration t. Let
U= T Zt 1 U denote the average of the parameters
produced by the algorithm. Then, with probability at

least 1 — 9,

H(VA+2yD) m (D)

f(Usty) < fF(US0y) + ST

The analogous result holds for Algorithm 8 as well.

Proof. First, for each loss function ¢y and ¢y, vari-
ables are linearly combined, composed with the con-
vex hinge function, and then averaged. All these op-
erations preserve convexity, hence both loss functions
are convex. Second, we have argued above that Algo-
rithms 2 and 3 are adaptations of the Pegasos [3] algo-
rithm for optimizing Equations 9 and 10, respectively.
Third, in Lemma 3, we proved a bound on the approx-
imate subgradients of both algorithms. Plugging these
three results into Corollary 2 in Shalev-Shwartz et al.
[3] yields the statement of the theorem. O

The theorem below gives a bound in terms of individ-
ual parameters rather than average parameters.

Theorem 2. Assume that the conditions and the
bound in Lemma 4 hold. Let t be an iteration index
selected uniformly at random from {1,...,T}. Then,
with probability at least %,

2(Vie2/3) n()

[ (U by) < f (U by) + T

The analogous result holds for Algorithm 3 as well.

Proof. The result follows directly from combining
Lemma 4 with Lemma 3 in Shalev-Shwartz et al.
[3]. O

Thus, with high probaublhty7 our algorithms reach an
e-accurate solution in O ( ) iterations. Since we ar-
gued in Subsection 4.1 that the running time of each
stochastic update is O (br), it follows that a complete
run of projected stochastic subgradient descent takes
o} (Az ) time, and the running time is independent of
the size of the training data.
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