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Abstract

For many collaborative ranking tasks, we
have access to relative preferences among
subsets of items, but not to global preferences
among all items. To address this, we intro-
duce a matrix factorization framework called
Collaborative Local Ranking (CLR). We jus-
tify CLR by proving a bound on its gener-
alization error, the first such bound for col-
laborative ranking that we know of. We then
derive a simple alternating minimization al-
gorithm and prove that its running time is
independent of the number of training exam-
ples. We apply CLR to a novel venue recom-
mendation task and demonstrate that it out-
performs state-of-the-art collaborative rank-
ing methods on real-world data sets.

1 Introduction

Since the early days of the Netflix Prize competition,
matrix factorization (MF) [7] has become a popular
method for modeling users’ preferences over a set of
items. MF achieves state-of-the-art performance on
very large-scale datasets, such as the Netflix dataset
[2], which comprises more than one hundred million
ratings. MF also does not require user and item fea-
tures [6], making it particularly useful for practition-
ers, as they can easily apply it to new domains without
designing domain-specific features.

Most MF methods optimize root-mean-square error
(RMSE) [15][12][11], largely because the winner of the
Netflix Prize was determined by it. However, for many
applications of collaborative filtering, RMSE is inap-
propriate because actual performance is based on pre-
dicting a rank rather than a rating. For example, when
choosing which sci-fi movie to watch, a user might won-
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der how Star Trek ranks against Serenity, and predict-
ing 3.8 for Star Trek and 4.5 for Serenity is relevant
only in so far as helping the user infer a relative rank-
ing.

As a remedy, researchers have devised various al-
gorithms for collaborative ranking. Weimer et
al. [17] proposed CofiRank, which is an MF method
that optimizes ranking measures, such as normal-
ized discounted cumulative gain (NDCG). Rendle et
al. [9] analyzed the collaborative ranking problem
from a Bayesian perspective and provided a meta-
optimization criterion called Bayesian Personalized
Ranking (BPR), which when coupled with MF, re-
duces into a differentiable version of CofiRank’s ob-
jective. Balakrishnan and Chopra [1] used a two-stage
model to rank; the first stage learns the latent factors
via Probabilistic Matrix Factorization (PMF) [12], and
the second stage processes these factors as features us-
ing supervised regression and ranking algorithms.

Existing collaborative ranking algorithms, including
CofiRank and BPR, are derived under the assumption
that users’ preferences are totally ordered. Given a
training dataset, even if it is not totally ordered, these
algorithms process it by partitioning the entire uni-
verse of items into observed and unobserved items and
ranking the observed items higher than the unobserved
ones. However, there are many tasks where such a
global partitioning is inappropriate. For example, for
a movie recommendation task, when a user browses
a small list of sci-fi titles and eventually chooses one,
she prefers the chosen movie over the remaining sci-fi
movies in that list, but she does not necessarily pre-
fer the chosen movie over all other movies. Similarly,
for a venue recommendation task, when a user consid-
ers nearby restaurants and settles on one, she demon-
strates a local preference among a small set of nearby
restaurants, rather than a global preference between
the chosen restaurant and all other restaurants.

We are interested in an algorithm that not only learns
from local preferences encountered during training,
but also is evaluated according to the local prefer-
ences it predicts during deployment. For example, for
a venue recommendation task, the user would query
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the recommendation system when she is at a particu-
lar neighborhood, and the system would return a lo-
cal, not global, ranking over nearby venues. Thus, a
successful recommendation system does not just use
local preferences it observes during training to piece
together a global ranking; what the user ultimately
cares about are local rankings themselves.

Recently, Yang et al. [18] studied the problem of learn-
ing local rankings in a collaborative ranking setting us-
ing random utility theory. They assumed that the er-
ror terms are distributed with respect to a Weibull dis-
tribution, and they derived a multinomial logit model
whose likelihood they maximized. In contrast, we de-
velop a more theoretically rigorous framework using
computational learning theory. We base all our de-
cisions on minimizing the loss function, and we moti-
vate these decisions using learning-theoretic arguments
that provably minimize the running time and maxi-
mize the generalization performance.

We proceed as follows. In Section 2, we formally set up
the problem, make very general assumptions about the
sample space (i.e. examples are generated i.i.d from an
unknown probability distribution, etc.), and introduce
the local ranking loss, which can be viewed as a local
version of AUC. In Section 3, we prove a generaliza-
tion error bound, which to the best of our knowledge,
is the first bound of its kind for collaborative ranking.
In Section 4, we describe the CLR objective, justify
it using the generalization bound, and explore its re-
lationship with other learning methods, including the
objective proposed by Yang et al. [18]. In Section 5,
we derive a simple alternating minimization algorithm
for training CLR and prove that its running time is
independent of the number of training examples. In
Section 6, we present empirical results on a real-world
venue recommendation task that naturally lends itself
to our local ranking framework due to its spatial struc-
ture. We conclude in Section 7.

2 Problem Formulation

In this section, we formally set up the problem by
describing our assumptions about the data, the hy-
pothesis space, and the loss function. We assume
that data is generated from a sample space X , and
each data point consists of a user, a candidate set
of items, a local time, and a single item that the
user prefers over the remaining candidates (i.e. the la-
bel). More formally, let U = {1, . . . ,m} be the set
of users, let V = {1, . . . , n} be the set of items, and
let T = {1, . . . , T} indicate the local time. Then, the
sample space is defined as

X = {(u,C, i, t) | u ∈ U , C ⊆ V, i ∈ C, t ∈ T } . (1)

Given a training dataset, the learning algorithm’s goal
is to choose a hypothesis g : Z3 → R, which would
map a user u, item i, and time index t to a scalar
value. Once the training is complete and the hypoth-
esis is deployed, the recommendation system may be
queried with a user u, candidate set C, and local time.
In return, the hypothesis assigns a scalar value to each
candidate item and induces a ranking over the can-
didate set, and the higher the value of an item, the
higher its rank. For example, in case of venue recom-
mendation, the user sends the system her geographical
coordinates, the system identifies the nearby venues,
forms the candidate set, applies the hypothesis, and
ranks the candidate venues.

The performance of the recommendation system de-
pends on how high it ranks the item that the user
will ultimately choose. More formally, let P [·] denote
probability, let Ci be the set C excluding element i,
and let c

U∼ C mean that c is sampled uniformly from
C. Then, the local ranking loss associated with hy-
pothesis g is

Lg (u,C, i, t) = P

c
U∼ Ci

[g (u, i, t)− g (u, c, t) ≤ 0] . (2)

Intuitively, if the highest scalar value is assigned to the
correct item i, there is no loss. Otherwise, the loss is
proportional to the number of items in the candidate
set that are ranked higher than the correct item. Al-
ternatively, local ranking loss can be viewed as a local
version of AUC loss, since if we generalize a candidate
set to be the entire universe of items, we would obtain
the regular AUC loss.

To simplify the discussion, for most of the paper, we
will assume that the sample space, hypotheses, and
loss functions all exclude references to local time. We
will revisit this issue in Section 4.

3 A Bound on the Generalization
Error

Our ultimate goal is to devise algorithms that min-
imize the generalization error of collaborative rank-
ing. In this section, we focus specifically on deriving a
bound on the generalization error, which in turn will
influence our algorithmic design.

We assume that the hypothesis class is based on the
set of low-rank matrices. Given a low-rank matrix
M , let gM ∈ F be the associated hypothesis, where
gM (u, i) = Mu,i. Throughout the paper, we abuse
notation and use gM and M interchangeably. We
assume that data is generated with respect to D,
which is an unknown probability distribution over
the sample space X , and we let E denote expecta-
tion. Then, the generalization error of hypothesis M
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is E
(u,C,i)∼D

LM (u,C, i), which is the quantity we bound

below.

We will derive the generalization bound in two
steps. In the first step, we will bound the empirical
Rademacher complexity of our loss class, defined be-
low, with respect to samples that contain exactly 2
candidates, and in the second step, we will prove the
generalization bound with a reduction to the previous
step.
Lemma 1. Let m be the number of users and
let n be the number of items. Define Lr =
{LM | M ∈ Rm×n has rank at most r} as the class of
loss functions associated with low-rank matrices. As-
sume that S2 ⊆ X is a set of d samples, where each
sample contains exactly 2 candidate items; i.e. if
(u,C, i) ∈ S2, then |C| = 2. Let RS2 (Lr) denote
the Rademacher complexity of Lr with respect to S2.
Then,

RS2 (Lr) ≤

����2r (m+ n) ln
�

16emn2

r(m+n)

�

d
.

Proof. Because each sample in S2 contains exactly
2 candidates, any hypothesis LM ∈ Lr applied to
a sample in S2 outputs either 0 or 1. Thus, the
set of dichotomies that are realized by Lr on S2,
called ΠLr (S2), is well-defined. Using Equation 6
from Boucheron et al. [3], we know that RS2 (Lr) ≤�

2 ln|ΠLr (S2)|
d . Let X2 ⊆ X be the set of all sam-

ples that contain exactly 2 candidates, |ΠLr (S2)| ≤
|ΠLr (X2)|, so it suffices to bound |ΠLr (X2)|.

We bound |ΠLr (X2)| by counting the sign configura-
tions of polynomials. Let (u, {i, j} , i) ∈ X2 be a sam-
ple and let M be a hypothesis matrix. Because M has
rank at most r, it can be written as M = UV T , where
U ∈ Rm×r and V ∈ Rn×r. Let �·� denote an indicator
function that is 1 if and only if its argument is true.
Then, the loss on the sample can also be rewritten as
LM (u, {i, j} , i) = �Mu,i − Mu,j ≤ 0� = �

�
UV T

�
u,i

−
�
UV T

�
u,j

≤ 0� = �
r�

a=1
Uu,a (Vi,a − Vj,a) ≤ 0�. Since

cardinality of X2 is at most 2m
�n
2

�
≤ mn2, putting it

all together, it follows that |ΠLr (X2)| is bounded by
the number of sign configurations of mn2 polynomi-
als, each of degree at most 2, over r (m+ n) variables.
Applying Corollary 3 from Srebro et al. [14], we obtain

|ΠLr (X2)| ≤
�

16emn2

r(m+n)

�r(m+n)
. Taking logarithms and

making basic substitutions yield the desired result.

We proceed to proving the more general result via a
reduction to Lemma 1. We will no longer assume that
|C| = 2.

Theorem 1. Let m be the number of users and let n
be the number of items. Assume that S consists of d
independently and identically distributed samples cho-
sen from X with respect to a probability distribution D.
Let LM be the loss function associated with a matrix
M , as defined in Equation 2. Then, with probability
at least 1− δ, for any matrix M ∈ Rm×n with rank at
most r,

E
(u,C,i)∼D

LM (u,C, i) ≤ E
(u,C,i)

U∼S

LM (u,C, i)

+ 2

�
2r (m+ n) ln

�
16emn

r

�

d
+

�
2 ln

�
2
δ

�

d
. (3)

Proof. We will manipulate the definition of
Rademacher complexity [3] in order to use the
bound given in Lemma 1:

RS (Lr)
.
= E

σ

�
sup

LM∈Lr

�
1

d

d�

a=1

σaLM (ua, Ca, ia)

��

= E
σ

�
sup

LM∈Lr

�
1

d

d�

a=1

σa E
ja

U∼(Ca\{ia})
LM (ua, {ia, ja} , ia)

��

= E
σ

�
sup

LM∈Lr

�
E

j1,...,jd

1

d

d�

a=1

σaLM (ua, {ia, ja} , ia)
��

≤ E
σ

�
E

j1,...,jd

�
sup

LM∈Lr

1

d

d�

a=1

σaLM (ua, {ia, ja} , ia)
��

= E
j1,...,jd

�
E
σ

�
sup

LM∈Lr

1

d

d�

a=1

σaLM (ua, {ia, ja} , ia)
��

= E
j1,...,jd

[RS2 (Lr)]

≤

����2r (m+ n) ln
�

16emn2

r(m+n)

�

d

Plugging the bound to Theorem 3.2 in Boucheron et
al. [3] proves the theorem.

Srebro et al. [14] used covering numbers to prove
a generalization error bound for collaborative binary
classification, which is matrix factorization framework
where the matrix entries are binary and the loss func-
tion is 0-1. Even though their learning setting is dif-
ferent from ours, we can still compare our bound in
Theorem 1 with their bound, and it can be seen that
they match up to logarithmic factors. Thus, collabo-
rative local ranking maintains the same generalization
error as collaborative binary classification in exchange
for a small increase in sample size.

We can improve the tightness of our generalization
error bound by restricting the sample space X . Let
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X2 ⊆ X be the set of all samples that contain ex-
actly 2 candidates. In our proof of Lemma 1, we
loosely bounded the cardinality of the sample space
with |X2| ≤ mn2, but many collaborative ranking
tasks have additional structure which lead to better
bounds. For example, in case of venue recommenda-
tion, cardinality of X2 is small, because two venues
are only assigned to the same candidate set if they are
near each other. If we assume that every venue has
at most b nearby venues, then |X2| ≤ mnb, and the
n in the logarithm of Equation 3 gets replaced by a
small constant. Thus, by making additional assump-
tions about the structure of the sample space, the gen-
eralization error bound in Theorem 1 becomes asymp-
totically equivalent to the bound provided in Srebro et
al. [14], even though the latter bound was derived for
the simpler collaborative classification setting.

4 Collaborative Local Ranking

In this section, we describe CLR by formulating its
objective function, which we justify using the gener-
alization error bound derived above. We also make
connections between CLR and other learning meth-
ods, such as maximum-margin matrix factorization
(MMMF) [10], ranking support vector machine (rank-
ing SVM) [5], and collaborative competitive filtering
(CCF) [18].

Given the generalization error bound in Theorem 1, a
reasonable objective is to minimize the empirical local
ranking loss, which is the first term on the right hand
side of Equation 3. However, this function is discon-
tinuous and difficult to minimize with respect to M , so
we propose minimizing a more tractable upper bound
instead. Let h (x) = max (0, 1− x) be the hinge func-
tion, let M be the hypothesis matrix with rank at most
r, and let M = UV T , where U ∈ Rm×r and V ∈ Rn×r.
Then, we can bound the empirical local ranking loss
as

E
(u,C,i)

U∼S

LM (u,C, i) =
1

|S|
�

(u,C,i)∈S

LM (u,C, i)

=
1

|S|
�

(u,C,i)∈S

P

c
U∼ Ci

[Mu,i −Mu,c ≤ 0]

=
1

|S|
�

(u,C,i)∈S

E
c

U∼ Ci

�Mu,i −Mu,c ≤ 0�

=
1

|S|
�

(u,C,i)∈S

1

|Ci|
�

c∈Ci

�
�
UV

T
�
u,i

−
�
UV

T
�
u,c

≤ 0�

≤ 1

|S|
�

(u,C,i)∈S

1

|Ci|
�

c∈Ci

h

��
UV

T
�
u,i

−
�
UV

T
�
u,c

�
.

(4)

The resulting upper bound is not necessarily convex

with respect to U and V jointly, but it is convex with
respect to U if V is fixed, and vice versa.

We use trace norm regularization, in addition to the
low-rank constraint, to further restrict the hypothe-
sis class. Let � · �T denote the trace norm and let
� · �F denote the Frobenius norm, then we use the
equality �M�T = min

U,V,M=UV T

1
2

�
�U�2F + �V �2F

�
given

in Lemma 6 of Mazumder et al. [8] to state the objec-
tive in its final form.
Definition 1 (CLR Objective). Let S be the training
data. Let U ∈ Rm×r and V ∈ Rn×r be the factor ma-
trices, and let λ > 0 be the regularization parameter.
The CLR objective is

f
CLR (S;U, V ) =

λ

2

�
�U�2F + �V �2F

�

+
1

|S|
�

(u,C,i)∈S

1

|Ci|
�

c∈Ci

h

��
UV

T
�
u,i

−
�
UV

T
�
u,c

�
.

If λ = 0, then the CLR objective is equivalent to min-
imizing the bound in Equation 4. If λ �= 0, then it can
be shown that the equivalence still holds, but under the
constraint that matrices have bounded trace norm in
addition to having bounded rank. Even though mini-
mizing Equation 4 is more directly justified by our gen-
eralization bound, we use the CLR objective instead,
which is more general, to allow additional regulariza-
tion. Note that the resulting hypothesis still satisfies
the assumptions of Theorem 1. Rank-truncated trace
norms have been used as regularizers in other collab-
orative learning settings, such as by Foyget et al. [4]
and by Rennie and Srebro [10], and have been demon-
strated to work well.

We note that the CLR and the ranking SVM [5] ob-
jectives are closely related. If V is fixed and we
only need to minimize U , then each row of V acts
as a feature vector for the corresponding item, each
row of U acts as a separate linear predictor, and
the CLR objective decomposes into solving simul-
taneous ranking SVM problems. In particular, let
Su = {(a, C, i) ∈ S | a = u} be the examples that cor-
respond to user u, let Uu denote row u of U , and let
f rSVM denote the objective function of ranking SVM,
then

f
CLR (S;U, V ) =

m�

u=1

f
rSVM (Su;Uu, V ) .

This correspondence is not surprising, since in the
ranking SVM setting, items have features, the train-
ing data consists of binary orderings between items,
and the ranking SVM objective itself is a convex upper
bound on the number of misordered pairs. In contrast,
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if U is fixed and we only need to minimize V , the re-
sulting objective does not correspond to any objective
function that we know of.

Next, we compare the CLR objective with the CCF
objective proposed by Yang et al. [18]. Even though
they look similar, the two objectives are actually dif-
ferent. In particular, given a sample (u,C, i), the loss
term in the CCF objective is

h

�
�
UV

T
�
u,i

− 1

|Ci|
�

c∈Ci

�
UV

T
�
u,c

�
,

whereas the loss term in the CLR objective is

1

|Ci|
�

c∈Ci

h

��
UV

T
�
u,i

−
�
UV

T
�
u,c

�
.

The CCF objective is not penalized if the score of
the correct item is sufficiently higher than the average
score of the incorrect items. However, such cases occur
even when most of the scores of incorrect items are ac-
tually higher than the score of the correct item, as long
as there exists some incorrect item with a low enough
score that brings the overall average down. The CLR
objective does not suffer from this drawback. Fur-
thermore, we have already proved that minimizing the
CLR objective is a reasonable proxy for minimizing
the expected local ranking loss. It is harder to make a
similar argument for the CCF objective.

Lastly, we extend the CLR objective to incorporate
features. In the context of venue recommendation,
such features might be obtained from an external
database and indicate the venue type or the query
time stamp. We assume an extended sample space,
and given a sample (u,C, i, t) ∈ X , we let t denote the
query time stamp.

Definition 2 (CLR.F Objective). Let S be the train-
ing data. Given a sample (u,C, i, t) ∈ S, assume that
Fu,i,t ∈ Rq denotes the corresponding feature vector.
Let U ∈ Rm×r and V ∈ Rn×r be the factor matrices,
let w ∈ Rq be the feature coefficients, and let λ, γ > 0
be the regularization parameters. The CLR.F objec-
tive is

f
CLR.F (S;U, V,w) =

λ

2

�
�U�2F + �V �2F

�

+
γ

2
�w�2 + 1

|S|
�

(u,C,i,t)∈S

1

|Ci|×

�

c∈Ci

h

��
UV

T
�
u,i

−
�
UV

T
�
u,c

+ w
T (Fu,i,t − Fu,c,t)

�
.

Algorithm 1 Alternating minimization for optimizing
the CLR objective.
Input: Training data S ⊆ X , regularization parame-

ter λ > 0, rank constraint r, number of iterations
T .

1: U1 ← Sample matrix uniformly at random from�
− 1√

λmr
,

1√
λmr

�m×r
.

2: V1 ← Sample matrix uniformly at random from�
− 1√

λnr
,

1√
λnr

�n×r
.

3: for all t from 1 to T − 1 do
4: Ut+1 ← argmin

U
fCLR (S;U, Vt)

5: Vt+1 ← argmin
V

fCLR (S;Ut+1, V )

6: return UT , VT .

5 Algorithms

5.1 Derivation

In this subsection, we derive and describe our algo-
rithm for optimizing the CLR objective. As we noted
before, the CLR objective is not necessarily jointly
convex in U and V , but it is convex in U when V

is fixed and vice versa. We minimize the CLR ob-
jective using alternating minimization, where we se-
quentially alternate between solving the convex sub-
problems, and we solve each such subproblem using
projected stochastic subgradient descent. The pseu-
docode is depicted in Algorithm 1.

Now, we derive the projected stochastic subgradient
descent algorithm for minimizing V while keeping U

fixed. At each iteration, the algorithm approximates
the objective function based on an example selected
at random, updates the weight vector using the ap-
proximate subgradient, and projects the weights onto
a bounded ball. Let (u,C, i) ∈ S be an example, then
the corresponding approximate objective function is

f
CLR ((u,C, i) ;U, V ) =

λ

2
�V �2F

+
1

|Ci|
�

c∈Ci

h

��
UV

T
�
u,i

−
�
UV

T
�
u,c

�
.

We introduce various matrix notation to help us define
the approximate subgradients. Given a matrix M , let
Mk,· denote row k of M . Define the matrix M̂p,q,z, for
p �= q, as

M̂
p,q,z
s,· =






Mz,· for s = p,
−Mz,· for s = q,
0 otherwise,

(5)
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Algorithm 2 Projected stochastic subgradient de-
scent for optimizing U .
Input: Factors V ∈ Rn×r, training data S, regular-

ization parameter λ, rank constraint r, number of
iterations T .

1: U1 ← 0m×r

2: for all t from 1 to T − 1 do
3: Choose (u,C, i) ∈ S uniformly at random.
4: ηt ← 1

λt

5: C+ ←
�
c ∈ Ci |

�
UtV

T
�
u,i

−
�
UtV

T
�
u,c

< 1
�

6: Ut+1 ← (1− ηtλ)Ut +
ηt

|Ci|
�

c∈C+

V̌ i,c,u

7: Ut+1 ← min
�
1, 1√

λ�Ut+1�F

�
Ut+1

8: return UT .

and define the matrix M̌
p,q,z
s,· as

M̌
p,q,z
s,· =

�
Mp,· −Mq,· for s = z,
0 otherwise.

(6)

Let �·� denote an indicator function that is 1 if and
only if its argument is true. Then, the subgradient of
the approximate objective function with respect to V

is

∇V f
CLR ((u,C, i) ;U, V ) = λV

− 1

|Ci|
�

c∈Ci

�
�
UV

T
�
u,i

−
�
UV

T
�
u,c

< 1�Û i,c,u
. (7)

Setting ηt = 1
λt as the learning rate at iteration t,

the approximate subgradient update becomes Vt+1 =
Vt− ηt∇V f

CLR ((u,C, i) ;U, V ). After the update, the
weights are projected onto a ball with radius 1√

λ
. The

pseudocode for optimizing both convex subproblems is
depicted in Algorithms 2 and 3. We prove the correct-
ness of the algorithms and bound their running time
in the next subsection.

We conclude the subsection by commenting on the im-
plementation details. A naive implementation of Algo-
rithm 2 would execute each iteration in time Ω (bmnr),
where b denotes the size of the largest candidate set.
One can reduce the running time of each iteration con-
siderably by normalizing the matrix efficiently. We
represent U as a triplet (W,a, ν), where a is a scalar,
U = aW , and �U�F = ν. It can be verified that, us-
ing the new representation, a single iteration in both
Algorithms 2 and 3 can be executed in time O (br).

5.2 Analysis

In this subsection, we analyze the running time and
correctness of our algorithms. In particular, we prove
that projected stochastic subgradient has a running

Algorithm 3 Projected stochastic subgradient de-
scent for optimizing V .
Input: Factors U ∈ Rm×r, training data S, regular-

ization parameter λ, rank constraint r, number of
iterations T .

1: V1 ← 0n×r

2: for all t from 1 to T − 1 do
3: Choose (u,C, i) ∈ S uniformly at random.
4: ηt ← 1

λt

5: C+ ←
�
c ∈ Ci |

�
UV T

t

�
u,i

−
�
UV T

t

�
u,c

< 1
�

6: Vt+1 ← (1− ηtλ)Vt +
ηt

|Ci|
�

c∈C+

Û i,c,u

7: Vt+1 ← min
�
1, 1√

λ�Vt+1�F

�
Vt+1

8: return VT .

time that is independent of the number of training
examples. We do not bound the total number of al-
ternating minimization steps a priori; nevertheless, we
demonstrate that our methods are especially suitable
for large datasets since they solve each individual min-
imization problem efficiently.

The convex subproblems we analyze have the general
form

min
X∈D

f (X; �) = min
X∈D

λ

2
�X�2F+

1

|S|
�

(u,C,i)∈S

� (X; (u,C, i)) .

(8)
One can obtain the individual subproblems by specify-
ing the domain D and the loss function �. For example,
in case of Algorithm 2, the corresponding minimization
problem is specified by

min
X∈Rm×r

f (X; �V ) where

�V (X; (u,C, i)) =
1

|Ci|
�

c∈Ci

h

��
XV

T
�
u,i

−
�
XV

T
�
u,c

�
,

(9)

and in case of Algorithm 3, it is specified by

min
X∈Rn×r

f (X; �U ) where

�U (X; (u,C, i)) =
1

|Ci|
�

c∈Ci

h

��
UX

T
�
u,i

−
�
UX

T
�
u,c

�
.

(10)

Let U� = argminU f (U ; �V ) and V � =
argminV f (V ; �U ) denote the solution matrices
of Equations 9 and 10, respectively. Also, given a
general convex loss � and domain D, let X̄ ∈ D be an
�-accurate solution for the corresponding minimization
problem if f

�
X̄; �

�
≤ minX∈D f (X; �) + �.

In the remainder of this subsection, we show that Al-
gorithms 2 and 3 are adaptations of the Pegasos [13]
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algorithm to the CLR setting. Then, we prove certain
properties that are prerequisites for obtaining Pega-
sos’s performance guarantees. In particular, we show
that the approximate subgradients computed by Al-
gorithms 2 and 3 are bounded and the loss functions
associated with Equations 9 and 10 are convex. In the
end, we combine these results with previous results ob-
tained by Shalev-Shwartz et al. [13] to show that our
algorithms reach an �-accurate solution with respect to
their corresponding minimization problems in Õ

�
1

λ2�

�

iterations.

The main difficulty in extending the results of Shalev-
Shwartz et al. [13] from the supervised learning setting
to the collaborative ranking setting is the the treat-
ment of features. In the supervised learning setting,
features are constant, but in our setting, the factor ma-
trices U and V act like features, and their values vary
from one step of alternating minimization to the next.
For example, when optimizing U , the factor matrix V

acts like a feature matrix, and vice versa, and both
matrices change in value during subsequent steps of
alternating minimization. As a result, feature values
that are treated as constants in the supervised setting
cannot be treated as constants in the collaborative set-
ting. We deal with these issues in our proofs, which
are provided in the supplement. Below, we only state
the main theorem of our analysis.
Theorem 2. Assume that the conditions and the
bound in Lemma 4 hold. Let t be an iteration index
selected uniformly at random from {1, . . . , T}. Then,
with probability at least 1

2 ,

f (Ut; �V ) ≤ f (U�; �V ) +
42

�√
λ+ 2

�
1
λ

�2

ln
�
T
δ

�

λT
.

The analogous result holds for Algorithm 3 as well.

Thus, with high probability, our algorithms reach an
�-accurate solution in Õ

�
1

λ2�

�
iterations. Since we ar-

gued in Subsection 5.1 that the running time of each
stochastic update is O (br), it follows that a complete
run of projected stochastic subgradient descent takes
Õ
�

br
λ2�

�
time, and the total running time is indepen-

dent of the number of training examples.

6 Experiments

In this section, we provide an empirical analysis of
the CLR framework by applying it to a venue rec-
ommendation task. We assess CLR’s generalization
and running time performance by comparing it against
CofiRank, an algorithm which is representative of the
state-of-the-art in collaborative ranking.

We created our dataset by collecting publicly available
“check-ins” originating from New York City via the

Twitter and Foursquare APIs. A check-in is a virtual
announcement where a user shares her whereabouts
with other people on her social network. Our dataset
ranged over a 9 month period and consisted of 13750
users, 11700 venues, and 269597 check-ins. We note
that all the check-ins we collected were shared with
the entire Internet, so our dataset does not contain
any private information.

At a high level, our goal is to build a venue recom-
mendation application for mobile platforms, where the
user specifies a geographical region she is interested in
exploring, and the application returns a personalized
ranking over the venues in that region. We use the
Foursquare dataset as a proxy, and assume that when
a user checks into a venue, she is implicitly preferring
that venue over the remaining venues in a specified
radius. We also note that many of the publicly avail-
able collaborative filtering datasets, such as the Net-
flix dataset, are not appropriate for our problem, since
they usually do not contain enough information for us
to reconstruct the candidate sets.

We partition the check-ins chronologically, and place
the earliest 60% of check-ins to train, the subsequent
20% to validation, and final 20% to test sets. Each
check-in corresponds to a tuple (u, i), where u is the
user and i is the checked-in venue. In order to apply
CLR, we augment each check-in with a candidate set
C, which consists of venues within a specified distance
to i, and form the CLR sample (u,C, i). We train a
variety of CLR and CofiRank models on a combined
train and validation set, determine the best perform-
ing model parameters using the validation set, and
report the performance of the chosen parameters on
the test set. The model parameters include the rank
r ∈ {2, 5, 10, 20}, CofiRank regularization parameter
λ ∈ {10, 100, 1000, 10000}, and CLR regularization
parameter λ ∈ {0.01, 0.001, 0.0001, 0.00001, 0.000001}.
For testing, we form queries with a user u and a can-
didate set C, hide the label i, and measure the algo-
rithms’ performances accordingly. We vary the radius
that determines the size of the candidate set C from
50m to 300m, in 50m increments.

Figure 1 displays the local ranking loss of various al-
gorithms on the held-out test set. We compare CLR
against both CofiRank and an algorithm called Pop-
ular, which outputs the most frequently checked in
venue from the candidate set. We execute CofiRank
with three different loss functions: ordinal, NDCG,
and squared [16]. CofiRank performs best when cou-
pled with the squared loss, where it effectively mim-
ics MMMF [10]. Our algorithm, CLR, outperforms all
methods and achieves the lowest local ranking loss. We
note that, unlike competing methods, CLR does not
suffer an additional loss when the size of its candidate
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Figure 1: Top: The local ranking loss of various algorithms
on the held-out test set. CLR outperforms all competing
methods. The error bars correspond to standard error and
are barely noticeable. Bottom: Training time of CLR
and CofiRank in log-scale. CLR trains orders of magnitude
faster than CofiRank-squared, the best performing variant
of CofiRank, even when we increase the size of the radius
and candidate sets.

sets increases.

Figure 2 displays the recall@k performance on the
held-out test set, for k = {1, 5, 10}. The order of algo-
rithms with respect to recall performance is exactly the
same as their order with respect to local ranking loss.
For recall@1, Popular outperforms most versions of
CofiRank, but as the radius of candidate sets increase
beyond 150m, the performance of CofiRank-squared
matches that of Popular. As k increases, the perfor-
mance gap between CLR and the remaining methods
diminishes, especially for lower radii, but CLR contin-
ues to outperform for higher radii. Unlike CLR, the
remaining collaborative ranking methods do not take
advantage of the local feedback, which leads to poor
performance.

We also empirically analyze the running times of Cofi-
Rank and CLR. For both algorithms, for each radius,
we choose the parameter settings that perform the best
on the validation set, and record their respective train-
ing times. We plot the results using log-scale in Fig-
ure 1. Even though the running time of CLR has a
linear dependence on the size of the candidate sets,
CLR trains orders of magnitude faster than CofiRank,
as suggested by our theoretical analysis in Subsection
5.2.
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Figure 2: Recall@k of various algorithms on the held-out
test set, for k = {1, 5, 10}. CLR outperforms all competing
methods. The error bars correspond to standard error and
are barely noticeable.

7 Conclusion

In this paper, we formulated a novel matrix factoriza-
tion framework, called Collaborative Local Ranking,
which allows us to formulate a new set of real-world
ranking tasks in a collaborative setting. We justified
CLR with a bound on its generalization error, which to
the best of our knowledge, is the first bound of its kind
for collaborative ranking. We also derived a simple
alternating minimization algorithm and showed that
each minimization step can be efficiently computed in
time independent of the number of training examples.
We applied CLR to a venue recommendation task and
demonstrated that it outperforms state-of-the-art col-
laborative ranking methods, such as CofiRank, both in
terms of generalization performance and running time.
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